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Dynamic equations for solid isotropic radially functionally

graded circular cylinders

Hossein Abadikhah, Peter D. Folkow∗

Department of Applied Mechanics, Chalmers University of Technology, SE-412 96 Göteborg, Sweden

Abstract

A hierarchy of dynamic equations for solid isotropic functionally graded circular cylinders
is derived based on the three dimensional elastodynamic theory. The material parameters
are assumed to vary in the radial direction. Using Fourier expansions in the circumferen-
tial direction and power series expansions in the radial direction, equations of motion are
obtained for longitudinal, torsional, flexural and higher order motion to arbitrary Fourier
and power orders. Numerical examples for eigenfrequencies and plots on mode shapes
and stress distributions curves are presented for simply supported cylinders for different
material distributions. The results illustrate that the present approach renders bench-
mark solutions provided higher order truncations are used, and act as engineering cylinder
equations using low order truncation.

Keywords: Series expansion, Cylinder, Beam equation, Functionally graded,
Eigenfrequency

1. Introduction

Functionally graded (FG) materials are non-homogeneous composites in which the proper-
ties change gradually in one or several directions. This continuous variation may be used
as an alternative to laminated structures, and may thus eliminate the risk for delamination
failures. The FG composites are usually made of a mixture of metal and ceramic phases,
where the strength of the metal and the heat resistance of the ceramic make these materials
popular in many different fields of engineering [1, 2].

The majority of work on FG structures considers basically two dimensional structures such
as plates and shells, where the material parameters in most cases vary over the thickness.
Of particular interest for the present work is the special case on FG cylindrical shells,
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where [3, 4, 5, 6] adopt classical, first and third order theories, while 3D based solutions
are studied in [7, 8, 9, 10, 11]. Reviews on work for FGM shell structures are presented in
[12, 13]

For structures such as flexural beams, torsional bars and longitudinal rods, the number of
publications using functionally graded material properties is considerably lower compared
to plates and shells. In the case of beams, there are some studies using statics [14, 15,
16], although most work consider dynamical effects. Here, analytical or semi analytical
vibrational studies are presented in [17, 18, 19, 20, 21, 22, 23, 24] for Euler-Bernoulli,
Timoshenko and higher order beam theories. Various numerical methods (finite element,
meshless methods) have also bee adopted [25, 26, 27, 28, 29]. Among these works on beams
only [15, 20] consider beams with circular cross section, while the rest deal with beams of
rectangular cross section. In particular, vibrations of a Timoshenko like beam is studied
in [20].

As for FG torsional bars and longitudinal rods with circular cross section, there seem to
be only a few studies. Examples for torsional bars are [30, 31, 32, 33] for statics, while for
axisymmetric rods one has [34, 35, 36, 37] considering various material configurations.

The present work on FG cylinders is an extension to earlier work adopting a power series
approach for homogeneous cylinders [38, 40, 41]. The method is based on the three di-
mensional elastodynamic theory for a cylinder with radially varying material properties.
Adopting Fourier series expansion in the circumferential direction and power series ex-
pansions of the displacement fields in the radial direction, sets of recursion relations are
constructed for each Fourier mode. By using these recursion relations, all higher order dis-
placement fields may be expressed in terms of the lowest order expansion functions without
performing any truncations. This procedure is exact and may be performed to arbitrary
order for each Fourier mode. By stating the radial boundary conditions on power series
form, these boundary conditions represent sets of partial differential equations that consti-
tute the complete set of cylinder equations. Using variational calculus, the end boundary
conditions are obtained in an equally systematic manner. Hereby complete sets of cylinder
equations may be derived to an (in principle) arbitrary order for the various Fourier modes
(longitudinal, torsional, flexural, etc.). Higher order sets of time domain equations may
be used for benchmark solutions to three dimensional FG cylinder problems, while lower
order sets may be used as alternative engineering equations.

Numerical results are presented for simply supported cylinders for axisymmetric, torsional
and flexural motion. The material distribution is assumed to vary using a power law
in the radial direction. The results comprise eigenfrequencies and cross sectional fields
using different truncation orders. Based on these results the low order cases may be used
as approximate engineering FG cylinder theories while the higher order theories act as
benchmark theories converging to the exact 3D solution.
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2. Governing equations

Consider an isotropic and linearly elastic circular cylinder with radial coordinate r, circum-
ferential coordinate θ and axial coordinate z. The corresponding radial, circumferential
and longitudinal displacement fields are denoted by u, v and w. The cylinder is inhomo-
geneous where the material parameters may vary in the radial direction: density ρ(r) and
Lamé parameters λ(r) and µ(r). The three dimensional elastodynamic cylinder equations
are written
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3. Series expansion and recursion relations

In order to derive sets of partial differential equations for FG cylinders, the displacement
fields are expanded in both the radial and the circumferential directions. In the latter case,
consider Fourier series expansion as

u =
∞
∑

m=0

ũm(r, z, t) cosmθ, v =
∞
∑

m=0

ṽm(r, z, t) sinmθ, w =
∞
∑

m=0

w̃m(r, z, t) cosmθ, (3)

where the angle θ is measured from a vertical axis in a plane through the cross section of the
cylinder with a horizontal axis, as defined in [39]. Consequently, the case m = 0 corresponds
to the axisymmetric motion with coupled radial and longitudinal displacements, u and w
respectively. For all modes m > 0 there are coupling among the three fields. Of particular
interest is the case m = 1 for flexural motion in the vertical direction. By interchanging
cosmθ and sinmθ in Eq. (3), purely torsional motion v is stated for m = 0.
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In the radial direction the displacement terms are expanded in power series. The Fourier
expanded displacements fields may be written according to

ũm(r, z, t) =

∞
∑

k=0

rm+k−1um+k−1,m(z, t),

ṽm(r, z, t) =
∞
∑

k=0

rm+k−1vm+k−1,m(z, t), (4)

w̃m(r, z, t) =
∞
∑

k=0

rm+kwm+k,m(z, t),

where the indexes are such that for uk,m(z, t), k connects to the radial expansion order,
while m connects to the circumferential Fourier expansion order.

