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H I G H L I G H T S

• Breakaway corrosion occurs when a steel is exposed to dual environment of air/H2.

• Passive layers forms on reference samples in air only.

• There is an inverse temperature dependence of the dual atmosphere effect.
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A B S T R A C T

The ferritic stainless steel AISI 441 (EN 1.4509) is exposed for 1000 h to air - 3% H2O on one side and to Ar - 5%
H2 – 3% H2O on the other at temperatures 600, 700, and 800 °C. Conditions are chosen to mimic the en-
vironment of metallic interconnects in an operating solid oxide fuel cell (SOFC). At 600 °C, ∼25 μm thick Fe2O3/
(Fe,Cr)3O4 forms on large parts of the air side of the samples. Reference samples exposed to air - 3% H2O on both
sides form thin protective layers of (Cr,Mn)3O4/Cr2O3 at the same temperature. At higher temperatures, 700 and
800 °C, all samples form protective layers of (Cr,Mn)3O4/Cr2O3 regardless of exposure to single or dual atmo-
sphere. It is concluded that corrosion resistance in a dual atmosphere has an inverse dependence on temperature.
Different hypotheses for the underlying cause for the dual atmosphere effect are discussed and compared to the
experimental data.

1. Introduction

Solid oxide fuel cells (SOFC) are high-efficiency energy conversion
devices that, due to their high operating temperature of 500–900 °C, are
able to run on a variety of different fuels. These fuels range from hy-
drogen to hydrocarbon gases, like natural gas and reformate gas. The
most common way to build SOFC units is to connect individual planar
cells in series to create a fuel cell stack of up to 100 cells, depending on
the power requirements. The modular nature of the fuel cell stack
makes it a very scalable technology, which allows for designing systems
with power capacities ranging from a few hundred watts up to mega-
watts. The individual fuel cells within a stack are separated by metallic
interconnects, which also provide electrical contact between each cell.

Interconnects are generally made of ferritic stainless steels due to
their thermal expansion coefficient (TEC), which matches the other cell
components, in combination with good formability and electrical con-
ductivity at a reasonable cost. For these steels, corrosion resistance is
achieved by the formation of a chromium oxide layer on the steel

surface, which acts as a diffusion barrier and slows down the oxidation
of the steel part. For interconnects, it is important that the protective
chromia layer is well adherent to avoid loss of electrical contact, and
that the layer is slow growing since a thicker chromia layer leads to
higher ohmic losses [1]. Furthermore, chromium should preferably be
oxidized over iron, since iron oxide grows several orders of magnitude
faster than chromium oxide and, thus, offers poor corrosion protection.
The ability of a steel to form a protective chromia scale is affected by
many factors, such as the concentration of Cr in the steel, the alloy
microstructure, the surface treatment, and by minor alloying elements
[2]. The preferential oxidation of chromium in a stainless steel is also
greatly affected by the environment to which it is exposed. For instance,
stainless steels in atmospheres with a high steam content are known to
be prone to form iron oxide when they would otherwise form protective
chromia scales in atmospheres of air at the same temperature [3]. In
SOFC stacks the interconnects are exposed to high pO2 on the oxidizing
side and to low pO2 on the fuel side and conduct electric current in the
range of 0.1–1 A cm−2. It has been shown that electric current can
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affect the oxidation of ferritic stainless steels. In general, the oxidation
rate is reduced on the cathode side and increased at the anode side
[4–6] but accelerated corrosion, with iron nodule formation, on both
the anode and the cathode has also been reported [7].

Several researchers have shown, in the context of SOFCs, that when
exposed to hydrogen on one side and air on the other side, ferritic
stainless steel sheets tend to form more iron oxide on the air side than
when only exposed to air or hydrogen atmospheres [8–15]. Similar
findings have also been reported in the context of steam and flue gas
tubes, in which corrosion was found to be accelerated on the air side of
the tubes [16,17]. It should be noted that the magnitude of the reported
effects varies significantly between different studies. E.g. Kurokawa
et al. [18] and Ardigo et al. [7] do not observe accelerate oxidation
under dual atmosphere conditions. This disagreement is probably due
to experimental differences, such as hydrogen concentration, pre-
treatment of sample as well as alloy composition.

