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Abstract We consider finite area convex Euclidean circular sectors. We prove a vari-
ational Polyakov formula which shows how the zeta-regularized determinant of the
Laplacian varies with respect to the opening angle. Varying the angle corresponds
to a conformal deformation in the direction of a conformal factor with a logarithmic
singularity at the origin. We compute explicitly all the contributions to this formula
coming from the different parts of the sector. In the process, we obtain an explicit
expression for the heat kernel on an infinite area sector using Carslaw—Sommerfeld’s
heat kernel. We also compute the zeta-regularized determinant of rectangular domains
of unit area and prove that it is uniquely maximized by the square.
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1 Introduction

Polyakov’s formula expresses a difference of zeta-regularized determinants of Laplace
operators, an anomaly of global quantities, in terms of simple localquantities. The
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main applications of Polyakov’s formula are in differential geometry and mathematical
physics. In mathematical physics, this formula arose in the study of the quantum theory
of strings [37] and has been used in connection to conformal quantum field theory [6]
and Feynman path integrals [18].

In differential geometry, Polyakov’s formula was used in the work of Osgood et al.
[35] to prove that under certain restrictions on the Riemannian metric, the determinant
is maximized at the uniform metric inside a conformal class. Their result holds for
smooth closed surfaces and for surfaces with smooth boundary. This result was gener-
alized to surfaces with cusps and funnel ends in [2]. The techniques used in this article
are similar to the ones used by the first author in [3] to prove a Polyakov formula for
the relative determinant for surfaces with cusps.

We expect that the formula of Polyakov we shall demonstrate here will have appli-
cations to differential geometry in the spirit of [35]. Our formula is a step towards
answering some of the many open questions for domains with corners such as polyg-
onal domains and surfaces with conical singularities: what are the suitable restrictions
to have an extremal of the determinant in a conformal class as in [35]? Will it be
unique? Does the regular n-gon maximize the determinant on all n-gons of fixed area?
What happens to the determinant on a family of n-gons which collapses to a segment?

1.1 The Zeta-Regularized Determinant of the Laplacian

Consider a smooth n-dimensional manifold M with Riemannian metric g. We denote
by A, the Laplace operator associated to the metric g. We consider the positive
Laplacian A, > 0. If M is compact and without boundary, or if M has non-empty
boundary and suitable boundary conditions are imposed, then the eigenvalues of the
Laplace operator form an increasing, discrete subset of R™,

O<A <A =SA3=---.

These eigenvalues tend toward infinity according to Weyl’s law [43],

0 Qn)k

2

i —————, ask — oo,
wnVol(M)

where w,, is the volume of the unit ball in R”.

Ray and Singer generalized the notion of determinant of matrices to the Laplace—
de Rham operator on forms using an associated zeta function [38]. The spectral zeta
function associated to the Laplace operator is defined for s € C with Re(s) > 5 by

’(s) == Z A
Ae>0

By Weyl’s law, the zeta function is holomorphic on the half-plane {Re(s) > n/2}, and
itis well known that the heat equation can be used to prove that the zeta function admits
a meromorphic extension to C which is holomorphic at s = 0 [38]. Consequently, the
zeta-regularized determinant of the Laplace operator may be defined as

@ Springer



A Polyakov Formula for Sectors 1775

det(A) :=e ¢ O, (1.1)

In this way, the determinant of the Laplacian is a number that depends only on the
spectrum; it is a spectral invariant. Furthermore, it is also a global invariant, meaning
that in general it cannot be expressed as an integral over the manifold of local quantities.

1.2 Polyakov’s Formula for Smooth Surfaces

Let (M, g) be a smooth Riemannian surface. Let g; = ¢>*® g be a one-parameter
family of metrics in the conformal class of g depending smoothly on ¢ € (—e, €) for
some € > 0. Assume that each conformal factor o (¢) is a smooth function on M. The
Laplacian for the metric g; relates to the Laplacian of the metric g via

Ay =e WA,

t

The variation of the Laplacian for the metric g; with respect to the parameter ¢ is

O Ag,| 20" (0)Agy, g0 =e"0g. (1.2)

=0 —
In this setting, Polyakov’s formula gives the variation of the determinant of the

family of conformal Laplacians A,, with respect to the parameter ¢ of the conformal
factor o (1), [2,23],

d; log det (Ag;) = o/(t)ScaI,dAgt + 0; log Area (M, g;), (1.3)

247 Jy

where Scal, denotes the scalar curvature of the metric g;. This is the type of formula
that we demonstrate here and may refer to it as either the differentiated or variational
Polyakov formula or simply Polyakov’s formula. The classical form of Polyakov’s
formula is the “integrated form” which expresses the determinant as an anomaly; for
a surface M with smooth boundary it was first proven by Alvarez [4]; see also [35].
There are two main difficulties which distinguish our work from the case of closed
surfaces: (1) the presence of a geometric singularity in the domain and (2) the presence
of an analytic singularity in the conformal factor.

1.3 Conical Singularities

Analytically and geometrically, the presence of even the simplest conical singularity, a
corner in a Euclidean domain, has a profound impact on the Laplace operator. As in the
case of a manifold with boundary, the Laplace operator is not essentially self-adjoint.
It has many self-adjoint extensions, and the spectrum depends on the choice of self-
adjoint extension. Thus, the zeta-regularized determinant of the Laplacian also depends
upon this choice [33]. In addition, conical singularities add regularity problems that
do not appear when the boundary of the domain or manifold is smooth.

@ Springer



1776 C. L. Aldana, J. Rowlett

In recent years there has been progress towards understanding the behavior of the
determinant of certain self-adjoint extensions of the Laplace operator, most notably the
Friedrichs extension, on surfaces with conical singularities. This progress represents
different aspects that have been studied by Kokotov [22], Hillairet and Kokotov [19],
Loya et al. [26], Spreafico [40], and Sher [39]. In particular, the results by Aurell and
Salomonson [5] inspired our present work. Using heuristic arguments they computed
a formula for the contribution of the corners to the variation of the determinant on
a polygon [5, Eq. (51)]. Here we use different techniques to rigorously prove the
differentiated Polyakov formula for an angular sector. Our work is complementary
to those mentioned above since the dependence of the determinant of the Friedrichs
extension of the Laplacian with respect to changes of the cone angle has not been
addressed previously. In addition, our formula can be related to a variational principle.

1.4 Organization and Main Results

In Sect. 2, we present the framework of this article and develop the requisite geometric
and analytic tools needed to prove our first main result, Theorem?2 below. In Sects.
3 and 6, we prove the following theorem which is a key ingredient in the proof of
Theorem 2.

