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1 Introduction

During its long history, the notion of classical orthogonal polynomials has gradu-
ally been expanded to include more general systems. The most restrictive definition
includes only Jacobi, Laguerre, and Hermite polynomials (with special cases such
as Chebyshev and Legendre polynomials). By Sonine’s theorem, these are precisely
the orthogonal polynomials whose derivatives are again orthogonal. After the work
of Hahn and others in the early twentieth century, it appeared natural to include also
systems related to difference rather than differential equations. This development cul-
minated in the Askey scheme of hypergeometric and basic hypergeometric orthogonal
polynomials [18], consisting ofAskey–Wilson andq-Racah polynomials togetherwith
numerous degenerate cases.

Jacobi polynomials are orthogonal with respect to the measure in Euler’s beta
integral

∫ 1

−1
(1 − x)a−1(1 + x)b−1 dx = 2a+b−1Γ (a)Γ (b)

Γ (a + b)
.

More generally, the Askey scheme is related to a scheme of integral evaluations and
summations, many of which are also called beta integrals. From this perspective,
the Askey scheme appears to be incomplete. For instance, the q-Racah polynomials
correspond to Rogers’ 6W5-summation [10, Eq. (II.21)], which is a degenerate case of
Jackson’s 8W7-summation [10, Eq. (II.22)]. Thus, the top level in the Askey scheme
corresponds to the next-to-top level in the scheme of beta integrals.

Mizan Rahman and Jim Wilson realized that to find the missing level in the Askey
scheme, it is necessary to extend its scope from orthogonal polynomials to biorthog-
onal rational functions. To our knowledge, the earliest occurrence of hypergeometric
biorthogonal rational functions is in Wilson’s thesis [38], which contains discrete
biorthogonality relations for rational functions of hypergeometric type 9F8. This sys-
tem generalizes Racah polynomials. Rahman [20] independently discovered some
degenerate cases of Wilson’s system. At the end of the paper, he remarks that Wilson
had also found continuous biorthogonality relations; this piece of research seems never
to have been published. Rahman [21] gave more general continuous biorthogonality
relations for rational functions of type 10W9, generalizingAskey–Wilson polynomials.
The corresponding discrete system, generalizing q-Racah polynomials, was found by
Wilson [39]. The complete extension of the Askey scheme to biorthogonal rational
functions has been worked out (in the q-case) by van de Bult and Rains [2].

The work of Rahman andWilson indicates that 10W9 is the most general “classical”
hypergeometric function. It must have been a great surprise to the special functions
community when even more general functions turned up in the work of Date et al.
[3] on solvable lattice models. Their elliptic 6 j-symbols generalized 10W9-sums in a
completely unexpected direction, providing the first known example of elliptic hyper-
geometric functions; see [27] for an introduction.

It took some time before the study of elliptic hypergeometric functions gained
momentum. In one of the first papers on the subject, Spiridonov and Zhedanov [36]
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constructed a system of biorthogonal rational functions generalizingWilson’s discrete
10W9-functions.

A first step towards elliptic extensions of Askey–Wilson polynomials was Spiri-
donov’s discovery of the elliptic beta integral [31]

∮ ∏6
j=1 Γ (t j z; p, q)Γ (t j/z; p, q)

Γ (z2; p, q)Γ (z−2; p, q)

dz

2π iz

= 2

(p; p)∞(q; q)∞

∏
1≤i< j≤6

Γ (ti t j ; p, q). (1.1)

Here, the integration is over a contour separating geometric sequences of poles going to
infinity from sequences going to zero. The parameters satisfy the balancing condition
t1 · · · t6 = pq, the elliptic gamma function is defined by [29]

Γ (z; p, q) =
∞∏

j,k=0

1 − p j+1qk+1/z

1 − p j qk z

and (p; p)∞ = ∏∞
j=0(1 − p j+1).

In [32], Spiridonov introduced systems biorthogonal with respect to the measure
in (1.1). As a direct extension of Rahman’s work, he found explicit functions Qk and
Rk satisfying a biorthogonality relation μ(Qk Rl) = Ckδkl , where

μ( f ) = (p; p)∞(q; q)∞
2

∏
1≤i< j≤6 Γ (ti t j ; p, q)

∮
f (z)

∏6
j=1 Γ (t j z; p, q)Γ (t j/z; p, q)

Γ (z2; p, q)Γ (z−2; p, q)

dz

2π iz
.

These functions are elliptic [in a multiplicative coordinate, namely, Qk(pz) = Qk(z)
and Rk(pz) = Rk(z)] and invariant under z �→ z−1. It follows that they are rational
after a change of variables. More generally, Spiridonov found that if Q̃k and R̃k denote
the functions obtained from Qk and Rk after interchanging p and q, then

μ
(

Qk1 Q̃k2 Rl1 R̃l2

)
= Ck1C̃k2δk1l1δk2l2 . (1.2)

This two-index biorthogonality for a one-variable integral is quite unusual. It is not
a biorthogonality of rational functions as the functions involved are rational in two
different variables.

An intriguing consequence of (1.2) is a property that we will call the decoupling
phenomenon. We can write (1.2) as

μ( f g) = μ( f )μ(g), (1.3)

where f = Qk1 Rl1 and g = Q̃k2 R̃l2 . Taking linear combinations of these basis
elements, it follows that (1.3) holds for any functions f and g satisfying appropriate
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conditions. In particular, f and g should be elliptic with distinct periods [ f (pz) =
f (z) and g(qz) = g(z)] and invariant under z �→ z−1. There are also restrictions on
the location of their poles. In the present work, we will investigate other instances of
the decoupling phenomenon.

Dolan and Osborn [4] discovered that (1.1) (and more general integral identities of
Rains [24]) can be interpreted in terms of supersymmetric quantum field theories. It is
believed that if two theories are dual in the sense of Seiberg [30], then their so-called
superconformal indices [17,25] agree. For a particular pair of dual theories, this gives
(1.1). Exploiting this idea has led to long lists of elliptic hypergeometric identities,
most of which still lack rigorous proof, see, e.g., [34,35].

The quantum field theories related to elliptic hypergeometric integrals live on
four-dimensional space-times. In a similar way, one can obtain basic hypergeo-
metric integrals from three-dimensional theories [6,7,11,12,14,19,41]. Interestingly,
the resulting integrals are not of a type considered in the classical literature but
involve a mixture of continuous and discrete integration (this can also happen for
four-dimensional theories [16,33], but then with a finite rather than infinite discrete
component). As an example, a top level integral of this type is [7]

∞∑
x=−∞

∮
(1 − qx z2)(1 − qx z−2)

qx z6x

6∏
j=1

(q1+x/2/b j z, q1−x/2z/b j )∞(
q N j +x/2b j z, q N j −x/2b j/z

)
∞

dz

2π iz

= 2
∏6

j=1 q(
N j
2 )b

N j
j

∏
1≤i< j≤6

(
q/bi b j

)
∞(

bi b j q Ni +N j
)
∞

, (1.4)

valid for generic parameters b j and integer parameters N j subject to

b1 · · · b6 = q (1.5)

and N1 + · · · + N6 = 0. The identity (1.4) and some related results can also be
interpreted as star-triangle relations for solvable lattice models [5,8,15,16,40].