The dual atmosphere effect, i.e. promotion of iron oxide on the air
side, is likely caused by the diffusion of hydrogen through the steel
substrate, which interferes with the oxidation process on the air side of
the sample. It has been shown that hydrogen can diffuse relatively fast
through a steel sheet and at 600 °C a permeation rate in the order of mm
h−1 can be expected [19]. Skilbred and Haugsrud have found increased
hydrogen content in the oxide scale of the air side of a dual-atmosphere-
exposed ferritic stainless steel at 800 °C [20]. The flux of hydrogen is
initially expected to be determined by the steel thickness, but after
oxidation and formation of a Cr2O3 scale the flux quickly becomes rate
limited by the chromia thickness. Kurokawa et al. measured four orders
of magnitude lower permeability for hydrogen in the oxide scale
formed on Fe16Cr compared to the hydrogen permeability in ferrite at
800 °C [21]. The mechanism for how hydrogen affects the air-side oxide
scale is unknown. Yang et al. have suggested altered defect chemistry of
the protective chromia scale due to doping with hydrogen, which leads
to an increase in metal ion diffusivity [8]. Holcomb et al. have sug-
gested that steam formation within the oxide results in pore formation
that offers fast transport of oxygen, which leads to accelerated corrosion
[10]. Other findings that might explain the dual atmosphere effect are:

- Increased internal oxidation, which causes the immobilization of Cr
and results in the depletion of Cr near the metal oxide [22].

- Formation of hydroxides on oxygen sites in the oxide lattice, which
allows for faster oxygen diffusion due to the smaller ionic radius of
the hydroxides compared to oxygen ions [23].

Most studies on the oxidation of ferritic steels in dual atmospheres
have been carried out at temperatures of around 800 °C. In a previous
study, we exposed the ferritic stainless steel AISI 441 to a dual atmo-
sphere at 600 °C and found a strong dual atmosphere effect [14]. Local
iron oxide nodules of up to 25 μm thickness were found on the air side
of the samples exposed for 1000 h to humid air on one side and to
humid hydrogen on the other. In contrast, the samples exposed to
humid air on both sides formed protective scales with a thickness in the
order of a few hundred nm, consisting of chromia and chromium
manganese spinel. The strong dual atmosphere effect at the relatively
low temperature of 600 °C led to the suspicion that the dual atmosphere
effect might have an inverse relation to temperature, meaning that
thicker oxide scales are formed at lower temperatures. Such inverse
temperature dependence has been reported for ferritic steels exposed to
a single atmosphere of humid hydrogen [24] and when exposed to a
flow of humid air [25]. In both studies the authors explained this by a
change of the oxidation mechanism. It is suggested that due to an in-
sufficient flux of Cr from the alloy towards the metal/oxide interface
the chromia scale growth cannot be maintained and non-protective Fe
rich oxide is formed instead. In the paper by Jonsson et al. [25] this
transition to a non-protective regime is explained by Cr depletion
caused by the formation of gaseous CrO2(OH)2 in the presence of water
vapor (see Equation (1)) [26].

+ + =½Cr O (s) ¾O (g) H O (g) CrO (OH) (g)2 3 2 2 2 2 (1)

The aim of the current study is to investigate the temperature de-
pendence of the dual atmosphere effect by exposing the ferritic stainless
steel AISI 441 at different temperatures, using the same experimental
setup and ferritic stainless steel as in the previous study at 600 °C [14].

2. Experimental

Circular specimens with 20mm diameter were cut from 0.2mm
thick AISI 441 foil and were cleaned with acetone and ethanol in an
ultrasonic bath. No further surface treatment was performed on the
steel. The surface finish of the steel was bright-annealed with a
roughness of 0.1–0.3 μm, according to Sandvik Materials Technology,
which provided the material. The composition of the AISI 441 ferritic
stainless steel used is given in Table 1. To simulate SOFC stack pro-
duction, where the stack is usually initially heated to a higher tem-
perature in air, the samples were pre-oxidized at 800 °C in ambient
atmosphere for 3 h before exposure to dual atmosphere, and the mass
change after pre-oxidation was recorded. The samples were placed in a
253MA steel holder, based on a design from National Energy Tech-
nology Laboratory [10,11,27], which allows for separate control of gas
composition, including humidity, and gas flow on each side of the
samples. Gold gaskets were used to seal the ferritic stainless steel
samples to the holder, and gas tightness was controlled regularly. The
humidity level was checked using a chilled mirror humidity sensor
(Michelle – Optidew Vision). The sample holder was placed in a hor-
izontal tube furnace (60mm diameter). A heating/cooling rate of 5 °C
min−1 was used and the setup was flushed for at least 12 h before
heating was initiated. For more details on the experimental setup and
sample holder, see Ref. [14].