Theorem 1 Let My denote the multiplication operator by the function f, so that for
a function ¢,

Let S, denote a finite circular sector of opening angle a € (0, 1), and let e '3«
denote the heat operator associated to the Dirichlet extension of the Laplacian. Then,
the operator M(]Hog(r))e_m“ on Sy is trace class and its trace admits an asymptotic

expansion att — 0 of the form

—tA —1 _1
Trs, (M(tiogirne " 4) ~ aot ™' +ait™2 + az o log(t)
+ax1+ 0 (t”z). (1.4)

The trace in Theorem 1 can be rewritten as the following integral:

Trs, (M(t1ogene ) = | (1 +log(r)Hs, (t, r, ¢, r, p)rdrds,
Sa

where Hs, denotes the Schwartz kernel of e~ 14 also called the heat kernel. Our next

theorem is a preliminary variational Polyakov formula.
Theorem 2 Let {S,}, c(0,7) be a family of finite circular sectors in R?, where S, has

opening angle y and unit radius. Let A, be the Euclidean Dirichlet Laplacian on S, .
Then for any o € (0, m)
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A Polyakov Formula for Sectors 1777

9 2
M (—log (det(4,))) T (—vear0+az)- (1.5)

Above, Y. is the Euler constant, and ay is the coefficient of log(t) and aj
is the constant coefficient in the asymptotic expansion as t — 0 given in Eq.
(1.4).

If the radial direction is multiplied by a factor of R, which is equivalent to scal-
ing the metrics by R?, then the determinant of the Laplacian transforms is given
as

det (Ay) > R™%2D et (A,) .

The proof of the preceding results comprises Sects. 2 and 4. In Sect. 5 we prove the
following theorem. Its proof not only illustrates the method we shall use to compute
the general case of a sector of opening angle o € (0, ) but also shall be used in the
proof of the general case.

Theorem 3 Let S; /2 C R? be a circular sector of opening angle 1 /2 and radius one.
Then the variational Polyakov formula is

__Ve+ 5

’

ad
gy loslan(as )| =

where v, is the Euler—Mascheroni constant.

In Sect. 6 we determine an explicit formula for Sommerfeld—Carslaw’s heat kernel
for an infinite sector with opening angle «. This allows us to compute the contribution
of the corner at the origin to the variational Polyakov formula, completing the proof of
Theorem 1. Moreover, these calculations allow us to refine the preliminary variational
Polyakov formula by determining an explicit formula.

Theorem 4 Assume the same hypotheses as in Theorem 2. Let

7 T 1 . T
Kmin = S | and kmax = LZJ if o ¢ 7, otherwise kmyx = e 1,

and

Wo = {k & (2 thnin: kmax]) \ {%’}M} :
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1778 C. L. Aldana, J. Rowlett

Then

il b4 1
5y (loe(@et(4)))], = 3+ 157

—2ye +log(2) — log (1 — cos(2ka))
+ Z 47 (1 — cos(2ka))

keWy
2 . 2
— (1 - 60(’%) 5 sin (n /a)
f‘” Ve +log(2) — log(1 + cosh(s))
—oo 167 (1 + cosh(s))(cosh(ws/a) — cos(w?/a))

where n € N is arbitrary and 6, = denotes the Kronecker delta.
‘n

Here is a short list of examples. Let us denote

S) == % (—log (det (4,)))

y=a

Then S(«) and the set W, have the following values:
1) a=2, Wy ={(-2, £1}, S(F) = 3L + %2 4 T ~ 0.2764;

- 4m
@ae=5 Wr={-11,5(§) = *Ve+1°g<2> & ~02837;
B)a=%, W

={-1}, 8(5) =2+ ~0. 0867
4) Forua € ]2, [, Wy = 0, but sin(nz/a) # 0. Thus, the integral in Theorem 4
determines S(«). For example, with o = 27”, the integral converges rapidly,

and a numerical computation gives an approximate value of 0.0075015. Hence
S(&) ~ 0.0933723.

Generalizing our Polyakov formula to Euclidean polygons shall require additional
considerations because one cannot change the angles independently. We expect that
the results obtained here will help us to achieve these generalizations with the eventual
goal of computing closed formulas for the determinant on planar sectors and Euclidean
polygons. In the latter setting one naturally expects the following:

W[

SE)

Conjecture 1 Among all convex n-gons of fixed area, the regular one maximizes the
determinant.

We conclude this work by proving in Sect. 7 the following result which shows that
for the case of rectangular domains, the conjecture holds.

Theorem 5 Let R be a rectangle of dimensions L x L™'. Then the zeta-regularized
determinant is uniquely maximized for L = 1, and tendsto Oas L — 0 or equivalently
as L — oo.

2 Geometric and Analytic Preliminaries

In this section we present the framework of this article and fix the geometric and
analytic tools required to prove our results.

@ Springer



A Polyakov Formula for Sectors 1779

2.1 The Determinant and Polyakov’s Formula

Let us describe briefly the classical deduction of Polyakov’s formula, since we will
use the same argument. Let (M, g) be a smooth Riemannian surface with or without
boundary. If aM # (, we consider the Dirichlet boundary condition, in which case
Ker(A,) = {0}.

Let H, (2, z, 7") denote the heat kernel associated to Ayg. It is the fundamental
solution to the heat equation on M

(Ag +8) He(t, 2, 2) =0 (t > 0),
H(0, z, 2) = 8(z — 2.

The heat operator, e’ A¢ fort > 0, is trace class, and the trace is given by

Tr (e_’Aé’) =/ H,(t, z, 2)dz = Z e M
M

2e>0

The zeta function and the heat trace are related by the Mellin transform

1 oo
Ea,(s) = mfo £ Tr (€74 — Pier(a,)) dt, (2.1)

where Pger( Ag) denotes the projection on the kernel of Ayg.
It is well known that the heat trace has an asymptotic expansion for small values of
t [13]. This expansion has the form

Tr (e_tAg) =a0t_1 -|—a]t7Tl +a+ O <t%) .

The coefficients a; are known as the heat invariants. They are given in terms of the
curvature tensor and its derivatives as well as the geodesic curvature of the boundary
in case of boundary. By (2.1) and the short time asymptotic expansion of the heat trace

B 1 ao aiy a — dim(Ker(A4,))
£a,(5) = I'(s) Is—l +s— *

where e(s) is an analytic function on Re(s) > —1. The regularity of {4, ats = 0 and
hence the fact that the zeta-regularized determinant of the Laplacian is well defined
by (1.1) both follow from the above expansion together with the fact that I"(s) has
simple pole at s = 0.

