
Comparison between mixed-integer and second order cone programming
for autonomous overtaking

Downloaded from: https://research.chalmers.se, 2024-03-13 09:38 UTC

Citation for the original published paper (version of record):
Karlsson, J., Murgovski, N., Sjöberg, J. (2018). Comparison between mixed-integer and second order
cone programming for autonomous overtaking. 2018 European Control Conference (ECC).
http://dx.doi.org/10.23919/ECC.2018.8550313

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology.
It covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004.
research.chalmers.se is administrated and maintained by Chalmers Library

(article starts on next page)



Comparison between mixed-integer and second order cone programming for
autonomous overtaking

Johan Karlsson, Nikolce Murgovski and Jonas Sjöberg

Abstract— This paper concerns optimally controlling an au-
tonomous vehicle to perform safe and comfortable overtaking
of a slower moving leading vehicle. The contribution is an
analysis of the comparisons between a convex relaxation with
the standard mixed integer quadratic program. The main
difference between the formulations is that the sampling is
performed in the temporal domain in the standard formulation,
but in the spatial domain for the convex relaxation. The case
of varying lateral position and longitudinal velocity is studied
for both algorithms and the solution quality and computational
effort are discussed. The results are given in a case study where
an ego vehicle is forced to accelerate when overtaking a leading
vehicle, due to the presence of an oncoming vehicle. The results
illustrate that the temporal and spatial formulation’s yield
similar solutions but obtaining them require less computational
effort in the spatial domain.

I. INTRODUCTION

Aims such as decreasing the number of traffic accidents
and traffic congestions motivate the introduction of partially
or fully autonomous vehicles [1], [2]. In today’s market,
many major car companies work on partially or fully au-
tonomous vehicles [3], in which automated systems, such
as adaptive cruise control [1] and automatic parking [4] are
in standard production. Fully autonomous driving, however,
introduces challenges. One such challenge, which has drawn
much attention recently, is the introduction of autonomous
overtaking maneuvers, where the vehicle needs to perform a
safe overtaking of a slow moving leading vehicle.

The vehicle overtaking procedure can crudely be divided
into four steps: 1) detection of all surrounding obstacles and
vehicles, (including the leading vehicle) using sensors (such
as light detection and ranging sensors); 2) deciding whether
overtaking should be performed; 3) trajectory planning, if
overtaking should be performed; 4) trajectory tracking. Of
course, this structure is not unique to the overtaking case
but a standard way of developing a variety of autonomous
features, see for example [5].

This paper studies the third step, trajectory generation
in the case of autonomous overtaking, with the goal of
obtaining position and velocity trajectories which the vehicle
can follow in a way that is i) safe, ii) comfortable, and, iii)
deviates as little as possible from the preferred longitudinal
speed and lateral position. This should be done using an
algorithm that, a) does not rely heavily on heuristics, and, b)
should be able to react to unforeseen events, e.g., a vehicle
suddenly appearing in the adjacent lane due to late detection

This work was partially supported by the Wallenberg Autonomous
Systems and Software Program (WASP) and partially by the European
Commission Seventh Framework Program under the project AdaptIVe, grant
agreement number 610428.

LE
lLf lLr

ls le

wl − w

2wl − w

w

wl + w

ymax : Overtaking window

ymin: Critical zone

Longitudinal position

La
te

ra
l p

os
iti

on

Fig. 1. Scenario where the ego vehicle (E) is overtaking a leading vehicle
(L) on a road with two lanes. The CoG of the ego vehicle is allowed to
reside between the limits ymin and ymax, depicted by the thick solid lines.

or sensor failure. There exist several methods for solving the
overtaking problem described above. For example, in [6],
the overtaking is made using a so-called shadow vehicle and
the Rendezvous-guidance technique, while in [7] by approx-
imating lane change maneuvers using fifth order minimal
jerk trajectories. Other approaches include grid/graph based
search [8], [9], but these methods rely on the availability of
good heuristics, i.e., does not fulfill requirement a.

