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Zuzana Nedělková1 · Peter Lindroth2 ·
Michael Patriksson1 · Ann-Brith Strömberg1

Published online: 8 December 2017
© The Author(s) 2017. This article is an open access publication

Abstract This paper concerns the solution of a class of mathematical optimization problems
with simulation-based objective functions. The decision variables are partitioned into two
groups, referred to as variables and parameters, respectively, such that the objective function
value is influenced more by the variables than by the parameters. We aim to solve this
optimization problem for a large number of parameter settings in a computationally efficient
way. The algorithm developed uses surrogate models of the objective function for a selection
of parameter settings, for each of which it computes an approximately optimal solution over
the domain of the variables. Then, approximate optimal solutions for other parameter settings
are computed through a weighting of the surrogate models without requiring additional
expensive function evaluations.We have tested the algorithm’s performance on a set of global
optimization problems differing with respect to both mathematical properties and numbers of
variables and parameters. Our results show that it outperforms a standard and often applied
approach based on a surrogate model of the objective function over the complete space of
variables and parameters.
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1 Introduction

This article proposes a new algorithm that utilizes a response surface method (see Jones
2001 for a review of such methods) for solving many similar instances of a computationally
expensive simulation-based optimization problem.

The research leading to this paper is motivated by a project conducted by Volvo GTT
focusing on the optimization of truck tyre design (Lindroth 2015; Šabartová et al. 2014).
The purpose is to enable—for each combination of truck configuration and operating
environment—the identification of a tyre design that minimizes the energy losses caused
by the tyres. Hence, we aim to solve a large set of instances of a simulation-based opti-
mization problem, where the vehicle configuration and operating environment vary among
the instances. No attempt to solve such a set of problem instances—other than solving each
instance separately—has been found in the literature. The suggested methodology is efficient
enough to enable the solution of the computationally expensive truck tyre design problem
for each individual customer during the sales process.

First, our methodology uses a standard algorithm for simulation-based optimization (Gut-
mann 2001) to compute optimal tyre designs, described by continuous variables (e.g., tyre
diameter and inflation pressure). This is performed for each of a selection of so-called strate-
gic vehicle specifications (SVSs; see Lindroth 2011, Section 2), described by discrete-valued
parameters. These optimal tyre designs—as well as a priori information about the prop-
erties of the simulation-based functions—are then utilized for an efficient computation of
approximately optimal tyre designs for many other vehicle specifications. This methodol-
ogy is intended to be incorporated into Volvo GTT’s existing sales tool. Utilizing a variety
of artificial and real test problems, we compare the accuracy of the approximately optimal
solution for a non-strategic parameter setting with that achieved by other approaches. The
first approach is to construct a surrogate model that is valid for all possible parameter settings
and the second one is to use a standard algorithm for solving simulation-based optimization
problems for each parameter setting (both strategic and non-strategic). It was identified that
the methodology proposed yields more accurate solutions than other approaches for most of
the test problems considered (Sect. 4 provides details).

We assume that the variation of the values of the computationally expensive functions
is larger with respect to the variables than with respect to the parameters; an alternative
assumption is that the parameters’ principal influence on the function values is known a
priori. As for the tyre design application, the value of the energy loss function is influenced
more significantly by the tyre design (i.e., the variables) than by the vehicle configuration
and the operating environment (i.e., the parameters).

Many algorithms for solving simulation-based optimization problems utilize a simple
surrogate model of the computationally expensive function (Conn et al. 2009, Chs. 10–12).
Our suggested methodology is initiated by constructing and optimizing a surrogate model
of the simulation-based function for each of a selection of parameter settings (here also
referred to as problem instances). Then, for other parameter settings, approximate surrogate
models of the simulation-based function are assembled (using no additional simulations) and
minimized, resulting in an approximate optimal solution for each parameter setting; see also
Fig. 2.
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The algorithm presented in this paper can—besides the tyre design problem—be used
in other applications in which a number of similar computationally expensive optimization
problem instances are to be solved. Examples include the design of freight aircraft to be used
for several types of transport missions (Willcox and Wakayama 2003), and the optimization
of the charge of melting with respect to the quality of various products and which needs to
be done in real time (Dupačová and Popela 2005).

1.1 Previous work

Increasingly complex engineering optimization problems are modeled and solved, due to
the increased possibility to use numerical simulations (such as, e.g., finite elements methods
for structural analysis and computational fluid dynamics). The simulation-based objective
function of such an optimization problem is often treated as a black box, due to the lack
of an explicit expression of the function. As a consequence, no favourable properties, such
as convexity or differentiability, of the function can be inferred. These types of problems—
classified as simulation-based optimization problems (Fu 2014)—can in practice not be
solved by algorithms requiring many function evaluations, such as direct search methods
(Lewis et al. 2000). Local optimization algorithms, such as the MADS algorithm (Audet and
Dennis 2006), find local optima of the function. However, many optimization problems of
practical relevance are non-convex and exhibit multiple local optima, thus demanding the use
of global optimization techniques for their solution. A common methodology for finding an
approximate global optimum is to employ a response surface method (RSM; see Jones 2001).
An RSM provides a response function that mimics the behaviour of the computationally
expensive objective function as closely as possible, while being computationally tractable;
the response function is then optimized.Radial basis function (RBF) interpolation (Wendland
2005) andKriging interpolation (Lophaven et al. 2002) are widely used tomodelmultivariate
functions and often yield good global representations of the unknown functions; seeBuhmann
(2003). Local and global optimization methods based on RBF interpolation can be studied
in Wild et al. (2008) and Gutmann (2001), respectively.

The idea of partitioning the decision variables into two groups, here denoted variables
and parameters, can be found in the area of bilevel optimization (Colson et al. 2007) where
the objective function is optimized over both groups of variables simultaneously. Here we
assume that the values of the parameters are set before the objective function is optimized
over the resulting feasible region for the variables. For many applications the influence of
the parameters/variables on the objective function is indicated in the documentation about
the model used (e.g., in the form of validations with respect to various inputs) or it can be
measured by parameter studies or sensitivity analyses. We will utilize this difference in the
degree of influence to reduce the dimension of the search space; see Sect. 3. The idea of
reducing the search space, guided by additional information about the decision variables, is
utilized also within constraint programming (Bessiere 2006; Stuber et al. 2015).

While RSMs are typically utilized to accurately predict the response function over the
entire feasible region, we first compute an accurate prediction of the response function over
the variables’ domain for each of the selected parameter settings. For other settings of the
parameter values the response function is then defined by a weighted sum of the interpola-
tion coefficients that define the predicted response functions; our approach to determine the
weights is described in Sect. 3.
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For each SVS (specific p values):

Find the optimal tyre
design (computationally
expensive algorithm)

The optimal tyre design
(x values)

Surrogate model of the objective function for each SVS

For each non-SVS (p values):

Find the approximately
optimal tyre design
(efficient algorithm)

The approximately optimal
tyre design (x values)

Fig. 1 Illustration of the proposed algorithm for the truck tyre design problem. Both the operating envi-
ronment specification and the vehicle configuration are represented by parameters, p, while the tyre design
is represented by the decision variables, x. Optimal solutions to the design problem for the SVSs operating
in the most common environments are found using a computationally expensive optimization method, after
which approximately optimal solutions for other vehicle configurations/operating environment specifications
are computed efficiently by the proposed methodology

1.2 Motivation

The present sales tool at Volvo GTT generates a large set of feasible tyres for each truck.
The truck tyres selection process is then based on experience and customer input that can
be further improved by means of scientific methodologies. Volvo GTT’s ultimate goal is to
find an optimal design of the tyres for each vehicle configuration and operating environment
specification, with respect to minimizing the energy losses caused by the tyres. In the present
phase of our research project (Lindroth 2015), the tyres are described by continuous design
variables (tyre diameter, tyrewidth, and inflation pressure). Our future researchwill introduce
discrete design variables representing the tyres available in a tyre database, i.e., solving the
so-called tyres selection problem.