Duplicate samples were tested in each experiment in which one set
of samples was exposed to air on one side and to humid hydrogen on
the other side. This will hereinafter be referred to as “dual atmosphere”.
Another set of samples was used as references and was exposed to air on
both sides, and this will be referred to as “single atmosphere”. The gas
flow rate, gas contents, and temperature in the experiments carried out
in this study are listed in Table 2. Exposures were conducted at tem-
peratures of 600 °C, 700 °C, and 800 °C in high-flow humid air. A hu-
midity of 3% was used to promote formation of volatile CrO2(OH)2 [28]
and to replicate standard simulated SOFC cathode conditions of our
laboratory [29]. The flow rates for the air were chosen to achieve an
average flow speed of approximately 27 cm s− 1 and were calculated
from the dimension of the inside and outside (silica tube diameter) of
the sample holder. Based on a previous study, this rate should be in a

Table 1
Composition in wt% of the specific batch of AISI 441 used in this study, pro-
vided by Sandvik Materials Technology.

Material Fe Cr Ni Mn Si Ti Nb C P S

AISI 441 Bal 17.7 0.19 0.30 0.55 0.15 0.37 0.015 0.027 0.002

Table 2
Conditions used in the experiments.

Temp. Outer gas Inner gas 1 (dual
atmosphere)

Inner gas 2 (single
atmosphere)

600 °C 8800 sml min−1 air –
3% H2O

100 sml min−1 Ar -
5% H2 – 3% H2O

400 sml min−1 air –
3% H2O

600 °C 600 sml min−1 air 100 sml min−1 Ar -
5% H2 – 3% H2O

50 smlmin−1 air

700 °C 8800 sml min−1 air –
3% H2O

100 sml min−1 Ar -
5% H2 – 3% H2O

400 sml min−1 air –
3% H2O

800 °C 8800 sml min−1 air –
3% H2O

100 sml min−1 Ar -
5% H2 – 3% H2O

400 sml min−1 air –
3% H2O
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flow regime in which the chromium evaporation rate is kinetically
controlled, i.e. independent of flow rate [29]. Another experiment was
carried out at 600 °C with lower flows of dry air. The dry experiment
was carried out to lower the formation of CrO2(OH)2. This experiment
will be referred to as the “600 °C dry” experiment hereinafter for the
purpose of simplicity.

The samples were photographed after exposure with a Canon EOS
1D mk III camera, equipped with a Canon 100mm f/2.8 macro lens.
This was done while the samples were still mounted in the sample
holder. Thus, only the sides exposed to air (Outer gas) were photo-
graphed. Detailed analyses of the microstructure and chemical com-
position were performed using a Zeiss LEO ULTRA 55 FE-SEM scanning
electron microscope (SEM) and an FEI Titan 80–300 scanning trans-
mission electron microscope (STEM), both equipped with an Oxford
Instruments INCA X-Sight energy-dispersive X-ray spectroscopy (EDX)
system. Samples for TEM were prepared with focused ion beam (FIB)
milling and in-situ lift-out technique in an FEI Versa 3D DualBeam in-
strument. A Leica EM TIC 3X broad ion beam (BIB) instrument was used
to prepare cross sections (in the range of mm) of the samples. All the
cross sections were cut perpendicular to the rolling direction of the
ferritic stainless steel sheet. It was not possible to record reliable mass
gains of the exposed samples using the current experimental method
due to damage to the sample during dismounting and interference with
the gold seals. Oxide thickness, therefore, was measured in the micro-
graphs of cross sections. On the 600 °C samples, large grains of
(Cr,Mn)3O4 grown on top of a Cr2O3 layer resulted in large variations of
the total oxide thickness. For this reason, we chose to focus on mea-
suring the oxide thickness of the 700 °C samples, which was done in the
following manner: micrographs were obtained at 10 equidistant posi-
tions on cross sections of 1–2mm width, where each micrograph
showed 10 μm of the sample along the surface. The total oxide thickness
of these micrographs was measured in 10 equidistant positions, totaling
100 measurement points for each sample. The thickness of the oxide on
the 600 and 800 °C samples was measured for selected micrographs,
with 30–70 measurement points per sample. X-ray diffraction (XRD)
was performed on selected samples with a Siemens D5000 dif-
fractometer with a grazing incidence angle of 3°. Due to thin oxides at
600 °C and spalling oxides at 800 °C, in combination with bent samples
after dismounting from the sample holder, the 700 °C samples were
chosen for X-ray diffraction analysis.