The main purpose of the present work is to investigate the “classical orthogonal
polynomials” corresponding to the integral (1.4) and another integral from [7] [see
(4.2) below]. It turns out that there is again a decoupling phenomenon such as (1.3),
but with f a rational function of zq−x/2 and g a rational function of zqx/2 (subject to
certain restrictions). We can then obtain two-index biorthogonal functions, which in
the case of (1.4) are products of Rahman’s 10W9-functions. In the case of (4.2), there
are biorthogonalities involving degenerate cases of Rahman’s functions due to Al-
Salam and Ismail [1] and van de Bult and Rains [2]. An intriguing question is whether
the decoupling phenomenon and the two-index biorthogonality have any relevance for
physics, in the context of either quantum field theory or solvable lattice models.

The plan of our paper is as follows. In Sect. 2, we give two basic hypergeo-
metric summation formulas, which provide bilateral extensions of the Jackson and
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q-Saalschütz summation. Although these follow easily from known results, they seem
not to have been stated explicitly before. In Sect. 3, we discuss Rahman’s biorthog-
onal rational functions. We obtain some new results, in particular, new continuous
and discrete biorthogonality measures. Finally, in Sect. 4, we study the decoupling
phenomenon and related two-index biorthogonal systems for integrals arising as super-
conformal indices.

Throughout, q will be a fixed complex number with 0 < |q| < 1. We also fix a
choice of square root q1/2. We follow the standard notation of [10], but suppress q
from the notation. Thus, we write q-shifted factorials as

(a)k =
{

(1 − a)(1 − aq) · · · (1 − aqk−1), k ∈ Z≥0,(
(1 − aq−1)(1 − aq−2) · · · (1 − aqk)

)−1
, k ∈ Z<0,

and

(a)∞ =
∞∏
j=0

(1 − aq j ).

We will use the theta function

θ(x) = (x)∞(q/x)∞,

which satisfies the identity

θ(xqk) = (−1)kq−(k
2)x−kθ(x), k ∈ Z. (1.6)

Repeated arguments of shifted factorials and theta functions stand for products, for
instance,

(ab±, c)k = (ab)k(a/b)k(c)k .

Finally, we recall the standard basic hypergeometric series

r+1φr

(
a1, . . . , ar+1
b1, . . . , br

; z

)
=

∞∑
k=0

(a1, . . . , ar+1)k

(q, b1, . . . , br )k
zk,

rψr

(
a1, . . . , ar

b1, . . . , br
; z

)
=

∞∑
k=−∞

(a1, . . . , ar )k

(b1, . . . , br )k
zk,

r+1Wr (a; b1, . . . , br−2; z) =
∞∑

k=0

1 − aq2k

1 − a

(a, b1, . . . , br−2)k

(q, aq/b1, . . . , aq/br−2)k
zk .
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2 Bilateral Summations

2.1 A Bilateral Jackson Summation

Although it is a straightforward consequence of results that have been known since
the 1950s, the following identity seems to fill a gap in the literature.

Proposition 2.1 If λ,μ, b1, . . . , b6 are generic parameters subject to (1.5), then

{
θ(μb1, . . . , μb6) − q

μ2 θ(μ/b1, . . . , μ/b6)

}

× (1 − λ2)
∏6

j=1(qλ±/b j )∞
θ(μ/λ)

8ψ8

(
λq,−λq, λb1, . . . , λb6

λ,−λ, λq/b1, . . . , λq/b6
; q

)
+ idem(λ;μ)

= (q)∞θ(λ2, μ2, λμ)
∏

1≤i< j≤6

(q/bi b j )∞. (2.1)

Here, we are using the notation

f (λ, μ) + idem(λ;μ) = f (λ, μ) + f (μ, λ).

If we let λ = b6 and μ = b1 in (2.1), then both 8ψ8-series reduce to 8W7-series. The
resulting identity can be written

8W7

(
b26; b1b6, . . . , b5b6; q

)
− b1

b6

(
qb26, qb1/b6

)
∞(

qb21, qb6/b1
)
∞

5∏
j=2

(
qb1/b j , b6b j

)
∞(

qb6/b j , b1b j
)
∞

×8W7

(
b21; b1b2, . . . , b1b6; q

)
=

(
qb26, b1/b6

)
∞

∏
2≤i< j≤5

(
q/bi b j

)
∞∏5

j=2

(
qb6/b j , b1b j

)
∞

, (2.2)

which is the nonterminating Jackson summation [10, Eq. (II.25)]. Consequently, we
call (2.1) the bilateral Jackson summation.

To prove Proposition 2.1, we start from Jackson’s transformation [13] (due to
Margaret Jackson, not Frank Hilton Jackson of the Jackson summation)

∏6
j=1(qa±/b j )∞
(qa±2)∞

8ψ8

(
aq,−aq, ab1, . . . , ab6

a,−a, aq/b1, . . . , aq/b6
; q2

b1 · · · b6

)

= θ(μa±)
∏6

j=1(qλ±/b j )∞
θ(μλ±)(qλ±2)∞

8ψ8

(
λq,−λq, λb1, . . . , λb6

λ,−λ, λq/b1, . . . , λq/b6
; q2

b1 · · · b6

)
+ idem(λ;μ),
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which is a special case of Slater’s transformations for 2rψ2r -series [10, Eq. (5.5.2)].
We will only need the case a = b6; that is,

(q)∞
∏5

j=1(qb±
6 /b j )∞

(qb26)∞
8W7(b

2
6; b1b6, . . . , b5b6; q2/b1 · · · b6)

= θ(μb±
6 )

∏6
j=1(qλ±/b j )∞

θ(μλ±)(qλ±2)∞

8ψ8

(
λq,−λq, λb1, . . . , λb6

λ,−λ, λq/b1, . . . , λq/b6
; q2

b1 · · · b6

)

+ idem(λ;μ). (2.3)

Assuming (1.5), we may apply (2.3) to both 8W7 series in (2.2), obtaining after sim-
plification

{
θ

(
b1b2, . . . , b1b5, μb±

6

) − b1
b6

θ
(
b2b6, . . . , b5b6, μb±

1

)}

×
∏6

j=1

(
qλ±/b j

)
∞

θ
(
μλ±) (

qλ±2
)
∞

8ψ8

(
λq,−λq, λb1, . . . , λb6

λ,−λ, λq/b1, . . . , λq/b6
; q

)
+ idem(λ;μ)

= (q)∞θ (b1/b6)
∏

1≤i< j≤6

(
q/bi b j

)
∞ .

The proof of (2.1) is now reduced to the theta function identity

{
θ

(
b1b2, . . . , b1b5, μb±

6

) − b1
b6

θ
(
b2b6, . . . , b5b6, μb±

1

)}

= θ(b1/b6)

θ(μ2)

{
θ(μb1, . . . , μb6) − q

μ2 θ (μ/b1, . . . , μ/b6)

}
, (2.4)

which is a special case of [37, Ex. 20.53.3], see also [26, Lemma 6.4].

2.2 A Bilateral q-Saalschütz Summation

The analogue of Proposition 2.1 at the level of the Saalschütz summation combines
three rather than two bilateral sums. We find it convenient to write the identity as a
determinant evaluation.

Proposition 2.2 For generic parameters subject to

a1a2a3b1b2b3 = q, (2.5)
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let

f1(λ) = λ θ(b1/λ, b2/λ, b3/λ),

f2(λ) = λ−1θ(a1λ, a2λ, a3λ),

f3(λ) =
3∏

j=1

(q/a jλ, qλ/b j )∞ · 3ψ3

(
a1λ, a2λ, a3λ

qλ/b1, qλ/b2, qλ/b3
; q

)
.