Here the construction of the radial power series indexes are based on the relation [41]

uk,m = vk,m = wk,m−1 ≡ 0, k < m− 1. (5)

which becomes apparent from the recursion relations Eqs. (14)–(16).

As for the radially varying material parameters, it is assumed that these may be expanded
in Taylor series

f(r) =

∞
∑

k=0

rkfk, (6)

where f covers the parameters {ρ, λ, µ}, see more in Section 5.1.

The expressions for the stresses follow directly from Eq. (2) using Eq. (4) and Eq. (6).
Hereby {σrr, σθθ, σzz, σrz} are expanded in cosmθ and {σrθ, σθz} are expanded in sinmθ.
Hence the stresses may be written

σij =
∞
∑

m=0

σ̃ij,m(r, z, t){cosmθ; sinmθ}, (7)
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using either cosmθ or sinmθ according to above. The Fourier modes become
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where a prime denotes a z-derivative. The stress terms with negative powers of r appearing
for m = 0 and m = 1 may be shown to be zero from the recursion relations below Eqs.
(14)–(16) in line with [41].

Insertion of the stress series expansions Eqs. (8)–(13) and the displacement series Eq. (4)
together with the density series Eq. (6) into the governing equations of motion Eq. (1)
gives power series expansion equations in the radial coordinate r for each Fourier mode m.
By collecting equal powers of r, the solution of the equation system for each power yields
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the recursion formulas
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for k = 0, 1, . . .. Hence, for each specific k > 0 these recursion relations make it possible
to express the higher order fields um+k−1,m and vm+k−1,m from Eqs. (14)–(15) and wm+k,m

from Eq. (16) in terms of lower order displacement fields and derivatives thereof. The
procedure follow from rewriting Eqs. (14)–(16) as

a1 um+k−1,m + a2 vm+k−1,m = fu
(
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′
m+p−2,m, u
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for p = 0, 1, . . . , k using that ai are functions of {k,m, λ0, µ0}. Here all negative powers of
the material parameters have been disregarded according to Eq. (6).

The case k = 0 is trivially fulfilled for these equations using Eq. (5) provided that

um−1,m + vm−1,m = 0. (20)

This constraint was also reported for the homogeneous rod [41].

Proceeding for k ≥ 1 by first solving Eqs. (17)–(18) and then considering Eq. (19) for each
k, the fields {um+k−1,m, vm+k−1,m, wm+k,m} are expressed in the lowest order independent
fields {um−1,m, vm,m, wm,m} in a fashion similar to [41].
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4. Hierarchies of FG cylinder equations and boundary conditions

This section aims at deriving the dynamical cylinder equations through the lateral bound-
ary conditions and the pertinent end boundary conditions.

4.1. Dynamic cylinder equations

Consider a cylinder of length L and radius a. At each point on the lateral surface r = a,
either the displacement or the traction is to be prescribed in each coordinate direction.
These given fields are denoted by {ûr, ûθ, ûz} and {t̂r, t̂θ, t̂z} , respectively. Performing a
Fourier series expansion for each term reads

ûi(θ, z, t) =

∞
∑

m=0

ûi,m(z, t){cosmθ; sinmθ}, t̂i(θ, z, t) =

∞
∑

m=0

t̂i,m(z, t){cosmθ; sinmθ},

(21)

using either cosmθ or sinmθ according to Eq. (3) and Eq. (7). So by using Eq. (3) at the
lateral boundary, the displacement boundary conditions for each m become

ũm(a, z, t) = ûr,m(z, t), ṽm(a, z, t) = ûθ,m(z, t), w̃m(a, z, t) = ûz,m(z, t), (22)

adopting the series ansatz Eq. (4). Similarly, for the stresses using Eq. (7) the traction
boundary conditions for each m become

σ̃rr,m(a, z, t) = t̂r,m(z, t), σ̃rθ,m(a, z, t) = t̂θ,m(z, t), σ̃rz,m(a, z, t)) = t̂z,m(z, t), (23)

adopting the series ansatz Eqs. (8), (11) and (12) respectively.

These lateral boundary conditions (22)–(23) constitute for each z a set of partial differential
cylinder equations of motion that may be truncated to any order. Hence, by stating one
of the fields for each of the three pairs {t̂r, ûr}, {t̂θ, ûθ}, {t̂z, ûz} along the lateral surface, a
set of three equations forming a hierarchy of approximate cylinder equations is obtained.
Adopting the recursion relations (14)–(16), these cylinder equations are expressed as a set
of equations in terms of the mutually independent lowest order index terms.

4.2. End conditions

Consider prescribed end conditions where either displacements {ûr, ûθ, ûz} or tractions
{t̂r, t̂θ, t̂z} or combinations thereof are to be stated on z = {0, L}. Variationally consistent
end boundary conditions are obtained adopting a generalized Hamilton principle described
previously for homogeneous cylinders in [40, 41]. The method is based on stating virtual
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displacements and tractions, and using integrations over the end cross sections for each
Fourier mode as

∫

(ûr,m − ũm) δσ̃rz,m rdr =
∫

(ûθ,m − ṽm) δσ̃θz,m rdr =

∫

(ûz,m − w̃m) δσ̃zz,m rdr = 0,

(24)
∫

(

t̂r,m ± σ̃rz,m

)

δũm rdr =

∫

(

t̂θ,m ± σ̃θz,m

)

δṽm rdr =
∫

(

t̂z,m ± σ̃zz,m

)

δw̃m rdr = 0,

(25)

where the notation ± in (25) refers to the left/right end. Here the Fourier mode notation
as in (21) has essentially been adopted, but now with ûi,m(r, t) and ũm(r, z, t) etc. on
z = {0, L}. By applying the power series expansions for the displacements Eq. (4) and
the stresses Eqs. (10), (12) and (13), three sets of equations at each end are to be solved
from Eqs. (24)–(25).