Considering the goals i-iii one approach is to solve the
problem using optimal control. Optimal control involves
modelling the overtaking problem as an optimization prob-
lem, where constraints are used to enforce goal i and the cost
function enforces goals ii and iii. However, optimal control
has the disadvantage that it cannot respond to surprises,
i.e., does not fulfill requirement b, since it is solved only
once. One way of fulfilling requirement b is to solve the
optimal control problem iteratively. This can be done using
model predictive control (MPC), meaning that the optimal
control problem is used to obtain trajectories for a finite
time horizon, which are then tracked by the vehicle for a
few time steps before the optimal control problem is re-
modelled (taking any changes in the environment and traffic
into account) and re-solved for the shifted finite time horizon.

The straightforward way of formulating the optimal con-
trol problem is in the time domain using both continuous and
binary variables to model the goals i-iii, i.e., a non-convex
mixed integer program (MIP), [10]. The computation time
of MIPs is highly dependent on choosing a feasible starting
point, which might be difficult to find in complex traffic
situations. A way around this issue is to recast the problem
as a convex program, since convex programs can be solved
efficiently using a variety of solvers, e.g., CPLEX, GUROBI
and MOSEK, to name a few.

However, most attempts of introducing convex formula-
tions of the optimal overtaking problem come with draw-
backs. For example, in [11], two different convex formula-
tions were considered. For both formulations, the drawbacks
stems from the fact that the overtaking needs to be safe, i.e.,



LE

O

Ramp barrier

Longitudinal position

La
te

ra
l p

os
iti

on

Fig. 2. Illustration of an overtaking scenario with an oncoming vehicle
(O). During the overtaking maneuver, the vehicle’s CoG is allowed to reside
between the limits ymin, ymax and the ramp barrier of the oncoming vehicle.

fulfill goal i. In one case, the safety constraints include slack
variables whose weights needs to be chosen carefully in the
objective function for the program to yield good solutions.
To avoid this tuning problem a second approach is tried in
which restrictions are implemented on the slack variables.
However, this leads to the drawback that a full overtaking
trajectory cannot be calculated in one MPC cycle. Since,
both these issues stem from the need for slack variables a
formulation where these are not needed was introduced in
[12], [13] by sampling in the relative longitudinal distance
instead of time.

Sampling in the spatial domain is not a new idea. It
has been used in various applications, such as minimizing
the lap time for a race car, see, e.g., [14] and references
therein. As in [14] sampling is usually done in absolute
space instead of relative space as is suggested in [12],
[13]. In the setting of overtaking the main advantage of the
relative spatial formulation is that it is easy to convexify the
overtaking problem in the presence of a leading vehicle while
still being able to calculate the full trajectory. In this way,
all the requirements and goals stated are achieved. For the
remainder of the paper the relative spatial domain will be
referred to simply as the spatial domain.

The focus of this paper is to compare the optimal solution
and the computational effort of the spatial and the traditional
temporal formulation. The contribution is two-fold. Building
on the work presented in [12], [13] a new version of the
spatial formulation is introduced where kinetic energy is
used instead of speed, which, as we will see, removes
non-convexity when bounding the longitudinal acceleration.
Secondly, this paper provides a comparison of solution times
between the integer formulation and the convex formulation.
This is important since fast solutions are necessary to be able
to respond to sudden changes in the traffic environment.

The paper is organised as follows. In Section II the
standard temporal formulation of the overtaking problem
is formulated as a mixed integer program (MIP), which
in Section III is transformed into a non-linear continuous
program (NLP) by sampling in the relative space domain. In
Section IV the objective functions are introduced. In Section
V the NLP is transformed into a second order cone problem
(SOCP), [15], and an algorithm is presented to solve the
problem sequentially. Finally, Section VI and VII contain
the results and conclusions of the paper.

II. PROBLEM FORMULATION IN THE TEMPORAL DOMAIN

Letting the autonomous vehicle be controlled using MPC,
the focus is to study the optimal control problem solved

during one iteration of the MPC. A scenario is considered
where the ego vehicle (E) is travelling on a two-lane road,
with the goal of controlling speed and steering, to overtake
a leading vehicle (L) travelling with constant speed vL and
constant lateral position yL, in the presence of an oncoming
vehicle (O) with constant longitudinal velocity vO and con-
stant lateral position yO. The assumption of constant velocity
is made here to simplify the math, but it is possible to derive
similar algorithms for the case of non-constant, but known,
longitudinal velocity of the surrounding vehicles. In this
section, an MIP formulation of the optimal control problem
is introduced, which generates smooth and safe trajectories
for the ego vehicle to track when overtaking.

