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In most common transport models both in fluid and plasma dynamics, the hierarchy of the moment

equations is closed by applying the Boussinesq hypothesis that turbulent stresses are linearly proportional

to mean strain rates. The reasoning behind this is the assumption of Markovian, Gaussian, uncorrelated

stochastic processes which allow for a relaxation of the energy of the turbulent fluctuations to dissipative

scales much the same way as molecular frictions similar to the Newton’s law of viscosity. This implies

for example in plasmas, the divergence of the heat flux can be defined as a local, diffusive process :

∇ ·Q(r, t) =
∂

∂r
(χ(r, t)

∂

∂r
P(r, t)), (1)

with P = nT being the plasma pressure and n and T are the plasma density and temperature respectively.

χ is the diffusion coefficient with the dimensionality of [L2/s]. A fundamental limitation with this ap-

proximation is that it can not reproduce key features of nonlinear systems, that can display a tendency

toward self-organisation. They can be non-local and intermittent in space and time, e.g., fluctuations can

be bursty in time and be distributed sparsely in space, with turbulent patches intermixed with laminar

ones. It is nowadays recognised that transport phenomena induced by turbulence must be interpreted in

the framework of anomalous diffusion. Anomalous transport is characterised by non-Gaussian (e.g. ex-

hibit power-law tails) self-similar nature of the PDFs of particle displacement, and the anomalous scaling

of the moments. There is a wealth of experimental evidence that in fusion plasmas the nature of turbulent

heat transport is anomalous, and non-local (non-diffusive) [1,2].

In order to go beyond the limiting assumptions made to obtain (1), we introduce the following gener-

alised form for the divergence of the flux as:

∇ ·Q(r, t) = S
∂ α

∂rα
P(r, t), (2)

where α is the index of the corresponding fractional derivative [3]. S is the anomalous-diffusion transport

coefficient with the dimensionality of [Lα/s]. Thus, for α = 2, we will recover a similar diffusive model

as (1), and for α = 1 we obtain a convective transport model. For α < 2 the transport is so-called super-

diffusive while for α > 2 the transport is considered sub-diffusive. To understand the implications of

super- or sub- diffusive transport, it is easier to consider the Fourier representation where the rate of the

decay of the energy from large scales to small, dissipative scales is of the form of |k|α . This means that

the rate of dissipation of the turbulent energy is determined by the exponent α . For a diffusive system

(α = 2) thus, the transport processes lead to a stronger energy dissipation than for a super-diffusive
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system (e.g. α = 1), where the energy remains significantly high even at smaller scales. This will have

an important consequence on the active energy channels in the system, since this means that the turbulent

energy of smaller scales, e.g. electron scales, will not be as strongly damped as assumed with a diffusive

model.

Here a method is proposed in order to determine the values of the fractional index of the heat flux α

through power balance analysis. To define αs (s = e, i indicates the species), we propose to make use of

the Fourier representation of the energy conservation equation in the general form as (see Ref. [3]):

3
2

∂

∂ t
P̂s(k, t)−|k|αsP̂s(k, t) = Ĥs(k, t). (3)

Here, H is the net heating due to Ohmic, NBI and RF heating minus the radiation losses and we have

assumed Ss = 1, which means that all the physics of collisional, neoclassical and turbulence processes,

is contained within the fractional index αs. Through power balance analysis using (3), we can find the

following expression for αs:
αs =

log( Ĥs−(3/2)∂t p̂s

−P̂s
)

log |k|
. (4)

The method is used to study the nature of the heat transport in a selected set of recent JET H-mode

plasmas using the data from TRANSP interpretative runs [4].

Both ion and electron energy transport channels are found to be of super-diffusive nature in all the

selected plasmas with significantly higher degrees of super-diffusivity in the electron energy transport

channel than for the ions with αe ∼ 0.5 while αi ∼ 1. The super-diffusivity level of the energy transport

in the plasma edge is found to be lower than in the plasma core in both ion and electron channels, in

agreement with the reduced transport observed in the pedestal region of the plasma edge. The proposed

fractional transport model therefore, is expected to reproduce local as well as non-local aspects of heat

transport in fusion plasmas, which will be an important factor for the successful operation of the future

machines such as ITER tokamak.
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