Let {o(7), T € (—¢€, €)} be a family of smooth conformal factors which depend
on the parameter t for some € > 0. Consider the corresponding family of conformal
metrics {h; = e Dg, t € (—¢, €)}. To prove Polyakov’s formula one first differen-
tiates the spectral zeta function ¢4, (s) with respect to 7. This requires differentiating
the trace of the heat operator. Then, after integrating by parts, one obtains

+€(S)},

1
2
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1780 C. L. Aldana, J. Rowlett

o0
is) /(; 57T (ZM(,/(T) (e_[AhT — PKer(A;,T))) dr,

8T§Ahr (S) = T

where M, () denotes the operator multiplication by the function o/(7). The integra-
tion by parts is again facilitated by the pole of I'(s) ats = 0.
If the manifold is compact, and the metrics and the conformal factors are smooth,

then the operator /\/l(,/(t)e_’ 4ir is trace class, and the trace behaves well for ¢ large.
As t — 0 the trace also has an asymptotic expansion of the form

Tr (Mgr(rye " 2) ~ ag (o' (), he) 1" +a) (o (), he) 12
+ay (g’(r), ht) — dim (Ker (Ahf)) + O (t%> .

The notation a (¢'(t), h.) is meant to show that these are the coefficients of the given
trace, which depend on o’(7) and on the metric /.. The dependence on the metric is
through its associated heat operator.

Therefore, the derivative of ¢ /Ah, (0) at T = 0 is simply given by

0:8h,, O] _ =2(a2 (o/(0), ho) —dim (Ker (44,)))

Polyakov’s formula in (1.3) is exactly this equation.

2.2 Euclidean Sectors

Let S, C RR? be a finite circular sector with opening angle y € (0, ) and radius R.
The Laplace operator A, with respect to the Euclidean metric is a priori defined on
smooth functions with compact support within the open sector. It is well known that

the Laplacian is not an essentially self-adjoint operator since it has many self-adjoint
extensions; see, e.g., [12,25]. The largest of these is the extension to

Domms (4,) = {u € L2(5,) 14,u € L2(5,)}.

For several reasons the most natural or standard self-adjoint extension is the
Friedrichs extension whose domain, Domg (4, ), is defined to be the completion of

C5° (Sy) w.rtthe norm ||V £l 2,
intersected with Domyyy . For a smooth domain £2 C R2, it is well known that
Domg (Ag) = H} (2) N H(2).

The same is true if the sector is convex which we shall assume; see [16, Theorem
2.2.3] and [24, Chap. 3, Lemma 8.1].

@ Springer



A Polyakov Formula for Sectors 1781

Remark I Let S = S, g be a planar circular sector of opening angle y € (0, m),
radius R > 0, and §" = S, g be a circular sector of opening angle ¥’ € (0, 7) and

radius R’ > 0. The map TS — S defined by 1(p, 6) = (Rﬂ V‘)) =, ¢
induces a bijection

T*CX(S) —> C(S), fr> T fi=foT

This bijection extends to the domains of the Friedrichs extensions of the corresponding
Laplace operators. Furthermore, under this map, the corresponding L? norms are
equivalent, i.e., there exist constants ¢, C > 0 such that for any f € L2(S’ ),

cllfllzsy < 1T fllezsy < Clf llagsy-

The same holds for the norms on the corresponding Sobolev spaces H* for k > 0.
In spite of inducing an equivalence between the different domains, this map is not
useful for our purposes since it does not produce a conformal transformation of the
Euclidean metric.

To understand how the determinant of the Laplacian changes when the angle of
the sector varies requires differentiating the spectral zeta function with respect to the
angle

§sy( )_—

A
ay F(s) "Trpas, g (6777 = Preray) di. (2:2)

In order to do that we use conformal transformations. Varying the sector is equiv-
alent to varying a conformal family of metrics with singular conformal factors on a
fixed domain.

2.2.1 Conformal Transformation from One Sector to Another

Let (r, ¢) denote polar coordinates on the sector S, . We assume that the radii of all
sectors are equal to one. Let « € (0, m) be the angle at which we shall compute the
derivative and Q = Sg be a sector with opening angle 8 < a. We use (p, 6) to denote

polar coordinates on Q.
Consider the map

W, 0 S, (p. 9)&—)( vIB, 2) r, $). 2.3)

The pull-back metric with respect to ¥, of the Euclidean metric g on S, is

2
)4 _
hy = ll/;g = <E) pz)’/ﬂ 2 (d,O2 + p2d92)

= 2% (d,o2 + ,02d02) , (2.4)
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1782 C. L. Aldana, J. Rowlett

o, (p, 0) = log (%py/ﬁ—l) — log <%) n (% — 1) log p. (2.5)

We will consider the family of metrics

{h)/s Y € [/3’ 7T)},

defined by (2.4) on the fixed sector Q = Sg.
The area element on Q with respect to the metric &, is

dAy, =€ pdpdd = e*7dA,, (2.6)

and the Laplace operator Ap,, associated to the metric &, is formally given by

2
A, = - <E) oI (24 o0, 4 20 =2 A, @)
y

where A := Ag = —8'(2) - ,o_lap — ,0_28(3 is the Laplacian on (Q, g).
The transformation ¥, induces a map between the function spaces

WrCX(Sy) = C(Q), [ W)ifi=foW.

Proposition 1 Fory > B, the map llf;‘ is an isometry between the Friedrichs domain
of Ap, on Q and the domain of the Friedrichs extension of A, on the sector S, .
Moreover,

vy (Dom (4,)) = Dom (Ahy) =H’ (Q. hy)N Hy (Q. hy).

with Ap, = e =20y Ag.

This proposition is a direct consequence of the following two lemmas.
Lemma 1 The map ¥, defined by Eq. (2.3) is an isometry lI/;‘ between the Sobolev
spaces H(} (Q, hy) and H(} Sy, gy)-
Proof As before, let (r, ¢) denote the coordinates in S,,, and let (p, 6) denote the
coordinates in Q. The volume element in Q and the Laplacian for the metric &, are
given in (2.6) and (2.7), respectively.