Then,

det
1≤i, j≤3

(
f j (λi )

) = (q)∞θ(tλ1λ2λ3)

λ1λ2λ3

3∏
i, j=1

(q/ai b j )∞
∏

1≤i< j≤3

λ jθ(λi/λ j ), (2.6)

where

t = a1a2a3 = q/b1b2b3. (2.7)

One may prove Proposition 2.2 in a similar way as Proposition 2.1, but we pre-
fer to illustrate a different method (which can also be adapted to give an alternative
proof of Proposition 2.1). We first observe that each of the three functions f j satis-
fies f j (qλ) = − f j (λ)/qtλ3. For f1 and f2, this follows from the quasi-periodicity
θ(qx) = −θ(x)/x , and for f3, it is easy to verify by shifting the summation index.
It then follows from [28, Prop. 3.4] that (2.6) holds up to a factor independent of the
variables λ j . Thus, it is enough to verify (2.6) for fixed values of these variables. We
choose λ2 = b2, λ3 = b3, so that f1(λ2) = f1(λ3) = 0. We may then cancel the
factors involving λ1 and are left with the identity

b3(a1b2, a2b2, a3b2, b3q/b1, b3q/b2)∞ 3φ2

(
a1b3, a2b3, a3b3
b3q/b1, b3q/b2

; q

)

−idem(b2; b3) = b3θ(b2/b3)
3∏

j=1

(q/b1a j )∞,

which is the nonterminating q-Saalschütz summation [10, Eq. (II.24)]. This proves
(2.6) and explains why we call it the bilateral q-Saalschütz summation.

3 Biorthogonal Rational Functions

3.1 The Rahman Functional

Let b1, . . . , b6 be complex numbers subject to the balancing condition (1.5). We
assume that they are generic in the sense that

bi/b j /∈ qZ, 1 ≤ i < j ≤ 6, bi b j /∈ qZ, 1 ≤ i ≤ j ≤ 6. (3.1)
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Let V denote the vector space of rational functions in the variable (z + z−1)/2 that
are regular except for possible single poles at

z± ∈ b j q
Z<0 , 1 ≤ j ≤ 6. (3.2)

We also require that the elements of V are regular at infinity; that is, their numerator
does not have larger degree than their denominator.

Lemma 3.1 The space V is spanned by the rational functions

(b1z±)k1 · · · (b6z±)k6 , (3.3)

where k j are integers such that

k1 + · · · + k6 = 0. (3.4)

Proof Given f ∈ V , let n j denote the largest positive integer such that f has a pole
at z = b j q−n j ; if there is no such pole, we let n j = 0. Then,

f

(
z + z−1

2

)
= (b1z±)−n1 · · · (b6z±)−n6 p

(
z + z−1

2

)
,

with p a polynomial of degree at most N = n1 + · · · + n6. If we can expand

p

(
z + z−1

2

)
=

∑
l1,...,l6≥0,

l1+···+l6=N

Cl

6∏
j=1

(b j q
−n j z±)l j , (3.5)

then

f

(
z + z−1

2

)
=

∑
k1,...,k6≥0,

k1+···+k6=0

Ck+n

6∏
j=1

(b j z
±)k j ,

and we are done.
We claim that there is an expansion of the form (3.5) with l3 = · · · = l6 = 0.

Indeed, assuming the condition (3.1), the polynomials

(b1q−n1 z±)l(b2q−n2 z±)N−l , l = 0, . . . , N ,

form a basis for the space of polynomials of degree at most N , see, e.g., [26, Lemma
3.1]. 	


We now recall Rahman’s integral evaluation

∮
(z±2)∞θ(λz±)

(b1z±, . . . , b6z±)∞
dz

2π iz
= 2

{
θ(λb1, . . . , λb6) − qλ−2θ(λ/b1, . . . , λ/b6)

}
(q)∞θ(λ2)

∏
1≤i< j≤6(bi b j )∞

,

(3.6)
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where (1.5) is assumed. The integration is over a positively oriented contour separating
the poles at b j qZ≥0 from their reciprocals. The identity (3.6) is a special case of an
integral from [21] (see [10, Ex. 6.7]), which was explicitly stated in [22].

Let us replace b j in (3.6) with b j qk j , where k j are integers subject to (3.4). Using
(1.6) and other elementary facts, the resulting identity can be expressed as

∮
(z±2)∞θ(λz±)

(b1z±, . . . , b6z±)∞
(b1z±)k1 · · · (b6z±)k6

dz

2π iz

= 2
{
θ(λb1, . . . , λb6) − qλ−2θ(λ/b1, . . . , λ/b6)

}
(q)∞θ(λ2)

∏
1≤i< j≤6(bi b j )∞∏

1≤i< j≤6(bi b j )ki +k j∏6
j=1 q(

k j
2 )b

k j
j

.

By Lemma 3.1, this proves the following result.

Proposition 3.2 There exists a functional J on the space V such that

J
(
(b1z±)k1 · · · (b6z±)k6

) =
∏

1≤i< j≤6(bi b j )ki +k j∏6
j=1 q(

k j
2 )b

k j
j

. (3.7)

For generic values of λ, it is given by

J( f ) = (q)∞θ(λ2)
∏

1≤i< j≤6(bi b j )∞
2

{
θ(λb1, . . . , λb6) − qλ−2θ(λ/b1, . . . , λ/b6)

}

×
∮

f

(
z + z−1

2

)
(z±2)∞θ(λz±)

(b1z±, . . . , b6z±)∞
dz

2π iz
, (3.8)

where the integration is over a positively oriented contour encircling all poles of the
integrand of the form z ∈ b j qZ and no poles of the form z ∈ b−1

j qZ.

Note that the choice of contour in (3.8) depends on f . If n j are defined as in the
proof of Lemma 3.1, then the points z = b j qk−n j , k ∈ Z≥0, should be inside the
contour of integration and their reciprocals outside. For fixed f , the existence of such
a contour follows from (3.1), but no contour works for all f .

We will refer to J as Rahman’s functional. Rahman preferred to work with (3.8) in
the special case λ = b6. This yields the more compact but less symmetric expression

J( f ) = (q)∞
∏

1≤i< j≤5(bi b j )∞
2

∏5
j=1(b1 · · · b5/b j )∞

∮
f

(
z + z−1

2

)

(z±2, b1 · · · b5z±)∞
(b1z±, . . . , b5z±)∞

dz

2π iz
. (3.9)

123



Constr Approx (2018) 47:529–552 539

We will also obtain expressions for J in terms of discrete measures. To this end,
replace b j in (2.1) by b j qk j , where, as before, we assume (3.4). The resulting identity
can be written

(1 − λ2)
{
θ(μb1, . . . , μb6) − qμ−2 θ(μ/b1, . . . , μ/b6)

}∏6
j=1(qλ±/b j )∞

(q)∞ θ(λ2, μ2, μλ±)
∏

1≤i< j≤6(q/bi b j )∞

×
∞∑

x=−∞

1 − λ2q2x

1 − λ2
qx

6∏
j=1

(λb j )x

(qλ/b j )x
(λb j q

x , b j q
−x/λ)k j

+ idem(λ;μ) =
∏

1≤i< j≤6(bi b j )ki +k j∏6
j=1 q(

k j
2 )b

k j
j

.

