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Abstract—While designing a positioning network, the local-
ization performance is traditionally the main concern. However,
collection of measurements together with channel access methods
require a nonzero time, causing a delay experienced by network
nodes. This fact is usually neglected in positioning-related litera-
ture. In terms of the delay-accuracy trade-off, broadcast schemes
have an advantage over unicast, provided nodes can be properly
synchronized. In this letter, we analyze the delay-accuracy trade-
off, for localization schemes in which the position estimates are
obtained based on broadcasted ranging signals. We find that for
dense networks, the trade-off is the same for cooperative and
noncooperative networks, and cannot exceed a certain threshold
value.

Index Terms—Localization, delays, accuracy, time division
multiple access, broadcast.

I. INTRODUCTION

N network localization, where nodes are divided into

anchors (position references) and agents, performance is
generally assessed in terms of the Fisher information, with
networks that collect more measurements outperforming mea-
surements with fewer measurements. In particular in coopera-
tive localization, inter-agent measurements have been shown to
be beneficial in terms of accuracy [1]-[3]. However, collecting
more measurements comes at a cost in terms of delay [4],
[5], requiring dedicated resource allocation strategies [6]—
[8]. Under time-division multiple access (TDMA) and ultra
wideband (UWB) ranging, [9] has characterized the trade-off
between positioning accuracy and measurement delay, under
various cooperative and noncooperative operating conditions,
including unicast (relying on two-way time-of-arrival (TW-
TOA) distance measurements), unicast with eavesdroppers,
and time-difference of arrival (TDOA with synchronized an-
chors). The main outcome was that for sparse agent networks
(characterized by more anchors than agents), TDOA offered
the best trade-off, while for dense agent networks, cooperative
and noncooperative modes offered the same trade-off, with the
best strategy being TW-TOA with eavesdropping. However,
broadcast schemes other than TDOA were not studied, thus
leaving open the question of how to achieve the best possible
trade-off in the dense agent regime.
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In this letter, motivated by the favorable trade-off values
achieved by TDOA in the sparse agent regime, we focus on
broadcast schemes for the dense agent regime. We consider
schemes in which all the nodes (agents as well as anchors)
may receive broadcasted ranging signals. Such signals may
be sent by both agents and anchors (cooperative mode) and
by anchors only (noncooperative mode). Since positioning
is based on broadcast ranging signals (as opposed to the
TW-TOA unicast approach), clock biases and transmission
times must be incorporated into the measurement model
and considered for estimation. As more parameters must be
estimated, the trade-off may be affected. We establish the
trade-off parameter for both cooperative and noncooperative
networks. Our contributions are as follows: (i) we derive the
Fisher information matrix for cooperative and noncooperative
broadcast ranging; (ii) we demonstrate that, asymptotically,
the equivalent Fisher information on the locations does not
change under ideal synchronization; (iii) we establish that the
optimal trade-off is bounded and the same for cooperative and
noncooperative networks.

II. SYSTEM MODEL

We consider a complete network with N agents and M
anchors located at positions x;, ¢ € {1,..., M + N}. Nodes
experience clock biases o; (assumed converted to meters) with
the bias of the last node (arbitrarily) set to zero. Anchors have
known locations, while agents do not. The main goal of the
network is to determine the localization of the agents. We dis-
tinguish between cooperative (CO) and noncooperative (NC)
network operating modes. In the former, all nodes broadcast
and receive ranging signals, while in the latter, agents receive,
but do not broadcast. In either case, a transmitting node @
broadcasts a ranging signal at time ¢,. The signal is received
by all other nodes. It leads to a measurement at a receiving
node 5 in the form of

Zij = 51 + dij + 0j + Wiy, for ¢ ;é_] (1)

where d;; = ||x; — x;]|, wij ~N(0,0?%), and §; = ¢ X t; with
c being the signal propagation speed. The transmission times
are unknown and determined through a rough packet-level
synchronization. Only a single node is allowed to transmit at
any given time (under TDMA). The aggregated measurement
associated with the ranging transmissions from the node ¢ is
denoted by z;, and we introduce z = [z] ,...,z},, v|*, where
L allows to distinguish between the operating modes (i.e.,
L =1 for CO and L = N + 1 for NC mode). The unknowns
are aggregated in @ = [xT8"0"]T, where x = [x], ..., x]T

Xy
o = lo1,...,0x]T, and 6 = [01,...,0n4n]T, in which

i
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K = M + N — 1. The communication overhead associated
with a localization algorithm (centralized or distributed) is not
considered in our analysis. We introduce ¢,,, as the angle
between nodes n and m. To facilitate the scaling analysis,
we will assume that, asymptotically in the number of nodes,
Gnm ~ U(0,27), ¥Vn, m. This assumption ignores boundary
effects of the deployment region, and is thus only valid for
agents in the center of the deployment region with favorable
geometric conditions.