In order to illustrate the end condition procedures, consider prescribed normal traction
t̂z,m at z = L. To this end, introduce the notation for the stress σ̃zz,m(r, L, t) in Eq. (10)
as

σ̃zz,m(r, L, t) =
∞
∑

k=0

σzz,{m,k}(L, t)r
m+k−2. (26)

Using this together with Eq. (4) for the w̃m field in the last integral in Eq. (25) results
in

∫ a

0

(

t̂z,m(r, t)−

∞
∑

i=0

rm+i−2σzz,{m,i}(L, t)

)(

∞
∑

j=0

rm+jδwm+j,m(L, t)

)

r dr = 0. (27)

By performing the radial integration for each independent virtual displacement δwm+j,m,
the resulting equation system may be solved for every σzz,{m,i} term. More specifically,
assuming truncation order N gives

∫ a

0

(

t̂z,m(r, t)−

N
∑

i=0

rm+i−2σzz,{m,i}(L, t)

)

rm+1+j dr = 0, j = 0, 1, · · · , N, (28)

where it is straightforward to derive the N+1 boundary fields σzz,{m,i}(L, t), (i = 0, 1, · · · , N),
from the N +1 integrals in Eq. (28). In the special case of m = 0 one obtains N − 1 stress
terms σzz,{0,i}(L, t) for j up to N − 2, while m = 1 renders N stress terms σzz,{1,i}(L, t)
for j up to N − 1 since the singular terms σzz,{0,0} = σzz,{0,1} = σzz,{1,0} = 0 from the
recursion relations. Note that the homogeneous boundary case t̂z,m(r, t) = 0 results in
σzz,{m,i}(L, t) = 0 for all i. These boundary stress fields are then expressed in the displace-
ment terms of various orders appearing in Eq. (10), which in turn may be written in the
lowest order displacement fields adopting the recursion relations Eqs. (14)–(16). The other
possible stress and displacement boundary cases are treated in an analogous way.
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Consequently, by adopting this procedure a wide range of end boundary conditions, both
homogeneous and non-homogeneous, may be studied. Of particular interest is the standard
cases such as free or clamped ends. Following the procedure outlined above, the series
terms for a free end at z = L become σrz,{m,i}(L, t) = σθz,{m,i}(L, t) = σzz,{m,i}(L, t) = 0
for all i. Similarly, a clamped end at z = L becomes um+i−1,m(L, t) = vm+i−1,m(L, t) =
wm+i,m(L, t) = 0 for all i.

5. Numerical results

In order to illustrate the present method applied to vibrational problems on FG cylinders,
eigenfrequencies and eigenmodes are to be calculated varying the truncation order N for
different geometries and material distributions for torsional, axisymmetric and flexural
motion. Consider only the standard case of free lateral surface, that is the prescribed
fields t̂r,m(z, t) = t̂θ,m(z, t) = t̂z,m(z, t) = 0 resulting in σ̃rr,m(a, z, t) = σ̃rθ,m(a, z, t) =
σ̃rz,m(a, z, t) = 0 from Eq. (23). Consequently, the cylinder equations of motion for a fixed
m are obtained through the three partial differential equations Eqs. (8), (11) and (12) at
r = a, together with the recursion relations Eqs. (14)–(16).

As for the end boundary conditions, consider only mixed boundary conditions (simply
supported), that is the prescribed fields ûr,m(r, t) = v̂r,m(r, t) = 0 and t̂z,m(r, t) = 0 on
z = {0, L}. Using the procedures stated in Section 4.2, this results in homogeneous se-
ries expansion terms um+i−1,m(z, t) = vm+i−1,m(z, t) = 0 and σzz,{m,i}(z, t) = 0 for all i
on z = {0, L}. It should be noted that it is possible to handle other boundary condi-
tions numerically, e.g. free or clamped ends [41], albeit the simply supported case is the
simplest.

5.1. Material parameters

The are several micromechanics models for various FG materials constitutions that have
been developed. In the present work consider a two-phase composite where the cylinder core
is of aluminum while the ceramic lateral surface acts as a thermal barrier made of silicon
carbide [42]. The material constants for aluminum are Ea = 70 GPa, νa = 0.3, ρa = 2702
kg/m3 while one has for silicon carbide Ec = 427 GPa, νc = 0.17, ρc = 3100 kg/m3. These
properties are related to the Lamé parameters through λi = Eiνi/(1 + νi)(1 − 2νi) and
µi = Ei/2(1 + νi) for i = {a, c}. The material distribution in the radial direction follows
the power law, and the ceramic phase varies as

Vc(r) = (r/a)p , (29)

where the power index p is a positive number. Note that the volume fraction law reads
Va + Vc = 1. Hence, for p = 0 the cylinder consists of pure ceramic, and the metal
influence increases as p increases. The effective mass density is assumed to be modeled
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using the Voigt model ρ(r) = ρaVa(r) + ρcVc(r), while the Lamé parameters follow from
the Mori-Takana model [43]

K(r)−Ka

Kc −Ka

=
Vc(r)

1 + Va(r) (3(Kc −Ka)/(3Ka + µa))
, (30)

µ(r)− µa

µc − µa

=
Vc(r)

1 + Va(r)(µc − µa)/(µa + fa)
, fa =

µa(9Ka + 8µa)

6(Ka + 2µa)
. (31)

where K = λ+ 2µ/3 is the bulk modulus.

Hereby, it is straightforward for the cases studied below to expand the material fields
ρ(r), λ(r) and µ(r) in radial Taylor series in line with Eq. (6).