A. Vehicle dynamics

Let

xE(t) = [xE(t), vEx(t), yE(t)]T uE(t) = [aEx(t), vEy(t)]T ,

be the state and control vectors of the ego vehicle, respec-
tively. Here, xE and vEx denote the longitudinal position
and velocity of the ego vehicle, respectively, yE and vEy
the lateral position and velocity, respectively, and aEx the
longitudinal acceleration. By modelling the vehicles as point
mass systems, the ego vehicle can be described by the state
space model

ẋE(t) = AxE(t) +BuE(t)

with

A =

0 1 0
0 0 0
0 0 0

 , B =

0 0
1 0
0 1

 . (1)

B. Safety constraints

To avoid colliding with other vehicles and surrounding
obstacles, safety constraints need to be introduced. The
constraint for not colliding with the leading vehicle takes
the form of a rectangular zone, called the critical zone (CZ),
see Fig. 1. Additionally, constraints are added to prevent
the ego vehicle from overtaking too early (and too late),
i.e., an overtaking window (OW) is formulated, in which
overtaking of the leading vehicle is allowed, see Fig. 1. There
are multiple ways of modeling these zones using a mixed
integer approach (see for instance [10]). Here, the following
binary variables are introduced for modelling the CZ and
OW

Variables: Description:
ccz
1 (t) ∈ {0, 1} 1 if E’s position is farther than xcz

min(t)
ccz
2 (t) ∈ {0, 1} 1 if E’s position is nearer than xcz

max(t)
cow
1 (t) ∈ {0, 1} 1 if E’s position is farther than xow

min(t)
cow
2 (t) ∈ {0, 1} 1 if E’s position is nearer than xow

max(t)

where the constants xcz
min(t) = xL(t)−lLf, xcz

max(t) = xL(t)+
lLr, xow

min(t) = xL(t)− ls and xow
max(t) = xL(t) + le represent

the starting and ending of the CZ and OW. Further, lLf, lLr,
ls and le denote the corresponding lengths to the center of
gravity (CoG) of the leading vehicle, see Fig. 1, and xL is
the longitudinal position of the leading vehicle. This means
that if ccz

1 (t) and ccz
2 (t) are both equal to 1 for a timestep,



the ego vehicle is within the longitudinal safety margin and
if cow

1 (t) and cow
2 (t) are both 1 then the ego vehicle is within

overtaking range. Thus, for a safe overtaking, the CZ and
OW pair of binary variables need to belong to the set

Bit(xE(t)) = {(ci1(t), ci2(t)) ∈ {0, 1} × {0, 1} :

xE(t)− ximin(t) ≤ ci1(t)M,

xE(t)− ximin(t) ≥ (ci1(t)− 1)M

ximax(t)− xE(t) ≤ ci2(t)M

ximax(t)− xE(t) ≥ (ci2(t)− 1)M

ci1(t) + ci2(t) ≥ 1},

where i = {cz, ow} and M is a large positive real number.
The first row in the set ensures the variables are binary, the
second to fourth rows enforces the pair of binary variables
to both be 1 when the ego vehicle is within the CZ or OW
respectively, while the last row forbids the ego vehicle to be
on both sides of a zone at once. The last constraint is included
here to reduce the search space, which often reduces the
computation time of MIPs [16]. Using the binary variables,
the lateral limits are

yE(t) ≥ w + (ccz
1 (t) + ccz

2 (t)− 1)wl,

yE(t) ≤ wl − w + (cow
1 (t) + cow

2 (t)− 1)wl,

where wl is the lane width and w is the lateral safety margin.
Here, the binary variables are used as a means of deciding
when the switch of the lateral limits occur, while the set
Bit(xE(t)) ensures these switches occur at the correct times.
Linearly modelling a sudden change in constraint parameters
this way is common in an MIP framework, [17].

Further, a safety constraint for the oncoming vehicle is
needed. Instead of modelling this as a rectangular zone, the
constraint is modeled as a ramp barrier, see Fig. 2, which is
only active when the ego vehicle is present in the OW. The
reason for choosing the ramp barrier over a rectangular zone
is that it requires less constraints and does not involve any
additional binary variables. The ramp barrier is expressed as

xE(t)− (xO0(t)− vOt)

lOf
+
yE(t)− yO

wl
+

(cow
1 (t) + cow

2 (t)− 2)M ≤ −1

where xO0 is the initial longitudinal position of the oncoming
vehicle and lOf is a longitudinal length computed as a
function of the difference between the mean reference speed
of the ego and the speed of the oncoming , [13].