This proves the following result.

Proposition 3.3 For generic values of λ and μ,

J( f ) =
(1 − λ2)

{
θ(μb1, . . . , μb6) − q

μ2 θ(μ/b1, . . . , μ/b6)
} ∏6

j=1(qλ±/b j )∞
(q)∞θ(λ2, μ2, λμ,μ/λ)

∏
1≤i< j≤6(q/bi b j )∞

×
∞∑

x=−∞

1 − λ2q2x

1 − λ2
qx

6∏
j=1

(λb j )x

(qλ/b j )x
f

(
λqx + λ−1q−x

2

)

+ idem(λ;μ). (3.10)

In contrast to (3.8), where the contour of integration depends on f , the identity
(3.10) holds uniformly on the whole space V .

Assume for simplicity that f ((z + z−1)/2) has no poles at z± ∈ b5qZ<0 or b6qZ<0 .
Then, we may let λ = b5 and μ = b6 in (3.10) and conclude that

J( f ) =
∏4

j=1(qb5/b j , b j b6)∞
(qb25, b6/b5)∞

∏
1≤i< j≤4(q/bi b j )∞

×
∞∑

x=0

1 − b25q2x

1 − b25
qx

6∏
j=1

(b5b j )x

(qb5/b j )x
f

(
b5qx + b−1

5 q−x

2

)

+ idem(b5; b6). (3.11)

For general functions in V , one obtains in the same way an expression involving also
residues of f at points corresponding to x < 0. This is discussed in [2, Prop. 6.4], but
the general case of (3.10) seems to be new.

Van de Bult and Rains [2] also found integral formulas for J that are nonsymmetric
in the sense that the measure is not invariant under z �→ 1/z. We will now give a more
general result of this type.
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Proposition 3.4 The functional J can be expressed as

J( f ) = 1

C

∮
f

(
z + z−1

2

)
z − z−1

z2

6∏
j=1

θ(λ j z)

(b j z±)∞
dz

2π iz
, (3.12)

where the integration is as above, λ j are generic parameters subject to λ1 · · · λ6 = q,
and

C =
∏4

j=1 θ(λ jλ2)
{∏6

j=1 θ(λ1b j ) − qλ−2
1

∏6
j=1 θ(λ1/b j )

}

λ2θ(λ21, λ1/λ2)(q)∞
∏

1≤i< j≤6(bi b j )∞
+ idem(λ1; λ2).

Proof Symmetrizing the integral, we may write the right-hand side of (3.12) as

1

2C

∮
f

(
z + z−1

2

) (z − z−1)
{

z−2 ∏6
j=1 θ(λ j z) − z2

∏6
j=1 θ(λ j/z)

}
∏6

j=1(b j z±)∞
dz

2π iz
.

By (2.4), with μ replaced with z and b j with an appropriate permutation of λ j , the
factor in brackets can be expressed as

z−1θ(z2, λ2λ3, . . . , λ2λ6, λ1z±)

λ2θ(λ1/λ2)
+ idem(λ1; λ2).

As

z−1(z − z−1)θ(z2) = (z±2)∞,

we may then apply (3.8) to express the integral in terms of J. 	


The nonsymmetric integral formulas given in [2] correspond to the special case of
(3.12) when λ j = b j for j = 1, . . . , 4. In that case,

C = θ(b1b2, b1b3, b1b4, b2b3, b2b4)

b2θ(b1/b2)(q)∞
∏

1≤i< j≤4

× {θ(b2λ5, b2λ6, b1b5, b1b6) − θ(b1λ5, b1λ2, b2b5, b2b6)} .

Since b5b6 = λ5λ6, we may apply Weierstrass’ identity (see, e.g., [27, §1.4]) to
conclude that the factor in brackets equals

−b2λ6θ(b1/b2, b3b4, λ5/b5, λ5/b6).
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In the corresponding specialization of (3.12), we find it convenient to replace z with
1/z and write λ = q/λ5. We then obtain

J( f ) = b5b6λ (q, b5b6)∞
∏4

j=1(b j b5, b j b6)∞
θ(b5λ, b6λ)

∏
1≤i< j≤4(q/bi b j )∞

×
∮

f

(
z + z−1

2

)
(z − z−1)

θ(λz, z/b5b6λ)

(b5z±, b6z±)∞

4∏
j=1

(qz/b j )∞
(b j z)∞

dz

2π iz
. (3.13)

This is also contained in [2, Prop. 6.3]. As is discussed in [2], (3.11) can be obtained
from (3.13) through shrinking the contour of integration to zero, picking up residues
at the points b5qZ≥0 and b6qZ≥0 .

3.2 Rahman’s Biorthogonal Functions

Rahman [21,23] constructed rational functions that are biorthogonalwith respect to the
functional J. To explain this, we introduce the subspace V i

n of V consisting of rational
functions having no poles except possibly at z± = bi q−k−1, where i = 1, . . . , 6 is
fixed and 0 ≤ k ≤ n. It is easy to see that dim(V i

n ) = n +1. If 1 ≤ i �= j ≤ 6, we may

look for a function Q(i, j)
n ∈ V i

n such that I (Q(i, j)
n f ) = 0 for all f ∈ V j

n−1. As this is
an n-dimensional condition on an (n + 1)-dimensional space, it is not surprising that
for generic parameters the solution is unique up to normalization. We then have the
biorthogonality relations J(Q(i, j)

n Q( j,i)
m ) = 0 for m �= n.

We may assume that i = 5, j = 6. Then, Q(5,6)
n is given by the function (our

notation differs from that of Rahman)

Qn

(
z + z−1

2
; b1, . . . , b6; q

)
= (b1b2, b1b3, b1b4, 1/b1b6)n

(qb1/b5)n

× 10W9(b1/b5; b1z, b1/z, q/b2b5, q/b3b5, q/b4b5, qn/b5b6, q−n; q).

It follows from Bailey’s 10W9-transformation [10, Eq. (III.28)] that Qn is symmetric
in the parameters b1, . . . , b4.

More precisely, Rahman proved that if

Qn = Qn

(
z + z−1

2
; b1, b2, b3, b4, b5, b6

)
, (3.14a)

Rn = Qn

(
z + z−1

2
; b1, b2, b3, b4, b6, b5

)
, (3.14b)

then

J(Qm Rn) = δmn
1 − q−1b1b2b3b4
1 − q2n−1b1b2b3b4

(q)n
∏

1≤i< j≤4(bi b j )n

qn(q−1b1b2b3b4)n
. (3.15)
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Rahman formulated this result with J given by (3.9) (and modifications, where the
contour is deformed to the unit circle and then moved to an interval by a change of
variables). Using instead (3.8), (3.10), or (3.12) gives new explicit forms of (3.15).
Note, in particular, that (3.10) gives biorthogonality relations with respect to a fixed
measure for all m and n, whereas in (3.8), (3.9), and (3.12), the integrals must be
deformed (or discrete terms added) as m and n increase.

