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Abstract—Privacy research is attracting increasingly more
attention, especially with the upcoming general data protection
regulation (GDPR) which will impose stricter rules on storing and
managing personally identifiable information (PII) in Europe. For
vehicle manufacturers, gathering data from connected vehicles
presents new analytic opportunities, but if the data also contains
PII, the data comes at a higher price when it must either be
properly de-identified or gathered with contracted consent from
the drivers.

One option is to establish contracts with every driver, but
the more tempting alternative is to simply de-identify data
before it is gathered, to avoid handling PII altogether. However,
several real-world examples have previously shown cases where
re-identification of supposedly anonymized data was possible,
and it has also been pointed out that PII has no technical
meaning. Additionally, in some cases the manufacturer might
want to release statistics either publicly or to an original
equipment manufacturer (OEM). Given the challenges with
properly de-identifying data, structured methods for performing
de-identification should be used, rather than arbitrary removal
of attributes believed to be sensitive.

A promising research area to help mitigate the re-identification
problem is differential privacy, a privacy model that unlike most
privacy models gives mathematically rigorous privacy guarantees.
Although the research interest is large, the amount of real-world
implementations is still small, since understanding differential
privacy and being able to implement it correctly is not trivial.
Therefore, in this position paper, we set out to answer the
questions of how and when to use differential privacy in the
automotive industry, in order to bridge the gap between theory
and practice. Furthermore, we elaborate on the challenges
of using differential privacy in the automotive industry, and
conclude with our recommendations for moving forward.

I. INTRODUCTION

The ability to collect data from modern connected vehicles

presents opportunities for increased analysis, which enables

vehicle manufacturers to both improve existing as well as

develop new services. For example, investigating driving be-

haviour would make it possible to learn more about the drivers’

needs and preferences, allowing manufacturers to better cater

to customers’ needs. Especially, using machine learning on

large data sets could result in interesting correlations that were

previously unknown.

However, gathering data from vehicles is not only an

opportunity for further analysis, but also a possible privacy risk

to the individual drivers. A recent survey show that drivers’

privacy concerns include disclosure of private information, car

vehicle tracking and commercial use of their personal data [1].

Seeing as privacy is a concern for drivers when it comes to

connected vehicles, the problem needs to be addressed by the

manufacturers in order to maintain the drivers’ trust. Moreover,

the upcoming general data protection regulation (GDPR) [2]

will soon enforce stricter handling of personally identifiable

information (PII). Failure to comply with the GDPR may

result in fines of up to either e20,000,000 or 4% of the total

worldwide annual turnover of the preceding financial year [2].

Even though the GDPR is a European law, it will affect all

companies that sell vehicles to Europe, as this is where the data

will be collected. It is therefore important that PII is handled

with care in order to protect the company’s brand, maintain

the customers’ trust as well as to meet the new legislation.

A common pitfall when de-identifying data is to only

remove attributes than can obviously be classified as

PII, such as VIN numbers. However, as pointed out by

Narayanan and Shmatikov [3], defining and identifying PII is

surprisingly difficult, and in fact, PII has no technical meaning.

A vehicle has approximately 7700 unique signals [4], and

while these signals may seem to be separate from PII, even

observing a driver’s behaviour for as short as 15 minutes is

enough to fingerprint and identify a driver with high accu-

racy [5]. Furthermore, Gao et al. [6] showed that the driving

speed in combination with an external road map is enough

to trace the location of a vehicle with high accuracy, even

though GPS data has been removed. In addition, Tockar [7]

demonstrated that an “anonymized” version of NYC cab data,

in combination with public data, contained enough informa-

tion to track celebrities and identify passengers that visited

sensitive locations in the city. Thus, all data should be treated

as PII, since auxiliary data might be available to re-identify

individuals. For example, the position of the car seat might not

seem to be PII, but it is likely enough to distinguish between

two drivers of the same car.

A promising privacy model with rigorous, mathematical

privacy guarantees that could solve the previously mentioned

problems is differential privacy [8], [9]. Intuitively, for an

individual, the best privacy is achieved by not participating

in a survey, as their data will not affect any statistics released

from such a survey. Consequently, differential privacy aims

to approximate one individual not being in the data set. Fur-

thermore, differential privacy’s privacy guarantees are robust

and does not change over time, as it is backward and forward

proof. That is, any current or future data set cannot affect the



privacy guarantees offered by differential privacy.