5.2. Torsional mode, m = 0

For the purely torsional case, the circumferential displacement field is uncoupled from the
other two displacement fields. From Eqs. (3)–(4) the displacement becomes

v(r, θ, z, t) =

∞
∑

k=0

rkvk,0(z, t), (32)

and is thus independent of the circumferential angle θ. The single cylinder equation of
motion is obtained from the free lateral surface condition σ̃rθ,0(a, z, t) = 0 in Eq. (11).
Since the recursion relation Eq. (15) shows that v0,0 = 0, Eq. (11) reduces to

k
∑

p=0

(

(k + 2)p µk−p vp+1,0 + µk−p−2 v
′′
p+1,0 − ρk−p−2 v̈p+1,0

)

= 0, (33)

for k = 0, 1, . . .. Hence, all higher order fields may be expressed in terms of v1,0 and
derivatives thereof. The end boundary conditions become vi+1,0(z, t) = 0 for all i on
z = {0, L}.

Consider the three lowest eigenfrequencies for two different cylinder lengths; L/a = 20 and
L/a = 10. The results are for various power indexes p and truncations orders N as noted
in Tables 1 and 2 using the non dimensional frequency Ωn = ωna/cc, where the velocity cc
is for the ceramic silicon carbide defined as cc =

√

Ec/ρc.

It is clear from these two tables that rather high truncation orders are needed to render
accurate results; this differ considerably from the homogeneous case where accurate results
are obtained already for the first few truncations orders [41]. As the power order p is
increased, more terms are needed to render accurate results due to the more complex
material variation. It is interesting to note to what extent the higher power orders p
influence the eigenfrequencies for the lower order truncations. Clearly, the truncation
order must reach a certain level so that the effects from the power orders p are displayed
in the equations of motion.
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N = 2 N = 3 N = 4 N = 5 N = 6 N = 10 N = 15 N = 25 N = 35 N = 50 N = 70 N = 90 N = 110 N = 130 N = 150

p = 1

Ω1 0.042209 0.059691 0.069097 0.074247 0.077514 0.082240 0.083264 0.083452 0.083458 0.083458 0.083458 0.083458 0.083458 0.083458 0.083458

Ω2 0.084418 0.11938 0.13860 0.14817 0.15513 0.16448 0.16650 0.16688 0.16689 0.16689 0.16689 0.16689 0.16689 0.16689 0.16689

Ω3 0.12663 0.17907 0.20899 0.22144 0.23293 0.24671 0.24970 0.25027 0.25029 0.25029 0.25029 0.25029 0.25029 0.25029 0.25029

p = 2

Ω1 0.042209 0.042209 0.057400 0.057400 0.064861 0.071244 0.073591 0.075104 0.075316 0.075354 0.075357 0.075357 0.075357 0.075357 0.075357

Ω2 0.084418 0.084418 0.11493 0.11493 0.12959 0.14243 0.14714 0.15018 0.15060 0.15068 0.15068 0.15068 0.15068 0.15068 0.15068

Ω3 0.12663 0.12663 0.17272 0.17272 0.19405 0.21348 0.22060 0.22519 0.22582 0.22593 0.22594 0.22594 0.22594 0.22594 0.22594

p = 3

Ω1 0.042209 0.042209 0.042209 0.055631 0.055631 0.061935 0.067118 0.069426 0.070138 0.070299 0.070325 0.070329 0.070329 0.070329 0.070329

Ω2 0.084418 0.084418 0.084418 0.11136 0.11136 0.12385 0.13420 0.13881 0.14024 0.14056 0.14061 0.14062 0.14062 0.14062 0.14062

Ω3 0.12663 0.12663 0.12663 0.16730 0.16730 0.18573 0.20121 0.20812 0.21028 0.21075 0.21083 0.21084 0.21084 0.21084 0.21084

p = 5

Ω1 0.042209 0.042209 0.042209 0.042209 0.042209 0.053090 0.057957 0.061808 0.063145 0.063818 0.064042 0.064090 0.064101 0.064103 0.064104

Ω2 0.084418 0.084418 0.084418 0.084418 0.084418 0.10614 0.11589 0.12359 0.12626 0.12760 0.12805 0.12814 0.12816 0.12817 0.12817

Ω3 0.12663 0.12663 0.12663 0.12663 0.12663 0.15910 0.17379 0.18530 0.18930 0.19131 0.19198 0.19212 0.19215 0.19216 0.19216

Table 1: Torsional mode, L/a = 20.

N = 2 N = 3 N = 4 N = 5 N = 6 N = 10 N = 15 N = 25 N = 35 N = 50 N = 70 N = 90 N = 110 N = 130 N = 150 N = 170

p = 1

Ω1 0.084418 0.11938 0.13860 0.14817 0.15513 0.16448 0.16650 0.16688 0.16689 0.16689 0.16689 0.16689 0.16689 0.16689 0.16689 0.16689

Ω2 0.16884 0.23876 0.28083 0.29374 0.31095 0.32887 0.33283 0.33360 0.33362 0.33362 0.33362 0.33362 0.33362 0.33362 0.33362 0.33362

Ω3 0.25325 0.35814 0.43267 0.43427 0.46734 0.49255 0.49885 0.49997 0.50000 0.50000 0.50000 0.50000 0.50000 0.50000 0.50000 0.50000

p = 2

Ω1 0.084418 0.084418 0.11493 0.11493 0.12959 0.14243 0.14714 0.15018 0.15060 0.15068 0.15068 0.15068 0.15068 0.15068 0.15068 0.15068

Ω2 0.16884 0.16884 0.23092 0.23092 0.25808 0.28431 0.29391 0.30012 0.30093 0.30109 0.30110 0.30110 0.30110 0.30110 0.30110 0.30110