3.3 The Al-Salam–Ismail Functional

There are many interesting limit cases of Rahman’s biorthogonal functions [2]. From
the perspective of superconformal indices (see Sect. 4), a particularly interesting case
is when three of the parameters b j tend to zero and the remaining three to infinity,
while the variable z is scaled so that either zb j or z/b j is fixed for each j . To describe
this limit, we make the substitutions

(b1, b2, b3, b4, b5, b6) �→ (a1/c, a2/c, a3/c, b1c, b2c, b3c),

so that the balancing condition (1.5) becomes (2.5). We also replace z by cz. The
possible poles (3.2) are then located at

z ∈ a−1
j qZ>0 , z ∈ b j q

Z<0 , 1 ≤ j ≤ 3, (3.16)

together with additional poles tending to zero or infinity as c tends to zero.
More concretely, let f ((z + z−1)/2) denote the spanning function (3.3). We replace

(k1, . . . , k6) by (k1, k2, k3, l1, l2, l3) and write

T = k1 + k2 + k3 = −l1 − l2 − l3. (3.17)

Then,

lim
c→0

c2T f

(
(cz) + (cz)−1

2

)
= lim

c→0

3∏
j=1

c2k j
(

a j z, a j/c2z
)

k j

(
b j/z, b j c

2z
)

l j

= (−1)T
3∏

j=1

q(
k j
2 )a

k j
j · g(z),

where

g(z) = z−T
3∏

j=1

(a j z)k j (b j/z)l j . (3.18)

It is easy to see that, as k j , l j , and T vary over integers subject to (3.17), the functions
g span the space of rational functions in z that are regular everywhere (including at
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infinity) except for possible single poles at (3.16). We will denote this space by W .
We also compute

lim
c→0

c2T J( f ) = lim
c→0

c2T ∏
1≤i< j≤3

(
ai a j/c2

)
ki +k j

(
bi b j c2

)
li +l j

∏3
i, j=1(ai b j )ki +l j

∏3
j=1 q(

k j
2 )+(

l j
2 )(a j/c)k j (b j c)l j

= t T q(T
2)

∏3
i, j=1(ai b j )ki +l j∏3

j=1 q(
l j
2 )b

l j
j

,

where t is as in (2.7). Thus, J degenerates to a functional K on W , which acts on the
spanning functions (3.18) as

K(g) = (−t)T q(T
2)

∏3
i, j=1(ai b j )ki +l j∏3

j=1 q(
k j
2 )+(

l j
2 )a

k j
j b

l j
j

. (3.19)

As we explain in Sect. 3.4, Al-Salam and Ismail constructed explicit biorthogonal
systems for the functional K [1]. For this reason, we call it the Al-Salam–Ismail
functional.

The reader may find it puzzling that J and its degenerate case K seem to depend on
the same number of parameters. The explanation is that we can simultaneously scale
z, 1/a j , and b j by the same constant without changing K. This effectively reduces the
number of parameters by one. We also mention the symmetry

K̃(g̃) = K(g), g ∈ W, (3.20)

where g̃(z) = g(1/z) and K̃ is obtained from K after interchanging the parameters a j

and b j .
One may obtain an integral expression for K from Gasper’s identity [9], [10, Eq.

(4.11.3)]

∮
(qz/b3)∞θ(λz, qz/λb1b2)

(a1z, a2z, a3z, b1/z, b2/z)∞
dz

2π iz
= θ(b1λ, b2λ)

(q)∞

3∏
j=1

(q/b3a j )∞
(b1a j , b2a j )∞

, (3.21)

which holds for generic parameters subject to (2.5). More symmetric integral formulas
arise from the following one-parameter extension of (3.21).
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Proposition 3.5 For generic parameters subject to the relations

λ1λ2λ3 = qa1a2a3 = q2/b1b2b3, (3.22)
∮ 3∏

j=1

θ(λ j z)

(a j z, b j/z)∞
dz

2π iz
= 1

(q)∞θ(λ1/λ2)
∏3

i, j=1(ai b j )∞

×
⎧⎨
⎩

3∏
j=1

θ(λ1/a j , λ2b j ) − λ1

λ2

3∏
j=1

θ(λ1b j , λ2/a j )

⎫⎬
⎭ .

(3.23)

To prove Proposition 3.5, we will use (3.21) and the following fact. The proof is a
standard elliptic function argument that we include for completeness.

Lemma 3.6 Let f be an analytic function on C\{0} that satisfies

f (qx) = f (x)/q3x6, f (1/x) = − f (x). (3.24)

Moreover, let c1 and c2 be numbers such that c21, c22, c1c2, c1/c2 /∈ qZ. Then, f is
uniquely determined by the values f (c1) and f (c2).

Proof Let

g(x) = x−1θ(x2)

(
θ(c2x±)

c−1
1 θ(c21, c2c±

1 )
f (c1) + θ(c1x±)

c−1
2 θ(c22, c1c±

2 )
f (c2)

)
.

We claim that f (x) = g(x) for all x . This is clearly true for x = c1. Since g satisfies
(3.24), it is more generally true for x± ∈ c1qZ. We also observe that (3.24) implies
that f vanishes for x2 ∈ qZ. Hence, the function

h(x) = f (x) − g(x)

x−1θ
(
x2, c1x±)

is analytic for x �= 0 and satisfies h(qx) = h(x). By Liouville’s theorem, h is constant.
Since h(c2) = 0, we arrive at the desired conclusion. 	

Proof of Proposition 3.5 We substitute λ1 = λx and λ2 = λ/x in (3.23) and multiply
the identity by x−1θ(x2). Consider both sides as functions of x . It is easy to see that
they satisfy (3.24) (as the contour of integration can be chosen independently of x , it
is enough to consider the integrand). By Lemma 3.6, it then suffices to verify (3.23)
for two generic values of λ1. Choosing λ1 = q/b3, (3.23) is reduced to (3.21). By
symmetry, we may take λ1 = q/b2 as the other value. 	


Let us now replace a j and b j in (3.23) by a j qk j and b j ql j , where k j and l j are
integers subject to (3.17). In order to respect (3.22), we also replace λ3 by λ3qT . The
resulting identity can be expressed as
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K(g) = (q)∞θ(λ1/λ2)
∏3

i, j=1(ai b j )∞∏3
j=1 θ(λ1/a j , λ2b j ) − λ1

λ2

∏3
j=1 θ(λ1b j , λ2/a j )

×
∮

g(z)
3∏

j=1

θ(λ j z)

(a j z, b j/z)∞
dz

2π iz
, (3.25)

where g is as in (3.18). As these functions span W , we may draw the following
conclusion.

Proposition 3.7 The functional K is given by the integral formula (3.25), where λ j

are generic parameters subject to (3.22).

The special case corresponding to (3.21) is

K(g) = (q)∞
θ(b1λ, b2λ)

3∏
j=1

(b1a j , b2a j )∞
(q/b3a j )∞

×
∮

g(z)
(qz/b3)∞θ(λz, qz/λb1b2)

(a1z, a2z, a3z, b1/z, b2/z)∞
dz

2π iz
. (3.26)

By (3.20), we may alternatively write

K(g) = (q)∞
θ(λ/a1, λ/a2)

3∏
j=1

(a1b j , a2b j )∞
(q/a3b j )∞

×
∮

g(z)
(q/a3z)∞θ(λz, qza1a2/λ)

(a1z, a2z, b1/z, b2/z, b3/z)∞
dz

2π iz
. (3.27)

We also mention the further specialization λ = a3 of (3.26) (or λ = q/b3 of (3.27)),

K(g) = (q)∞
∏2

i, j=1(ai b j )∞
(q/a3b3)∞

∏2
j=1(q/a3b j , q/b3a j )∞

×
∮

g(z)
(qz/b3, q/a3z)∞θ(a1a2b3z)

(a1z, a2z, b1/z, b2/z)∞
dz

2π iz
. (3.28)

To obtain discrete integral formulas for K, we replace a j by a j qk j and b j by b j ql j in
(2.6), where we still assume (3.17). This leads to the following result.