The number of vehicle configurations that can be manufactured by Volvo is huge; the
same holds for the variety of environments in which the vehicles are operated. Solving the
tyre design problem is very time consuming and computationally expensive, since (1) for
each operating environment a sufficiently detailed vehicle model—including finite element
models of the tyres—has to be run, and (2) the vehicle specification andoperating environment
models have to be adapted to each customer. One can afford to search for an optimal tyre
design only for a small subset of all combinations of vehicle configuration and environment
specification, i.e., only for the SVSs operating in the most common environments. For the
non-SVS vehicles, the tyre design problem must be solved in real time during the sales
process. Hence, for the non-SVS vehicles an algorithm that quickly finds an approximately
optimal tyre design is needed in place of the computationally intractable search for an optimal
tyre design.

Most of the energy losses caused by the tyres stem from the rolling resistance (Walter and
Conant 1974). The main ingredient in our model of the tyre design problem is therefore the
rolling resistance coefficient (RRC). A finite element model of a truck tyre (Ali et al. 2013)
was used; this model allows for an investigation of the influence on the RRC of the tyre
design variables and of the parameters describing the vehicle and the operating environment.
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Each evaluation of the model takes, however, around four hours of computation time. The
function that describes the RRC is influenced more significantly by the values of the tyre
design variables than with those of the parameters describing the vehicle and its typical
operating environment; see Ali et al. (2013). This property of the RRC will be used for
assembling designs for non-SVSs vehicles, based on their corresponding positions in the
parameter space; see Fig. 1.

1.3 Outline

The remainder of this article is organized as follows. Algorithms utilized for theminimization
of simulation-based functions, with a main focus on RSMs based on RBF interpolation, are
reviewed in Sect. 2. The algorithm suggested for solving many instances of a simulation-
based optimization problem with a partitioned decision space is presented in Sect. 3. The
methodologyused to assess the performanceof the algorithm, the set of test problems selected,
and the results from the test are presented in Sect. 4. Finally, Sect. 5 provides conclusions as
well as topics for future research.

2 Minimizing simulation-based functions

We aim to solve a set of simulation-based optimization problems possessing computationally
expensive black-box objective functions. Let x ∈ R

M denote the vector of decision variables,
p ∈ R

D−M with 1 ≤ M ≤ D1 denotes the vector of parameters, and f : RD �→ R is the
computationally expensive objective function, which is evaluated through simulations. The
vectors lx < ux ∈ R

M and lp < up ∈ R
D−M define lower and upper bounds on the vari-

ables and parameters, respectively. The simulation-based optimization problem considered
is then to

minimize
x∈[lx,ux]

f (x,p), (1)

for possibly many values of p ∈ [lp,up]. The requirement that x ∈ [lx,ux] is referred to as
box constraints.

In this section we examine methods for the optimization of the problem (1) over x. We
assume that the function modelling the RRC [represented in (1) by the function f ] is con-
tinuous, which motivates the use of continuous surrogate models; cf. Sect. 2.1. Since the
simulations of the objective function are computationally expensive the number of function
evaluations should be kept at a minimum. Within the engineering community, RSMs are
popular for solving such simulation-based optimization problems (Jones 2001).

2.1 Response surface methods (RSMs)

Response surfaces provide fast computations of surrogate functions in place of time-
consuming simulations. By running the simulation for a set of sample points and fitting
an analytical function to the resulting function values, a computationally cheap surrogate
model of the function is obtained and can be used for optimization purposes. The initial
set of sample points may, e.g., be determined by a design of experiments technique (see the
review in Simpson et al. 2001). Then additional points are sampled and evaluated (through a
simulation) in order to refine the approximation of the true function, until a stopping criterion
is met (e.g., a maximum allowed number of simulations is attained, or the function value

1 p ∈ Z
D−M can also be considered with the same methodology.
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being below a given target). The strategies for selecting the sample points differ among spe-
cific algorithms. An efficient strategy should balance local and global searches (Jakobsson
et al. 2010), such that the information from the surrogate model is utilized and no interesting
part of the variable domain is left unexplored. Algorithm 1 summarizes a general RSM.

Algorithm 1 General response surface method (RSM) for the optimization problem (1) for
p = p̄
0: Create an initial set of sample points x̄n ∈ [lx, ux], n ∈ {1, . . . , N }, and evaluate f (x, p̄) for all x ∈

{x̄1, . . . , x̄N }.
1: Construct a surrogate model of f (·, p̄) from the points evaluated, i.e., (x̄n , f (x̄n , p̄)), n ∈ {1, . . . , N }.
2: Select and evaluate a new sample point x̄N+1 to refine the surrogate model.
3: If a stopping criterion is met, exit. Otherwise, let N := N + 1 and go to step 1.

Assuming that the simulations of the true function do not exhibit a high degree of compu-
tational noise, the shape of the function is usually better captured by an interpolating response
surface—passing through all sample points—than by a non-interpolating surface—found by,
e.g., minimizing the sum of squared errors at the sample points—which may be quite distant
from the function values at the sample points (Wendland 2005, Section 1.5). The interpolat-
ing surface is typically constructed as a linear combination of polynomial and basis function
terms. Our development is based on an RSM which uses an RBF interpolation, originally
presented in Powell (1999). Our algorithm can, however, utilize any kind of response surface
(here also referred to as surrogate model).

2.2 Radial basis function interpolation

The surrogate model based on an RBF interpolation is formally defined below.

Definition 1 (radial basis function, RBF) Letting ‖·‖ denote the Euclidean norm, a function
g : R

M �→ R is called a radial basis function if there exists a univariate function φ :
[0,∞) �→ R such that

g(x) = φ(‖x‖), x ∈ R
M .

Assume that the objective function f (·, p̄) of (1) is simulated at N distinct sample points
x̄n ∈ [lx,ux] ⊂ R

M , n = 1, . . . , N . Denote the vector of function values at these points by

f̄ := (
f (x̄1, p̄), . . . , f (x̄N , p̄)

)T ∈ R
N , and the vector of variables by x = (x1, . . . , xM )T.

TheRBF interpolation Sα : RM �→ R of f (·, p̄) is then defined (Wendland 2005, Section 6.3)
as

Sα(x) :=
N∑

n=1

αnφ(‖x − x̄n‖) + αN+1 +
M∑

m=1

αN+1+m xm, (2)

where φ denotes a given RBF, e.g., a linear, multi-quadratic, or cubic function, and αn ,
n = 1, . . . , N + 1 + M , are the interpolation coefficients. The interpolation problem is that
to find a vector α ∈ R

N+1+M such that
(

A P
PT 0

)
α =

(
f̄
0

)
, (3)

where Ai j := φ(‖x̄i − x̄ j‖), i, j = 1, . . . , N , and Pi · := (1, (x̄i )T), i = 1, . . . , N .
The assignment (2) defines the unique RBF interpolation Sα of the unknown function

f (·, p̄) at the sample points x̄n, n = 1, . . . , N , where the vector α is uniquely determined by
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the system (3) of linear equations (Wendland 2005, Section 6.3). The RBF interpolation often
yields good global representations of computationally expensive simulation-based functions,
as judged by the errors estimated in Buhmann (2003, Chapter 5), and is therefore frequently
used within RSMs.

3 Solving many instances of a simulation-based optimization problem
with a partitioned decision space

We assume that the objective function f of (1) over the box defined by the constraints on the
variables x and the parameters p is influenced significantly more by the variables than by
the parameters, over the respective boxes. This assumption is characterized by the relation
between the approximation errors, when f is approximated by 1st order Taylor expansions
with respect to x and p, respectively, according to Assumption 1.2

Assumption 1 For the partition (x,p), define

Tx := sup
x,x̄,p

{∣
∣ f (x,p)− f (x̄,p)−Dx f (x̄,p)T(x − x̄)

∣
∣

‖x − x̄‖

∣
∣
∣
∣∣
x, x̄∈[lx,ux],p∈[lp,up]

}

and

Tp := sup
x,p,p̄

{∣∣ f (x,p)− f (x, p̄)−Dp f (x, p̄)T(p − p̄)
∣∣

‖p − p̄‖

∣∣∣∣∣
x∈[lx,ux],p, p̄∈[lp,up]

}

.