As claimed by Dwork, differential privacy is able to pro-

vide high utility, accuracy, as well as high privacy in many

cases [9]. This is a very desirable property, as there exists a

trade-off between privacy and utility that is difficult to balance.

Intuitively, this trade-off can be explained by investigating two

extreme cases. Without utility, privacy makes little sense, as

privacy without utility is satisfied when no data is gathered.

However, full utility is achieved by publishing a raw data set,

which does not give any privacy guarantees. As neither of

these two cases are desirable, a trade-off between the two must

be made.

While differential privacy shows promise, it can be chal-

lenging to use in real-world cases, as the utility is affected

by different parameters. The most prominent real-world cases

that use differential privacy have been presented by large

companies, such as Apple [10] and Google [11], and only

cover very limited use cases. In particular, for vehicular data,

differential privacy has so far only been investigated for

floating car data (FCD) [12]. Since differential privacy has

not yet been established in the automotive domain, although

there is a need for privacy-preserving analyses, we believe that

differential privacy is a future trend that this paper will aid in

paving the way forward for. Hence, the contribution of this

position paper is a comprehensible introduction to differential

privacy (Section II, III and IV), where we investigate what

type of differentially private analyses can be performed in the

vehicular domain from a holistic perspective, not only for one

specific data type. Furthermore, we provide recommendations

(Section V) for how to proceed when implementing differen-

tially private analyses in the vehicle domain, and highlight the

challenges (Section VI) involved with the implementation.

II. DIFFERENTIAL PRIVACY

Differential privacy originates from statistical research and

examples used often include queries on databases. It is impor-

tant to note that differential privacy is designed to suit statis-

tical queries that make predictions for large populations, as it

prevents inference of information about an entity. As has been

pointed out, any meaningful privacy guarantees for differential

privacy are not achievable when specific individuals in a data

set should be identified [13]. For example, differential privacy

will not return any useful information when we ask if Bob

uses his company car on weekends.

The differential privacy definition, shown in Definition 1 [9],

states that when the same query is run on two neighboring

data sets, differing in at most one element, the difference

between the probability of getting the same outcome of both

queries is essentially negligible. In other words, the presence

or absence of one single record does not affect the outcome

of a query noticeably. Intuitively, the idea behind differential

privacy is to produce a result to a statistical query that is

almost indistinguishable whether or not one record is present

or absent in the data set.

Definition 1 (ǫ-differential privacy): A randomized function

K gives ǫ-differential privacy if for all data sets D1 and D2

differing on at most one element, and all S ⊆ Range(K),

P r[K(D1) ∈ S] ≤ exp(ǫ)× Pr[K(D2) ∈ S]

Two of the main properties of differential privacy are

query composability and post-processing of data [14]. Being

composable means that any results of differentially private

analyses can be combined, in which case privacy degrades ad-

ditively. Composability also allows several queries to target the

same data. Other privacy models, such as k-anonymity [15],

fails under composition [16], even with itself. Lastly, any

post-processing conducted on data released under differential

privacy can be included in any additional analyses, without

increased risk to an entity [13].

The risk incurred on an individual is monitored by ǫ, which

is sometimes also referred to as the privacy guarantee. When

ǫ is set to a low value, it gives higher privacy at the cost of

reduced utility, whereas a high ǫ gives lower privacy and higher

utility. Thus, setting ǫ appropriately is a trade-off between

utility and privacy and should be carried out by an expert

in the domain.

Another parameter involved is the privacy budget, which is

a global parameter from which ǫ is deducted when a query is

run. The privacy budget is being consumed by querying the

database in order to maintain privacy, and the more queries the

higher noise the answers receive. This response can intuitively

be explained by an example including the game of twenty

questions. In the game of twenty questions, the more questions

that are answered, the closer the contestants get to the real

answer. To counteract anyone from finding the real answer

under differential privacy, the privacy budget enforces that

each consecutive answer gets more vague. When the privacy

budget is depleted, ǫ can only be set to zero, which means

answers will no longer return any meaningful information

about the data.

There are many different ways of achieving differential

privacy, as any function K that fulfills Definition 1 is differ-

entially private. The reason for why there are many different

algorithms is that they are data dependent, and the utility

from a differentially private algorithm changes depending on

its input data [17]. Consequently, researchers are constantly

inventing new algorithms that are optimized for their analysis,

resulting in a vast number of differentially private algorithms

with varying complexity and utility.