C. Vehicle limitations

The following constraints describe actuator and state limits

xE(t) ∈ [xmin(·),xmax(·)],
aEx(t) ∈ [axmin(t), axmax(t)],

vEy(t) ∈ [smin, smax]vEx(t),

where the last constraint requires a non-zero longitudinal
motion in order to perform a lateral motion. This constraint

is modeled via the slip angle β, through smin = − arctan(β)
and smax = arctan(β), [11]. The state limits are given by

xmin(·) = [0, vL + ε, free]T ,

xmax(·) = [free, vxmax, free]T ,

where ε is a small real positive number guaranteeing that the
ego vehicle is travelling faster than the leading vehicle, which
is necessary to make the overtaking maneuver possible.

D. Full problem

Thus, if an objective function J(xE(t),uE(t), u̇E(t)), to
be detailed in Section IV, is attached, the complete MIP
problem reads

minimize
uE(t)

J(xE(t),uE(t), u̇E(t)) (2a)

subject to
ẋE(t) = AxE(t) +BuE(t) (2b)
xE(t) ∈ [xmin(·),xmax(·)] (2c)
aEx(t) ∈ [axmin, axmax] (2d)
vEy(t) ∈ [smin, smax]vEx(t) (2e)
yE(t) ≥ w + (ccz

1 (t) + ccz
2 (t)− 1)wl (2f)

yE(t) ≤ wl − w + (cow
1 (t) + cow

2 (t)− 1)wl (2g)
xE(t)− (xO0(t)− vOt)

lOf
+
yE(t)− yO

wl
+

+ (cow
1 (t) + cow

2 (t)− 2)M ≤ −1 (2h)
xE(0) = xE0 (2i)

(ci1(t), ci2(t)) ∈ Bit(xE(t)), i = {cz, ow} (2j)

where xE0 = [xE0, vE0, yE0]T denote the initial state values
and all constraints, except (2i), should hold for all t ∈ [0, tf ].

III. CONTINUOUS MODELLING IN THE SPATIAL DOMAIN

In this section the program (2) is reformulated as a
continuous optimization program. This is done in two steps,
in the same fashion as in [12], [13], i.e., by first changing
the reference frame to relative velocity and then sampling in
the distance instead of absolute time.

A. Change of reference frame

In order to switch the reference frame of the ego vehicle to
velocity relative to the leading vehicle, introduce the vector
pL(t) = [vLt, vL, 0]T . Thus, the relative control and state
vectors read

x̃E(t) = xE(t)− pL(t) = [x̃E(t), ṽEx(t), yE(t)]T ,

uE(t) = [aEx(t), vEy(t)]T .

The new state space model reads

˙̃xE(t) = Ax̃E(t) +BuE(t),

with A and B defined as in (1).



B. Change of independent variable

Now, the sampling variable is changed from time t to
relative longitudinal distance, x̃. A consequence of sampling
in the spatial domain is that the position of the ego vehicle
can be removed from the state vector. However, travel time,
t̃E, is introduced as an additional state in the problem, for
which it holds that t̃′E(x̃) = 1/ ˙̃xE(x̃). Here, (·)′ denotes the
derivative with respect to relative distance, i.e., y′ = dy/dx̃.
The new state and control vectors are

x̃E(x̃) = [ṽEx(x̃), yE(x̃), t̃E(x̃)]T ,

ũE(x̃) = [ãEx(x̃), vEy(x̃)]T .

Further, since the positions of all the vehicles are now
known at all samples, the binary variables are no longer
needed. Hence, the constraint (2j) is removed, while the
lateral limits and ramp barrier can be expressed as

y(x̃) ≥ ymin(x̃) =

{
wl + w, x̃ ∈ xL0 + [−lLf , lLr]

w, otherwise

y(x̃) ≤ ymax(x̃) =

{
2wl − w, x̃ ∈ xL0 + [−ls, le]
wl − w, otherwise

x̃− xO0 − (vO − vL)t̃E(x̃)

lOf
+
yE(x̃)− yO

wl
≤ −1.