3. Results

The photographs of all air sides of the samples are displayed in
Fig. 1. After exposure to single atmosphere at 600 and 700 °C, the
surfaces look metallic and shiny, which indicates thin protective oxide
layers. The 600 °C samples exposed to humid air have some small, dark-
colored nodules, which were identified with SEM/EDX as iron oxide.
Our previous findings showed that these iron oxide nodules did not
grow after continued exposure beyond 1000 h, meaning that a protec-
tive layer of chromia must have formed underneath the nodules [14].
These iron oxide nodules are absent from the samples exposed to single
atmosphere and dry air at 600 °C. At 800 °C, some of the oxide spalled
off during the cool down of the furnace, which is evident by the ex-
posed, unoxidized bare metal on the edges of the samples. A major
difference is seen at 600 °C in a comparison of samples exposed to dual
atmosphere and those exposed to single atmosphere. After exposure to
dual atmosphere, both with humid and dry air, a large part of the
samples surfaces are covered with dark-colored iron oxide. The areas on
these samples that are not covered with iron oxide, i.e. the areas with
protective oxide, look similar to the surface of the single atmosphere
samples. Each microstructure will be discussed in more detail below. At
700 and 800 °C, there are no apparent differences between single and
dual atmosphere samples.

The 700 °C samples were analyzed with XRD, and the obtained
diffractograms are displayed in Fig. 2. Peak pattern matching of the

diffractograms show the presence of both a spinel and a corundum
phase. This, in combination with SEM/EDX data (discussed below) in-
dicates that the thin protective oxide layers consist of an inner layer of
Cr2O3 and an outer layer of (Cr,Mn)3O4, as is commonly found in
chromia-forming steels that contain Mn [30]. Based on previous stu-
dies, the oxide layers on 600 °C and 800 °C samples are also expected to
be made up of an inner chromia layer and an outer chromium man-
ganese spinel layer [31,32]. Fig. 3 shows SEM micrographs of cross
sections of a single atmosphere sample. Duplex layered oxide formation
can be seen within the whole tested temperature range in the figure.
The Cr2O3/(Cr,Mn)3O4 that formed on all samples is made up by con-
tinuous, nano-grained chromia with larger spinel grains on top. Fig. 4
shows air side cross sections of the dual atmosphere samples. The
composition and morphology of the oxide layers at 700 and 800 °C are
essentially the same as for the single atmosphere samples. The thin and
yet protective parts of the oxide at 600 °C are similar to the oxide of the
single atmosphere samples. In contrast, the thicker oxides that formed
on the air sides of the dual atmosphere samples are made up of an
outward-growing layer of iron oxide and an inward-growing layer of
chromium-iron oxide. This kind of oxide morphology was also observed
by Young et al. on ferritic stainless steels exposed to Ar- 4% H2 – 20%
H2O at the temperature range of 500–650 °C [24].

The outer layer consists of a hematite layer containing 95 cation%
Fe according to SEM/EDX measurements, while the inner layer contains
approximately 50-50% Fe-Cr and, consequently, is expected to form a
spinel phase [33]. Fig. 5 shows cross sections of the hydrogen sides of
the dual atmosphere samples. The oxides on the hydrogen sides are
protective with duplex layers of inner chromia and outer chromium
manganese spinel, similar to the protective air-side oxides. At 700 and
800 °C more pores are observed within the oxide scale, compared to the
air side. This is commonly observed for scales formed in the presence of
H2/H2O [34].