ITI. DELAY-ACCURACY TRADE-OFF DEFINITION
In this section, we introduce the definition of the delay-

accuracy trade-off, denoted by (p), defined below, based on
the delay and accuracy metrics.

A. Delay Metric: Medium Access Control Delay

It is supposed that each ranging transmission requires a
delay T' = 1 and that transmissions do not overlap in time. If
the network operates in CO and NC modes there are (M + N)
and M transmissions, respectively. Thus, the total delays are
D = (M+ N)T for CO and D = MT for NC mode.

B. Accuracy Metric: Fisher Information
The Fisher information matrix (FIM) [10] of 8 has form

®(x,x) P(x,0) P(x,0)
J(O) = |®(d,x) ®(6,6) ®(d,0)|, 2
P(0,x) P(0,6) P(0,0)

in which ®(a,b) = E,{—VaV} logp(z]0)}. The log-
likelihood of @ is equal to
N+M
—g 3 X (e -
i=L j#i

The equivalent FIM (EFIM) of x describes the Fisher in-
formation regarding the agents’ positions in the absence of
knowledge on o and 4, and is given by

log p(z|0 0)%. (3

JE(x) = ®(x,x) - BC™'B”, (4)
in which B = [®(x,d), ®(x,0)] and
_ [®(6,6) ®(8,0)
C= {@(0,5) @(o,o)] : ©)

We note that BC™!BT > 0, thus reducing the information
about the agents’ positions, with respect to ®(x, x). The EFIM
of a specific agent (say agent 1, J¥(x1)) can similarly be
determined [3]. Let the structure of J E(x) be in the form of

Jiuu Juw
JE(x) = , 6
(X) I:ng .]22:| ( )

wherein Jq; is 2 X 2 matrix corresponding to the information
of the position of agent 1. Then, J*(x;) = J1; — J12J55J5,.

Finally, the positioning accuracy for the network is
evaluated using the position error bound (PEB), P =
(tr{[T"(x)]~1'}/N)'/? [3]. The PEB for agent i is equal
to P; = (tr{[J(x;)]~'})"/2. Assuming that each agent is
asymptotically (for large number of nodes) evenly surrounded
by the remaining nodes, then P = P;.

C. Trade-Off

Our aim is to evaluate the network performance in terms of
positioning accuracy with respect to the total delay required
to perform the measurements defined by (1). We focus on the
asymptotic behavior of the network, when numbers of agents
N and anchors M both increase, with N = M?”, p > 0. If
we express the delay scaling as D € O(fp(M,p)) and the
PEB scaling as P € O(fp(M,p)), then the delay-accuracy
trade-off parameter J(p) is defined as [9]

. log fp(M, p)
0p)=—1 — . 7
() ==\ Tog fo (O, ) @
The larger the value of &(p), the more favorable trade-off is
achieved.
IV. DELAY-ACCURACY TRADE-OFF EVALUATION

We now determine the value of §(p) for both coopera-
tive and noncooperative operating modes. Letting q,,, =
(Xm — Xn)/||Xm — Xn|| be a unit-length vector pointing from
X, to X,,, we will make use of the following result.

U U
Lemma 1. anl qn7n,—>(% Zn:1 qnmqgm—> %12 and
U U
(Zn:l qnm) (Zn:l qnm) —

Proof. This follows immediately from ¢y, ~U(0,27). O

%IQ as U — oo.