However, notice that the first control input has been
changed (in order to preserve linear dynamics) to ãEx(x̃) =
vEx(x̃)v′Ex(x̃), which leads to the non-convex acceleration
limits ãEx(x̃) ∈ [axmin, axmax]/ṽEx(x̃). This non-convexity is
addressed in the next section.

C. Change of optimization variables

Replace the longitudinal velocity, ṽEx(x̃), with the kinetic
energy, ẼEx(x̃) = mṽEx(x̃)2/2. The state and control vectors
are then expressed as

x̂E(·) = [ẼEx(x̃), yE(x̃), t̃E(t)]T , ûE(·) = [aEx(x̃), vEy(x̃)]T .

and the state space model becomes

x̂′
E(x̃) =

[
maEx(x̃) vEy(x̃)

√
m

2ẼEx(x̃)

]T
, (3)

where we have used that Ẽ′
Ex(x̃) = mṽ′Ex(x̃)ṽEx(x̃)

and aEx(x̃) = ṽEx(x̃)ṽ′Ex(x̃). The state constraint
x̂E(x̃) ∈ [x̂min(x̃), x̂max(x̃)] has the limits

x̂min(x̃) = [mε2/2, ymin(x̃), free]T ,

x̂max(x̃) = [m(vxmax − vL)2/2, ymax(x̃), free]T .

Further, the acceleration bounds and lateral slip constraints
translate to

aEx(x̃) ∈ [amin, amax],

vEy(x̃) ∈ [smin, smax]

(
1 +

√
mv2L

2ẼEx(x̃)

)
.

Still the problem is non-convex due to the travel time
dynamics and the slip constraints. In the next section, these
will be convexified.

D. Convex relaxation

The time dynamics constraint in (3) could be convexified
in several ways. Instead of standard linearization techniques,
the following relaxation is proposed

t̃′E(x̃) ≥
√
m/(2ẼEx(x̃)),

the validity of which is discussed in Section III-E, after the
full convexified problem has been formulated.
On the other hand, a standard linearization technique is
applied for the slip constraints. Linearizing 1/ẼEx(x̃)(1/2)

around the reference energy Ẽlin(x̃) yields

1/

√
ẼEx(x̃) ≈ flin(Ẽlin(x̃), ẼEx(x̃)).

E. Convex formulation

If the cost function Ĵ is assumed convex, the convex
version of problem (2) reads

minimize
ûE(x̃)

Ĵ(x̂E(x̃), ûE(x̃), û′
E(x̃)) + εt̃E(x̃f ) +Q(·) (4a)

subject to[
Ẽ′

Ex(x̃) y′E(x̃)
]T

=
[
maEx(x̃) vEy(x̃)

]T
(4b)

t̃′E(x̃) ≥
√

m

2ẼEx(x̃)
(4c)

x̂E(x̃) ∈ [x̂min(x̃), x̂max(x̃)] (4d)
aEx(x̃) ∈ [axmin(x̃), axmax(x̃)] (4e)

vEy(x̃) ∈ [smin, smax]

(
1 +

√
mv2L

2
flin(Ẽlin, ẼEx)

)
(4f)

x̂E(0) = x̂E0 (4g)

x̃− xO0 − (vO − vL)t̃E(x̃)

lOf
+
yE(x̃)− yO

wl
≤ −1 (4h)

where the constraints (4b)-(4f) are imposed for all x̃ ∈ [0, x̃f ]
while (4h) holds for all x̃ ∈ xL0 + [−ls, le]. The extra
term in the objective, εt̃E(x̃f ), is added to ensure that the
inequality (4c) is tight at the optimum, see [13] for a proof.
The additional term Q will be introduced in Section V.

IV. OBJECTIVE FUNCTIONS

A quadratic cost function is used to punish
states from deviating from the reference trajectory
xr(t) = [0, vr(t), yr(t)]T , changes in control actions and
changes in the derivative of the control actions,

J =

∫ tf

0

‖xE(t)− xr‖2Q + ‖uE(t)‖2R + ‖u̇E(t)‖2Sdt, (5)

where Q, R and S are positive semidefinite weighting
matrices, and the norm is defined as ‖a‖2A := aTAa.
The corresponding objective function in the spatial domain
punishes deviation from x̂r(x̃) = [Ẽr(x̃), yr(x̃), 0]T :

Ĵ(·) =

∫ x̃f

0

V (x̂E, ûE, û
′
E)dx̃ (6)

where V = ‖x̂E(x̃)− x̂r‖2Q̃ + ‖ûE(x̃)‖2
R̃

+ ‖û′
E(x̃)‖2

S̃
and

Q̃, R̃ and S̃ are positive semidefinite weighting matrices.



