
Shared-object system equilibria: Delay and throughput analysis

Downloaded from: https://research.chalmers.se, 2024-03-20 09:38 UTC

Citation for the original published paper (version of record):
Salem, I., Schiller, E., Papatriantafilou, M. et al (2018). Shared-object system equilibria: Delay and
throughput analysis. Theoretical Computer Science, 731: 1-27.
http://dx.doi.org/10.1016/j.tcs.2018.03.030

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology.
It covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004.
research.chalmers.se is administrated and maintained by Chalmers Library

(article starts on next page)

Theoretical Computer Science 731 (2018) 1–27
Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

Shared-object system equilibria: Delay and throughput

analysis ✩

Iosif Salem ∗, Elad M. Schiller, Marina Papatriantafilou, Philippas Tsigas

Department of Computer Science and Engineering, Chalmers University of Technology, S-412 96, Göteborg, Sweden

a r t i c l e i n f o a b s t r a c t

Article history:
Received 8 April 2016
Received in revised form 14 March 2018
Accepted 29 March 2018
Available online 16 April 2018
Communicated by R. Klasing

Keywords:
Delay and throughput analysis
Resource sharing
Distributed systems

We consider shared-object systems that require their threads to fulfill the system jobs by
first acquiring sequentially the objects needed for the jobs and then holding on to them
until the job completion. Such systems are in the core of a variety of shared-resource
allocation and synchronization systems. This work opens a new perspective to study the
expected job delay and throughput analytically, given the possible set of jobs that may join
the system dynamically. We identify the system dependencies that cause contention among
the threads as they try to acquire the job objects. We use these observations to define the
shared-object system equilibria. We note that the system is in equilibrium whenever the
rate in which jobs arrive at the system matches the job completion rate. These equilibria
consider not only the job delay but also the job throughput, as well as the time in which
each thread blocks other threads in order to complete its job. We then further study in
detail the thread work cycles and, by using a graph representation of the problem, we
are able to propose procedures for finding and estimating equilibria, i.e., discovering the
job delay and throughput, as well as the blocking time. To the best of our knowledge,
this is a new perspective, that can provide better analytical tools for the problem. That is,
our methods can be used to estimate performance measures similar to ones that can be
acquired through experimentation on working systems and simulations, e.g., as job delay
and throughput in (distributed) shared-object systems.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Our problem’s domain considers computing entities, which we call threads. Each thread runs a sequential program
(a job) that has to acquire reusable resources (objects), often several at the same time, for a bounded time of use. To
guarantee deadlock absence, it is important that all threads acquire the objects in an ordered manner. For example, one
can deterministically define a total order among the objects, such that the threads acquire them in totally ordered manner.
A common way to model such systems is to consider a generalization of the dining philosophers problem, as in [19,22], in
which every job includes a fixed set of objects that it may need. This approach provides a worst-case complexity analysis,
which is exponential on the system’s parameters.

We provide a new perspective that enables an analysis of the evaluation metrics by considering measures both at the
system level and at the level of each resource. In particular, we consider performance measures that are associated with

✩ A technical report and an extended abstract of this paper appeared in [25] and [26], respectively.

* Corresponding author.
E-mail addresses: iosif @chalmers .se (I. Salem), elad @chalmers .se (E.M. Schiller), ptrianta @chalmers .se (M. Papatriantafilou), tsigas @chalmers .se (P. Tsigas).
https://doi.org/10.1016/j.tcs.2018.03.030
0304-3975/© 2018 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.tcs.2018.03.030
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
mailto:iosif@chalmers.se
mailto:elad@chalmers.se
mailto:ptrianta@chalmers.se
mailto:tsigas@chalmers.se
https://doi.org/10.1016/j.tcs.2018.03.030
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2018.03.030&domain=pdf

2 I. Salem et al. / Theoretical Computer Science 731 (2018) 1–27
each resource, such as the job delay and completion rate, as well as the blocking time of each thread on each object. On
the system level, we consider the job arrival and completion rates, as well as the total number of threads and objects.