A TEM micrograph of a cross section from the air-side oxide of a
sample exposed to dual atmosphere at 600 °C is shown in Fig. 6. A
nodule of thicker iron oxide can be seen in the figure with a sur-
rounding thinner protective oxide. The microstructure, characteristics,
and composition of the breakaway oxide were described and discussed
more in detail in our previous paper [14]. EDX linescans were done to
measure the Cr depletion profile beneath the protective oxide. In scan
A, a minimum Cr content of 16.8 atomic% is measured right below the
chromia scale, which increases to 18.8 atomic% further into the alloy.
In scan B, a larger Cr depletion is observed, with values ranging from
11.7 to 18.2 atomic%. The presence of a silica layer beneath the
chromia is also observed.

Fig. 7 shows TEM micrographs of cross sections of the air sides of
both the single atmosphere and dual atmosphere samples exposed at
700 °C and EDX linescans through the oxide and into the bulk alloy.
These are representative micrographs and linescans chosen from a total
of six analyses per sample. For both samples, the top layer spinel phase
typically contained 40 cation% Mn, 50 cation% Cr, and 5 cation% Fe,
while the bottom layer corundum phase contained 95 cation% Cr and
1–2 cation% Fe. Between the chromia layer and the bulk, there is a thin
layer of silica. The 700 °C samples do not show any Cr depletion in the
alloy near the oxide. The 800 °C air-side cross sections were also ana-
lyzed with SEM/EDX (not shown here) and no difference in the com-
position of the oxide and the alloy near the oxide is found between
single and dual atmosphere samples. The chromia formed on those
samples contains 1–2 cationic% Fe and no Cr depletion is seen in the
alloy bulk. Continuous silica below the chromia layer is present in the
800 °C samples.

4. Discussion

4.1. Temperature effect

A substantial dual atmosphere effect was observed after exposure at
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600 °C, where thick iron nodules formed on the air side of the ferritic
stainless steel specimen. It was found that this effect disappeared when
the temperature increased and protective layers of Cr2O3 with

(Cr,Mn)3O4 on top formed, regardless if the samples had been exposed
to a dual or single atmosphere. In order to sustain a protective chromia
scale, the consumption of chromium from oxidation cannot exceed the
resupply from the bulk. For this reason, a critical concentration of
chromium is necessary within the alloy to maintain sufficient chro-
mium flux from the bulk alloy towards the oxide/metal interface.
Insufficient chromium bulk diffusivity at lower temperatures has been
pointed out as the cause for breakaway corrosion in several studies, e.g.
Refs. [24,25]. If the activation energy of the alloy interdiffusion coef-
ficient for Cr is higher than that for Cr consumption from oxidation, a
higher concentration of Cr in the steel is required to sustain a protective
layer at lower temperatures than at higher ones. The exposure en-
vironment can change the apparent activation energy of oxidation.
Young et al. have found that the activation energy for oxidation was
lower in an Ar - 4% H2 – 20% H2O environment (110 kJmol−1) than in
air (179 kJmol−1). Those authors derived an equation to calculate the
critical chromium concentration based on Wagner's expression for
parabolic oxidation:

= +
−N const Q E
RT

ln .
2Cr crit

A
, (2)

where NCr, crit is the critical chromium concentration for maintaining a
protective chromia scale, Q is the activation energy for the diffusion of
chromium in the alloy, and EA is the activation energy for the parabolic
rate constant (kp). This would lead to a higher critical Cr concentration
at a lower temperature if Q > EA. Falk-Windisch et al. have reported
that, at 650 °C in high-flow rate air – 3% H2O, the main contribution to
Cr consumption is the formation of volatile chromium oxyhydroxide.
Those authors measured an activation energy of 91 kJmol−1 for the Cr
volatilization. This led to the hypothesis that the large dual atmosphere
effect at a lower temperature might be due to the fact that Cr

Fig. 1. Photographs of the samples after 1000 h of exposure to dual and single atmosphere at 600, 700 and 800 °C.