The cost functions chosen for the temporal and spatial
formulations are not equal, since the spatial and temporal
derivatives are different. However, it is possible to make
a direct translation of the temporal cost function (5) into
the spatial domain, see [12]. This direct translation makes
it possible to, approximately, translate the weights used in
the temporal formulation (5) to the spatial formulation (6),
i.e., one can choose which of the formulations one prefers
to tune and then directly translate the weights into the other
formulation. This is important, since the tuning of the more
unusual objective function (6) may be seen as a liability.

V. SEQUENTIAL SOCP

While the temporal program (2) will be solved using a
standard mixed integer quadratic program (MIQP) solver,
the spatial program, (4), will be solved using the sequential
SOCP method, which is related to the sequential QP method
[18]. The term Q is chosen as

Q =
1

2
∇2

ẼEx
L(Elin,λ)∆Ẽ(x̃)2 +∇V T ∆x̂ (7)

where ∇ is the gradient, ∇2
x is the Hessian with respect to

x, L is the lagrangian when relaxing the slip constraints,
and λ = [λ1, λ2]T are the dual variables of the slip
constraints, respectively, and ∆x̂T = [∆x̂T

E ,∆ûT
E ,∆û′T

E ]T .
With the objective function (4a), where Ĵ and Q are chosen
as in (6) and (7), the problem (4) is an SOCP. This program
is solved sequentially and updating is done by moving in the
direction of the current optimal solution

x̂k+1 = x̂k + α∆x̂k

where α ∈ (0, 1] is the step length and k is the current itera-
tion. This procedure continues until the change in lineariza-
tion between iterations fulfill a stopping criteria, provided by
the user. The algorithm is outlined in Algorithm V.1. Since,
the linearizations and relaxation are inner approximations,
each iteration in Algorithm V.1 yields a feasible solution to
the non-relaxed spatial program. The advantage of this is
that, when seen as the optimal control problem in MPC, the
sequential SOCP need not converge to optimality in each
MPC cycle. Instead, it is enough to solve one SOCP in each
iteration of the MPC cycle. Thus, the solution in the initial
iterations will be feasible, but might be suboptimal. This
procedure is called real time iterations (RTI) [19].

Algorithm V.1.

Step 1: Choose a linearization x̂1
lin and initialize λ11, λ

1
2.

Step 2: Solve (4) for ∆x̂k around x̂k
lin, λk1 , λk2 .

Step 3: Check if ‖∆x̂k‖2 < δ. If yes, stop. Otherwise,
update x̂k+1

lin = x̂k
lin + ∆x̂k.

Step 4: Set λk+1
1 , λk+1

2 to the dual variables of their
respective constraint and go to step 2.

VI. CASE STUDY

The case study compares the solutions and computational
efforts of the two programs. To compare computational
efforts, the overtaking scenario is solved for several different

partitions of the temporal and spatial horizons, and in the
presence or absence of an oncoming vehicle.

The problems are discretized and then implemented in
MATLAB using the software YALMIP [20]. The commercial
solver GUROBI is used to solve the MIQP, while the SOCP
formulation is solved using ECOS [21].

TABLE I
PROBLEM PARAMETERS.

Ego vehicle Other vehicles Problem specific parameters
xE0 =0m xL0=75m x̃f=150m
yE0 =2.5m yL0 =2.5m tf =27 s
vr =70 km/h vLx =50 km/h Q =diag(0, 0.06, 0.6)
vx0 =70 km/h lLr =12.3m R =diag(0.4, 3.6)
vy0 =0 km/h lLf =15m S =diag(0.6, 2)
vxmin =0 km/h ls =40m Q̃ =diag(37 psm−1J−2, 0.1)

vxmax =80 km/h le =37.3m R̃ =diag(0.065, 50)
axmin =−4m/s2 xO0=650m S̃ =diag(3.24, 800)
axmax=1m/s2 yO0=7.5m M =1000
β =10◦ vOx=−70 km/h w =1.5m
ε =0.01 lOf =48.4m wl=5m