We study shared-object systems that require their threads to fulfill the system jobs by first acquiring sequentially all of
the job objects. The job then holds on to these objects until the job operation is done. We identify the system dependencies
that cause contention among the threads as they try to acquire the job objects. We study the (stochastic) processes of job
arrival and completion with an emphasis on the cases in which the job arrival rate matches the job completion rate, i.e.,
the job throughput. In these cases, the system is in a shared-Object System Equilibrium (OSE). For a given ε > 0 and an OSE,
we say that the system is in an ε-OSE when the completion rate of any job differs from the one of an OSE by at most ε.
We study the conditions for a given shared-object system to be in an OSE as well as contention-related properties of OSEs,
i.e., the expected job delay and completion rate, as well as the time in which each thread blocks other threads and by that
prevents them from making progress. We propose an analytical procedure for finding (approximate) OSEs, which we call
ε-OSEs (for a given error ε). Moreover, we estimate the performance measures of systems that are in ε-OSE.

The existing practice considers job delay and completion rate as the performance measures of working systems. Empirical
experiments often study shared-resource systems at their saturation point in which the system is at its peak utilization. Let
us describe peak utilization scenarios using two vectors; one for job arrival rates and another for their completion rates.
A saturation point is the case in which: (1) the system is in equilibrium, i.e., the arrival rate of any particular job matches
the completion rate of this job, as well as (2) the system is at the stage at which a higher arrival rate of any job to the
system cannot increase its completion rate. Our study considers the entire range of these equilibria rather than just peak
utilization scenarios (Section 2).

1.1. Related work

We consider a generalization of the dining philosophers problem, as in [19,22], in which every job includes a fixed set
of objects that it may need. This problem has well-known results studying the worst-case job delays, which may even be
exponential on metrics, such as the chromatic number of the resource graph [18,19]. In this graph, the vertices (objects) are
connected if there is at least one thread that may request them both at any point in time. In the context of actual systems,
the expected time is rather different than the worst case and therefore computer experiments are the common way for
evaluating the system performance.

Systems that support atomic synchronization primitives, such as compare-and-swap (CAS) [14], are motivating examples
for our model. In particular, while CAS provides mutually exclusive read and write access to one memory location (word),
extensions for accessing many memory locations exist in the literature, such as [13,17]. Harris et al. [13] propose a multi-
word compare and swap extension of CAS (double-word CAS and multi-word CAS), while Luchangco et al. [17] propose an
atomic primitive that allows reading many words but writing only to one. Our work can provide an analytical early stage
evaluation of such systems, by adjusting the job size and the job operation times accordingly.

1.2. Our contribution

We study analytical tools that provide the means to estimate performance measures of working distributed systems. In
the context of synchronization challenges that are modeled via a generalization of the dynamic dining philosophers problem,
our analytical tools are the first, to the best of our knowledge, to consider performance measures similar to the ones that
can be acquired via experimentation on working systems and simulations.

For a given number of threads and objects, as well as the jobs and their arrival rates, we provide a way to analyze the
delay of jobs and their completion rates as well as the time for which the threads are blocked. Throughout our analysis we
use the thread work cycle events (sections 5.2 and 5.4) to verify our modeling approach. In addition to the job completion
period (Approximation 3), we analyze a number of key properties, such as the probability of a thread to request a particular
resource after the acquisition of another specific resource, the time during which threads that have acquired a particular
resource block other threads that ask to access the same resource (Approximation 4), as well as the time between two
requests to access such resources (Approximation 5). Our analysis is based on estimating pairwise states (Section 5.5) that
capture these blocking periods, the delay and the throughput with respect to every pair of system items (threads or objects).
Since these properties have interdependencies due to thread blocking, we show how the concept of thread work cycles
can be represented in subsystems that also include such interdependencies but have no thread blocking. This way, we
can resolve these interdependencies (Theorem 6) and estimate the performance of the given (distributed) shared resource
system. We present a procedure for satisfying approximately the equilibrium conditions and by that find an ε-OSE as well
as the performance measures of the studied system (Section 10). In particular, in Algorithm 3 (Section 10) we compute the
first three moments of these pairwise states, and hence the first three moments of job delays and throughput, in an ε-OSE
(if such exists).