A. Cooperative Operating Mode

1) Delay scaling: Considering the total delay D, the delay
for CO network scales according to

MP, if p>1,

8
M, ifp<l. ©

fD(Mﬂ P) = {

2) PEB scaling: Individual elements of J(0) are summa-

rized in Table I. To evaluate J¥(x) from (4), we first determine

C~!. Using the block matrix inversion formula, it can be

shown that C™' is given by (9), in which a = &2 /K and

B=0?/(K - K~'). Using (9), D = BC'B" is expressed
as

D = a®(x,6)®(x,0)"

+ a?B®(x,0)®(5,0)®(5,0) T ®(x,6)"

+ a?B®(x,8)®(5,0)1x®(5,0)T®(x,6)T

— af®(x,0)®(5,0)®(x,6)" (10)
— af®(x,0)1xP(5,0)P(x,0)T

— aB®(x,5)®(5,0)®(x,0)

— af®(x,6)®(5,0)1xkP(x,0)T

+4®(x,0)®(x,0)" + f®(x,0)1xP(x,0)",

in which 1k denotes the K x K unity matrix. Thanks to
Lemma 1, for large K, the most dominant components of
1nd1v1dual terms 1n (10) are —IQN, 0sn, = “Ion, Oon, — 2 TIon,
0on, — 21y, -z LT, IQN, respectively, in Wthh 0on
denotes the 2N x 2N zero matrix. All the other terms are not
significant since they are at maximum proportional to 1/K?2.
Thus, D — 20215y as K — 0.

We now show that J¥(x) — ®(x,x) when K — oc. This
follows from the scaling of ®(x,x): its diagonal submatrices
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TABLE I
FIM ELEMENTS OF (2) FOR THE CO CASE

®(a,b) Dimension Diagonal entry [®(a, b)]mm  Off-diagonal entry [®(a, b)]mn
@(X, X) 2N x 2N 0_2 21\14:1\7’(73771 qmzq"” 7(,%qmnqmn
q>(x7 6) 2N X (M + N) 0.2 ENI+, z;ﬁm qmz ;Tqmn
@(X, 0) 2N X K % Zivi_‘—yl\;#m qmz 0172q7nn
®(6,8) (M+N)x(M+N) %K 0
®(0,0) KxK %K 0
#(5,0) (M+N)xK 0 L
-l = alyin + a25<1>(6, o)(Ix + 1K)‘I>(5,O)T —af®(d,0)(Ix + 1k) )

—af(Ix + 1k)®

(0,0)"

BIk + 1k)

(see Table 1) are 202 waf\i#m Anidrn; — 0 2KIy as

K — oo. A comparison of this scaling of ®(x,x) with
respect to the scaling of D leads to the conclusion that D
is asymptotically negligible. Hence, for networks with many
nodes, the uncertainty of the transmission times and offsets
does not affect the positioning uncertainty.

Now that we have established the scaling of J®(x), we
focus on the EFIM of the first agent J¥(x;) and determine its
scaling. Due to non-zero off-diagonal elements of J E(x), it
is difficult to determine the scaling directly. To get a tractable
solution, we follow the approach from [3] and determine lower
and upper bounds J"(x;) and JY(x;) for which J%(x;) <
JE(xl) =< JU(xl), and then show that these bounds have
the same scaling. For J L(xl), we first reduce the information
available in J E(x) In particular, we remove the cooperative
links between the agents that do not include the first agent.
This leads to

JE(x) = I8 (x) = (11)
rM+N 7
Xj(hﬁhz —d12415 —an9ly
2751
M+N
9 —d2 qgl Z Q2ZQQ1 02 02
ﬁ z¢[2 N]
M+N .
—dn19h, 0, 0, Z Ay AN
I i¢2N] J

Then, using the Schur complement, the lower bound on EFIM
for the first agent reads as

M+N

Z qlquz

z;él

—imxm 0]

1=2

(12)
T

o)

For sufficiently large NV and M, the first and second terms tend
to 07 2K15 and 20 72(N —1)(M +1) "I, respectively. Thus,
the lower bound scales as J"(x;) — o 2KT,. For JV(x;),
we first add additional information to J®(x). Particularly,

1z

we consider all agents except the first agent to have known
positions, thus forcing them to behave exactly as anchors. We
obtain JY (x) = JU(xl) =202 ZM+N q:,91; — 0 2KIs.
Since EFIM lower J"(x;) and upper JV(x;) bounds exhibit
the same scaling, we can conclude that the EFIM for the first
agent scales as J¥(x;) — 0 2KT,.

Finally, we determine the PEB scaling, which is P —

o0+/2/K. Therefore

fp(M, p) = {1;%

3) Trade-Off: Substitution of (8) and (13) into (7), leads to
d(p) = %, Vp > 0. In other words, in both dense and sparse
agent networks, the considered cooperative broadcast ranging
strategy offers a fixed trade-off. This trade-off is superior to
unicast strategies from [9].

if p>1,

13
if p<1. (13)

B. Noncooperative Operating Mode

1) Delay scaling: Considering the total delay D, the delay
for NC networks scales according to

fp(M,p) =M, ¥p > 0.