A. Quality of solutions

The parameters used in the case study are listed in Table I.
All the parameters are used in both formulations except for
tf , Q,R, S, which are needed in the temporal formulation,
and x̃f , Q̃, R̃, S̃ which are needed in the spatial formulation.
Note that, to be able to make a fair comparison, the length
x̃f of the prediction horizon in the spatial formulation was
chosen as the distance travelled by the ego vehicle in the
temporal formulation. Fig. 3 illustrates the optimal lateral
trajectory generated with the temporal formulation and it also
depicts vehicles’ locations at chosen time instances. Further,
from Fig. 4, which depicts the optimal state and control
trajectories for both the temporal and spatial formulation,
it can be seen that the formulations both offers smooth
solutions. The differences in the solutions is caused by the
fact that the cost functions in the programs are not identical.

B. Computational effort

TABLE II
TIME SPENT SOLVING THE TEMPORAL AND SPATIAL PROGRAMS FOR

THE SCENARIO IN TABLE 1, WITH OR WITHOUT (W-O) ONCOMING

VEHICLE. H-S STANDS FOR HORIZON SAMPLES.
H-S time w-o O space w-o O time w O space w O
41 1.20 s 0.015 s 3 s 0.16 s
51 1.92 s 0.015 s 1.4 s 0.19 s
61 5.93 s 0.024 s 1.28 s 0.16 s
71 4.69 s 0.055 s 8.52 s 0.19 s

As one would expect with the MIQP, the temporal program
(2), is less computationally efficient than the SOCP, the
spatial program (4) , see Table II. In an attempt to speed
up the temporal formulation, we have provided it with the
reference trajectories as initial guesses. As can be seen the
spatial formulation solves the problem, when no oncoming
vehicle is present, in milliseconds while it takes seconds
for the temporal formulation. In the case of an oncoming
vehicle present, it takes a bit longer for both algorithms, but
the spatial formulation is still significantly faster. Further,



0 100 200 300 400 500 600 700

Absolute longitudinal position

0

5

10
La

te
ra

l p
os

iti
on

0 s 0 s 

0 s 

17.28 s 17.28 s 

17.28 s 

10.68 s 

10.68 s 10.68 s 

7.56 s 

7.56 s 

7.56 s 

13.8 s 

13.8 s 

13.8 s 

4.92 s 
4.92 s 

4.92 s 

Fig. 3. Illustration of time formulation solution of the ego vehicle (blue) overtaking a leading vehicle (red) in the presence of an oncoming vehicle
(green). The black line is the travelling trajectory of the CoG of the ego vehicle and the black numbers indicate time instances.

0 50 100 150

Relative longitudinal position (m)

0

2

4

6

8

10

La
te

ra
l p

os
iti

on
 (

m
)

Optimal path from time algorithm
Optimal path from space algorithm

0 50 100 150

Relative position of the ego vehicle (m)

70

72

74

76

78

Lo
ng

itu
di

na
l s

pe
ed

 (
km

/h
)

-2

-1

0

1

2

La
te

ra
l s

pe
ed

 (
m

/s
)

long. Speed, time
lat. speed, time
long. Speed, space
lat. speed, space

Fig. 4. Scenario where the ego vehicle is overtaking a leading vehicle
on a road with two lanes while increasing its velocity to avoid colliding
with an oncoming vehicle. The CoG of the ego vehicle is allowed to reside
between the limits ymin and ymax, depicted with solid lines. In the top plot
the dashed-dotted line is the reference position of the ego vehicle.

remember that the algorithm used to solve the spatial formu-
lation is iterative, and that in Table II the full solving time
is presented. However, in practice, on might solve only the
first iteration in the spatial formulation and then carry that
solution over to the next cycle in the MPC, which would
decrease the computational effort even further. For all the
scenarios listed in Table II the sequential SOCP required
two to five iterations to converge. However, already after the
second iteration the cost is equal to the optimal cost with a
precision of four decimals.

VII. CONCLUSION

A new spatial formulation of the overtaking problem was
introduced, involving a variable change from velocity to
kinetic energy. The reason for this variable change was
to convexify constraints on the acceleration without using
linearization. The case study revealed that the spatial for-
mulation is more computationally efficient than the time
formulation. This was expected, since SOCPs are generally
more computationally efficient than MIQPs. The resulting
longitudinal velocity for the spatial domain has a smoother
appearance than that of the time domain. However, this dif-
ference could be decreased by tuning the weighting matrices
in the objective function of the temporal formulation.