III. RELEASE MECHANISMS

The basic idea of a release mechanism, K from Definition 1,

is to add probabilistic noise to the real query result. Different

release mechanisms are better suited for different data types,

such as numerical or categorical data. The lower bound of

the accuracy of each release mechanism can also be proven

mathematically in order to determine which mechanism is

most likely to yield high utility.



Release mechanisms can also be deployed in two different

modes: centralized or local. In the centralized mode differen-

tial privacy is guaranteed by a trusted party, usually at the time

when the database is queried. For local differential privacy on

the other hand, each data point is collected under differential

privacy in a distributed manner, meaning that noise is added lo-

cally. In this section we will describe the Laplace mechanism,

the exponential mechanism and randomized response. Figure I

shows an overview of the mechanisms and their respective

characteristics.

Mechanism Name Deployment Mode Answer Data Type
Laplace Mechanism Centralized (Off-

board)
Numerical

Exponential
Mechanism

Centralized (Off-
board)

Categorical

Randomized
Response

Local (On-board) Categorical

TABLE I: Comparison between the characteristics of three

common differentially private mechanisms

A. The Laplace Mechanism

The Laplace mechanism, illustrated in Figure 1, works

by adding controlled numerical noise drawn from a Laplace

distribution to a query answer. To be able to hide changes in

the data set, the query sensitivity, ∆f , in combination with

the privacy budget, ǫ, is used when generating the noise. The

query sensitivity is the maximum impact removing or adding

any record to the data set has on the query result.

f(x)?
f(x) +

noise

query differentially private result

Fig. 1: An illustration of a database with a Laplace mechanism

that is used to release differentially private query answers

Since the Laplace mechanism produces continuous numer-

ical noise, it is suitable for queries that are also numerical.

Queries can be either continuous or discrete, as differential

privacy allows post-processing. In case of a discrete query,

the output will be continuous, but can be rounded up to a

discrete value without violating differential privacy.

The Laplace mechanism is applied centrally by a trusted

party. Thus, all raw data is kept in a database off-board, where

each query result is released under differential privacy.

B. Exponential Mechanism

The exponential mechanism [18] is designed for categorical

data, so the added noise is not numerical. Rather, the analyst

provides a utility function that specifies the distance between

the different categories. For example, the analyst might want to

specify the distance between colors, where shades of the same

color are closer than a different color. The exponential mech-

anism then uses the utility function to output a good answer

to the query with higher probability than outputting an answer

further from the truth. Thus, the exponential mechanism favors

answers that have high utility for a given query input. Like

the Laplace mechanism, the exponential mechanism is also

applied centrally.

C. Randomized Response

Randomized response [19] was originally invented in 1965

to estimate the amount of people in the population that

belong to a sensitive group. Since membership of the group

is sensitive, the respondent has an incentive to lie if he or she

is part of the group, which can cause a skewed distribution of

answers. Therefore, randomized response provides a protocol

which gives the respondents plausible deniability, meaning

that an analyst cannot tell if a given respondent lied or not

while still being able to make predictions about the population.

Answer

truthfully

Flip coin

Flip coin “Yes”

“No”

heads

tails

heads

tails

Fig. 2: Randomized response, in this example following the

protocol to answer the question “Do you text and drive?”

Randomized response enforces local differential privacy,

and each driver follows the protocol in Figure 2 in order to

respond under differential privacy. In order to interpret the

results from randomized response, the analyst has to extract

the number of people that where telling the truth using Bayes’

theorem.

IV. PRIVACY GUARANTEES

In order to utilize the privacy budget well, making it last

longer than when using a naı̈ve approach, privacy can be

applied at event-level [20] rather than user-level. Event-level

privacy protects a single event, such as a single data point

where a driver is speeding, whereas user-level privacy typically

protects an individual or an object such as a vehicle. The

analyst defines what an event is, for example a reading of

one single signal or something that happens after a certain

condition is met. For example, one event might be that the

airbag has been triggered, but it could also be one single

reading of the engine temperature.

Essentially, the privacy level determines what or who should

be protected by differential privacy, by determining what data

points are considered to belong to one entity. In other words, if

we choose user-level privacy for a car, all 7700 signals belong

to that entity, whereas if we decide on event-level privacy, we

can decide on a subset of those signals.