Fig. 2. X-ray diffractograms of the surfaces of samples exposed at 700 °C for
1000 h. The star-shaped data marker represent a peak from aluminum, which
originates from the aluminum sample holder.
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evaporation has a lower activation energy than Cr diffusion. However,
when Cr evaporation was significantly reduced in the present study by
lowering air humidity and the flow rate, we still found a significant dual
atmosphere effect at 600 °C. Thus, it seems that Cr volatilization can
only play, at the most, a minor role in explaining the inverse tem-
perature effect on the dual atmosphere phenomenon. The measured
scale thickness of the areas with protective oxide on the air side of the
dual atmosphere and single atmosphere samples did not differ sig-
nificantly at any temperature. This indicates that the activation energy
for oxidation is similar in both cases. However, when the temperature
increases, the solubility of hydrogen in ferrite increases [35], but the
solubility, or uptake, of hydrogen in chromia decreases [36]. This
means that there is the possibility that hydrogen causes more defects in
the oxide at lower temperatures, thus increasing the oxidation rate. This
will be discussed in more detail in the following section.

4.2. Dual atmosphere effect

4.2.1. Altered oxide scale defect concentration
In a study by Yang et al., a ferritic stainless steel was exposed to dual

atmosphere at 800 °C and an iron-rich oxide was formed on the air side
of the samples [8]. The authors proposed that increased cation trans-
port due to hydrogen doping of the chromia scale a might be a possible
mechanism for the accelerated corrosion. Yang et al. suggested that
hydrogen enters the oxide as a proton and donates its electron, or rather
forms hydroxide with an effective positive charge. If this effective po-
sitive charge is compensated by Cr vacancies, there should be more
available sites for cation transport, which would explain the increase in
iron content. This is based on the assumption that the chromia scale is a
p-type conductor. This model of explanation is supported by the work
of Hultquist et al. who have oxidized pure chromium, containing dif-
ferent contents of dissolved hydrogen, in air at 900 °C [37]. The authors
found that the oxidation rate increased and that cationic transport in-
creased when the hydrogen content was higher in the chromium sam-
ples.

In an electrical conductivity study of chromia, Holt and Kofstad
concluded that, at temperatures below 1000 °C, chromia is an extrinsic
p-type conductor in a high pO2 atmosphere [36]. According to those
authors, this is likely due to inevitable trace amounts of lower valent
dopants. Furthermore, Young and Gerretsen have found that, at lower
oxygen pressures, close to the dissociation pressure of chromia, it is an
n-type conductor with Cr interstitials as the predominant defects [38].
Galerie et al. performed photoelectrochemical measurements on
chromia scales grown on ferritic stainless steel [23]. Those authors also
concluded that, in air, the outer part of the oxide was p-type, and the
inner part was n-type. When oxidizing the same ferritic stainless steel in
steam, only n-type chromia formed. Those authors have suggested that
hydrogen must be a donor dopant and forms hydroxides in the lattice.
The smaller ionic radius of OH− compared to O2− has been suggested
to lead to faster diffusion of oxygen in chromia, which would account
for a faster oxidation rate [23,36]. This would also explain the change
towards a more inward-growing oxide on steels exposed to environ-
ments with steam and hydrogen. Several studies have shown that
chromia-forming alloys have a weak dependence on oxidation rate
when the oxygen pressure is varied. This is indicative of a pre-
dominantly n-type oxide [39]. If hydrogen enters n-type chromia and
forms hydroxide, and also forms Cr vacancies for charge compensation,
this will lead to a poorer ionic conductor. Instead, hydrides would have
to form for the ionic conductivity to increase in the case of n-type
chromia. There is another possibility for hydrogen to enter chromia;
Tanaka et al. have performed hydrogen permeation experiments on n-
type chromia grown on ferritic stainless steel in an H2/H2O environ-
ment at 1000 °C [40]. Those authors concluded that hydrogen is un-
charged in the chromia lattice and occupies oxygen vacancies.