Then, the relation Tx 	 Tp is assumed to hold.

To identify the variables to be treated as parameters (i.e., the second argument, denoted p) one
can perform a simple parameter study or a sensitivity analysis; alternatively the parameters
may be identified from literature on existingmodels of the specific computationally expensive
function studied.

Each instance of the problem (1) is determined through a selection of values for the
parameter vector p. The optimization problem (1) will be solved to near-optimality for Q
selected parameter values, denoted p̄q , q = 1, . . . , Q. The other parameter settings, which
are not known in advance and for which the problem (1) is to be (approximately) solved in
a computationally efficient way, are denoted p̄r , r = Q + 1, . . . , Q + R (the value of R
may be unknown). It is desirable that the degree of nonlinearity of f with respect to p is low
since it can be shown that if f is linear in p, then its RBF interpolation Sα will be linear in p
as well. When f is almost linear with respect to p the precision of the surrogate models for
the parameter settings p̄r , r = Q + 1, . . . , Q + R, will be as high as the precision of the
surrogate models for p̄q , q = 1, . . . , Q.

Section 3.1 introduces two standard solution methods for solving the set of optimization
problems (1). These methods will be used as a benchmark for the proposed methodology
described in Sect. 3.2.

3.1 Standard solution methods

Algorithm2 is a standard solutionmethod for the set of optimization problems (1) correspond-
ing to the parameter settings p̄1, . . . , p̄Q+R . It applies an RSMbased on an RBF interpolation

2 InAssumption 1, the entities Dx f and Dp f denote numerical partial derivatives of f wrt.x andp respectively,
computed, e.g., by forward or central differences (Allen 2008, Ch. 8)
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(see, e.g., Jakobsson et al. 2010) of the function f that is valid for all p ∈ [lp,up] and will be
used as a benchmark for the proposed methodology.

Algorithm 2 An optimization algorithm based on response surfaces for a set of simulation-
based optimization problem instances
0: Create a set of NQ sample points (x̄n , p̄n), such that (x̄n , p̄n) ∈ [lx, ux] × [lp, up], n = 1, . . . , NQ, and

evaluate (simulate) f on this set.
1: Construct a surrogate model Sα of f using the points evaluated, according to (2) and (3) with x replaced

by (x, p).
2: For q = 1, . . . , Q + R, find

xqopt ∈ argmin
x∈[lx,ux]

Sα(x, p̄q ). (4)

The sample points created in Step 0 of Algorithm 2 are randomly generated in order to be
uniformly distributed over the feasible set. We prioritize global search (exploration) when
selecting the sample points in order to obtain a good global representation of the objective
function, but any sophisticated rule for selecting sample points can be employed; see, e.g.,
Gutmann (2001, Algorithm 3). The total number of evaluations of f is upper bounded by the
value NQ. For each instance q ∈ {1, . . . , Q + R} of (1), the desired optimal solution xqopt is
obtained by applying Algorithm 2.

Another natural approach is to first choose the values of p̄1, . . . , p̄Q+R , and then—for each
parameters setting p̄q—call a standard algorithm for solving simulation-based optimization
problems returning the optimal values of xqopt, q = 1, . . . , Q + R. Such an approach allows
the use ofmore sophisticated simulation-based optimizationmethods for both continuous and
integer variables x; see Jones et al. (1998), Björkman and Holmström (2000) and Hong et al.
(2015). We will use the easy to use software application for simulation-based optimization,
NOMAD (Abramson et al. 2017), as the standard algorithm to find the optimal values of
xqopt. NOMAD is based on the Mesh Adaptive Direct Search (MADS) algorithm (Audet and
Dennis 2006). A potential drawback of this approach is that only NQ/(Q+R) sample points
can be used to find each xqopt, q = 1, . . . , Q+ R, and that the value of Q+ R has to be known
in advance. This approach also cannot be used to solve the tyre design problem, in which all
the simulations of the objective function are required to be done in a preprocessing phase.

3.2 The proposed methodology

We propose Algorithm 3 below to solve a set of optimization problems (1). It includes a
preprocessing phase, in which, for pq , q = 1, . . . , Q, selected settings of the parameter
vector, a nearly-optimal solution xqopt to (1) is computed provided that enough simulations
of f can be performed. Then, for any other values of p ∈ [lp,up], an approximately optimal
solution xrapprox is efficiently computed without any additional simulations of the expensive
function f ; see Fig. 2. The desired solutions to the optimization problem (1) for all parameter
settings are computed using the response surface method (Algorithm 1), i.e., a surrogate
function is minimized instead of the true objective function f.

The sample points in Step 1a of Algorithm 3 are randomly generated to be uniformly
distributed over the feasible set. We prioritize global search (exploration) when selecting
the sample points to obtain a good global representation of the objective function, but any
sophisticated rule for selecting sample points can be employed; see, e.g., Gutmann (2001,
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Fig. 2 Flowchart illustrating Algorithm 3 for the optimization of a set of simulation-based optimization
problem instances

Algorithm 3 An efficient optimization algorithm based on weighted response surfaces for
a set of simulation-based optimization problem instances
1: For each q = 1, . . . , Q:

a: Select a distinct parameter setting p̄q ∈ [lp, up]. Create a set of N sample points x̄n , such that
x̄n ∈ [lx,ux], n = 1, . . . , N , and simulate f (x̄n , p̄q ), n = 1, . . . , N .

b: Construct a surrogate model Sαq (·, p̄q ) according to (2) and (3) and find

xqopt ∈ argmin
x∈[lx,ux]

Sαq (x, p̄q ). (5)

2: For each r = Q + 1, . . . , Q + R:

a: Construct a surrogate model Sαr (·, p̄r ) according to (2), letting the vector αr ∈ R
N+1+D of inter-

polation coefficients be a convex combination (e.g., assigned as in (8), below) of the initial vectors of
coefficients, αq , according to

αr :=
Q∑

q=1

wrqαq ,

Q∑

q=1

wrq = 1, wrq ≥ 0, q = 1, . . . , Q. (6)

b: Compute an approximate optimal solution to (1), for p = p̄r :

xrapprox ∈ argmin
x∈[lx,ux]

Sαr (x, p̄
r ). (7)

Algorithm3). The same set of sample points x̄n ,n = 1, . . . , N , is used for all surrogatemodels
in Step 1a, since then the surrogate model Sαr (·, p̄r ) can be found directly by weighting the
interpolation coefficients.3 The number of evaluations of the function f is limited to NQ,
i.e., the same number as for Algorithm 2. The optimization problems (4) and (5) are solved

3 When using a different set of sample points for each parameter setting, the function values must instead be
weighted and the interpolation coefficients have to be found by solving the system (3). The approach using
different sets of sample points for different parameter settings results in the sample points being more spread
over the search space. Experiments indicate thatmore accurate approximations xrapprox, r = Q+1, . . . , Q+R,
of the optimal solutions are obtained when using the latter approach.
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because we are interested in near-optimal solutions to (1) for the selected parameter settings
(the optimal tyre designs for the SVSs can then be used to point out the tyre designs to be
improved with respect to the RRC, e.g., by adjusting their groove patterns).

The surrogate models Sαq (·, p̄q) : RM �→ R constructed in Step 1b of Algorithm 3 are
defined on R

M , since the second argument p̄q of the function f is fixed over the N sample
points. The optimal solutions xqopt are not used further in the algorithm, but given to the

practitioner. For the tyre design problem the optimal solutions xqopt are used to identify the
strategic tyre designs to be further improved wrt. fuel efficiency.