Ω3 0.25325 0.25325 0.34936 0.34936 0.38417 0.4248 0.43978 0.44961 0.45073 0.45097 0.45099 0.45099 0.45099 0.45099 0.45099 0.45099

p = 3

Ω1 0.084418 0.084418 0.084418 0.11136 0.11136 0.12385 0.13420 0.13881 0.14024 0.14056 0.14061 0.14062 0.14062 0.14062 0.14062 0.14062

Ω2 0.16884 0.16884 0.16884 0.22356 0.22355 0.24757 0.26813 0.27731 0.28020 0.28083 0.28093 0.28095 0.28095 0.28095 0.28095 0.28095

Ω3 0.25325 0.25325 0.25325 0.33764 0.33754 0.37113 0.40156 0.41513 0.41960 0.42049 0.42065 0.42067 0.42067 0.42067 0.42067 0.42067

p = 5

Ω1 0.084418 0.084418 0.084418 0.084418 0.084418 0.10614 0.11589 0.12359 0.12626 0.12760 0.12805 0.12814 0.12816 0.12817 0.12817 0.12817

Ω2 0.16884 0.16884 0.16884 0.16884 0.16884 0.21194 0.23163 0.24693 0.25224 0.25491 0.25580 0.25599 0.25603 0.25604 0.25605 0.25605

Ω3 0.25325 0.25325 0.25325 0.25325 0.25325 0.31705 0.34706 0.36980 0.37768 0.38161 0.38295 0.38323 0.38330 0.38331 0.38332 0.38332

Table 2: Torsional mode L/a = 10.

The differences among the truncations for the lowest eigenmode may be illustrated by
studying the mode shapes and stress distributions over the cross section at z = L/2 for the
p = 5 case. The eigenmodes are normalized so that the maximal displacement v is equal
to unity at r = a and z = L/2.

The differences among the truncation orders are very small for the displacement v, where
the displacement increases almost linearly with increasing radius in all cases; this result
is not displayed here. As for the stress distributions, the shear stresses are presented in
Figure 1. It is seen that the truncation orders affect the accuracies; in Figure 1(a) most
notably at the peak level, while in Figure 1(b) as approaching the surface. Note in Figure
1(a) that the lowest presented order N = 5 is close to zero for all r, and that the free
surface boundary condition is fulfilled for all orders.
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Figure 1: Shear stresses σrθ (a) and σθz (b) for the first torsional mode with p = 5: —— N = 150, - - -
N = 50, - · - N = 25, – – · – – N = 15, · · · N = 10 , – · · – N = 5.

5.3. Axisymmetric mode, m = 0

For the purely axisymmetric case, there is a coupling between the radial and longitudinal
displacement fields. From Eqs. (3)–(4) the two displacements become

u(r, θ, z, t) =
∞
∑

k=0

rkuk,0(z, t),

w(r, θ, z, t) =

∞
∑

k=0

rkwk,0(z, t),

(34)

and thus independent of the circumferential angle θ. The coupled cylinder equations of
motion are σ̃rr,0(a, z, t) = σ̃rz,0(a, z, t) = 0 from Eqs. (8) and (12) together with the
recursion relations Eqs. (14) and (16). From Eq. (14) it is seen that u0,0 = 0 which causes
all higher order fields to be expressed in terms u1,0 and w0,0 and derivatives thereof. The
simply supported end boundary conditions become ui+1,0(z, t) = 0 and σzz,{0,i}(z, t) = 0
for all i on z = {0, L}.

As for the torsional case, the three lowest eigenfrequencies for various power indexes p
and truncations orders N using the length to radius relation L/a = 20 and L/a = 10 are
presented in Tables 3 and 4.

The convergence rate resembles the torsional case, where the eigenfrequencies are slightly
higher for the axisymmetric case as expected [40, 41]. The pattern that a certain truncation
order is needed in order to influence the eigenfrequencies as the power order p is increased is
also seen here. It is surprising that the convergence error when increasing the power order
N does not always decrease in a monotonic manner as for the torsional case. This effect
is seen for the second and third eigenfrequencies, especially for the less slender cylinder
L/a = 10 in the vicinity of N = 6. Note that contrary to all the other cases, the third
eigenfrequency for p = 1 and N = 3 marked by ∗ in Table 4 has an imaginary part that is
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N = 2 N = 3 N = 4 N = 5 N = 6 N = 10 N = 15 N = 25 N = 35 N = 50 N = 70 N = 90 N = 110 N = 130 N = 150

p = 1

Ω1 0.091487 0.10303 0.10840 0.11203 0.11389 0.11679 0.11736 0.11745 0.11745 0.11745 0.11745 0.11745 0.11745 0.11745 0.11745

Ω2 0.18244 0.20782 0.21520 0.22398 0.22692 0.23288 0.23403 0.23421 0.23421 0.23421 0.23421 0.23421 0.23421 0.23421 0.23421

Ω3 0.27223 0.31716 0.31894 0.33528 0.33864 0.34755 0.34922 0.34947 0.34948 0.34948 0.34948 0.34948 0.34948 0.34948 0.34948

p = 2

Ω1 0.068455 0.086551 0.086761 0.094582 0.094699 0.10111 0.10376 0.10458 0.10469 0.10470 0.10470 0.10470 0.10470 0.10470 0.10470

Ω2 0.13661 0.17339 0.17398 0.18825 0.18852 0.20143 0.20677 0.20835 0.20857 0.20860 0.20860 0.20860 0.20860 0.20860 0.20860

Ω3 0.20415 0.26090 0.26233 0.27997 0.28041 0.29999 0.30823 0.31041 0.31074 0.31079 0.31079 0.31079 0.31079 0.31079 0.31079

p = 3

Ω1 0.068001 0.068396 0.08336 0.083374 0.083394 0.093055 0.094838 0.097082 0.097412 0.097531 0.097550 0.097552 0.097552 0.097552 0.097552

Ω2 0.13564 0.13661 0.16686 0.16697 0.16612 0.18561 0.18896 0.19337 0.19402 0.19426 0.19429 0.19429 0.19429 0.19429 0.19429