Proposition 3.8 For generic parameters λ j , the functional K can be expressed as

K(g) = C
3∑

k=1

Xk

∞∑
x=−∞

qx g
(
λkqx) 3∏

j=1

(a jλk)x

(qλk/b j )x
, (3.29)
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where

C = λ1λ2λ3

(q)∞θ(tλ1λ2λ3)
∏3

i, j=1(q/ai b j )∞
∏

1≤i< j≤3 λ jθ(λi/λ j )
,

X1 =
3∏

j=1

(q/a jλ1, qλ1/b j )∞

⎧⎨
⎩

λ2

λ3

3∏
j=1

θ(a jλ3, b j/λ2) − λ3

λ2

3∏
j=1

θ(a jλ2, b j/λ3)

⎫⎬
⎭ ,

X2 =
3∏

j=1

(q/a jλ2, qλ2/b j )∞

⎧⎨
⎩

λ3

λ1

3∏
j=1

θ(a jλ1, b j/λ3) − λ1

λ3

3∏
j=1

θ(a jλ3, b j/λ1)

⎫⎬
⎭ ,

X3 =
3∏

j=1

(q/a jλ3, qλ3/b j )∞

⎧⎨
⎩

λ1

λ2

3∏
j=1

θ(a jλ2, b j/λ1) − λ2

λ1

3∏
j=1

θ(a jλ1, b j/λ2)

⎫⎬
⎭ .

Note that, in contrast to Proposition 3.7, we are not assuming any balancing con-
dition for the parameters λ j .

Analogously to (3.11), assuming that g has no poles at z ∈ b1qZ<0 or b2qZ<0 , we
may choose λ1 = b1 and λ2 = b2 in (3.29). This leads to the expression

K(g) = 1

b1θ(b2/b1)
∏3

j=1(q/a j b3)∞

(
b1(qb1/b2, qb1/b3, a1b2, a2b2, a3b2)∞

×
∞∑

x=0

qx g(b1qx )

3∏
j=1

(a j b1)x

(qb1/b j )x
− idem(b1; b2)

)
, (3.30)

which can alternatively be obtained from (3.26) by shrinking the contour to zero,
picking up residues at the points b1qZ≥0 and b2qZ≥0 . If one instead expands the contour
in (3.27), or substitutes λ1 = 1/a1, λ2 = 1/a2 in (3.29), one finds a similar identity
involving values of g at a j qZ≤0 .

3.4 Biorthogonal Rational Functions

Let us now consider the limit of Rahman’s biorthogonal functions corresponding to
the functional K. There are two essentially different cases, depending on whether the
distinguished parameters b5 and b6 in (3.15) tend to the same or distinct limits in
{0,∞}.

For the first case, we write

qn(z; b1, b2, b3, a1, a2, a3; q)

= lim
c→0

Qn

(
(cz) + (cz)−1

2
; b1c, b2c, b3c, a1/c, a2/c, a3/c; q

)

= (a1b1, 1/a3b1)n 4φ3

(
q−n, q/a2b2, q/a2b3, b1/z

a1b1, q1−na3b1, q/a2z
; q

)
.
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This function is symmetric in the parameters (b1, b2, b3). Though we label qn by
seven parameters (counting q), it is effectively a five-parameter system since (2.5) is
assumed and wemay scale z, a−1

j and b j by a fixed constant. If rn denotes the function
qn with a2 and a3 interchanged, then it follows from (3.15) that

K(qmrn) = δmn q−n(q, a1b1, a1b2, a1b3)n .

Applying (3.20), we also find that if

q̃n(z) = qn(1/z; a1, a2, a3, b1, b2, b3; q)

= (a1b1, 1/a1b3)n 4φ3

(
q−n, q/a2b2, q/a3b2, a1z

a1b1, q1−na1b3, qz/b2
; q

)

and r̃n denotes q̃n with b2 and b3 interchanged, then

K(q̃mr̃n) = δmn q−n(q, a1b1, a2b1, a3b1)n .

For reasons that will be clear in Sect. 4, we think of this as a separate system, even
though it is equivalent to (qn, rn) by a change of parameters.

The biorthogonal system (qn, rn) appears in the scheme of van de Bult and Rains
[2] with the label 3100v2. The biorthogonality relations described there correspond to
(3.26) and (3.30), possibly after permuting the parameters and applying the symmetry
(3.20). Our expressions (3.25) and (3.29) unify and generalize these relations. Just as
for Rahman’s functions, in the continuous case the contour of integration depends on
m and n, whereas the discrete measures are fixed.

For the second case, we write

sn(z; b1, b2, b3, a1, a2, a3; q)

= lim
c→0

(−1)nq−(n
2)c2n Qn

(
(cz) + (cz)−1

2
; b1c, b2c, a1/c, a2/c, a3/c, b3c; q

)

= (a1b1, a2b1)n

(b1b3)n 4φ3

(
q−n, q/a3b2, qn/a3b3, b1/z

a1b1, a2b1, q/a3z
; q

)
,

tn(z; b1, b2, b3, a1, a2, a3; q)

= lim
c→0

Qn

(
(cz) + (cz)−1

2
; a1/c, b1c, b2c, a2/c, b3c, a3/c; q

)

= (q−1a2b3)
n(a1b1, a1b2)n 4φ3

(
q−n, q/a2b3, qn/a3b3, a1z

a1b1, a1b2, qz/b3
; q

)
.

Again, these are effectively five-parameter systems. Both sn and tn are symmetric in
the pairs (a1, a2) and (b1, b2). We obtain from (3.15) the biorthogonality
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K(smtn) = δmn (q−1a1a2)
n 1 − q−1a1a2b1b2
1 − q2n−1a1a2b1b2

(q)n
∏2

i, j=1(ai b j )n

(q−1a1a2b1b2)n
. (3.31)

In this case, it is natural to use the expression (3.28) for K, as the poles of sm and
tn are then situated at zeroes of the biorthogonality measure, so that one may use the
same contour of integration for all m and n. With the biorthogonality written in this
form, (3.31) is due to Al-Salam and Ismail [1]. In the classification of [2], the system
(sn, tn) is denoted by 2200vv (in Appendix A.2 it appears with a typo as 2200vp). The
expressions (3.25) and (3.29) for K generalize the biorthogonality measures found in
[1] and [2].

4 Superconformal Indices

As was discussed in the introduction, when considering integral evaluations related to
dualities for three-dimensional supersymmetric quantum field theories, (1.4) appears
as a top level beta integral. As before, the integration is over a positively oriented
contour separating the geometric sequences of poles tending to 0 from those tending
to∞; note that the contour necessarily depends on x . Besides the quantum field theory
interpretation, (1.4) also appears as the star-triangle relation for a solvable latticemodel
introduced in [8].