Our contribution can facilitate early-stage evaluations of systems that are similar to the studied one. Moreover, using
our proposed methods, one can analytically, rather than via empirical experiments, study trade-offs among OSEs. Such
trade-offs can facilitate the design of mechanisms for adjusting the number of threads and job arrival rates according to the
performance measures of a dynamic system.

I. Salem et al. / Theoretical Computer Science 731 (2018) 1–27 3
Notation Meaning Page

objects = (o1, . . . ,oM) object set, where M = |objects| 3

threads = (t1, . . . , tN) thread set, where N = |threads| 3

jobi = 〈objsi ,operationi〉 the ith job, with object sequence
3

objsi and operation operationi

O i operation time of jobi 3

Q thead(tn) queue of tn ’s pending jobs 3

Q object(oi) queue of oi ’s pending requests 3

λi,n
jobi ’s arrival rate to tn 3

(Exponential distribution)

I[i,n] inter-arrival time of jobi to tn 3

Fig. 1. A summary of the basic notation of Section 2.

Paper organization This paper is organized as follows. In Section 2 we present the system settings for this work. We present
the necessary background knowledge in Section 3. In Section 4 we present a high-level description of our approaches. In
Section 5 we present a model for the studied problem, which captures the system’s dependencies and forms a basis for
our analysis and proofs. We then present in detail our solution in the remaining sections. Note that once we find an ε-OSE,
we can estimate its performance measures, i.e., job delay, completion rate, and blocking time. To this end, we develop a
number of analytical tools for OSEs. In Section 6 we give estimations for the probabilities of threads requesting access
to objects. Given the job arrival rates, we show how to estimate the probabilities for threads to follow a certain object
acquisition sequence (Section 6). We are then able to formulate recursive equations (with interdependencies) for calculating
the blocking periods and the completion rates (sections 7, and respectively, 8). We overcome these dependencies and solve
these recursive equations by analyzing the thread work cycles (Section 9). In Section 10 we present Algorithm 3, which
gives a procedure for finding OSEs and computing delay and throughput if such exist. In Section 11 we conclude this work.

2. System settings and problem definition

We consider a system that includes (system) items, which are (totally ordered) objects, (o1, . . . , oM), and (totally ordered)
threads, (t1, . . . , tN). The objects are shared in a mutually exclusive way, i.e., only one thread at a time may gain access to
an object. Each thread is to carry out one job at a time, where jobi = 〈objsi, operationi〉, J is the number of the system’s
jobs, i ∈ [1, J] and objsi = (oi1 , . . . , oik) is an arbitrary, non-empty subsequence of (o1, . . . , oM), and thus objsi follows the
same order.

A thread carries out jobi by gaining mutually exclusive access to the objects in objsi and in the order implied by objsi ,
executing the operation O i , and then releasing access to the objects in objsi . We assume that objsi is a fixed vector and that
different jobs may have different object vectors of different lengths. Moreover, we assume that every object is included in
the object set of at least one job. Furthermore, the (job) operation time, O i , is a random variable with a known distribution.
Namely, we assume that the time it takes to execute the job operation is known by its first three moments.

Throughout this paper we consider that random variables are known when we know their first three moments. Therefore,
we will focus on computing the first three moments of the studied problem’s unknown random variables. We denote by
E[Xm] the m-th moment of a random variable X . We give a summary of the section’s basic notation in Fig. 1.