Ω3 0.20255 0.20442 0.25074 0.25106 0.24748 0.27713 0.28158 0.28798 0.28894 0.28927 0.28933 0.28933 0.28933 0.28933 0.28933

p = 5

Ω1 0.068001 0.068022 0.068022 0.068298 0.079443 0.079496 0.084129 0.087611 0.088741 0.089276 0.089442 0.089475 0.089482 0.089484 0.089484

Ω2 0.13564 0.13581 0.13581 0.13640 0.15886 0.15849 0.16770 0.17455 0.17677 0.17782 0.17815 0.17821 0.17823 0.17823 0.17823

Ω3 0.20255 0.20309 0.20313 0.20410 0.23822 0.23645 0.25011 0.26007 0.26330 0.26482 0.26530 0.26539 0.26541 0.26542 0.26542

Table 3: Axisymmetric mode L/a = 20.

not negligible. Here only the real part is presented. The reason for this specific behavior
and the non monotonic convergence pattern have not been clarified.
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Figure 2: Displacements u (a) and w (b) for the first axisymmetric mode with p = 5: —— N = 150, - - -
N = 50, - · - N = 25, – – · – – N = 15, · · · N = 10 , – · · – N = 5.

The mode shapes for the lowest eigenmode at z = L/2 for p = 5 are illustrated in Figure
2. Here, the eigenmodes are normalized so that the maximal longitudinal displacement w
is equal to unity at the center r = 0 and z = L/2. The differences among the truncation
orders for the almost linear variation of the radial displacement u are rather small, Figure
2(a), while the longitudinal displacement w shows more pronounced variations, Figure
2(b). As for the stress distributions given in Figures 3 and 4, the normal stresses in Figure
3 show in both cases a similar pattern for the different approximations. Clearly, higher
order truncations are needed to capture the behaviour close to the surface. The different
truncations show more variation in Figure 4, albeit all orders fulfil the free surface boundary
condition. Similar to the torsional case for σrθ the lowest presented order N = 5 is close
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N = 2 N = 3 N = 4 N = 5 N = 6 N = 10 N = 15 N = 25 N = 35 N = 50 N = 70 N = 90 N = 110 N = 130 N = 150

p = 1

Ω1 0.18244 0.20782 0.21520 0.22398 0.22398 0.23288 0.23403 0.23421 0.23421 0.23421 0.23421 0.23421 0.23421 0.23421 0.23421

Ω2 0.36011 0.43827 0.41847 0.44429 0.44949 0.46001 0.46191 0.46225 0.46226 0.46226 0.46226 0.46226 0.46226 0.46226 0.46226

Ω3 0.52552 0.66914∗ 0.60308 0.64155 0.68172 0.67212 0.67403 0.67447 0.67448 0.67448 0.67448 0.67448 0.67448 0.67448 0.67448

p = 2

Ω1 0.13661 0.17339 0.17398 0.18825 0.18852 0.20143 0.20677 0.20835 0.20857 0.20860 0.20860 0.20860 0.20860 0.20860 0.20860

Ω2 0.27071 0.34972 0.35306 0.36862 0.36903 0.39546 0.40717 0.40962 0.41009 0.41014 0.41015 0.41015 0.41015 0.41015 0.41015

Ω3 0.39918 0.54134 0.56307 0.53236 0.52988 0.56947 0.59224 0.59309 0.59403 0.59403 0.59404 0.59404 0.59404 0.59404 0.59404

p = 3

Ω1 0.13564 0.13661 0.16686 0.16697 0.16612 0.18561 0.18896 0.19337 0.19402 0.19426 0.19429 0.19430 0.19430 0.19430 0.19430

Ω2 0.26828 0.27157 0.33552 0.33614 0.32667 0.36704 0.37177 0.37982 0.38108 0.38148 0.38155 0.38156 0.38156 0.38156 0.38156

Ω3 0.39411 0.40218 0.51590 0.51378 0.47525 0.53885 0.54001 0.54930 0.55103 0.55153 0.55161 0.55162 0.55162 0.55162 0.55162

p = 5

Ω1 0.13564 0.13581 0.13581 0.13640 0.15886 0.15849 0.16770 0.17455 0.17677 0.17782 0.17815 0.17821 0.17823 0.17823 0.17823

Ω2 0.26828 0.26952 0.26969 0.27116 0.31755 0.31278 0.33061 0.34330 0.34739 0.34932 0.34993 0.35005 0.35008 0.35008 0.35008

Ω3 0.39411 0.39767 0.39918 0.40217 0.47645 0.45771 0.48205 0.49821 0.50335 0.50577 0.50654 0.50670 0.50673 0.50674 0.50674

Table 4: Axisymmetric mode L/a = 10.

to zero for all r in the shear stress σrz in Figure 4(b).
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Figure 3: Normal stresses σθθ (a) and σzz (b) for the first axisymmetric mode with p = 5: —— N = 150,
- - - N = 50, - · - N = 25, – – · – – N = 15, · · · N = 10 , – · · – N = 5.
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Figure 4: Normal stress σrr (a) and shear stress σrz (b) for the first axisymmetric mode with p = 5: ——
N = 150, - - - N = 50, - · - N = 25, – – · – – N = 15, · · · N = 10 , – · · – N = 5.

5.4. Flexural mode, m = 1

For the flexural case, there is a coupling between all the displacement fields for that Fourier
mode. From Eqs. (3)–(4) the displacements become

u(r, θ, z, t) =

∞
∑

k=0

rkuk,1(z, t) cos θ,

v(r, θ, z, t) =

∞
∑

k=0

rkvk,1(z, t) sin θ,

w(r, θ, z, t) =

∞
∑

k=0

rk+1wk+1,1(z, t) cos θ.