V. ADVICE

In theory, any query can be answered under differential

privacy. In practice, however, some queries are better suited,

since they offer a better trade-off between privacy and utility.

Hence, in this section we will present some advice regarding

how to proceed when creating a differentially private analysis

for vehicular data.

A. Model the Domain

1) Decide the privacy level: Before starting to implement

anything, it is important to define who or what privacy should

be provided for. For example, if the driver’s identity should

be protected, user-level privacy needs to be used. Also, since

a driver can drive more than one vehicle, this needs to be

accounted for in the model.

In some cases, to improve the utility of the answer, the

analyst might settle for only hiding certain events, such as

speeding, in which case the analyst can choose to only provide

privacy for the speed of the car. On the other hand, the analyst

can also choose to hide only the time a driver was driving at

a certain speed. In the case where only the time is hidden,

the driver can deny that he or she was speeding since it is

impossible to infer where the driver was driving. In other

words, an analyst can choose to hide events of different sizes,

such as only the time something happened or an entire driving

pattern, and it is vital to define in advance what those events

are.

Thus, modeling the kind of privacy that should be given and

to whom needs to be done first, in order to decide the privacy

level as well as finding a suitable value for ǫ.

B. Trusted Party or Not?

1) Decide deployment mode: The main advantage of local

differential privacy is that each driver adds their own noise,

as opposed to centralized differential privacy. Thus, local

differential privacy, which can be implemented using random-

ized response, is carried out on-board whereas centralized

differential privacy must be implemented off-board. Since

randomized response is local, no trusted party is needed to

gather all data, which also means companies never have to

store or even get in contact with any sensitive data as it will

be kept in the vehicle. Furthermore, on-board algorithms can

also result in data minimization, meaning that less data is

gathered from the driver, which is a property that is being

promoted by the upcoming GDPR. However, the downside

of local mechanisms is that achieving an adequate trade-off

between privacy and utility is difficult in real-world cases [21].

C. Using the Privacy Budget

In order to get a good balance between utility and privacy,

the privacy budget needs to be used with care. We believe

there are certain techniques that could make the budget last

longer, such as personalized budgets [22] (as opposed to a

global budget) and random sampling.

1) Personalized budgets: First, personalized budgets for

differential privacy allows each record to keep its own budget,

which means all records are not affected by queries that do

not concern them. Using personalized budgets thus allows an

analyst to keep the budget from being spent unnecessary, as

he or she can query all vehicles of a certain model without

also spending the budget for vehicles of other models.

From a data management perspective, another benefit of

using personalized budgets is that even if there is no cen-

trally controlled database gathering all the data, deductions

to a global budget do not have to be communicated across

databases as long as all data belonging to one entity remains in

one database. Thus, a company can still keep several databases

for different kinds of data without introducing dependencies

between the databases.

2) Random sampling: Secondly, random sampling allows

us to select a subset of records to query, and thus together

with personalized budgets only spend the budget of that subset.

Random sampling is especially appealing for big data sets,

where a subset of the entire population still gives a good

prediction. We believe that vehicular data fits this description.

3) Streaming data: Furthermore, we also believe the vehi-

cle industry could benefit from enforcing differential privacy

on streaming data instead of storing raw data in an off-board

database, as all stored data would be sanitized. That is, vehicles

could be selected to be part of a query, and then their replies

could be released under differential privacy where the data

is aggregated. In this way only the results from differentially

private queries could be saved, and raw data thrown away.

Since differential privacy offers post-processing, the data kept

could then be used in any analysis. Apart from preserving

privacy, this approach could also save storage space on the

server side, and could also decrease the traffic used to upload

data when queries only are issued on demand.

In the case of the streaming paradigm where vehicles are

queried, each vehicle would have to keep track of its own

budget and communicate it to the server, which would be

possible when we use personalized budgets. Even though local

differential privacy inherently is better suited for this setting,

we believe this provides an alternative where local algorithms

offer low utility.

D. Population Statistics, Never Individual Data

Differential privacy is designed to answer statistical queries

that make predictions about the population, not for inferring

information about individuals. Thus, if an analyst were to ask

how often Bob uses the parking brake per week, the result

would not be useful as the noise would likely be too high.