Each of the surrogate models Sαr (·, p̄r ) : RM �→ R, r = Q + 1, . . . , Q + R, is con-
structed (in Step 2a of Algorithm 3) as a convex combination4 of the surrogate models
Sαq (·, p̄q), q = 1, . . . , Q. For each r ∈ {Q + 1, . . . , Q + R}, the values of the convex com-
bination coefficients—here also referred to as weights—wrq of αq , in the surrogate model
Sαr (·, p̄r ), are defined according to (6), and as a function of the values of p̄r and p̄q ∈ [lp,up],
q = 1, . . . , Q. Provided that p̄r �= p̄q , q = 1, . . . , Q, the weights may, e.g., be defined as
inversely proportional to the Euclidean distance between p̄r and p̄q :

wrq :=
⎛

⎝‖p̄q − p̄r‖
Q∑

t=1

(
1

‖p̄t − p̄r‖
)
⎞

⎠

−1

, q = 1, . . . , Q. (8)

In our test cases—for implementation simplicity—only the two parameter vectors p̄q1 and
p̄q2 being closest5 to the parameter vector p̄r , r = Q + 1, . . . , Q + R, are given nonzero
weights, wrq1 and wrq2 , respectively. Several alternative principles for defining the weights
wrq may be employed. For example, they can be defined bymore than two parameter vectors,
higher weights can be assigned to surrogate models for values of p for which the surrogates
are expected to be more accurate, or a priori known properties of the function f (e.g., f being
quadratic with respect to p) can be utilized.

No additional simulations of the objective function f are needed to compute the approxi-
mately optimal solution xrapprox of (7) in Step 2b of Algorithm 3. This constitutes a significant
computational saving [as compared to solving (7) for each p̄r individually, which requires
a new set of sample points to construct the surrogate model Sαr (·, p̄r )] and allows for the
computation of approximately optimal solutions in real time.

The main advantage of Algorithm 3 as compared to Algorithm 2 is that the lower-
dimensional box [lx,ux] ⊂ R

M is sampled for each of the selected settings of p ∈ [lp,up] ⊂
R

D−M , instead of sampling the whole set [lx,ux] × [lp,up] ⊂ R
D .

General RBF interpolating methods yield more and more accurate interpolations as new
sample points are added. According to Buhmann (2003, Theorem 5.5), for locally Lipschitz
continuous functions f, as the set of sample points grows dense in the domain, the surrogate
function Sα converges to the true function f on this domain, which implies that the error
estimate of the interpolation tends to zero. When considering a simulation-based function f
we cannot presume that it is locally Lipschitz continuous and the performance of Algorithm 3
has to be assessed through computational experiments.

4 The use of a convex combination is motivated by (i) the assumption that the objective function f is influenced
significantly more by the variables than by the parameters, and (ii) the assumption that the parameter values
p̄q , q = 1, . . . , Q, are spread over the box [lp,up]. If f is linear in p, then the RBF interpolation Sαr is equal
to the convex combination of Sαq , q = 1, . . . , Q.
5 q1 ∈ argminq∈{1,...,Q}{||p̄q − p̄r ||} and q2 ∈ argminq∈{1,...,Q}\{q1}{||p̄q − p̄r ||}.

123



Ann Oper Res (2018) 265:93–118 103

4 Computational experiments

The purpose of the computational experiments is to compare the performance ofAlgorithms 2
and 3 and NOMAD applied to a set of simulation-based optimization problems. The test
problems, whose properties resemble those of the tyre design problem that we wish to solve,
were collected from Gould et al. (2003) and Montaz Ali et al. (2005) and are often used for
testing optimization algorithms aiming at convergence to a global optimum.

The methodology used for assessing the performance of the algorithms tested, as well as
the performance measures used, are introduced in Sect. 4.1. The test problems are described
in Sect. 4.2. Section 4.3 discusses the implementation details, while Sect. 4.4 summarizes
the test results. Section 4.5 describes how the tyre design problem can be solved using the
algorithm developed.

4.1 Performance measures and methodology

This section presents the success ratio, designated to compare the effectiveness and the
trustworthiness of algorithms, as well as the performance profile and data profile, designated
for more complex comparisons of algorithms.

Success ratio

Letting A be the set of tested algorithms and P be the set of test problems, the success ratio
sap ∈ [0, 1] equals the number of times that algorithm a ∈ A successfully approximates an
optimum to the problem p ∈ P divided by the number of times that the algorithm is applied
to solve the problem p (Törn and Žilinskas 1989, Ch. 1).

Consider the instance r of problem p of the form (1) defined by p = p̄r , and let
Xr
opt ⊂ [lx,ux] ⊂ R

M denote its optimal set. An algorithm a ∈ A is said to successfully
approximate its optimal solution if the resulting point is feasible and lies in a sufficiently
small neighbourhood of the set of optimal solutions, i.e., if xrapprox belongs to the set

Nεp (X
r
opt) :=

{
x ∈ [lx,ux]

∣∣∣ miny∈Xr
opt

‖x − y‖ ≤ εp

}
, (9)

where εp > 0 is a tolerance parameter. For each problem p the value of εp is determined by
the size and dimension of the box [lx,ux] and is reported in “Appendix”.

For all the algorithms tested, the same number of points are sampled. In Algorithm 2, all
the sample points are used to map a subspace of RD , while in Algorithm 3 the number of
sample points is divided, so that half of them are used to sample a subspace of RM (where
M < D) for each of the two selected parameter vectors, i.e., Q = 2. When NOMAD is used
the number of sample points is divided as well: two thirds of them are used to sample the
subspaces RM for each of the two selected parameter vectors, and one third is used to solve
the problem for Q + 1, i.e., to find xQ+1

approx.

Performance and data profile

The performance profile introduced in Dolan and Moré (2002) has been utilized for com-
paring the performance of Algorithms 2 and 3 on the whole set of test problems considered
simultaneously. The performance profile for an algorithm is defined as the (cumulative) dis-
tribution function for a performancemetric, here represented by the number of sample points.
Assuming a set A of algorithms applied to a set P of problems, for each p ∈ P and a ∈ A,
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tpa is defined as the number of sample points used to successfully approximate (in the vari-
able space) an optimum of the problem p by algorithm a. The performance ratio, defined as
tpa(minb∈A{tpb})−1, p ∈ P, a ∈ A, relates the performance of algorithm a as applied to
the problem p to the best performance of any of the algorithms in the setA. If algorithm a is
not able to successfully approximate an optimum to the problem p (i.e., if tpa > T for some
large value T > 0), then the performance ratio is set to a constant cap > maxb∈A\{a}{tpb}. An
overall assessment of the performance of algorithm a is obtained by defining the probability
that the performance ratio is within a factor τ ≥ 1 of the best attained ratio for any of the
algorithms, i.e.,

ρa(τ ) := 1

|P|

∣
∣
∣
∣
∣
∣

⎧
⎨

⎩
p ∈ P : tpa

min
b∈A{tpb} ≤ τ

⎫
⎬

⎭

∣
∣
∣
∣
∣
∣
,

where |·|denotes cardinality. The functionρa : [1,∞) �→ [0, 1] is the cumulative distribution
function of the performance ratio.

A plot of the performance profile for the set A of tested algorithms reveals the major
performance characteristics of the algorithm but does not provide sufficient information to a
user with a computationally expensive optimization problem, who is often more interested
in the performance of solvers as functions of the number of function evaluations. We thus
use the data profile of an algorithm a ∈ A introduced in Moré and Wild (2009), defined as
the percentage of the problems that are solved at the cost of τ > 0 with n p being the number
of variables of problem p ∈ P , i.e.,

da(τ ) := 1

|P|
∣∣∣∣

{
p ∈ P : tpa

n p + 1
≤ τ

}∣∣∣∣ .

The unit of cost is n p + 1 function evaluations which can be easily translated into function
evaluations. This unit can be interpreted as the percentage of problems that can be solvedwith
the equivalent of simplex gradient estimates, n p + 1 referring to the number of evaluations
needed to compute a one-sided finite-difference estimate of the gradient.

Performance profiles compare the different algorithms, while data profiles provide, for
each given algorithm (independent of the other algorithms), the proportion of the problems
that are solved within a certain number of function simulations normalized by the corre-
sponding number of variables by a given algorithm. We will present both performance and
data profiles for the test problems considered.