If the ionic conductivity of the chromia layer increases due to hy-
drogen doping, it will lead to a faster oxidation rate, which could cause
breakaway corrosion if Cr is not supplied fast enough from the alloy. If
Cr transport towards the metal/oxide interface is sufficient, the re-
sulting oxide layer should grow thicker than an oxide layer absent of
hydrogen doping. Fig. 8 shows graphs of the measured protective oxide

Fig. 3. SEM micrographs of cross sections of oxides on the single atmosphere samples after 1000 h.
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thicknesses of the samples after exposure, as well as the calculated
oxide thickness after pre-oxidation (based on mass gains and a dense
chromia scale). The figure shows that the average thickness at 600 °C
was 200 nm, at 700 °C it was 500 nm, and at 800 °C it was 2.7 μm. On
the hydrogen side at 700 and 800 °C, the measured oxide thicknesses
were slightly lower than on the air sides, while they were similar at
600 °C. The average oxide thickness of samples exposed to 600 °C only
increased some tens of nanometers compared to the calculated thick-
ness after pre-oxidation. Overall, there are no significant differences in
the measured thicknesses between the airsides of samples exposed to a
single or dual atmosphere. Nevertheless, minor differences could still be
present but not detected due the amount of variation in the measure-
ments.

Although an effect of hydrogen on the defect chemistry of Cr2O3 is
undisputed the measured thicknesses of the protective oxides did not
differ significantly between dual- and single-atmosphere-exposed sam-
ples at any temperature. Thus it is concluded that any potential hy-
drogen doping does not affect the oxide scale growth rate sufficiently to
be the main cause for breakaway corrosion. The EDX data from 700 °C
cross sections (Fig. 7) show that the Fe contents in both the spinel and
the corundum phases are similar in both single and dual atmospheres.

Consequently, the presence of hydrogen in the dual atmosphere sam-
ples does not seem to alter the relative diffusivity of Fe and Cr, which
otherwise could explain the formation of non-protective hematite.

4.2.2. Oxide cracks from steam formation within the oxide scale
Holcomb et al. have found that 316 L tubes with hydrogen flowing

inside formed iron oxide on the outside if exposed to ambient air at
700 °C [10]. Based on thermodynamic calculations on partial pressures
of hydrogen and oxygen, those authors suggest that the breakdown of
the protective oxide might be caused by steam formation within the air-
side oxide scale. However, significant energy would be required in
order for steam to form under such confined conditions. Furthermore,
hydroxide formation in the chromia scale in the presence of an hy-
drogen atmosphere has been suggested to cause the oxide to increase in
plasticity due to the higher mobility of hydroxides compared to oxygen
ions [23,36]. If steam is developed inside the oxide scale it should lead
to more porosity. We, however, did not observe more porosity in the
protective scales grown in a dual atmosphere than in a single atmo-
sphere at any temperature. The breakaway oxide formed after dual
atmosphere exposure at 600 °C contained more pores, but this is
common for this rapid mode of oxidation and is more probably a

Fig. 4. SEM micrographs of cross sections of the air side oxides on the dual atmosphere samples after 1000 h. For the samples exposed at 600 °C both thin protective
oxide and thick breakaway oxide are shown in separate micrographs (note the different magnifications).
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Fig. 5. SEM micrographs of cross sections of the hydrogen side oxides on the dual atmosphere samples after 1000 h.

Fig. 6. High angle annular dark filed (HAADF) STEM micrograph of a cross section through an iron oxide nodule on the air side of a sample exposed to dual
atmosphere at 600 °C. Compositional data from EDX linescans at positions below protective parts of the oxide is also shown.

P. Alnegren et al. Journal of Power Sources 392 (2018) 129–138

135



consequence of the breakdown of the protective oxide.

4.2.3. Internal oxidation/reduced chromium activity
A possible cause for breakaway corrosion could be that hydrogen

directly, or indirectly, decreases the mobility of Cr in the alloy. The
solubility of hydrogen in a Fe-Cr alloy increases with higher contents of
Cr [35]. This indicates that a chemical interaction takes place between
hydrogen and chromium, which, in turn, could lead to lower Cr ac-
tivity. However, since the solubility of hydrogen in ferrite is in the
range of 100 atomic ppm [41], interaction with hydrogen is expected to
have very little effect on Cr activity. Another cause for a reduction in Cr
activity could be the formation of the intermetallic Fe-Cr phase, called
the σ-phase, which could tie up Cr in the alloy. The Cr concentration
required for σ-phase formation decreases with temperature, and the
formation of σ-phase has been confirmed for ferritic stainless steels at
650 °C [42]. Although σ-phase formation has, to our knowledge, not
been reported for AISI 441, the presence of hydrogen could potentially
stabilize σ-phase. Hammer et al. observed increased σ-phase formation
in the presence of H2O [43]. Analyses of a cross section of a dual-at-
mosphere-exposed sample with SEM/EDX and EBSD maps did not in-
dicate any σ-phase formation after 1000 h at 600 °C.