The transformation ¥ extends to the L? spaces. The fact that ¥, is an isometry

between L2(Sy, g)and L*(Q, h, ) follows from a standard change of variables com-
putation. For f: S, — R, we compute that the L% norms of f € L2(S,,, g) and llf;‘f

in L(Q, h,) coincide:

2
2 Y _
/ |f(r, ¢)|2rdrd¢=/ |fow,| (Z) p> 7 dpde
Sy 0] B
2
:f ‘l]/;f‘ 2% pdpdo.
0
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Next let f € Hl(Sy, g). To prove that llf*f € HI(Q hy) we show that the L%-
norms |dfl12s,, g and [df 0 d¥, |l 2(g, s, are identical. Since ldfI; = Ve fIP =

g7 @)@ 1),
0
<a§>) ) o ¥, (p, 9)) e pdpd6.

st (22

Using ¥ f = f o ¥, (p, 0) we have

af
ar

B 1 yp 0% S *f f

(¥ (. 0) = Zp 50 ag (0 0) =

p vy
y 90

Substituting above, we obtain

oy f
verfan, = [ (o=t
/Sy|gf| g 0 V,O op

\_/
+

N
p /P (é%) )eZprdpdg

y 00
2 Jw* 2 1 oW 2
:/ (Epl—y/ﬁ) ( Vf) +_2<E_Vf> e pdpdo
o \V ap p=\y 06
lp* 2 W* 2
=/e_2"y <M> +i2(8 yf) e pdpdh
0 ap P a0
=/ Vi, w* f|* dAy, .
0
This completes the proof. O

Lemma 2 The map lll;‘ is an isometry between the Sobolev spaces H*(Q, hy) and
H?(Sy, g). A function f € H*(Q, hy) if and only if W* f € H*(S,, g).

Proof Let f € H*(Q, hy). By definition ¥ f = (f o ¥,)(p, 6), so

2
2 2 RWEf  1AWEF 1 PWESf
‘Ahﬂ’y*f) =<§> p ’SH( G e M R vzl B

o> p oo p? 202
Since
2 2
20 207 f
B v, (p, 6
9p ) 3 ( y(p ))
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1784 C. L. Aldana, J. Rowlett

it is easy to see that
« o|? 2 20
‘Ahylllyf‘ dAy, = (yAgf\ olI/y)(p, 0)e?7dA,
0 0

[ st

Y

where the last equality follows from the standard change of variables, and g denotes
the Euclidean metric on both Q and S, . O

Example I Lety € [B, m), and h, be as above. Let p(p, 0) := p* sin(kn6/p). Itis
easy to see that

e g€ L¥(Q, hy) & x> —y/B,
e 9 HY(Q, hy) & x >0,

e ¢ € HX(Q, hy) & x> §.

The example above shows that the domain of the Laplacian Aj, depends on the
angle, and in particular, it will be different for different angles. As a consequence
several problems appear here that distinguish this case from the classical smooth case
and force us to go into the details of the differentiation process.

2.2.2 Domains of the Laplace Operators

Even though the description of the domains of the family of Laplace operators
{An,, v = B} given in the previous section is useful for our purposes, it is not
enough. Unlike the smooth case, this family does not act on a single fixed Hilbert

space when y varies but instead we will demonstrate below that they act on a nested
family of weighted, so-called “b”-Sobolev spaces.

Definition 1 The b-vector fields on (S, g), denoted by V}, are the C* span of the
vector fields

Vp :=C*> spanof {rd,, 95},

where C*° means that the coefficient functions are smooth up to the boundary. For
m € N, the b-Sobolev space is defined as

H = f IV Vi f e L2(Sy. @) Vi =m Y Vi,V ey,
and H19 = L2(S, g). The weighted b-Sobolev spaces are
PFHY ={f13ve H', f=rv}.

We first apply results due to several authors, including but not limited to, Mazzeo
[28, Theorem 7.14] and Lesch [25, Proposition 1.3.11].
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Proposition 2 The Friedrichs domain of the Laplace operator A, on the sector S,
with Dirichlet boundary condition is

Dom (4,) = r*H} N Hy (S,, g) .

Proof By [29, Eq. (19)] and [28, Theorem 7.14] (c.f. [25, Proposition 1.3.11]), any
element in the domain of the Friedrichs extension of Laplacian A, has a partial
expansion near r = 0 of the form

Z c;irVii(@) +w, weriH}
yj€l—n/2, —n/2+2)

In our case the dimension n = 2, and the indicial roots y; are given by
Vi = £V,

where 1 ; is an eigenvalue of the Laplacian on the link of the singularity, and v; is
the eigenfunction with eigenvalue w ;. The link is in this case [0, y] with Dirichlet

boundary condition. These eigenvalues are therefore j1 ; = ’i—’;z withj e N, j > 1.In
particular, there are no indicial roots in the critical interval ] — 1, 1], because y < m.
Taking into account the Dirichlet boundary condition away from the singularity, it
follows that the domain of the Laplace operator is precisely given by

r?Hj (Sy) N Hy (Sy. 8)-
o

The operators Ahy, albeit each defined on functions on Q, have domains which
are defined in terms of L2(Q, dAhy). In particular, the area forms depend on y.
Consequently, in order to fix a single Hilbert space on which our operators act, we use
the following maps

@y L2 (0. dAr,) = L3(Q. dA), [ e f = Lp?
@, L2(Q. dA) — L (Q, dAy,), frre 7 f = gp_y/ﬁ“f- (2.8)

Each ®,, is an isometry of L?(Q, dA;,) and L?(Q, dA), since
f F2dAy, = f f2e2rdA = / (@, £) dA.
0 0 0

Proposition 3 Forall y € [B, ), we have

®,, (Dom (Ap,)) S p™/PHF(Q, dA) N Hy (Q, dA).
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1786 C. L. Aldana, J. Rowlett

Moreover,
@, (Dom (44,)) € @, (Dom (43,,)). ¥ <.
Proof Let us start by comparing the Hb2 spaces. To do this, we first compute

r=p""* = po, = %rar;

8o = %a¢, — C™(pd,, d5) =C>(rd,, dy).

Now, let f € r?H?(S,), so by definition f(r, ¢) = r’u(r, ¢) with u € HA(S,).
Then

(9:7) 0. 0) = 1 (7% y0/B) = p/* (5u) (. O).

Consequently,
w; (H(S,)) = HE (0. dAs,)
= p 7P H(Q, dA),
vy (RHE(5,)) = PP HE (0. dA,)
= p?/PHF(Q, dA),
and

@, (w5 (PPHE(S,))) = @y (077 HE(Q. da))
= p?""PH(Q. dA) € p*Hj(Q, dA),

for y € [B, m). Moreover, we have
Dom (4,) = p*/PH; (Q, dA) N Hy(Q, dA).
It is straightforward to see that
y' <y = p?/PHLQ. dA) C p? P H}(Q. dA).
Now, we claim that
@, (Hol (0, dAs,) N /P HE (0, dAhy)> C HL(Q, dA).