2.1. Job arrival rates and job-to-thread assignment

We assume that the time between two consecutive arrivals of jobi to tn is a random variable I[i, n] (inter-arrival period),
where i ∈ [1, J], n ∈ [1, N]. We define the job arrival rate, λi,n , in which jobi arrives at the system that then places jobi
in a (first in, first out) queue, Q thread(tn), where λi,n is a positive real number. The inter-arrival period, I[i, n], follows
an exponential distribution, Exp(λi,n). Note that this is a common way to model arrivals, e.g. [7]. As soon as tn becomes
available, the system assigns to tn the job that is on Q thread(tn)’s top. Moreover, we assume that at least one job is arriving
to every thread’s queue. We focus on systems that can be in an equilibrium for which the number of pending jobs in
Q thread(tn) is bounded.

Our assumption that the job arrival rates follow exponential distributions allows us to consider the inter-arrival time
of jobs to the entire system as an exponential distribution of rate �i,nλi,n (cf. Poisson process merging and splitting prop-
erties [1,5]). Thus, defining the system to have separate queues for each thread does not compromise generality, since a
system scheduler assigns every arriving job to a thread.

2.2. Acquisition requests and periods

A thread can acquire a particular object, o� , by pending its (acquisition) request in a (first in, first out) queue Q object(o�)

until all (previously) waiting threads in Q object(o�) have acquired and released o� . The acquisition period, A, is a known
random variable (i.e., we know its first three moments) that refers to a period that starts when a thread has acquired an
object (or just been assigned to a new job) and ends as soon as that thread places a request for the next object.

4 I. Salem et al. / Theoretical Computer Science 731 (2018) 1–27
Once the thread sequentially acquires the entire object set, oi1 , . . . , oik of jobi , it executes the job operation, operationi .
When operationi is completed, the thread releases access to the object set and jobi is completed. We say that a thread is
blocking, when other threads are queuing for its acquired objects. That happens whenever different jobs have overlapping
object vectors. Note however that threads carry out jobs within finite time even in the presence of blocking, because threads
acquire their job’s objects following the order of the job’s object set and these sets follow the ascending object order. The
maximum number of pending requests in an object’s queue is N − 1, since every thread can carry out one job at a time.

2.3. Job delay and throughput

We define the job delay on tn , D̃tn , to be the random variable that gives the time between the arrival of a job to tn ’s queue
and the completion of that job. Moreover, we denote by T̃tn the random variable that gives the time between consecutive
job completions of tn . Then, we define each thread’s completion rate (throughput) by 1/E[T̃tn], where E[T̃tn] is the expected
value of T̃tn .

2.4. Problem definition: computing shared-object system equilibria

Shared-object system equilibria For a given system, ψ = {D̃tn , T̃tn }n∈[1,N] is the system state. Suppose that a system is in a
state in which, for every thread the job arrival rate is equal to the job completion rate, i.e., ∀n ∈ [1, N], � J

i=1λi,n = 1/E[T̃tn].
Note that we refer to � J

i=1λi,n as tn ’s (aggregate) arrival rate (cf. Section 2.1). We say that ψ∗ = {D̃∗
tn

, T̃ ∗
tn

}n∈[1,N] is the
shared-Object System Equilibrium (OSE). For a given ε > 0 and an OSE ψ∗ , we say that the system state ψ is an ε-OSE when
∀n ∈ [1, N], |D̃∗

tn
− D̃tn | < ε ∧ |T̃ ∗

tn
− T̃tn | < ε holds. Namely, the corresponding values of each item in ψ and ψ∗ differ by less

than ε.
We remark that a system cannot always reach a state that satisfies the OSE conditions, and thus neither the ones of an

ε-OSE. We refer to the random variable blocking(n), which gives the time between the assignment of a job to tn until the
completion of that job, as tn ’s blocking period. Equilibria are unreachable when there is a thread with blocking period that is
longer than the inter-arrival time of jobs to that thread. Note that in that case, the thread’s queue is increasing continuously.