The accuracy of results can be vital if safety-critical func-

tionality is to be developed from an analysis. In such cases,

the upper-bound and lower-bound accuracy of a differentially

private algorithm needs to be calculated before the analysis

is carried out. If the differentially private algorithm does not

provide a tight upper- and lower-bound on accuracy, the safety-

critical functionality could be at risk by using data under

differential privacy.



In these cases, there are two options: either the differentially

private algorithm is modified (for example by rephrasing the

query, see Section V-E) to achieve higher accuracy, or the

analysis is carried out without guaranteeing differential privacy

on the company’s own vehicles. For example, a case where

differential privacy is not suitable is for function testing using

high-resolution data from few vehicles.

E. Rephrase Queries

Rephrasing a query might result in better utility.

1) Target the population: In some cases an inappropriate

query, that targets individuals, can be rephrased into a query

that targets the entire population. For example, if we want to

find out when an engine is running outside of its specification,

asking for in which vehicles this occurs would be a bad idea.

On the other hand, what we are really interested in might not

be which those cars are, but rather how many they are, to

determine if it is common or not. In such a case it is possible

to turn a bad query into a prediction about the population,

a counting query in this case, which would provide a better

answer to, approximately, the original query.

2) Change the query type: In other cases, the problem

might not be that one individual is targeted, but that the query

itself is prone to result in high noise. As an example, instead

of asking for the average speed, the speed can be investigated

from a histogram from which heavy-hitters can be identified.

In other words, when the query sensitivity is high, transform-

ing the query into a less noisy one is advisable, unless the

difference between the query result and the proportional noise

is small.

F. Dealing with Query Sensitivity

One issue with query sensitivity is that in practice it can be

hard to define. Therefore, in some cases, the query sensitivity

needs to be set to the physical maximum of a parameter, which

is unlikely but necessary.

1) Query a large data set: Some queries, such as sums and

averages, tend to have high query sensitivity. For vehicles, the

analyst might then when defining the query sensitivity refer

to the maximum value that can be held in a certain register

in the vehicle. While these queries can still be used, the noise

will be easier to hide when a larger data set is queried. Thus,

the data set’s size is more important in cases where the query

sensitivity is high rather than in cases where it is constant,

such as counting queries and histograms.

2) Fixed sensitivity through cropped ranges: The way we

suggest for dealing with high query sensitivity is to crop the

ranges and set a fixed max and min value. All values outside

of range must not be used in the analysis, as they would not

be protected in this case. The chosen range itself also leaks

information about what range is expected to be normal. When

the range itself is sensitive data, the range must be decided

under differential privacy.

However, if the range is not well-known, it is possible to

accidentally set the range to an interval which a large part of

the values fall outside of. To be able tweak an incorrectly set

range in a differentially private manner, we suggest creating

one bin on each side of the range that catches all outside

values. When the side-bins are fuller than a certain threshold,

it indicates a problem with the chosen range, which then needs

to be redefined.

G. Applicable Analyses

1) Histograms and counting queries: Histograms and

counting queries are particularly suited for the Laplace mecha-

nism, as pointed out by Dwork [23]. The reason for this is that

histograms and counting queries have a fixed sensitivity, which

generally results in low noise that is independent of the data

set’s size. Consequently, when the data set queried is small,

histogram and counting queries are especially appropriate.

2) Numerical queries: Any other numerical query is also

possible to implement under differential privacy using the

Laplace mechanism. However, the Laplace mechanism is

highly dependent on the type of query being asked, as each

query type has its own sensitivity, ∆f . For example, if we

want to calculate the average speed of a vehicle, we need to

account for the largest possible change adding or removing any

data point to the set can have on the average. Consequently,

we must assume the worst case, which in this case is adding

the highest possible speed to the data set. Thus, the sensitivity

is the difference between the maximum and minimum speed

possible. The sensitivity will then affect the proportion of noise

that is added to the query result, and thus we suggest choosing

a query which has lower sensitivity as it generally will yield

lower noise than a high sensitivity query.

3) Categorical queries: For data where adding noise makes

little sense, such as categorical data, the exponential mecha-

nism can be used. One such example is when asking for the

most popular car colors, as adding numerical noise to colors

does not make sense. Another example would be if we want

to find out what button on the dashboard is pushed the most

times.

VI. CHALLENGES

There are many challenges with properly implementing

a differentially private analysis in real-world cases. In this

section we point out some of the most prominent ones for

vehicular data.