Assessment methodology

The overall methodology used to assess and compare the performance of Algorithms 2 and
3 is described next. The sample points x̄n , n = 1, . . . , NQ, were randomly generated to be
uniformly distributed over the feasible sets. Also the latin hypercube design of experiments
(Sóbester et al. 2014)was tested to generate the sample points, but since the resulting improve-
ments of the success of approximation of an optimal solution—as compared with randomly
generated sample points—was negligible we chose to use sample points with randomly gen-
erated coordinates over their respective feasible intervals (using Matlab’s pseudo-random
number generator). Considering the various measures for comparing algorithms discussed
in this section, the following experimental procedure, inspired by Montaz Ali et al. (2005),
was established.
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1. Assemble a set P of test problems from the literature. For each of the problems chosen,
record the variables and objective values at an optimal solution (or at the best known
solution).

2. Choose the number NQ of sample points (i.e., x̄n) to create. For each problem: perform
30 runs each of Algorithms 2 and 3.

3. For each problem p and each algorithm a, record the success ratio sap .
4. Increase the number NQ of sample points. Repeat from step 2 until either Algorithm 2

or Algorithm 3 successfully approximates an optimum for each problem p.6

5. Generate the performance and data profiles.

The success ratio is used when repeated runs of an optimization algorithm may give
different results, which is the case for Algorithms 2 and 3, which use randomly generated
sample points. When using NOMAD the sample points are deterministically generated,
creating a mesh. Hence, it is enough to apply NOMAD once per problem and therefore its
success ratio will not be reported.

4.2 Test problems

The experimental procedure described in Sect. 4.1 has been applied to 22 selected box-
constrained optimization problems with continuous variables; these are denoted p ∈
{1, . . . , 22} below. These problems (except for p ∈ {6, 7, 12, 16, 20, 21}) form a subset of
a test-bed for global optimization solvers originally proposed in Montaz Ali et al. (2005),
and include both artificial and real problems; see Table 1 and “Appendix”. To make the
tests demonstrative, problems differing in dimension, computational difficulty, and number
of known local optima are selected. Most of them are considered as fairly easy in terms
of global optimization; when viewed as simulation-based optimization problems—in which
normally no analytical information can be exploited—they are, however, challenging.

The proposed algorithm is developed for optimization problems in which the influence
of some of the variables on the value of the objective function is less significant than that
of the rest of the variables and one wants to solve many instances of the problem. The less
influencing variables are then treated as parameters, denoted by the vector p. From the 50 test
problems proposed in Montaz Ali et al. (2005) in fifteen problems (1, 3–5, 8–11, 13–15, 17–
19, and 22) the less influencing variables are identified based on the definition of significant
influence in Assumption 1 and will be used to asses the performance of Algorithm 3. Problem
2 is included in order to demonstrate the performance of the algorithm when applied to a
problem for which the objective function is influenced equally by all its variables. The
Problems 6, 7, 12, 16, 20, and 21 (taken from Schwefel 1981; Bersini et al. 1996; Dixon and
Price 1999; Gould et al. 2003; Rahnamyan et al. 2007, and gathered in Jamil and Yang 2013)
are considered in order to test the algorithms for a larger number of variables, for which
Algorithm 3 is intended.

The tyre design problem in the current implementation contains four variables and 55
parameters; hence, its dimensions D and M are similar to Problem 7. The results from
Algorithm 3 applied to this problem will be commented on below.

6 See the definition of Nεp (Xr
opt) in (9), where the values of the tolerance parameter εp > 0 differs between

the test problems but not between the algorithms.
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Table 1 Data for the test problems: problem number (p), problem name, problem dimension (x ∈ R
M ,

p ∈ R
D−M ), and partition into variables x and parameters p

p Name D M x p

1 Aluffi-Pentini 2 1 x1 x2
2 Becker and Lago 2 1 x1 x2
3 Branin 2 1 x1 x2
4 Camel back—three hump 2 1 x1 x2
5 Camel back—six hump 2 1 x1 x2
6 Dixon and Price 20 19 x1, . . . , x19 x20
7 Explin 120 11 x1, . . . , x11 x12, . . . , x120
8 Gulf research 3 2 x2, x3 x1
9 Helical valley 3 2 x1, x2 x3
10 Hosaki 2 1 x2 x1
11 Kowalik 4 3 x2, x3, x4 x1
12 Langerman 10 5 x1, . . . , x5 x6, . . . , x10
13 Meyer and Roth 3 2 x1, x2 x3
14 Miele and Cantrell 4 3 x1, x3, x4 x2
15 Modified Rosenbrock 2 1 x1 x2
16 Powell 20 10 x11, . . . , x20 x1, . . . , x10
17 Prices’s transistor 9 7 x1, x2, x5, . . . , x9 x3, x4
18 Rosenbrock—2-dim. 2 1 x1 x2
19 Rosenbrock—n-dim. 10 9 x1, . . . , x9 x10
20 Schwefel 20 10 x1, . . . , x10 x11 . . . , x20
21 Tointqor 50 46 x1, . . . , x46 x47, . . . , x50
22 Wood 4 2 x1, x3 x2, x4

See “Appendix” for detailed descriptions of the problems and the corresponding references

4.3 Implementation

We implemented the efficient optimization algorithm for a set of simulation-based problem
instances (Algorithm 3) and the standard optimization algorithm based on an RBF interpola-
tion (Algorithm 2) in MATLAB R2010b (The MathWorks, Inc. 2012). All experiments were
carried out on a desktop computer equippedwith Intel PentiumDual-Core 2.80GHz and 4GB
RAM, running Red Hat Enterprise Linux 5.6. To optimize the nonlinear interpolation func-
tions Sα generated during the various steps of the algorithms, subject to box constraints, the
external solver glbFast from theTOMLAB/CGOv8.0 toolbox for global optimization (Holm-
ström and Göran 2002) was used; it solves box-constrained global optimization problems
using only function values, and is based on the DIRECT algorithm from Jones et al. (1993).
In our implementation of Algorithms 2 and 3 the simple linear RBF g : RD �→ R−, defined
by g(x) = φ(‖x‖) := −‖x‖, was employed in order to construct the RBF interpolations
(2). We have allowed NOMAD to use Latin-Hypercube Search and Variable Neighbourhood
Search when it got stuck in a local optimum, in order to improve its performance and use the
same number of sample points as the other algorithms tested.
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Table 2 Success ratios for
Algorithm 2 (denoted alg2) and
Algorithm 3 (denoted alg3)

p salg2,p salg3,p

1 0.20 1.00

2 0.27 0.37

3 0.07 0.10

4 0.03 0.80

5 0.07 0.97

6 0.50 0.70

7 0.43 0.67

8 0.10 0.20

9 0.37 0.40

10 0.47 0.77

11 0.20 0.27

12 0.23 0.34

13 0.13 0.03

14 0.07 0.07

15 0.17 1.00

16 0.40 0.47

17 0.30 0.33

18 0.37 1.00

19 0.07 0.20

20 0.10 0.13

21 0.00 0.30

22 0.17 0.13

4.4 Results

A general optimization algorithm converges to the global optimum for every continuous
objective function f if and only if the set of sample points grows dense over the feasible
domain; see Gutmann (2001, Theorem 4). Nevertheless, the determination of an acceptable
result after a reasonably small number of function evaluations is often its most desirable
feature. Therefore, the quality of our optimization algorithm for simulation-based functions
is demonstrated through its practical use for solving representative test problems utilizing
relatively few function evaluations.

The success ratios for Algorithms 2 and 3—possessing values in the interval [0, 1]—are
listed in Table 2. Each bold entry indicates the algorithm that performs the best when applied
to the respective test problem.