The studied problem In this work we study the problem of computing an ε-OSE ψ∗ = {D̃∗
tn

, T̃ ∗
tn

}n∈[1,N] , basing on the known
system parameters and a given error ε. Specifically, we consider the problem of computing the first three moments of
the job delay, D̃∗

tn
, and of the time between consecutive job completions, T̃ ∗

tn
, of the system’s threads, when the system

is in ε-OSE (for a given ε). We consider as known parameters, the number of threads N and objects M , the set of jobs
{ jobi}i∈[1, J] (which includes the object sets and job operation times), as well as the set {λi,n}i∈[1, J], n∈[1,N] of job-to-thread
arrival rates.

Computing the job delay and throughput is non-trivial due to the fact that they both depend on blocking, i.e., the cases
of threads waiting for other threads to release objects that they want to acquire. That is, job delay and throughput depend
on the waiting time of a job in a thread’s queue and the waiting times of the thread’s object acquisition requests in the
object queues of the job’s object set. For example, there can be an instantiation of the system, in which tx has access to
ok and waits for access to ok+1, while t y ’s request is pending in ok ’s queue. Thus, the delay of the job that t y is carrying
out, directly depends on the time for which tx is holding access to ok , which includes the time for which tx is waiting for
accessing ok+1 (and possibly other objects). Therefore, the key challenge that we address is to effectively model and analyze
these dependencies. Section 4 gives a complete overview of our approach.

3. Background

In this section we explain how existing tools from queuing theory [1] can be deployed to compute the delay D̃tn and job
completion period T̃tn of the thread queues, given the distribution of the job blocking periods (Section 3.1). Then, we present
more complex tools from queuing networks [5], which we will use for analyzing shared-object systems (Section 3.2).

3.1. Computing job delay and throughput when the job blocking period is known

We can compute D̃tn and T̃tn using the distribution of job arrivals to tn , I(n), as well as the distribution of the block-
ing period, blocking(n) (Section 2.4), i.e., the time between job assignment and job completion. Since the job-to-thread
arrivals follow exponential distributions, Exp(λi,n), I(n) follows a known exponential distribution with parameter � J

i=1λi,n
(Section 2.1). However, the distribution of blocking(n) is unknown, since it depends on thread blocking.

In our analysis, we provide an algorithm for computing blocking(n)’s first three moments (cf. Algorithm 3 and Section 8),
and below we explain how we can use these moments to compute D̃tn and T̃tn . Queuing theory provides a queue’s perfor-
mance parameters in its steady-state, i.e., the case where the arrival and completion rates match, which implies that T̃tn

follows the same distribution with I(n). Specifically, it gives the steady-state probabilities for the queue length from which
we can compute the distributions of the queue waiting time and the job delay.

I. Salem et al. / Theoretical Computer Science 731 (2018) 1–27 5
Fig. 2. Fig. 2b depicts the Markov chain (QBD process) that represents the M/Coxian-2/1 queue of a thread, tn . The arrival rate is λ = �iλi,n , and μ1, μ2,
as well as p are the parameters of the Coxian-2 distribution (Fig. 2a) that matches blocking(n)’s moments (blocking period). The QBD process’ states are
organized in levels, which denote the number of jobs in tn ’s queue (including the one that tn is possibly carrying out). The single state in level 0 denotes
that the thread is idle. In level i, i > 0, there are two states due to blocking(n)’s Coxian-2 distribution. The upper state ends with rate (1 − p)μ1, the
transition rate from the upper to the lower state is pμ1, and the lower state ends with rate μ2.