Let us replace b j in (1.4) by b j qk j and N j by N j + l j − k j , where k j and l j are
integers with k1 + · · · + k6 = l1 + · · · + l6 = 0. After simplification, this results in
the identity

∞∑
x=−∞

∮
(1 − qx z2)(1 − qx z−2)

qx z6x

6∏
j=1

(q1+x/2/b j z, q1−x/2z/b j )∞
(q N j +x/2b j z, q N j −x/2b j/z)∞

×
6∏

j=1

(b j (q
−x/2z)±)k j (b j q

N j (qx/2z)±)l j

dz

2π iz

= 2
∏6

j=1 q(
k j
2 )+(

l j
2 )+(

N j
2 )+N j l j b

k j +l j +N j
j

∏
1≤i< j≤6

(q/bi b j )∞(bi b j )ki +k j (bi b j q Ni +N j )li +l j

(bi b j q Ni +N j )∞
.

This can be interpreted in terms of the functional (3.7). Let V be the space introduced
in Sect. 3.1 and V ′ the space obtained from V through replacing the parameters b j

with b j q N j . Denoting the Rahman functional on V ′ by J′, we obtain the following
result.
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Proposition 4.1 For f ∈ V and g ∈ V ′,

∞∑
x=−∞

∮
(1 − qx z2)(1 − qx z−2)

qx z6x

6∏
j=1

(q1+x/2/b j z, q1−x/2z/b j )∞
(q N j +x/2b j z, q N j −x/2b j/z)∞

× f

(
q−x/2z + qx/2z−1

2

)
g

(
qx/2z + q−x/2z−1

2

)
dz

2π iz

= 2
∏6

j=1 q(
N j
2 )b

N j
j

∏
1≤i< j≤6

(q/bi b j )∞
(bi b j q Ni +N j )∞

J( f )J′(g). (4.1)

We find it remarkable that the right-hand side of (4.1) factors, even though the
variables of f and g on the left are coupled. We refer to this as the decoupling phe-
nomenon. Just as for Spiridonov’s beta integral discussed in the introduction, it can
be used to construct two-index biorthogonal systems. To this end, let Qn and Rn be
as in (3.14). Moreover, if (c1, . . . , c6) is any permutation of (b1q N1 , . . . , b6q N6), let

Q′
n = Qn

(
z + z−1

2
; c1, c2, c3, c4, c5, c6

)
,

R′
n = Qn

(
z + z−1

2
; c1, c2, c3, c4, c6, c5

)
.

Combining (3.15) and Proposition 4.1 then gives the following result.

Corollary 4.2 In the notation above,

∞∑
x=−∞

∮
(1 − qx z2)(1 − qx z−2)

qx z6x

6∏
j=1

(q1+x/2/b j z, q1−x/2z/b j )∞
(q N j +x/2b j z, q N j −x/2b j /z)∞

×(Qn1 Rm1)

(
q−x/2z + qx/2z−1

2

)
(Q′

n2 R′
m2

)

(
qx/2z + q−x/2z−1

2

)
dz

2π iz

= δn1m1δn2m2

2
∏6

j=1 q(
N j
2 )b

N j
j

∏
1≤i< j≤6

(q/bi b j )∞
(bi b j q Ni +N j )∞

× 1 − 1/b5b6
1 − q2n1/b5b6

(q)n1
∏

1≤i< j≤4(bi b j )n1

qn1(1/b5b6)n1

1 − 1/c5c6
1 − q2n2/c5c6

(q)n2
∏

1≤i< j≤4(ci c j )n2

qn2 (1/c5c6)n2
.

Up to permutation of the parameters, there are three nonequivalent cases of Corol-
lary 4.2, corresponding to whether none, one, or both of the numbers c5, c6 are
contained in {b5q N5 , b6q N6}.
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At the Saalschütz level, we have the superconformal index identity [7]

∞∑
x=−∞

∮ 3∏
j=1

(q1+x/2/a j z, q1−x/2z/b j )∞
(q M j +x/2a j z, q N j −x/2b j/z)∞

(
−q1/2

t z3

)x
dz

2π iz

= 1
∏3

j=1 q(
M j
2 )+(

N j
2 )a

M j
j b

N j
j

3∏
i, j=1

(q/ai b j )∞
(ai b j q Mi +N j )∞

, (4.2)

where the parameters satisfy (2.5), t is given by (2.7), and the integers M j and N j

satisfy M1 + M2 + M3 = N1 + N2 + N3 = 0. In [7] this is stated under the additional
assumption t = q1/2, but the general case follows immediately after rescaling z and
the parameters.

We replace the parameters in (4.2) by a j �→ a j qk j , b j �→ b j ql j , M j �→ M j +
m j − k j , N j �→ N j + n j − l j , where the integral shifts satisfy

k1 + k2 + k3 = −l1 − l2 − l3 = m1 + m2 + m3 = −n1 − n2 − n3 = T .

The resulting identity can be written

∞∑
x=−∞

∮ 3∏
j=1

(q1+x/2/a j z, q1−x/2z/b j )∞
(q M j +x/2a j z, q N j −x/2b j/z)∞

(
−q1/2

t z3

)x

× z−2T
3∏

j=1

(q−x/2a j z)k j (q
x/2b j/z)l j (q

M j +x/2a j z)m j (q
N j −x/2b j/z)n j

dz

2π iz

= q2(T
2)(t2q M1+M2+M3)T

∏3
j=1 q(

k j
2 )+(

l j
2 )+(

m j
2 )+(

n j
2 )+(

M j
2 )+(

N j
2 )+m j M j +n j N j a

k j +m j +M j
j b

l j +n j +N j
j

×
3∏

i, j=1

(q/ai b j )∞(ai b j )ki +l j (ai b j q Mi +N j )mi +n j

(ai b j q Mi +N j )∞
.

If we now let K and W be the functional and space of rational functions introduced
in (3.19) and K′, W ′ the objects obtained from these by replacing the parameters a j

by a j q M j and b j by b j q N j , we may draw the following conclusion.

Proposition 4.3 For f ∈ W and g ∈ W ′,

∞∑
x=−∞

∮ 3∏
j=1

(q1+x/2/a j z, q1−x/2z/b j )∞
(q M j +x/2a j z, q N j −x/2b j/z)∞

(
−q1/2

t z3

)x

f (q−x/2z) g(qx/2z)
dz

2π iz

= 1
∏3

j=1 q(
M j
2 )+(

N j
2 )a

M j
j b

N j
j

3∏
i, j=1

(q/ai b j )∞
(ai b j q Mi +N j )∞

K( f )K′(g).
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We can now use the results of Sect. 3.4 to construct corresponding biorthogonal
systems. This can be done in many ways, since we may for each of the spaces W
and W ′ work with the system (qn, rn), (q̃n, r̃n), or (sn, tn). Moreover, permuting the
parameters gives cases when both, one, or none of the two functions chosen for W
have poles at the same geometric sequences as the functions chosen for W ′. In total,
this gives ten essentially nonequivalent possibilities. We refrain from writing these
down explicitly.