Note that C;°(Q) is independent of /,,. Then, it is enough to show that for any f €
Dom(A4y,) the L2(Q, dA)-norms of @, f and V(®,, f), can be estimated using the
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factthat f € HOl (Q, dAhy) N /07’/'3'H Hl?(Q, dA). By definition, ®,, is an isometry of
L*(Q, dAp,) and L?(Q, dA). So we only need to prove that V(®,, f) € L?(Q, dA).
To do this, we compute

/Q |V, f|* dAn, = / 2 ((00£)° + 072 (00 )?) 277 dA

= / IV FI7dA.
0

Next we compute

RIS / (0,07 £ + 072 (007 1)7) 44

Qo
ZO'V + p—2 (aef)2) + (apeo'y)2 f2
+2( ﬂea )e"yf(apf)}dA

m\

The first term,
. 2
/Q 7 ((8,0)" + 072 0.)?) dA = / |Vf|2pzﬁ‘2%dA
< ﬂ2/ |V, f| dAp,,

smce Z>1, pﬂ 2<lonQ.

To estlmate the second term, we use that f € pV/ B+l Hf(Q, dA), therefore

/ (3,e%7)” f2dA = c/ 2 4aA 5/ 2o 77 1dA < oo,
0 0 0

2
where ¢ = }’; o ﬂf )~ and we have used again that y > p. For the third term we
compute

/ (8,677 ) €% f (3, f) dA = c/ P53 (9,1) dA
0 0
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Since f € p?/PHIHZ(Q, dA), write f = 05 with u e HZ(Q, dA). Then
/ 12744 = / p 22544 A < oo,

since y > B, andu € HZ(Q, dA) C L*(Q, dA).
Now, for the integral f 0 (pdp f )2 pz%_4dA we compute

(03, )" = <%+1> p ¥ 2+2</3 +1) 25424 (pd,) u
2
+0 72 ((00y) ).
Since u € HX(Q, dA) and y > B
uzp‘%_sz < 00, and 00,)u 2/o4%_2dA < 00.
14
0 0

By the Cauchy—Schwarz inequality,

12 12
/u((pap)u)p“?‘szg(/ u2p4§‘2dA) <f (papu)zp“Z‘ZdA) <o0.
0 0 0

Putting everything together, we have proven that
>, (w; (Dom (Ay))) c pP/PH2(Q, dA) N HL(Q, dA).
In order to see that for 8 <y’ < y < m,

@, (5 (Dom (4,))) € @, (¥ (Dom (4,))).
we first note that
o, (vp;‘ (Dom (Ay))) C p?PHZ(Q, dA) € p¥ 1P HR(Q, dA).
Finally, in order to show that

FeH (0. da )N PR, dA) = @70, fend (0. dAn, ). ¥ <y,

simply note that the L? norm of Vhy, (45;,145), f) can be estimated in the same way as
above using the fact that ¥’ < y, and therefore y — 3’ > 0. m|
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2.2.3 The Family of Operators

Finally, let us introduce the family of operators that we will use to prove Polyakov’s
formula. Let us define H,, as

H),::cbyowyoAyolI/y_lo¢;l:Q)VOAhyo@y_l. 2.9)

The domains of the family {H, }, nest
p<y <y = Dom(H,) C Dom (H,’) C Dom(A),

where A is the Laplacian on Q.

3 Short Time Asymptotic Expansion

In order to prove the trace class property of the operator M 1+10g(,))e_ma on Sy and
the trace class property of the operators appearing in the proof of Proposition5 in
Sect. 4 below, we need estimates on the heat kernel. We do not need a sharp estimate;
a general estimate in terms of the time variable is enough for our purposes.

3.1 Heat Kernel Estimates

The heat kernel estimates we require follow rather quickly from [1,10].
Proposition 4 Let S denote a finite Euclidean sector. Then the heat kernel of the

Dirichlet extension of Laplacian on S satisfies the following estimates

C
|H(t, z, 7)) < —,

0 H(t, 2, 2)| < t%

forallz, 7 € S, andt € (0, T), where C > 0 is a fixed constant which depends only
on the constant T > 0.

Proof Sectors are both rather mild examples of stratified spaces. Consequently, the
heat kernel satisfies the estimate (2.1) on [1, p. 1062]. This estimate is

H(t, z,Z)<Ci™', Vz, 2 €S, Vie (D), G.1

since the dimension n = 2.
Next, we apply the results by Davies [10] which hold for the Laplacian on a general
Riemannian manifold whose balls are compact if the radius is sufficiently small. These

minimal hypotheses are satisfied for sectors. By [10, Lemma 1],

|H(t, z, 2)* < H(t, z, 2H(t, 7', 2),
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forallz, 77 € S, and all r > 0. If T < 1, then this estimate together with (3.1) gives
the first estimate in the proposition. In general, by [10] the function ¢t — H (¢, z, 2)
is positive, monotone decreasing in ¢, and log convex for every z. For a fixed T > 1,
the estimate (3.1) together with the above shows that

|H(t, z, )> < C? Vi > 1.

So, we simply replace the constant C with the constant CT', which we again denote
by C and obtain the estimate

|H(t, z, 2)> < C*t72, Vie (0, T), Vz,andZ € S.

Next, we apply [10, Theorem 3], which states that the time derivatives of the heat
kernel satisfy the estimates

n

9 H(t /)
otn oL

n!
<
(=)

H(s, z, 2)'?H(s, 2, )%, neN, 0<s<rt.

Making the special choice s = ¢/2 and n = 1, we have
’ 2 1/2 o N1/2
|0, H (1, AZ)!S;H(I/Z z,2) TH(t/2, 7', )"

Using the estimates for the heat kernel we estimate the right side above which shows
that

0iH(t, z, 2)| < C172, ¥1e(0,T), Vz, 7 €S.

m}

Remark 2 By the heat equation, the estimate for the time derivative of the heat kernel
implies the following estimate for the Laplacian of the heat kernel

|AH(t, z, 7)| < Ct72,

forany 0 <t < T, and z, 7/ € S, for a constant C > 0 depending on 7.
We now return to the trace class property of the operators in question.