In Figs. 3 and 4, the performance profiles (Dolan and Moré 2002) and data profiles (Moré
andWild 2009) of Algorithms 2 and 3 and NOMAD over the 22 test problems considered are
illustrated. Algorithm 3, which is proposed in this paper, clearly outperforms both NOMAD
andAlgorithm 2 (being a version ofAlgorithm 1, adjusted in order to suit the specific problem
considered, butwhich does not utilize the partition (x,p)) for the problems tested. In theworst
case Algorithm 3 needed approximately twice as many sample points as the other algorithms.
Figures 5 and 6, respectively, illustrate the performance and data profiles of Algorithms 2
and 3 and NOMAD over the larger test problems considered, i.e., (6, 7, 12, 16, 17, and
19–21). Algorithm 3, developed for solving a set of simulation-based optimization problem
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Fig. 3 Performance profiles of Algorithms 2 and 3 and NOMAD for the 22 problems tested. The
graphs represent the portion ρa of the problems that are successfully approximated (see Sect. 4.1;
the value of the tolerance parameter εp varies among the test problems) within a factor τ ∈
{1, 1.25, 1.33, 1.43, 1.5, 2, 2.15, 2.5, 5, 8, 75} times the number of sample points used by the algorithm that
successfully approximates an optimal solution using the smallest number of sample points. The scale used for
the horizontal axis is logarithmic
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Fig. 4 Data profiles of Algorithms 2 and 3 and NOMAD for the 22 problems tested. The graphs represent the
portionda of the problems that are successfully approximated (seeSect. 4.1; the value of the toleranceparameter
εp varies among the test problems) within τ(n p + 1) ∈ {5, 10, 50, 100, 200, 500, 1000, 10,000, 15,600}
sample points used. The scale used for the horizontal axis is logarithmic

instances in a computationally efficient way, turned out to be particularly suitable for the
larger problems considered.

Wenext discuss the caseswhen the algorithmdevelopedperformedworse than the standard
RSM and NOMAD:

– BothAlgorithms 2 and 3 terminate at inaccurate approximations of the global optimumof
Problem 13; this is probably because the objective function decreases steeply towards the
global minimum in a small area, which is difficult to locate with only a small number of
randomly generated sample points. Hence, another (more sophisticated) rule for selecting
sample points should be employed. NOMAD outperforms both Algorithms 2 and 3 on
Problem 13 because new sample points are generated based on the function values at the
old sample points.

– Both Algorithms 2 and 3 find inaccurate estimations of the optimal objective value of
Problem 17, because the objective function is oscillating around the global optimum.
A more suitable surrogate model should be chosen for Problem 17 in order to obtain
more accurate estimations of the optimal objective value. NOMAD is not based on any
surrogate model so the estimation of the optimal objective value of Problem 17 is more
accurate but corresponds to a less accurate approximation of the global optimum.
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Fig. 5 Performance profiles of Algorithms 2 and 3 and NOMAD for the larger problems (6, 7, 12, 16, 17,
and 19–21) tested. The graphs represent the portion ρa of the problems that are successfully approximated
within a factor τ ∈ {1, 1.25, 1.33, 1.43, 1.5, 2, 2.15, 2.5, 5, 8, 75} times the number of sample points used by
the algorithm that successfully approximates an optimal solution using the smallest number of sample points.
The scale used for the horizontal axis is logarithmic
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Fig. 6 Data profiles of Algorithms 2 and 3 and NOMAD for larger problems (6, 7, 12, 16, 17, and 19–
21) tested. The graphs represent the portion da of the problems that are successfully approximated (see
Sect. 4.1; the value of the tolerance parameter εp varies among the test problems) within τ(n p + 1) ∈
{5, 10, 50, 100, 200, 500, 1000, 10,000, 15,600} sample points used. The scale used for the horizontal axis is
logarithmic

– Even though it is not possible to decide which variable should be treated as a parameter
in Problem 2 (the objective function is quadratically influence by each of the variables),
Algorithm 3 yields more accurate results than Algorithm 2.

The performance of NOMAD increases with an increasing number of sample points used.
When solving a large number of instances of (1) using only a limited number of sample
points, NOMAD will lead to inaccurate approximations of the global optima; see Figs. 3
and 4.

We compared the approximate solutions to the test problems resulting from partitions
of the decision variables (into the variables x and the parameters p), being either randomly
selected or based on a priori information about the objective function. Algorithm 3 produces
more accurate approximations of the optimal solutions for the partitions based on a priori
information than for the randomly selected partitions. For an equal number of sample points,
the approximate solutions computed by the computationally efficient Algorithm 3 are in most
cases still more accurate than the ones resulting from the application of Algorithm 2.

Problem 7, for which it is obvious from the explicit expression of the objective function
how to choose the variables x ∈ R

M and parameters p ∈ R
D−M , was selected in order to

investigate how the relative sizes of the sets of variables/parameters influence the performance
of Algorithm 3. The accuracy of the approximately optimal solution obtained does not appear
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to be influenced by the ratio M
D for the same number of sample points, whereas the lowest

value of the objective function is reduced when this ratio is decreased. From this we conclude
that as many variables as possible not significantly influencing the objective function should
be treated as parameters in Algorithm 3.

4.5 Application to the tyre design problem

Our aim is to applyAlgorithm3 to solve the tyre design problem in the combinatorial setting of
vehicles and operating environments. The surrogate models of the objective function and the
corresponding optimal tyre designs—for the strategic configurations of vehicles operating
in the most common environments—are found in a pre-processing phase involving many
computationally expensive simulations of the objective function (representing the energy
losses caused by the tyres). An approximately optimal tyre design can then be found in a
computationally efficient way (and which then can be implemented in the sales tool at Volvo)
for any customer specifying the vehicle and its intended use, by using a weighted surrogate
model of the objective function, as described in this article. The tyre design variables are so
far considered to be continuous. We are currently developing the algorithm to incorporate
also discrete requirements on the variable values. The algorithm developed can, however, be
directly used for both continuous anddiscrete requirements on the parametersp; the individual
vehicles in the tyre design problem then correspond to discrete values of the parameters.

A test instance of the tyre design problem is presented below. AVolvo rigid truckwith four
wheels with the two rear wheels driven is considered. The tyres are the same within each axle
but can differ between the front and rear axles. Each tyre is determined by the values of three
continuous variables (the tyre diameter, the tyre width, and the inflation pressure), resulting in
a simulation-based optimization problem with the variable vector x = (x1, . . . , x6)T ∈ R

6.
Upper (ux = (ux1 , . . . , ux6)

T) and lower (lx = (lx1 , . . . , lx6)
T) bounds on the variables result

in box constraints. Each evaluation of the objective function, which represents the energy
losses caused by the tyres, requires a simulation of the vehicle over its operating environment;
seeKolář (2015) for a description of the joint vehicle, tyres, and operating environmentmodel
used. The energy losses to be minimized are measured in MJ/km.

The parameter p ∈ R which will be varied over the instances of the tyre design problem
represents the topography of the operating environment. The other parameters, describing the
truck, the operating environment, and the tyres, are kept fixed. The SVSs include the truck
operating on a flat road and the same truck operating on a hilly road. Approximately optimal
tyre designs (for both the front and rear axles) for the truck operating on a predominantly flat
road are to be found by Algorithm 3 when N sample points are used for each of the SVSs.
The approximately optimal tyres designs are compared with the optimal tyre designs found
when the tyre design problem for the truck operating on a predominantly flat road is solved
directly using 2N sample points; see Table 3.