We compute the steady-state probabilities of tn ’s queue, Q thread(tn), by analyzing it as an M/Coxian-2/1 queue. An
M/Coxian-2/1 queue is a queue in which the arrivals follow an exponential distribution (denoted by M) and the blocking
period follows a Coxian-2 distribution [1] (Fig. 2a), while 1 denotes that only tn carries out the pending jobs of its queue (cf.
Kendall notation of queues [1]). By our assumptions I(n) follows indeed an exponential distribution. A Coxian-2 distribution
is a special case of a phase-type distribution [1], which represents the time until a Markov process with two states reaches
an absorption (ending) state, and is commonly used for fitting unknown distributions [1,2]. Hence, after computing the first
three moments of blocking(n) using the algorithm that we propose in this paper (Algorithm 3 and Section 8), we can use
the moments of blocking(n) to match it with a Coxian-2 distribution (moment matching method, [2,23] and [1, Section 2.5]).

To analyze the M/Coxian-2/1 queue that models Q thread(tn)’s arrival and blocking distributions, we use the standard
approach of the Matrix Geometric Method (MGM) [20]. We define a Markov chain (Fig. 2b) that has the structure of a
quasi-birth-death (QBD) process [8] using I(n) and blocking(n) (as in [21, Section 3.2] and [12]). The QBD process considers
the growth and decrease in the number of jobs in Q thread(tn) (including the one that tn is carrying out). Each level cor-
responds to the queue’s length (i.e., 0, 1, 2, . . .) and the states of each level correspond to the two states of the Coxian-2
distribution of blocking(n), except for level zero that has only one state (tn is idle). Transitions from level i to i + 1 are
determined by � J

i=1λi,n (Q thread(tn)’s arrival rate), and transitions from i to i − 1 are determined by the parameters of the
Coxian-2 distribution that matches the moments of blocking(n).

The MGM [20] provides the steady-state probabilities for each state of tn , due to the Markov chain’s QBD structure. Thus,
the (steady-state) probability of the QBD process’ zero-level state, un,0, gives the probability of tn to be idle. The MGM is an
iterative method and its running time is in O (IMGM ·m3), where m is the maximum number of states in each QBD level and
IMGM is the number of iterations until the method converges. As we described above, m = 2, since the Coxian-2 distribution
is a Markov chain with two states (Fig. 2). Latouche and Ramaswami in [16, Remark 4.3], explain that in order to have a
number of iterations, IMGM , that exceeds 40, it must be (practically) possible for the queue length to grow up to 1012. Since
this is considered impractical in the setting of shared-object systems (and in generally practical settings), we can assume
that IMGM is a small number, and thus MGM’s running time is (practically) constant.

3.2. Relevant tools from queuing networks

Our solution uses tools from queuing networks [5]. Although queuing theory celebrated results provide closed forms for
single queues, e.g., M/M/c, M/G/1 [1], and queuing networks, e.g., Jackson [15,5], BCMP [3], and Gordon–Newell networks [9],
closed form results are far from been the common case. Specifically, there are no relevant closed-form results that can be
used for systems like ours in which a thread can block other threads for a non-exponentially distributed period.

We use tools from queuing networks, where non-exact solutions are often provided [5]. In particular, we consider the
work of Ramesh and Perros [23] who study a message passing system of multi-tier server networks in which processes
communicate iteratively via what is known in the computer systems community as synchronous I/O (also called blocking
I/O). Namely, at any point in time, each process handles at most one (outgoing) connection, which gets blocked when
sending a message. Ramesh–Perros [23] use a framework proposed by Baynat and Dallery [4] for estimating the system
state. The authors of [23,4] demonstrate the convergence of their iterative methods via numerical experiments, while their
algorithms run in polynomial time on the system’s size.

4. Overview of the proposed solution

In this section we provide an overview of our approach for computing job delay and throughput, when a shared-object
system is in equilibrium (Section 2.4). In Section 3.1 we showed how to compute the delay and throughput of a thread’s

6 I. Salem et al. / Theoretical Computer Science 731 (2018) 1–27
queue, say Q thread(tn) of tn , when the job blocking period blocking(n), i.e., the time between a job assignment and the
job completion, is known. By the definition of shared-object systems, blocking(n), for every n ∈ [1, N], depends on thread
blocking, i.e., the time during which a thread waits for other threads to release the objects that it needs to acquire. Thus,
we focus on computing blocking(n), when the system is in equilibrium (ε-OSE), i.e., when the job arrival and completion
rates match (Section 2.4).