Lemma 3 Let S denote the finite sector with angle o and radius R, S = Sy g, with
o € (0, 7). Let A denote the Dirichlet Laplacian on S and e ™' be the corresponding
heat operator. Let My, denote the operator multiplication by a function V. Let & be
a smooth function on S\{p = 0} such that £(p) = mlog(p) for a constant m € R on
some neighborhood of the singular point p = 0. Then, for any t > 0 the following
operators

(1) Mge™'2,
(2) MeAe "4,
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(3) AMge"4,
4) Mye "4, where y(p, 0) = O(p~)as p — 0, forc < 1.

are Hilbert-Schmidt. Moreover, the operators Mge_m, /\/lgAe_’A, AM;e"A,
Mye 2, and My Ae™' are trace class.

Proof Recall that an integral operator is Hilbert—Schmidt if the L2-norm of its integral
kernel is finite. Using the estimates given in Proposition4 we have that

[Mye™2|, < Cfs . W@ H(, 2z, 2)*dAdA’
X

R /R
< C(a, R, t)f / p 2t p'dpdp’ < oo,
0 0

t

since ¢ < 1. Hence Mye™ 4 is a Hilbert—Schmidt operator. Similarly,

[Mee, < € [ Jlogo)P (. 2. 2)PdAdn
SxS§
_ R (R
<Ca koo [ [ tosto)Por'dpds’ < o
0 0

since | log(p)|?p is bounded on (0, R). Thus Mge_tA is also Hilbert—Schmidt. Using
the estimates for the kernel of Ae™'4, we can prove in the same way as above that
Mg Ae™" and My, Ae™"4 are Hilbert-Schmidt.

We shall prove now that AMge™ 4/2 is Hilbert-Schmidt. The integral kernel of
AMge "8/ is A (E(2)H(t, z, Z')). By Leibniz’s rule,

AEQ@H(, 2, 7)) = (A6Q)H(1, 2, ) +£(R) (A:H (@, 2, 2))
+2(V;§, V:H).

When considering the integral

/ |A; (E@H(, z, z’))!sz(z)dA(z/),
SxS§

using again the estimates on the heat kernel and that the function £ is smooth away
from the singularity, it is clear that the corresponding terms are all bounded. Near
the singularity, for 0 < p < pg, £(z) = log(p), and Alog(p) = 0. Hence, near the
singularity, we have

A E@H(, 2, 2) =@ (AH(t. 2. 2)) + 207" 0,H (1, p. p'. 0, 0").

The first term corresponds to the operator Mg Ae "4 that is Hilbert-Schmidt. Con-
sidering the second term, we note that, for any ¢ > 0, the heat kernel is in the domain
of the Laplace operator. By Proposition 2 (c.f. Example 1), this requires that the
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heat kernel H € H(Sq, pdpdf) which implies that p~'9,H(t, p, p', 0, 0') €
L2(Sy, pdpdd). Thus

2
f ‘p‘lapH(t, p, P, 0,0 pdpdp'dp’'dd’ < C(t, @),
Sa,poxS

where Sy, denotes the sector with angle o and radius pg and C(¢, «) is a constant
that depends on « and ¢. Hence, the operator whose integral kernel is 2(V,&, V. H) is
Hilbert—Schmidt. Since the sum of two Hilbert—Schmidt operators is Hilbert—Schmidt,
it follows that AMge~"4/2 is Hilbert-Schmidt.

A way to prove that an operator is trace class is to write it as a product of two Hilbert—
Schmidt operators. Since e™’4 is trace class, in particular it is Hilbert-Schmidt.
Therefore using the semigroup property of the heat operator we write

Mge’m _ /\/lge’m/ze’m/z,
which proves that Mge ™ 4 is trace class. The trace class property of the other operators
listed in this lemma follows in the same way. O

3.2 Heat Kernel Parametrix

To prove the existence of the asymptotic expansion of the trace given by Eq. (1.4) and
to compute it, we replace the heat kernel by a parametrix. We construct a parametrix
for the whole domain in the standard way: first we partition the domain and use the
heat kernel of a suitable model for each part, then we combine these using cut-off
functions. We use the following models for each corresponding part of the domain:

(1) The heat kernel for the infinite sector with opening angle « for a small neigh-
borhood, NV, of the vertex of the sector with opening angle «. Denote this heat
kernel by H,. We note that by [41, Lemma 6], we may use the heat kernel for the
infinite sector on this neighborhood.

(2) The heatkernel for R? for a neighborhood A; of the interior away from the straight
edges. Denote this heat kernel by H;.

(3) The heat kernel for the half-plane, Ri, for neighborhoods A, of the straight edges
away from the corners. Denote this heat kernel by H..

(4) The heat kernel for the unit disk for a small neighborhood, NV, of the curved arc
away from the corners. Denote this heat kernel by Hp or H, (this is done in order
to simplify some equations in the proof).

(5) The curved arc meets the straight segments in two corners. For these corners we
consider two disjoint neighborhoods that are denoted by N, at these corners we
use the heat kernel of the upper half unit disk, Hp, or H. (again, this is done in
order to simplify some of the equations).

Let x represent any of the regions introduced above. We define the gluing functions
as cut-off functions {x«, Xi» Xe, Xa» Xc}and {Xa, Xi» Xe> Xa» Xc}. These are smooth
functions chosen such that { x4, Xi, Xe,» Xa, Xc}formapartition of unity of S, xx = 1
on Ny, and ¥x = 1 on Supp(x«).
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Therefore, the parametrix we use is

Hy(t, z, ') = Xa(2)Ha X (2') + Xa(2) Hp xa(2)
+ Xe(2) Hp, xc(2') + Xe(2) Hexe(2) + Xi(@) Hixi(z). (3.2)

Above, for the sake of brevity, we have suppressed the argument (¢, z, z") of the four
model heat kernels.

The salient point, which is well known to experts, is that this patchwork parametrix
restricted to the diagonal is asymptotically equal to the true heat kernel on the diagonal
with anerrorof O (r*°) ast | 0. For these arguments, we refer the reader to [30, Lemma
2.2] and [3, §4 and Lemma 4.1]. Moreover, it is known that for domains with both
corners and curved boundary, the heat trace admits an asymptotic expansion as ¢ |, 0,
and that this trace has an extra purely local contribution from the angles at the corners.
The proof for domains with both corners and curved boundary can be found in [27,
Theorem 2.1]; see also [30]. Even though we expect this calculation to be contained
in earlier literature we were unfortunately unable to locate it. Therefore, it is natural
to expect that the angles also appear in the variational formula for the determinant.
We shall see that this is indeed the case.