2) PEB scaling: Individual elements of J(6) are summa-
rized in Table II. The inverse of C from (5) in the NC mode
is lengthier due to a loss of symmetry compared with the CO
mode. This is because not all nodes broadcast in the NC mode.
Thus, we evaluate C~' only asymptotically and we consider
N = M? in order to address possible different growing rates
for the number of agents and anchors. An application of the
block matrix inversion formula on (5) filled by sub-matrices
from Table II reveals that

(14)

1
-7 1Mk

1 1
M+Mr {M;r v .
M(IK + 1K)

c!-o? , Yp >0,
15)
in which 131k is the M x K unity matrix. Using this partial
result and subsequently analyzing D = BC™'BT, shows
that D — o 23 AT, Wp > 0. Since ®(x,x) —
072(M/2)Isxn, we conclude that, in NC mode, D is asymp-
totically negligible ¥p > 0 with respect to ®(x,x) in (4). We
can thus consider J¥(x) — ®(x, x), which is block-diagonal.
Hence, the scaling of EFIM for the first agent J¥(x1) can

by YR
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TABLE 11
FIM ELEMENTS OF (2) FOR THE NC CASE

otherwise

®$(a,b) Dimension Diagonal entry [®(a,b)]mm  Off-diagonal entry [®(a, b)]mn
®(x,x) 2Nx2N LMY g, q, 01
@(X, 5) 2N x M Ufzqm](\?hLNN) 52 9Am(n+N)
®(x,0) 2NxK LY MIN g 0
®(5,0) MxM LK 0
T
=M f <N
®(0,0) KxK of o =
—5(M —1), otherwise
o
0 for (m,n)€
(}(5’0) Mx K % { i {(#,N+4)|i=1,..,M—1}
o2

be determined easily as J*(x;) — o~ 2(M/2)I,. Finally, the
PEB scaling is P — 20+/1/M, so that

fp(M,p) =1/vV'M, ¥p > 0.

3) Trade-Off: Substituting (14) and (16) into (7), the trade-
off parameter for NC network operating mode is equal to
§(p) = %, ¥p > 0. Thus, in both dense and sparse agent
networks, the considered noncooperative broadcast ranging
strategy offers a fixed trade-off. This trade-off is superior to
unicast strategies from [9] and is the same as the cooperative
broadcast ranging strategy (from Section IV-A)

(16)

C. Simulation and Discussion

To understand the behavior of the trade-off parameter as
M — 400, we simulated M € [10,90] anchors and N = M?
agents, uniformly distributed in a unit-area square environ-
ment. We visualize the trade-off for an agent in the center
of the environment as well as for all agents. Note that due
to boundary effects, the conditions for Lemma 1 will not be
valid for agents at the boundary of the environment. Fig. 1
shows the average § as a function of M for both operating
modes and p € {0.5,1.5}. For any agent in the center of the
environment, the limiting value of J is achieved for moderate
values of M. When also agents in boundary of the environment
are considered, the trade-off is 20% — 30% below the limiting
value, in particular for the NC mode.

Hence, for sufficiently large dense networks and geometri-
cally favorable conditions, D = BC™'B” is negligible with
respect to ®(x, x). This statement holds for both cooperative
and noncooperative network operating modes. Therefore, it
can be concluded that for a large number of anchors, the
lack of synchronization in the network utilizing a broadcast
scheme does not compromise the positioning accuracy. It
was shown in [9] that for p < 1 the best achievable trade-
off is achieved for TDOA (for which only agents broadcast)
with fp(M,p) = 1/v/M and fp(M,p) = MP? and thus
d(p) = 1/(2p). For p > 1, TDOA and unicast strategies leads
to a lim, 1 d(p) — 0. To determine the best trade-off for
p > 1, we must focus on strategies where agents listen. Since
synchronized and non-synchronized networks offer the same
PEB scaling, we can limit our search to synchronized networks
(i.e., both 6 and o are known). For such networks, both
cooperative and noncooperative modes have fundamentally the

0.5 }/”@[,;«.:; 5 —0—O_O_—C—C OGSO OO
\7 “\J<«—— Only central agent

9 ”__x_.x_x.—x—-x—)t—”—-“—“
v = K=HT

0.4 — »