To the end of computing blocking(n), we provide a comprehensive model of the system’s events, which captures the
dependencies among threads. Basing on these events, we define the system’s performance parameters, i.e., the delay, block-
ing period, and throughput of thread requests for accessing objects, the throughput of every system item, as well as the
probability for each acquisition request to occur (Section 5).

Through our model, we are able to connect shared-object systems with relevant analytical tools from Queuing Networks
(Section 3.2). Specifically, we identified two methods that are relevant for computing job delay and throughput in ε-OSEs.
The method of network approximations considers systems with continuous arrivals that follow Exponential distributions
and deterministic acquisition of system items, however it does not consider thread blocking [8, Section 8.2]. Instead, the
approximation methods of Ramesh and Perros [23] consider systems that can analyze thread blocking (Section 3.2).

In Section 6, we use methods from network approximations [8, Section 8.2] to approximate the probabilities of demand
requests to occur. Then, in sections 7–8, we follow the approach of [23] to approximate the system’s performance param-
eters. In Section 9 we define closed subsystems (where jobs are circulating instead of arriving externally and leaving the
system) that we use to complete the computation of the system’s performance parameters. As in [23], these subsystems
preserve the system’s performance parameters, but are not subject to thread blocking, and hence can be analyzed through
the framework of Baynat and Dallery [4] for closed systems (Section 9.2).

We continue Section 9 by proving Theorem 6, which states that the decomposition of shared-object systems to closed
subsystems can be mapped to the decomposition that Ramesh and Perros use for their queuing networks [23]. This proof
provides the justification of our approximations. We base our proofs on the model that we provided in Section 5. Then, we
present Algorithm 3 (Section 10), which consolidates our approaches for computing the system’s performance parameters
(including job delay and throughput) in ε-OSE (if such exists).

In the remainder of this section we give an overview for each component of our analysis. We outline our modeling
approach and the approximation of the system’s performance parameters in Section 4.1. In Section 4.2 we summarize the
decomposition to closed subsystems that are not subject to thread blocking and the proof of the mapping to the queuing
networks of [23]. In Section 4.3 we present an overview of the algorithm for computing job delay and throughput in ε-OSEs.

4.1. Modeling dependencies and approximating the system’s performance parameters

We base our modeling approach (Section 5) on defining all the events that occur in a shared-object system. We define
events for job assignment, object acquisition requests, supply of access to objects, and object release. By that, we define the
thread work cycles, which depict the sequence of events that occur when a thread is carrying out a job and the fact that
threads alternate between idle periods (of possibly zero length) and periods in which they carry out jobs.

We depict dependencies through an acquisition graph, which we construct by combining the job object sets and arrival
rates to threads. The graph’s vertices are the system’s items (threads and objects) and each edge depicts a direct dependency.
An edge from a thread and to an object shows that this thread carries out at least one job that starts with that object and
an edge from one object to another one shows that there is at least one job object set that includes these two objects
consecutively.

To the end of capturing dependencies, we define the system’s performance parameters based on the edges of the acqui-
sition graph. That is, each edge depicts a sequence of (two) acquisition requests that occur in the system. We first define
blocking period B and delays D for each edge. Then, we define the inter-demand period T for each edge, as well as, the
item inter-demand period Ts for each system item s, which relates to the time between consecutive acquisition requests.
We show that the inter-demand periods follow the same distribution with the time between release events (e.g. job com-
pletions), which we use to compute throughput.