3.3 Proof of Theorem 1

For a sector, Sy, from [27, Eq. (2.13)] (c.f. also [30]) it follows that the short time
asymptotic expansion of the heat trace is given by

o

—tAq¢) —
Tr(e ') = o - w_ (2X(S) 3)
72+ a? w24+ n?/4
24ma 2247((71/2) +OWD.

where 3 is the number of corners, and the term 2W7r//24)‘ comes from the two corners

where the circular arcs meet the straight edges at which the angle is /2. The 1°
coefficient (also called the constant coefficient) in the short time asymptotic of the
heat trace is also £, (0):

©0) = 1 2% (S0) 3)+n2+a2 +2712+7'r2/4 . 7%+ a? n 1
£44() = 75 Cx G Yara 2n(z/2) | 24ma | 8§

(3.3)

Consequently, it suffices to demonstrate that

/ log(r)Hs, (, r, ¢, r, ¢)rdrdg,

Sa

admits an expansion as in (1.4), as ¢ | 0.
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Let the error E(z, r, ¢, r’, ¢’) be the difference between the true heat kernel and
the patchwork construction,

Eit, r o, r, ¢) = Hs, (t, r, ¢, r, ¢ — Hy(t, r, ¢, r,@).

Then, we have
‘/ log(NE(t, r, ¢, r, )rdrdg| = O (t*°), 110,
Sa

because the model heat kernels decay as O(t*°) as ¢ | 0 in any compact set away
from the diagonal.
Consequently, it suffices to prove that

/ log(r)Hy(t, r, ¢, r, ¢)rdrdg,
Sa

admits a short time asymptotic expansion as in Theorem 1. By definition of H,, to

demonstrate this, we may proceed locally, by considering the model heat kernels on

their respective neighborhoods. First, note that on S, \\V,, log(r) is a smooth function.
Therefore, the existence of an asymptotic expansion of the integral

/ log(r)Hy(t, 1, ¢, r, ¢)rdrdg, (34)
Sa \(NaUNC)

for small values of ¢ follows from the locality principle of the heat kernel and the
existence of the expansions of the heat kernel of the corresponding models. Although
the idea is standard, we briefly explain it.

2
—/ log(r)Hp(t, r, ¢, r, )
@ J S \(NaUNC)
2
= - / log(r) (xiHi + xeHe + xaHp) dA
@ J S\ (Supp(xe)USupp(xc))

2
+ —

/ log(r) Z X+« HydA,
& J (Supp(xa) \WNa)U(Supp(xc) \Ne)

*ef{a,i,e,a,c}

where dA denotes the area element rdrd¢. Using the existence of the expansion of
the heat kernel for small times in the interior and the smooth boundary away from the
corners, we have that the asymptotic expansion of the integral exists. In addition, we
can compute the constant coefficient of the expansion of the trace using the expansion
of the heat kernels. This is:
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2

o /Sa\(SUPP(Xa)USUPP(XC)
21
=~ log(r) (xi + Xe + xa) dA
o 4TL J 5.\ (Supp(xa)USupp(xc)

2 1

& B/TT1 J3(54)\0(Supp(xe)USupp(xc))
2 1

o 2477 J 5.\ (Supp(te)USupp(cc)

2 1
+o 10g(r) (Xi + Xe + xa) kgds + O (rl/z) .
O 12T J3(S4)\3(Supp(xa)USupp(xc))

log(r) (xiHi + xeHe + xaHp) dA

log(r) (i + Xe + Xa) ds

log(r) (i + Xe + Xa) ScalgdA

Observing that the scalar curvature is zero, the logarithm vanishes on the boundary
of S, where r = 1, and the geodesic curvature of the straight edges is zero, we have
that the constant terms vanish:

2 1
w247 log(r) (Xi + Xe + Xa) ScalgdA
O 23T J 54\ (Supp(xe)USupp(c)
2 1
oo 10g(r) (Xi + Xe + Xa) kgds = 0.

o 127 J(5,)\3(Supp(xa)USupp(xe))
For the integral

2

/ log(r) Z X HedA,
& J(Supp(xa) \Na)U(Supp(xc) \WNe)

x€{a,i,e,a,c}

we note that in both cases the points in Supp(x4)\Nx and Supp(xc)\N. are either
interior points or points in the smooth boundary of Sy, . It follows then from the locality
principle of the heat kernels, that this case is the same case as above. Therefore there
exists an asymptotic expansion of the integral given in (3.4) for small values of time.
Moreover, this expansion does not contain log(#) terms, and its constant term vanishes.

The existence of the asymptotic expansion of the integral over A\, is proven in
Sect. 6. In that section we compute as well the contributions of this integral to the
coefficients aj o, and az 1, defined in Eq. (1.4).

Unlike the neighborhood N, there is no “purely local” contribution from the other
two corners in the sector, apart from the contribution due to the short time expansion of
the heat trace given in (3.3). In order to prove this, we need to consider the heat kernel
of the unit half disk; let Hp, denote this heat kernel, with the Dirichlet boundary
condition. Let Hp denote the heat kernel for the unit disk with Dirichlet boundary
condition. Using the method of images, the heat kernel for the half disk can be written
in terms of the heat kernel for the unit disk as follows:

HD+(r7 69 r/a 9/7 t) = H]D)(rv 65 r/a 6/7 t) - HD(}’, 97 r/a _9/5 t) (35)
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We will use the fact that the unit disk is a manifold with boundary to prove that these
corners do not contribute to our formula. To accomplish this, we need to consider the
associated heat space for the unit disk, in the sense of [32, Chap. 7].

The heat space for the disk can be constructed following [31, §3.1]. We shall see that
the polyhomogeneity of the heat kernel on this space follows from [31, Theorem 1.2].
This may not be immediately apparent, because in [31], the authors consider compact
manifolds with edges. A compact manifold with boundary is a particular case of a
compact manifold with edges in which the fiber of the cone is a point, ' = {p}, and
the lower dimensional stratum is the boundary, B = d M. For more details in this
simplified case we also refer to [15,32].

3.3.1 The Heat Space

The heat space associated to the unit disk in R? is a manifold with corners obtained
by performing two parabolic blow-ups of submanifolds of D x D) x RT. Let

Do:={(p, p, 0) eDxD xR, peDb}.
In order to construct the heat space we need to first perform parabolic blow-up of
Dy := Do N (D x 9D x RT).
The notation for this blown-up space is
[D x D x R*; Dy, dr].