(35)

The equations of motion for flexural motion are obtained from the free lateral surface
conditions σ̃rr,1(a, z, t) = σ̃rθ,1(a, z, t) = σ̃rz,1(a, z, t) = 0 from Eqs. (8), (11) and (12). As
v0,1 = −u0,1 from Eqs. (14) and (15) separately, all higher order fields are to be expressed
in terms of u0,1, v1,1, and w1,1 using the recursion relations Eqs. (14)–(16). Regarding the
end conditions, these become ui,1(z, t) = vi,1(z, t) = 0 and σzz,{1,i}(z, t) = 0 for all i on
z = {0, L}.

In line with the previous torsional and axisymmetric cases, the three lowest eigenfrequencies
for various power indexes p and truncations orders N using the length to radius relation
L/a = 20 and L/a = 10 are presented in Tables 5 and 6.

As expected the eigenfrequencies for each frequency order Ωi in this case are lower than the
corresponding ones in the previous cases in Tables 1–4. The convergence rate resembles
the axisymmetric case presented in Tables 3 and 4. In this flexural case, the discrepant
values for N = 3 for indexes p = 2 and up are notable. Besides that, the convergence
errors generally decrease in a monotonic manner when increasing the power order N .
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N = 3 N = 4 N = 5 N = 6 N = 10 N = 15 N = 25 N = 35 N = 50 N = 70 N = 90 N = 110 N = 130 N = 150

p = 1

Ω1 0.0056907 0.0077063 0.0085668 0.0091235 0.0099245 0.010083 0.010109 0.010110 0.010110 0.010110 0.010110 0.010110 0.010110 0.010110

Ω2 0.022106 0.029768 0.033026 0.035132 0.038132 0.038726 0.038823 0.038826 0.038826 0.038826 0.038826 0.038826 0.038826 0.038826

Ω3 0.047600 0.063607 0.070356 0.074729 0.080881 0.082098 0.082296 0.082301 0.082301 0.082301 0.082301 0.082301 0.082301 0.082301

p = 2

Ω1 0.0052852 0.0051407 0.0071232 0.0071795 0.0085067 0.0089888 0.0091670 0.0091900 0.0091939 0.0091942 0.0091942 0.0091942 0.0091942 0.0091942

Ω2 0.020483 0.019965 0.027493 0.027661 0.032671 0.034476 0.035139 0.035225 0.035239 0.035240 0.035240 0.035240 0.035240 0.035240

Ω3 0.043962 0.042972 0.058659 0.058869 0.069257 0.072956 0.074302 0.074476 0.074505 0.074507 0.074507 0.074507 0.074507 0.074507

p = 3

Ω1 0.0061939 0.0043454 0.0051819 0.0072282 0.0074864 0.0082888 0.0085076 0.0085883 0.0086103 0.0086137 0.0086140 0.0086140 0.0086140 0.0086140

Ω2 0.023743 0.016902 0.020224 0.027764 0.028795 0.031786 0.032610 0.032911 0.032992 0.033005 0.033006 0.033006 0.033006 0.033006

Ω2 0.050232 0.036442 0.043826 0.058870 0.061161 0.067251 0.068949 0.069563 0.069726 0.069752 0.069754 0.069754 0.069754 0.069754

p = 5

Ω1 0.0061939 0.0052746 0.0052860 0.0045897 0.0066410 0.0072050 0.0076422 0.0077876 0.0078575 0.0078793 0.0078838 0.0078848 0.0078850 0.0078850

Ω2 0.023743 0.020325 0.020487 0.017902 0.025573 0.027689 0.029326 0.029869 0.030130 0.030212 0.030228 0.030232 0.030233 0.030233

Ω3 0.050232 0.043278 0.043968 0.038758 0.054403 0.058750 0.062099 0.063209 0.063741 0.063908 0.063942 0.063949 0.063951 0.063951

Table 5: Flexural mode L/a = 20.

N = 3 N = 4 N = 5 N = 6 N = 10 N = 15 N = 25 N = 35 N = 50 N = 70 N = 90 N = 110 N = 130 N = 150

p = 1

Ω1 0.022106 0.029768 0.033026 0.035132 0.038132 0.038726 0.038823 0.038823 0.038823 0.038823 0.038823 0.038823 0.038823 0.038823

Ω2 0.080195 0.10628 0.11711 0.12418 0.13403 0.13597 0.13628 0.13629 0.13629 0.13629 0.13629 0.13629 0.13629 0.13629

Ω3 0.15984 0.20880 0.22791 0.24065 0.25860 0.26210 0.26266 0.26267 0.26267 0.26267 0.26267 0.26267 0.26267 0.26267

p = 2

Ω1 0.020483 0.019965 0.027493 0.027661 0.032671 0.034476 0.035139 0.035225 0.035239 0.035240 0.035240 0.035240 0.035240 0.035240

Ω2 0.073790 0.072349 0.097804 0.097853 0.11468 0.12059 0.12272 0.12299 0.12304 0.12304 0.12304 0.12304 0.12304 0.12304

Ω3 0.14595 0.14389 0.19094 0.18964 0.22086 0.23159 0.23529 0.23577 0.23585 0.23586 0.23586 0.23586 0.23586 0.23586

p = 3

Ω1 0.023743 0.016902 0.020224 0.027764 0.028795 0.031786 0.032610 0.032911 0.032992 0.033005 0.033006 0.033006 0.033006 0.033006

Ω2 0.083076 0.061443 0.074350 0.097538 0.10148 0.11115 0.11386 0.11484 0.11510 0.11513 0.11514 0.11514 0.11514 0.11514

Ω3 0.16014 0.12229 0.15011 0.18840 0.19622 0.21343 0.21826 0.22000 0.22043 0.22050 0.22050 0.22050 0.22050 0.22050

p = 5

Ω1 0.023743 0.020325 0.020487 0.017902 0.025573 0.027689 0.029326 0.029869 0.030130 0.030212 0.030228 0.030232 0.030233 0.030233

Ω2 0.083076 0.072009 0.073795 0.065663 0.090438 0.097389 0.10272 0.10448 0.10533 0.10559 0.10565 0.10566 0.10566 0.10566

Ω3 0.16014 0.13998 0.14594 0.13204 0.17557 0.18806 0.19754 0.20065 0.20214 0.20260 0.20270 0.20272 0.20272 0.20272

Table 6: Flexural mode L/a = 10.