The optimal solution to the tyre design problem for the truck operating on a predominantly
flat road was found to be (lx1 , lx2 , ux3 , lx4 , lx5 , ux6). Algorithm 3 successfully approximates
the optimal designs while being computationally efficient when sufficiently many sample
points can be used in the pre-processing phase for the strategic configurations operating
in the most common environments, as can be seen in Table 3. This fact does not cause any
difficultieswith the implementationofAlgorithm3 into the sales toolwhere the computational
efficiency of finding the approximately optimal tyre designs for any customer is important.
The optimal solution to the tyre design problem for the truck operating on a predominantly
flat road was found to be a combination of the lower an upper bounds on the variable values.
Therefore, additional constraints, such as the handling quality, the ride comfort, and the
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Table 3 The approximately optimal tyre designs xrapprox for the truck operating on a predominantly flat road,
and the corresponding energy losses Sαr (x

r
approx) (MJ/km), when N sample points are used

N xrapprox Sαr

(
xrapprox

)
xopt Sα

(
xopt

)

50
(
lx1 , lx2 , ux3 , lx4 , lx5 , ux6

)
4.88

(
lx1 , lx2 , lx3 , lx4 , lx5 , ux6

)
4.84

100
(
lx1 , lx2 , lx3 , lx4 , lx5 , ux6

)
4.47

(
lx1 , lx2 , lx3 , lx4 , lx5 , ux6

)
4.86

150
(
lx1 , lx2 , lx3 , lx4 , lx5 , ux6

)
4.49

(
lx1 , lx2 , ux3 , lx4 , lx5 , ux6

)
4.89

200
(
lx1 , lx2 , lx3 , lx4 , lx5 , ux6

)
4.48

(
lx1 , lx2 , ux3 , lx4 , lx5 , ux6

)
4.90

250
(
lx1 , lx2 , ux3 , lx4 , lx5 , ux6

)
4.50

(
lx1 , lx2 , ux3 , lx4 , lx5 , ux6

)
4.91

300
(
lx1 , lx2 , ux3 , lx4 , lx5 , ux6

)
4.51

(
lx1 , lx2 , ux3 , lx4 , lx5 , ux6

)
4.91

The optimal tyres designs found when the tyres design problem for the truck operating on a predominantly
flat road is solved directly with 2N sample points and the corresponding energy losses Sα(xopt) (MJ/km) are
listed for comparison

startability of the truck should be added to the optimization model of the tyre design problem
and the simulation model of the objective function should be improved.

5 Conclusions and future research

A computationally efficient optimization algorithm—based on a radial basis function inter-
polation adapted to a large set of simulation-based problem instances—has been developed,
implemented, and tested. Our computational results demonstrate a performance of the algo-
rithm which is superior to that of a standard response surface method (RSM) as well as
NOMAD, when applied to a standard set of test problems. The algorithm is particularly suit-
able when the differentiation of parameters and variables can be distinctly resolved, andwhen
aiming to solve efficiently the optimization problem at hand—at least approximately—for a
large number of parameter settings. We consider problem settings possessing box constraints
on the variables. The algorithm proposed can, however, be extended to solve optimization
problems with more general (even simulation-based) constraints, then being relaxed and
replaced by penalty terms in the objective function.

To compose surrogate models for any settings of the parameters, the algorithm utilizes
aggregated surrogate functions of a set of selected parameter settings. Other models for the
aggregation of the surrogate functions of the selected parameter settings should be inves-
tigated. The algorithm may also be generalized to be applicable in the context of utilizing
other kinds of surrogate models (e.g., Kriging interpolation or polynomial regression).

The algorithm developed enables the computationally efficient solution of the truck tyre
design problem when described in the combinatorial domain of possible vehicle configura-
tions and operating environment specifications. Our future research includes incorporating
discrete requirements on the variable values into the algorithm developed. This will enable
the solution of a true tyres selection problem, in which the feasible tyres are taken from a tyre
database, resulting in practically more useful solutions in place of the tyre designs resulting
from the problem considered in this paper.

Acknowledgements The research leading to the results presented in this paper was financially supported
by the Swedish Energy Agency (Project Number P34882-1), Chalmers University of Technology, and Volvo
Group Trucks Technology. We acknowledge three anonymous referees for their valuable comments.

123



112 Ann Oper Res (2018) 265:93–118

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes were made.

Appendix: Global optimization test problems

Wepresent the 22 box-constrained test problems selected among problems that are frequently
used for testing global optimization algorithms.Most of these problems are presented inMon-
taz Ali et al. (2005); however, the problems 6, 7, 12, 16, 20, and 21 are taken from Schwefel
(1981), Bersini et al. (1996), Dixon and Price (1999), Gould et al. (2003) and Rahnamyan
et al. (2007), respectively. The problems selected are suitable for testing the algorithm pre-
sented because the significance of the influence on the function values differs between subsets
of the variables. The only exception is Problem 2, which is selected in order to investigate
whether the algorithm can be successful also when all of the variables influence the objective
function to a similar extent. The tolerance parameter εp > 0 is stated for each problem p.

1. Aluffi-Pentini problem (Aluffi-Pentini et al. 1985):

minimize
x∈R2

f (x) := 0.25x41 − 0.5x21 + 0.1x1 + 0.5x22 ,

subject to xi ∈ [− 10, 10], i = 1, 2. The problem has two local minima; one is global,
located at (− 1.0465, 0)T,with the optimal objective value f ∗ ≈ − 0.3523. The tolerance
parameter value is ε1 := 0.05.

2. Becker and Lago problem (Price 1983):

minimize
x∈R2

f (x) := (‖x1‖ − 5)2 + (‖x2‖ − 5)2,

subject to xi ∈ [− 10, 10], i = 1, 2. The function has four global minima, located at
(± 5,± 5)T with f ∗ = 0. The tolerance parameter value is ε2 := 0.025.

3. Branin problem (Dixon and Szegö 1978):

minimize
x∈R2

f (x) := a(x2 − bx21 + cx1 − d)2 + g(1 − h) cos(x1) + g,

where a = 1, b = 5.1/(4π2), c = 5/π , d = 6, g = 10, h = 1/(8π), subject to x1 ∈
[− 5, 10] and x2 ∈ [0, 15]. The globalminima are located at (−π, 12.275)T, (π, 2.275)T,
and (3π, 2.475)T, with f ∗ = 5π/4. The tolerance parameter value is ε3 := 0.025.

4. Camel back—three-hump problem (Dixon and Szegö 1978):

minimize
x∈R2

f (x) := 2x21 − 1.05x41 + 1

6
x61 + x1x2 + x22 ,

subject to xi ∈ [− 5, 5], i = 1, 2. The problem has three local minima; one of them is
global, located at (0, 0)T with f ∗ = 0. The tolerance parameter value is ε4 := 0.01.

5. Camel back—six hump problem (Dixon and Szegö 1978):

minimize
x∈R2

f (x) := 4x21 − 2.1x41 + 1

3
x61 + x1x2 − 4x22 + 4x42 ,

subject to xi ∈ [− 5, 5], i = 1, 2. The objective function is symmetric around the
origin and has three conjugate pairs of local minima, two of them are global, located
at ± (0.089842,− 0.712656)T, with f ∗ ≈ −1.0316. The tolerance parameter value is
ε5 := 0.01.
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6. Dixon and Price problem (Dixon and Price 1999):

minimize
x∈R20

f (x) := (x1 − 1)2 +
20∑

i=2

i(2x2i − xi−1)
2,

subject to xi ∈ [0, 10], i = 1, . . . , 20. The global minimum is located at x∗
i = 2− 2i−2

2i ,
i = 1, . . . , 20, with f ∗ = 0. The tolerance parameter value is ε6 := 0.05.

7. Explin problem (Gould et al. 2003):

minimize
x∈R120

f (x) :=
10∑

i=1

exp(0.1xi xi+1) +
120∑

i=1

(−10i xi ),

subject to xi ∈ [− 10, 10], i = 1, . . . , 120. The best known solution, which can be
found in Shcherbina et al. (2003), with f (x) = −723756.3, was obtained by the solver
LINGO8 (Ding et al. 2009). The tolerance parameter value is ε7 := 10.

8. Gulf research problem (Moré et al. 1981):

minimize
x∈R3

f (x) :=
99∑

i=1

[
exp

(
− (ui − x2)x3

x1

)
− 0.01i

]2
,

where ui = 25 + [− 50 ln(0.01i)]1/1.5, subject to x1 ∈ [0.1, 100], x2 ∈ [0, 25.6], and
x3 ∈ [0, 5]. The global minimum is located at (50, 25, 1.5)T with f ∗ = 0. The tolerance
parameter value is ε8 := 0.25.

9. Helical valley problem (Wolfe 1978):

minimize
x∈R3

f (x) := 100

[
(x2 − 10θ(x))2 + (

√
(x21 + x22 ) − 1)2

]
+ x23 ,

where

θ(x) =
{

1
2π tan−1 x2

x1
, if x1 ≥ 0,

1
2π tan−1 x2

x1
+ 1

2 , if x1 < 0,

subject to xi ∈ [− 10, 10], i = 1, 2, 3. The objective function is a steep-sided valley
which follows a helical path. The global minimum is located at (1, 0, 0)T with f ∗ = 0.
The tolerance parameter value is ε9 := 0.25.