The notation dr indicates that the blow-up is parabolic in the direction of the conormal
bundle, dz. In [32, Chap. 7] (see also [28]), it is shown that there is a unique minimal
differential structure with respect to which smooth functions on D> x R* and parabolic
polar coordinates around Dy, are smooth in the space [D x D x R*; Dy, dt]. We
recall that the parabolic polar coordinates around Dy, are R = +/s2 + (s/)2 + ¢ and
® = (t/R?, s/R, s'/R) onD? x RT, where s and s’ are boundary defining functions
for D in each copy of D. As a set, this space is equivalently given by the disjoint
union

[D2 x R*; D, dt] - ((]D)2 x R+) \Db) U (PNT (Dy) /RY) |

where PNT(Dy,)/R* the interior parabolic normal bundle of Dy, in D? x R*. This
space can also be defined using equivalence classes of curves in analogue to the b-
blowup in the b-heat space of [32, Chap. 7]; specifically see [32, pp. 274-275]. For a
schematic diagram of the first blow-up, we refer to [31, Fig. 2].

Next, the diagonal away from the boundary is blown up at + = 0. We note that
although the heat space is itself unchanged under the order of blowing up (see [28,
Proposition 3.13]), the heat kernel is sensitive to which order the blow-up is performed
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(see [32, exercise 7.19]). In the notation of Melrose (see [32, §4 and §7]), the heat
space is then

D? := [D x D x [0, 00); Dy, dt; Do, dr].

Specifically, let D denote the lift of Dy to the intermediate space, [D? x Rt; Dy, dr].
The second step is to blow up [D2 x RT; Dy, dt] along Dy, parabolically in the ¢
direction. As a set, this space is given by the disjoint union

[]D>2 x R*: Dy, dr: Do, dt] = ([D2 x R*: Dy, dt] \Dl) L (PN* (Dy) /RT),

where PN*'(Dj)/R* is the interior parabolic normal bundle of Dj in [D? x
R™; Dy, dt]. This space can also be defined using equivalence classes of curves in
analogue to the b-blowup in the b-heat space of [32, Chap. 7], as explained above.

The heat space is a manifold with corners which has five codimension one boundary
hypersurfaces, also known as boundary faces. For a schematic diagram of this heat
space, we refer to [31, Fig. 3]. The left and right boundary faces, £ and R are given by
the lifts to ID)ﬁ of 0D x D x [0, co) and D x dID x [0, 00), respectively. The remaining
three boundary faces are at the lift of { = 0}. Denote by 15 the face created by blowing
up Dy, and by D the face created by blowing up Dy. Let §: D}zl — D x D x [0, c0)
denote the blow-down map. Then the last boundary face, the temporal boundary’
denoted by 7 is given by the closure of

B D x D x {0)\(BU D).

We denote the boundary defining functions correspondingly by p,, pr, B, D, and
p7. Then we note that 7 lifts to ]D)ﬁ as

B*(t) = pTOEPD.
3.3.2 Polyhomogeneous Conormal Distributions on Manifolds with Corners

The heat space is a manifold with corners. An important class of distributions on
manifolds with corners is the class of polyhomogeneous conormal distributions, which
we abbreviate as pc distributions. We recall how these are defined in general. Let X
be an n-dimensional manifold with corners. By definition (see [28, §2A]), X is locally
modeled diffeomorphically near each point by a neighborhood of the origin in the
product (RT)* x R"~*. Here by locally modeled we mean analogous to the definition
of an n-dimensional Riemannian manifold being locally modeled by neighborhoods
of R". Let {Mi}ij=1 denote the codimension one boundary faces, which we simply
refer to as boundary faces. Let V}, be the space of smooth vector fields on X which are
tangent to all boundary faces.

! In the terminology of [31], B3 is known as the front face, ff, D is known as the temporal diagonal, td, and
7T is known as the temporal face, tf.
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For a point ¢ € 9X contained in a corner of maximal codimension k, choose
coordinates (xl, o xk y) near g, where x! are defining functions for the boundary
hypersurfaces M;1, ..., M;« intersecting the corner at g, and y is a set of coordinates
along this codimension k corner. Then V}, is in this context spanned over C°°(X) near
q by {x1 Opls e,y )Ckaxk, 0y }. The conormal space is

A X) = {u: Vi, ..., Viu € L¥(X), VV; € Vb, andVi}.

To motivate the notion of polyhomogeneity, consider first the case in which there is
only boundary face, d X, defined by x. Then we say that u is polyhomogeneous if u
admits an expansion

Pj
u~ Z szf(logx)paj,p(x, y). ajp€CPX).

Nsj— o0 p=0

Here the first index is over {s;} jen C C whereas the second sum is over a finite set
(for each j) of non-negative integers. When X has many possibly intersecting codi-
mension one boundary components, then a polyhomogeneous conormal distribution
is required to have such expansions at the interior of each boundary face with prod-
uct type expansions at the corners. To be more precise, beginning with the highest
codimension corners, which have no boundary, one demands the existence of such an
expansion, and then one proceeds inductively to the lower codimension corners and
finally to the boundary faces.

Lemma 4 The heat kernel, Hy, lifted to ]D)lz1 is a polyhomogeneous conormal distri-
bution.

Proof The polyhomogeneity and conormality of 8*(Hp) both follow from [31, Theo-
rem 1.2]. Specifically, as noted above, the unit disk is an example of an edge manifold,
and in this case, the heat kernel with Dirichlet boundary condition is the Friedrichs
heat kernel. O

Recall Eq. (3.5) where the heat kernel for the upper half disk is given by the method
of images. We define the involution f:ID x D x [0, co) — D x D x [0, co) by

f(rs 09 r/s 9/7 t)z(rv 91 r/s _Q/a l)'

Then, the reflected term is simply Hp o f. Moreover, we note that 2 is the identity
map, and thus f = f~!. Let us denote

Dy =A{(r, 0, r, =0, 0):(r, 9) e D} CD x D x [0, 00),
and we observe that

D) = f (Dy).
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Then, it follows immediately from Lemma 4 that Hp o f lifts to a polyhomogeneous
conormal distribution on

[]D) x D x [0, 00); Dy NID x dD, dt; Dy, dt].

We therefore immediately obtain

Corollary 1 Let

D2 = [D x I x [0, 00); Doy N'D) N AD?, dr; Do N D2, dr;

Djy x 902, dt; Do N Dj, dr; Do, di; D, dr

where dD? denotes 3D x 9D, and we have slightly abused the notation by not including
the time variable when it is clear from the context. Then, the function

Hp — Hp o f,
lifts to ]]3)% to a polyhomogeneous conormal distribution. Moreover, the product,
log(r) (Hp — Hp o f),

also lifts to Dﬁ to a polyhomogeneous conormal distribution.

Proof By the preceding lemma, Hp lifts to be polyhomogeneous conormal on Dﬁ and
therefore also on ]]3)% In particular, performing additional blow-ups does not introduce
any problems for Hp. By the observation that £ is the identit