A. Setting the Privacy Budget

To reason about ǫ, the domain must first be modeled in

such a way that the entity to protect has been defined through

setting the privacy level. ǫ is then the factor of indistinguisha-

bility between any two entities. Consequently, setting ǫ to a

meaningful value is difficult, as ǫ is a relative measure of

privacy risk [24]. In other words, the appropriate value of ǫ

is affected by the type of data being released. Thus, the risk

of two differentially private algorithms cannot be compared

by their value of ǫ. This problem is not unique to vehicular

data, but follows inherently from the definition of differential

privacy.



While how to choose ǫ appropriately remains an open

research question, Lee and Clifton as well as Hsu et al. pro-

pose practical solutions to the problem. Lee and Clifton

suggests choosing ǫ based on the individual’s risk of being

re-identified [24], whereas Hsu et al. [25] propose that ǫ

should be chosen based on an economic model. While no

approach is clearly better than the other, both solutions provide

an interpretation of what the privacy guarantees mean to

a participant, making it possible to communicate the risk

accordingly.

B. Multidimensional Time Series Data

Compared to other systems, preserving the privacy of ve-

hicles is particularly difficult since they are highly complex

systems that generates vast amounts of data from thousands

of signals. To make matters worse, vehicle signals can be

gathered continuously over time. Consequently, as the amount

of available data simplifies identifying a particular vehicle,

hiding the presence of a specific vehicle in the data set

becomes more difficult than hiding fewer connected data

points.

Because of the multidimensional time series nature of the

data, performing more than one analysis with high utility that

guarantees user-level privacy becomes infeasible. User-level

privacy would also not allow the analyst to reset the budget,

not even after years of using the same budget. Consequently,

we believe that in order to maintain utility, analyses can only

provide event-level privacy.

On a positive note, providing event-level privacy can save

the manufacturer the trouble of maintaining the privacy budget

between different systems, as it results in separate privacy

budgets for each system.

An open issue that we need to solve in this area is

interpreting what event-level differential privacy means for a

driver, as it is an individual that ultimately wants the privacy.

For example, what does it mean from a privacy perspective if

we only hide at what point in time the battery had a certain

temperature? Event-level privacy might be more feasible than

user-level privacy from a utility perspective, but every case

must be investigated to make sure the privacy guarantees in

such a situation makes sense to an individual as well.

VII. CONCLUSION

For vehicular data, differential privacy can be especially

tricky to enforce due to the fact that vehicles contain a

system of thousands of dependent signals collected over time.

Consequently, the automotive domain is very complex from a

privacy perspective. However, as differential privacy is the only

privacy model that provides provable privacy guarantees, this

is currently the only robust way of mitigating re-identification

attacks on data while maintaining utility. Thus, we believe that

the automotive industry will benefit from carrying out their

privacy-preserving analyses under differential privacy.

In order to properly implement differential privacy, it is vital

that the company first model the privacy within their domain,

to determine what they are trying to protect. From the model,

the company can then define what signals an event should

consist of, and the model also makes it possible to reason

about a suitable value for ǫ. Only after the modeling has been

done can the implementation details of the analysis be decided.

Differential privacy should be used to answer statistical

questions about a population. Since differential privacy aims to

protect the privacy of each entity, it is not suitable for detecting

anomalies. Because of this, analyses on high-resolution data

from few vehicles, such as when performing function testing,

should not be carried out under differential privacy. Any other

statistical queries can be answered under differential privacy,

but we believe that one of the main problems with introducing

differential privacy in the automotive domain is maintaining

high utility for the analyses. Thus, we have investigated ways

of being able to spend the privacy budget wisely.

We believe that in order to enforce differential privacy for

vehicular data in a sustainable way, personalized budgets,

random sampling as well as event-level privacy are key to

high utility. Rephrasing queries as well as cropping ranges of

queries is also something that can make differential privacy

more applicable. Furthermore, we believe that by issuing

queries to vehicles on the go using the streaming paradigm

or local differential privacy, there is potential to save both

storage space and bandwidth while preserving privacy at the

same time.

In the end, we believe differential privacy shows promise

for the vehicle industry. However, more work still needs to be

put into interpreting the meaning of ǫ as well as event-level

privacy from a customer’s perspective, as the meaning will

differ on a case-by-case basis.
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