10. Hosaki problem (Benke and Skinner 1991):

minimize
x∈R2

f (x) := (1 − 8x1 + 7x21 − 7/3x31 + 1/4x41 )x
2
2 exp(−x2),

subject to x1 ∈ [0, 5], x2 ∈ [0, 6]. There are two minima, of which the global minimum
is located at (4, 2)T with f ∗ ≈ −2.3458. The tolerance parameter value is ε10 := 0.01.

11. Kowalik problem (Jansson and Knüppel 1995) (a least squares problem):

minimize
x∈R4

f (x) :=
11∑

i=1

[

ai − x1(1 + x2bi )

(1 + x3bi + x4b2i )

]2

,

subject to xi ∈ [0, 0.42], i ∈ 1, 2, 3, 4. The values of ai and bi are given in Table 4. The
global minimum is located at (0.192, 0.190, 0.123, 0.135)T with f ∗ ≈ 3.0748 × 10−4.
The tolerance parameter value is ε11 := 0.05.
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Table 4 Data for the Kowalik problem

i 1 2 3 4 5 6 7 8 9 10 11

ai 0.1957 0.1947 0.1735 0.16 0.0844 0.0627 0.0456 0.0342 0.0323 0.0235 0.0246

bi 0.25 0.50 1.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0

Table 5 Data for Langerman problem

i ai1 ai2 ai3 ai4 ai5 ai6 ai7 ai8 ai9 ai10 ci

1 9.681 0.667 4.783 9.095 3.517 9.325 6.544 0.211 5.122 2.020 0.806

2 9.400 2.041 3.788 7.931 2.882 2.672 3.568 1.284 7.033 7.374 0.517

3 8.025 9.152 5.114 7.621 4.564 4.711 2.996 6.126 0.734 4.982 1.500

4 2.196 0.415 5.649 6.979 9.510 9.166 6.304 6.054 9.377 1.426 0.908

5 8.074 8.777 3.467 1.863 6.708 6.349 4.534 0.276 7.633 1.567 0.965

Table 6 Data for the Meyer and
Roth problem

i ti vi yi

1 1.0 1 0.126

2 2.0 1 0.219

3 1.0 2 0.076

4 2.0 2 0.126

5 0.1 0 0.186

12. Langerman problem (Bersini et al. 1996):

minimize
x∈R10

f (x) := −
5∑

i=1

ci exp

⎛

⎝− 1

π

10∑

j=1

(x j − ai j )
2

⎞

⎠cos

⎛

⎝π

10∑

j=1

(x j − ai j )
2

⎞

⎠ ,

subject to x j ∈ [0, 10], j = 1, . . . , 10. The global minimum value is f ∗ ≈ −0.965. The
coefficients ai j and ci are given in Table 5. The tolerance parameter value is ε12 := 0.1.

13. Meyer and Roth problem (Wolfe 1978) (a least squares problem):

minimize
x∈R3

f (x) :=
5∑

i=1

[
x1x3ti

(1 + x1ti + x2vi )
− yi

]2
,

subject to xi ∈ [− 10, 10], i = 1, 2, 3. The global minimum is located at
(3.13, 15.16, 0.78)T with f ∗ ≈ 0.4 × 10−4. Table 6 lists the coefficient values for
this problem. The tolerance parameter value is ε13 := 0.15.

14. Miele and Cantrell problem (Wolfe 1978):

minimize
x∈R4

f (x) := [exp(x1) − x2]4 + 100(x2 − x3)
6 + [tan(x3 − x4)]4 + x81 ,

subject to xi ∈ [− 1, 1], i = 1, 2, 3, 4. The number of local minima is unknown but the
global minimum is located at (0, 1, 1, 1)T, with f ∗ = 0. The tolerance parameter value
is ε14 := 0.25.
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Table 7 Data for Price’s
transistor problem

i gi1 gi2 gi3 gi4

1 0.4850 0.7520 0.8690 0.9820

2 0.3690 1.2540 0.7030 1.4550

3 5.2095 10.0677 22.9274 20.2153

4 23.3037 101.7790 111.4610 191.2670

5 28.5132 111.8467 134.3884 211.4823

15. Modified Rosenbrock problem (Price 1977):

minimize
x∈R2

f (x) := 100(x2 − x21 )
2 + [

6.4(x2 − 0.5)2 − x1 − 0.6
]2

,

subject to xi ∈ [− 5, 5], i = 1, 2. This problem has two global minima located at
(0.3412, 0.1164)T and (1, 1)T, with f ∗ = 0, and one additional local minimum. The
tolerance parameter value is ε15 := 0.005.

16. Powell problem (Rahnamyan et al. 2007):

minimize
x∈R20

f (x) :=
20∑

i=1

|xi |i+1 ,

subject to xi ∈ [− 1, 1], i = 1, . . . , 20. The global minimum is located at (0, . . . , 0)T,
with f ∗ = 0. The tolerance parameter value is ε16 := 0.1.

17. Price’s transistor problem (Price 1977):

minimize
x∈R9

f (x) := γ 2 +
4∑

k=1

(α2
k + β2

k ),

where

αk = (1 − x1x2)x3
(
exp[x5(g1k − 10−3g3k x7 − 10−3g5k x8)] − 1

)

− g5k + g4k x2,

βk = (1 − x1x2)x4
(
exp[x6(g1k − g2k − 10−3g3k x7 + 10−3g4k x9)] − 1

)

− g5k x1 + g4k,

γ = x1x3 − x2x4,

and subject to xi ∈ [− 10, 10], i = 1, . . . , 9. The values of the coefficients gik are given
in Table 7. The global minimum is located at (0.9, 0.45, 1, 2, 8, 8, 5, 1, 2)T with f ∗ = 0.
The number of local minima is unknown. The tolerance parameter value is ε17 := 5.

18. Rosenbrock—2-dimensional problem (Moré et al. 1981) (a special case of problem 16):

minimize
x∈R2

f (x) := [100(x2 − x21 )
2 + (x1 − 1)2],

subject to xi ∈ [− 30, 30], i = 1, 2. The global minimum is at (1, 1)T with f ∗ = 0.
The tolerance parameter value is ε18 := 0.01.
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19. Rosenbrock—n-dimensional problem (Moré et al. 1981):

minimize
x∈Rn

f (x) :=
n−1∑

i=1

[
100(xi+1 − x2i )

2 + (xi − 1)2
]
,

subject to xi ∈ [− 30, 30], i = 1, . . . , n (our tests were performed with n = 10). The
global minimum is located at (1, 1, . . . , 1)T with f ∗ = 0; it lies in a narrow, parabolic
valley and is therefore difficult to locate. The tolerance parameter value is ε19 := 1.

20. Schwefel problem (Schwefel 1981):

minimize
x∈R20

f (x) :=
20∑

i=1

⎛

⎝
i∑

j=1

x j

⎞

⎠

2

subject to xi ∈ [− 100, 100], i = 1, . . . , 20. The global minimum is at (0, . . . , 0)T

with f ∗ = 0. The tolerance parameter value is ε20 := 0.5.
21. Tointgor problem (Gould et al. 2003): The complete definition of this quadraticminimiza-

tion problem with 50 variables is given in Toint (1978, Section 3.1). The best solution
with f (x) = 1175.47 was obtained by the solver donlp2 (Spellucci 1998). The tolerance
parameter value is ε21 := 5.

22. Wood problem (Wolfe 1978):

minimize
x∈R4

f (x) := 100(x2 − x21 )
2 + (1 − x1)

2 + 90(x4 − x23 )
2 + (1 − x3)

2

+ 10.1
[
(x2 − 1)2 + (x4 − 12)

] + 19.8(x2 − 1)(x4 − 1),

subject to xi ∈ [− 10, 10], i = 1, 2, 3, 4. The global minimum is located at (1, 1, 1, 1)T

with f ∗ = 0. The tolerance parameter value is ε22 := 0.2.
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