- -5 =2
e @)= O D $

© o% - —

g ! P

5 2-

g

<

g

8

&

¢ —#—CO, p=15

2 —#—CO, p=10.5

2 | NC,p=15
0.1 NC, p =05
0 - T T T

10 20 30 40 50 60 70 80 90

Number of anchors M

Fig. 1. Simulation of the trade-off parameter as a function of the number of
anchors M for a square environment. The solid lines represent the parameter
obtained for an agent in the center of the environment, whereas the dashed
lines show the parameter evaluated for the overall network.

same behavior: from the point of view of a single agent,
they consider all transmitting nodes to be references, each
transmission reducing the PEB (proportional to the inverse
of the square root of the number of transmissions) and each
transmission taking one time resource. Hence, for p > 1, the
best possible trade-off is §(p) = 1/2. Incidentally, this trade-
off was also achieved by unicast strategies from [9] that also
allowed for eavesdropping (listening to unicast transmissions)
by agents.

V. CONCLUSION

We have considered the delay-accuracy trade-off in co-
operative and noncooperative networks, performing distance
measurements based on broadcasted ranging signals. Due to
the nature of these measurements, clock biases and transmis-
sion times have been included as unknown parameters. We
showed that, even though the presence of these parameters
effectively decreases EFIM containing information related to
the positioning accuracy, in the asymptotic regime for large
number of anchors, this EFIM degradation can be neglected.
Hence, the achievable positioning accuracy is the same as in
an ideally synchronized network. The trade-off parameter is
the same for both cooperative and noncooperative networks,
and is equal to one-half. We have also established that for
dense agents networks, no better trade-off is achievable.



IEEE SIGNAL PROCESSING LETTERS, VOL. 11, NO. 22, AUGUST 2017

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[9]

[10]

REFERENCES

M. Z. Win, A. Conti, S. Mazuelas, Y. Shen, W. M. Gifford, D. Dardari,
and M. Chiani, “Network localization and navigation via cooperation,”
IEEE Communications Magazine, vol. 49, no. 5, pp. 56-62, may 2011.
N. Patwari, J. N. Ash, S. Kyperountas, A. O. Hero, R. L. Moses, and
N. S. Correal, “Locating the nodes: cooperative localization in wireless
sensor networks,” IEEE Signal Processing Magazine, vol. 22, no. 4, pp.
54-69, 2005.

Y. Shen, H. Wymeersch, and M. Z. Win, “Fundamental Limits of Wide-
band Localization; Part II: Cooperative Networks,” IEEE Transactions
on Information Theory, vol. 56, no. 10, pp. 4981-5000, 2010.

F. Sottile, A. Vesco, R. Scopigno, and M. A. Spirito, “MAC layer
impact on the performance of real-time cooperative positioning,” in 2012
IEEE Wireless Communications and Networking Conference (WCNC),
apr 2012, pp. 1858-1863.

C. Lindberg, L. S. Muppirisetty, K. M. Dahln, V. Savic, and H. Wymeer-
sch, “Mac delay in belief consensus for distributed tracking,” in 2013
10th Workshop on Positioning, Navigation and Communication (WPNC),
March 2013, pp. 1-6.

S. V. de Velde, G. T. F. de Abreu, and H. Steendam, “Improved
Censoring and NLOS Avoidance for Wireless Localization in Dense
Networks,” IEEE Journal on Selected Areas in Communications, vol. 33,
no. 11, pp. 2302-2312, nov 2015.

T. Zhang, A. F. Molisch, Y. Shen, Q. Zhang, H. Feng, and M. Z. Win,
“Joint Power and Bandwidth Allocation in Wireless Cooperative Lo-
calization Networks,” IEEE Transactions on Wireless Communications,
vol. 15, no. 10, pp. 6527-6540, oct 2016.

L. Song, T. Zhang, X. Yu, C. Qin, and Q. Zhang, “Scheduling in Coop-
erative UWB Localization Networks Using Round Trip Measurements,”
IEEE Communications Letters, vol. 20, no. 7, pp. 1409-1412, jul 2016.
G. E. Garcia, L. S. Muppirisetty, E. M. Schiller, and H. Wymeersch,
“On the Trade-Off Between Accuracy and Delay in Cooperative UWB
Localization: Performance Bounds and Scaling Laws,” IEEE Transac-
tions on Wireless Communications, vol. 13, no. 8, pp. 4574-4585, aug
2014.

S. M. Kay, Fundamentals of Statistical Signal Processing: Estimation
theory. Prentice-Hall PTR, 1993.