A decrease in Cr diffusivity in the alloy caused by dissolved hy-
drogen is not supported in the literature. Cr depletion experiments
conducted by Park et al. at 800 °C showed an increase in the Cr diffu-
sion rate when the steel was annealed in hydrogen [44]. Ani et al. have
performed Fe-FeCr coupled diffusion experiments in atmospheres with
and without hydrogen, which showed no difference in Cr diffusion in

the two environments [45]. However, both Park et al. and Ani et al.
have claimed that oxygen permeability increases in atmospheres of
higher hydrogen pressure. Essuman et al. have also suggested that hy-
drogen in Fe-Cr alloys increases the diffusion rate of oxygen in the bulk,
due to a higher chemical driving force and a larger lattice size [22].
This, in turn, could lead to the internal oxidation of Cr, which would tie
up Cr within the bulk. Examination of the cross sections of the parts
with protective oxide on the samples exposed at 600 °C (Figs. 3 and 4)
showed that there is no difference in the prevalence of internal oxida-
tion between single and dual atmosphere samples. However, if internal
oxidation leads to a breakdown of the protective chromia scale, rapid
breakaway oxidation would follow, with typical inward-growing and
outward-growing phases. This makes the initiation phase difficult to
detect. The EDX linescans of the alloy below the protective oxide, in the
vicinity of an iron oxide nodule in Fig. 6 show significant depletion of
Cr on one side of the nodule. However, no signs of internal oxide near
the linescan (Fig. 6B) was detected, which would otherwise explain the
lower Cr concentration.

5. Conclusion

A clear effect of exposure to dual atmosphere was found at 600 °C.
Samples exposed to dual atmosphere conditions at 600 °C formed thick
iron oxide on the air side, while samples exposed in air only formed thin
protective oxide scales. The fact that hydrogen affects the oxidation
properties on the air side proves that hydrogen diffuses through the
oxide on the hydrogen side and through the steel and somehow

Fig. 7. High angle annular dark filed (HAADF) STEM
micrographs of cross sections of air side oxides on
samples exposed to single and dual atmosphere at
700 °C for 1000 h. Compositional data from EDX
linescans through the oxides is also shown. The mi-
crographs and respective EDX linescans were chosen
as representative from a total of six micrographs/EDX
scans per sample.

Fig. 8. Oxide thicknesses after pre-oxidation and after 1000 h exposure to all test environments. The oxide thickness after pre-oxidation (filled bars) were calculated
from mass gains. The oxide thicknesses after exposure was measured from cross sections and the error bars represent the standard deviation. Duplicate samples were
measured for 700 °C samples, indicated by the numbers 1 and 2.
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interacts with the oxidation process on the air side in such a way that
formation of chromia is inhibited. At 700 and 800 °C protective chromia
scales were observed regardless of exposure conditions. This indicates
that the negative effect of hydrogen on the protective scale is com-
pensated for by higher Cr bulk diffusivity at higher temperatures. The
thickness, microstructure, and composition of the protective layers of
(Cr,Mn)3O4/Cr2O3 did not vary significantly between samples exposed
to dual and single atmospheres at any temperature. No evidence was
found that the scale growth rate of the protective chromia, is sub-
stantially affected by hydrogen, e.g. by doping. An effect of hydrogen
that promotes the internal oxidization of Cr was discussed, however,
not supported by the experimental findings. Cr loss due to volatilization
is known to be weakly temperature dependent (i.e. most important at
lower temperatures). This matches well with the observed inverse
temperature dependence, but the fact that a severe dual atmosphere
effect was also observed under “dry” conditions suggests that other
factors might be more relevant.
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