Acknowledgements This work is dedicated to the memory of Mizan Rahman, a gentle and generous
mathematician whose unsurpassed mastery of q-series has been a great inspiration for me. I thank Ilmar
Gahramanov for fruitful discussions on superconformal indices and Slava Spiridonov for encouraging me
to finish the present paper.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Al-Salam, W.A., Ismail, M.E.H.: A q-beta integral on the unit circle and some biorthogonal rational
functions. Proc. Am. Math. Soc. 121, 553–561 (1994)

2. van de Bult, F.J., Rains, E.M.: Limits of elliptic hypergeometric biorthogonal functions. J. Approx.
Theory 193, 128–163 (2015)

3. Date, E., Jimbo, M., Kuniba, A., Miwa, T., Okado, M.: Exactly solvable SOS models II. Proof of
the star-triangle relation and combinatorial identities. In: Jimbo, M., Miwa, T., Tsuchiya, A. (eds.)
Conformal Field Theory and Solvable Lattice Models, pp. 17–122. Academic Press, Boston, MA
(1988)

4. Dolan, F.A., Osborn, H.: Applications of the superconformal index for protected operators and q-
hypergeometric identities to N = 1 dual theories. Nucl. Phys. B 818, 137–178 (2009)

5. Gahramanov, I., Kels, A.P.: The star-triangle relation, lens partition function, and hypergeometric
sum/integrals. J. High Energy Phys. 2017, 40

6. Gahramanov, I., Rosengren, H.: A new pentagon identity for the tetrahedron index. J. High. Energy
Phys. 2013, 128 (2013)

7. Gahramanov, I., Rosengren, H.: Basic hypergeometry of supersymmetric dualities. J. Nucl. Phys. B
913, 747–768 (2016)

8. Gahramanov, I., Spiridonov, V.P.: The star-triangle relation and 3d superconformal indices. J. High
Energy Phys. 2015, 40 (2015)

9. Gasper, G.: q-extensions of Barnes’, Cauchy’s, and Euler’s beta integrals. In: Rassias, T.M. (eds.)
Topics in Mathematical Analysis, pp. 294–314. World Scientific Publishing, Teaneck, NJ (1989)

10. Gasper,G., Rahman,M.:BasicHypergeometric Series. CambridgeUniversity Press,Cambridge (1990)
11. Hwang, C., Kim, H., Park, K.-J., Park, J.: Index computation for 3d Chern–Simons matter theory: test

of Seiberg-like duality. J. High Energy Phys. 2011, 37 (2011)
12. Imamura, Y., Yokoyama, S.: Index for three dimensional superconformal field theories with general

R-charge assignments. J. High Energy Phys. 2011, 7 (2011)
13. Jackson, M.: On well-poised bilateral hypergeometric series of the type 8ψ8. Q. J. Math. 1, 63–68

(1950)
14. Kapustin, A., Willett, B.: Generalized superconformal index for three dimensional field theories.

arXiv:1106.2484
15. Kels, A.P.: A new solution of the star-triangle relation. J. Phys. A 47, 055203 (2014)
16. Kels, A.P.: New solutions of the star-triangle relation with discrete and continuous spin variables. J.

Phys. A 48, 435201 (2015)
17. Kinney, J., Maldacena, J., Minwalla, S., Raju, S.: An index for 4 dimensional super conformal theories.

Commun. Math. Phys. 275, 209–254 (2007)

123

http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1106.2484


552 Constr Approx (2018) 47:529–552

18. Koekoek, R., Swarttouw, R.F.: The Askey-Scheme of Hypergeometric Orthogonal Polynomials and
Its q-Analogue, Delft University of Technology. http://homepage.tudelft.nl/11r49/askey/ (1998)

19. Krattenthaler, C., Spiridonov, V.P., Vartanov, G.S.: Superconformal indices of three-dimensional the-
ories related by mirror symmetry. J. High Energy Phys. 2011, 8 (2011)

20. Rahman, M.: Families of biorthogonal rational functions in a discrete variable. SIAM J. Math. Anal.
12, 355–367 (1981)

21. Rahman,M.:An integral representation of a 10φ9 and continuous bi-orthogonal 10φ9 rational functions.
Can. J. Math. 38, 605–618 (1986)

22. Rahman, M.: Some extensions of Askey–Wilson’s q-beta integral and the corresponding orthogonal
systems. Can. Math. Bull. 31, 467–476 (1988)

23. Rahman, M.: Biorthogonality of a system of rational functions with respect to a positive measure on
[−1, 1]. SIAM J. Math. Anal. 22, 1430–1441 (1991)

24. Rains, E.M.: Transformations of elliptic hypergeometric integrals. Ann. Math. 171, 169–243 (2010)
25. Römelsberger, C.: Counting chiral primaries in N = 1, d = 4 superconformal field theories. Nucl.

Phys. B 747, 329–353 (2006)
26. Rosengren, H.: An elementary approach to 6 j-symbols (classical, quantum, rational, trigonometric,

and elliptic). Ramanujan J. 13, 133–168 (2007)
27. Rosengren, H.: Elliptic hypergeometric functions. arXiv:1608.06161
28. Rosengren, H., Schlosser, M.: Elliptic determinant evaluations and the Macdonald identities for affine

root systems. Compos. Math. 142, 937–961 (2006)
29. Ruijsenaars, S.N.M.: Complete integrability of relativistic Calogero-Moser systems and elliptic func-

tion identities. Commun. Math. Phys. 110, 191–213 (1987)
30. Seiberg, N.: Electric-magnetic duality in supersymmetric non-abelian gauge theories. Nuclear Phys.

B 435, 129–146 (1995)
31. Spiridonov, V.P.: On the elliptic beta function. Russ. Math. Surv. 56, 185–186 (2001)
32. Spiridonov, V.P.: Theta hypergeometric integrals. St. Petersb. Math. J. 15, 929–967 (2004)
33. Spiridonov, V.P.: Rarefied elliptic hypergeometric functions. arXiv:1609.00715
34. Spiridonov, V.P., Vartanov, G.S.: Elliptic hypergeometry of supersymmetric dualities. Commun. Math.

Phys. 304, 797–874 (2011)
35. Spiridonov, V.P., Vartanov, G.S.: Elliptic hypergeometry of supersymmetric dualities II. Orthogonal

groups, knots, and vortices. Commun. Math. Phys. 325, 421–486 (2014)
36. Spiridonov, V., Zhedanov, A.: Spectral transformation chains and some new biorthogonal rational

functions. Commun. Math. Phys. 210, 49–83 (2000)
37. Whittaker, E.T.,Watson, G.N.: ACourse ofModernAnalysis. CambridgeUniversity Press, Cambridge

(1927)
38. Wilson, J.A.: Hypergeometric Series, Recurrence Relations and Some New Orthogonal Functions.

University of Wisconsin, Madison (1978)
39. Wilson, J.A.: Orthogonal functions from gram determinants. SIAM J. Math. Anal. 22, 1147–1155

(1991)
40. Yamazaki, M.: New integrable models from the gauge/YBE correspondence. J. Stat. Phys. 154, 895–

911 (2014)
41. Yokoyama, S.: Index for three dimensional superconformal field theories and its applications. J. Phys.

Conf. Ser. 343, 012134 (2012)

123

http://homepage.tudelft.nl/11r49/askey/
http://arxiv.org/abs/1608.06161
http://arxiv.org/abs/1609.00715

	Rahman's Biorthogonal Rational Functions and Superconformal Indices
	Abstract
	1 Introduction
	2 Bilateral Summations
	2.1 A Bilateral Jackson Summation
	2.2 A Bilateral q-Saalschütz Summation

	3 Biorthogonal Rational Functions
	3.1 The Rahman Functional
	3.2 Rahman's Biorthogonal Functions
	3.3 The Al-Salam–Ismail Functional
	3.4 Biorthogonal Rational Functions

	4 Superconformal Indices
	Acknowledgements
	References