REFERENCES

[1] M. van Schijndel-de Nooij, B. Krosse, T. van den Broek, S. Maas,
E. van Nunen, H. Zwijnenberg, A. Schieben, H. Mosebach, N. Ford,
M. McDonald, D. Jeffery, J. Piao, and J. Sanchez, “Definition of
necessary vehicle and infrastructure systems for automated driving,”
European Commission, Tech. Rep. 2010/0064, 2011.

[2] D. J. Fagnant and K. Kockelman, “Preparing a nation for autonomous
vehicles: opportunities, barriers and policy recommendations,” Trans-
portation Research Part A: Policy and Practice, vol. 77, pp. 167 –
181, 2015.

[3] T. Victor, M. Rothoff, E. Coelingh, A. Ödblom, and K. Burgdorf,
When Autonomous Vehicles Are Introduced on a Larger Scale in the
Road Transport System: The Drive Me Project. Cham: Springer
International Publishing, 2017, pp. 541–546.

[4] T. Litman, “Autonomous vehicle implementation predictions,” Victoria
Transport Policy Institute, vol. 28, 2014.

[5] J. Nilsson, J. Silvin, M. Brännström, E. Coelingh, and J. Fredriksson,
“If, when, and how to perform lane change maneuvers on highways,”
Intelligent transportation systems magazine, vol. 8, 2016.

[6] G. Usman and F. Kunwar, “Autonomous vehicle overtaking- an online
solution,” in International conference on Automation and Logistics,
Shenyang, China, 2009.

[7] T. Shamir, “How should an autonomous vehicle overtake a slower
moving vehicle: Design and analysis of an optimal trajectory,” IEEE
Transactions on optimal control, vol. 49, pp. 607–610, 2004.

[8] Y. Kuwata, G. Fiore, J. Teo, E. Frazzoli, and J. How, “Motion planning
for urban driving using RRT,” in IEEE/RSJ International Conference
on Intelligent Robots and Systems, 2008, pp. 1681–1686.

[9] J. Ziegler, M. Werling, and J. Schröder, “Navigating car-like robots in
unstructured environments using an obstacle sensitive cost function,”
in IEEE Intelligent Vehicles Symposium, 2008, pp. 787–791.

[10] F. Molinari, N. N. Anh, and L. D. Re, “Efficient mixed integer
programming for autonomous overtaking,” in American control con-
ference (ACC), Seattle, USA, 2017, pp. 2303–2308.

[11] J. Nilsson, M. Ali, P. Falcone, and J. Sjöberg, “Predictive cruise control
with autonomous overtaking,” in Intelligent Transportation Systems
(ITSC), The Hague, Netherlands, 2013.

[12] J. Karlsson, N. Murgovski, and J. Sjöberg, “Temporal vs. spatial
formulation of autonomous overtaking algorithms,” in ITSC, Rio,
Brazil, 2016.

[13] N. Murgovski and J. Sjöberg, “Predictive cruise control with au-
tonomous overtaking,” in Decision and Control (CDC), Osaka, Japan,
2015.

[14] D. Casanova, “On minimum time vehicle manoeuvring: The theoreti-
cal optimal lap,” 2000.

[15] S. Boyd and L. Vanderberghe, Convex optimization, 1st ed. Cam-
bridge University Press, 2004.

[16] Y. Puranik and N. V. Sahinidis, “Domain reduction techniques for
global NLP and MINLP optimization,” Constraints, vol. 22, 2017.

[17] S. Gerard, “Linear and integer programming: theory and practice,”
2002.

[18] J. Nocedal and S. J. Wright, Numerical optimization, 2nd ed.
Springer, 2000.

[19] M. Diehl, “Real-time optimization for large scale nonlinear processes,”
Ph.D. dissertation, 2001.

[20] J. Löfberg, “YALMIP: A toolbox for modeling and optimization in
matlab,” in International Symposium on Computer Aided Control
Systems Design, Zürich, Switzerland, 2004.

[21] A. Domahidi, E. Chu, and S. Boyd, “ECOS: An SOCP solver for
embedded systems,” in European Control Conference (ECC), Zürich,
Switzerland, 2013.