The mode shapes u and v for the lowest eigenmode at z = L/2 for p = 5 are illustrated
in Figure 5. In this case, the eigenmodes are normalized so that the maximal radial
displacement u is equal to unity at r = a and z = L/2. The variation among the different
truncation orders are more pronounced for v in Figure 5(b) compared to u in Figure
5(a). As for the longitudinal displacement w the displacement varies almost linearly for
all truncation orders with small differences among the different orders; this result is not
displayed here.

As for the normal stress distributions given in Figure 6, these results resemble the axisym-
metric ones in Figure 3, albeit that Figure 6(b) is even more similar to the shape of σθz for
the torsional case in Figure 1(b). The rest of the stresses are displayed in Figures 7 and 8.
As before, all orders fulfil the free surface boundary condition in Figures 7 and 8(a).
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Figure 5: Displacements u (a) and v (b) for the first flexural mode with p = 5: —— N = 150, - - - N = 50,
- · - N = 25, – – · – – N = 15, · · · N = 10 , – · · – N = 5.
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Figure 6: Normal stresses σθθ (a) and σzz (b) for the first flexural mode with p = 5: —— N = 150, - - -
N = 50, - · - N = 25, – – · – – N = 15, · · · N = 10 , – · · – N = 5.

5.4.1. Comparison to beam theory

In order to validate the presented results, comparisons are to be performed with results from
the literature. There are, to our knowledge, very few eigenfrequency results reported for
FG solid cylinders for any of the various modes considered herein (torsional, axisymmetric
and flexural motion). However, one such case is the eigenfrequency results for FG beams
studied by Huang and Li [20] using a Timoshenko like theory. Table 7 illustrates some
of the results reported in [20], denoted HL, together with the corresponding mode results
using the present theory for a few of the lower truncations orders as well as high order.
The material phases used in [20] are aluminum and zirconia, where the ceramic radial
distribution follows from Eq. (29), while the material parameter variations are modeled
using the Voigt model.

It is clear from the results that the Timoshenko like theory [20] (using methods based on
integration over the cross section) render similar or better results than the present lowest
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Figure 7: Normal stress σrr (a) and shear stress σrz (b) for the first flexural mode with p = 5: ——
N = 150, - - - N = 50, - · - N = 25, – – · – – N = 15, · · · N = 10 , – · · – N = 5.
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Figure 8: Shear stress σrθ (a) and shear stress σθz (b) for the first flexural mode with p = 5: —— N = 150,
- - - N = 50, - · - N = 25, – – · – – N = 15, · · · N = 10 , – · · – N = 5.

order theories (using term by term series expansion of the governing 3D equations). The
N = 3 results are very similar to HL for p = 5, while being inferior for p = 1. The
N = 5 case is of the same accuracy order as the HL case. A similar accuracy behavior was
presented in the homogeneous beam case [41]. It could be noted that the present series
expansion theories always fulfil the homogeneous boundary conditions (to all orders), which
is not generally the case for Timoshenko like theories.

6. Conclusion

This work considers a hierarchy of dynamic equations for solid isotropic functionally graded
circular cylinders. The FG material is such that the density and the Lamé parameters
are assumed to vary in the radial direction. The adopted approach starts from the three
dimensional elastodynamic theory using Fourier expansions in the circumferential direction
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HL N = 3 N = 5 N = 150

p = 1

Ω1 0.0481 0.0348 0.0445 0.0462

Ω2 0.170 0.127 0.158 0.164

Ω3 0.329 0.253 0.306 0.318

p = 5

Ω1 0.0472 0.0471 0.0406 0.0441

Ω2 0.165 0.165 0.146 0.156

Ω3 0.318 0.318 0.290 0.303

Table 7: Flexural mode L/a = 10 using theory due to Huang and Li (HL) [20] and present theory for
different truncations order.

and power series expansions in the radial direction. A hierarchy of variationally consistent
partial differential equations and pertinent end boundary conditions are obtained for FG
cylinders for different circumferential orders.

The three lowest eigenfrequencies are calculated for torsional, axisymmetric and flexural
modes for different FG constitutions. In each case the highest presented truncation or-
der is such that the corresponding eigenfrequency calculation has converged. Hence, this
shows that these higher order theories may act as benchmark solutions in line with the
results for plates [43] and shells [8] using similar approach. For the lower order expansions,
these equations may act as simpler engineering cylinder equations. It is seen here that
modest to high order truncations are in most cases required to render results that are of
adequate accuracy. This differs to the homogeneous cylinder case studied in [40, 41] where
low to modest order truncations are sufficient. There are also significant differences be-
tween homogeneous and FG cylinders regarding the mode shapes and stress distributions
for the first mode in each case (torsional, axisymmetric, flexural). It should be stressed
that although the presented benchmark solutions have not been confirmed correct, the
corresponding eigenfrequency results in the special case of homogeneous structures are in
line with the 3D results presented in the literature [40, 41].

Possible extension on the present work is to study FG cylinders where the material prop-
erties vary in circumferential or longitudinal directions. The fundamentals for such formu-
lations may be developed using methods similar to the ones outlined in the present paper,
but the systematic organization and solutions of such equations may differ considerably to
the present work. Preliminary results for the circumferential case show that sets of cylinder
equations are readily obtained, albeit the various circumferential orders couple in a non
trivial manner. Hopefully this issue will be resolved in the near future.
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