In Section 7 we approximate the request blocking period through the delay for acquiring the job’s remaining objects, as
in [23]. By that, we identify forward dependencies, i.e., the blocking period of a request to an object od depends on the
delay of requests to objects od′ , d′ ∈ (d, M]. In Section 8 we approximate the inter-demand period of an object od (by which
we compute throughput), by the inter-demand periods of the threads that (possibly) start their jobs by demanding access to
od as well as the inter-demand periods of each object o j , j ∈ [1, d). Moreover, in Section 8 we also approximate the thread
inter-demand periods, which depend on the job arrival rates and on blocking(n). Since not all of these requests occur with
the same rate, we use the request probabilities (Section 5) as weights in the approximations of blocking and inter-demand
periods. In Section 6 we provide an approximation of these probabilities that bases only on the job arrival rates and the job
object sets, which follows the approach of network approximations in [8, Section 8.2].

4.2. Resolving dependencies

We resolve dependencies by decomposing the shared object system to closed subsystems, for each object demand request
(Section 9). We refer to these closed subsystems with the term contention subsystems and define them such that they are

I. Salem et al. / Theoretical Computer Science 731 (2018) 1–27 7
Algorithm 1: Finding an ε-OSE (procedure sketch).

1 Input: M , N , { jobi}i∈[1, J] , {λi,n}n∈[1,N],i∈[1, J] , demand request probabilities, ε;
2 Output: job delay and throughput; request blocking, delay, inter-demand periods;
3 Start by assuming that all queues are empty;
4 repeat
5 let prev Set ← inter-demand periods of all items;
6 for d = M to 1 (∗ backward iteration ∗) do
7 foreach demand request to od (equiv. edge in the acquisition graph) do
8 Approximate the demand request’s delays and inter-demand periods through the respective contention subsystem (Section 9);
9 Approximate the demand request’s blocking period (Section 7);

10 foreach n ∈ [1, N] do
11 Approximate tn ’s inter-demand period (Section 8) and upon OSE condition violation call return(‘no OSE’)

12 for d = 1 to M − 1 (∗ forward iteration ∗) do
13 Approximate the inter-demand periods of requests to od through the respective contention subsystem (Section 9);
14 Approximate the inter-demand period of od (Section 8);

15 until the system has reached equilibrium (test for ε-OSE using the inter-demand period of every item and the values in prev Set);
16 return job delay and throughput; request blocking, delay, inter-demand periods;

not subject to blocking, and yet they preserve the system’s performance parameters. We define contention subsystems as
closed systems that include subsets of the system’s items. The key steps in this definition are that (i) blocking periods in
contention subsystems include the entire time that a thread accesses an object, but the thread does not maintain access
to that object when it tries to acquire the next object of its job, and (ii) the order in which threads access objects in the
shared-object system is preserved in the contention subsystems. This decomposition follows the approach of [23]. Then, we
compute the delay and throughput of demand requests through the framework of Baynat and Dallery for closed systems,
which we adapt to the context of shared-object systems (Section 9.2).

We then prove that the decomposition of shared-object systems to contention subsystems can be mapped to the decom-
position that Ramesh and Perros present in [23] to analyze queuing networks (Section 9). We present the proof for the case
of a system with only three objects, M = 3, and then present the proof for the general case of systems with M objects.

4.3. Finding approximate equilibria

We compute an approximate equilibrium, ε-OSE, when such is reachable. We propose a procedure that always halts
(Algorithm 1 presents the solution sketch and we detail the entire procedure in Section 10). It returns the system in an
ε-OSE state whenever the job arrival and completion rates differ by at most ε, or indicates that the system cannot be in a
state of an OSE.

The procedure starts with a system state that represents the case in which all queues are empty (line 3). It then estimates
the state of a system in which threads can block one another, and the delay grows as more requests are pending in the
queues. The procedure works in iterations and decides when to stop updating the item inter-demand periods, i.e., it stops
whenever there is no item for which the change in its inter-demand period is greater than ε since the previous iteration
(lines 5 to 15).

The procedure repeatedly improves an ε-OSE estimation until the system state satisfies the conditions of an approximate
equilibrium. It deals with interdependencies using alternating backward and forward iterations (lines 6, and respectively, 12).
Namely, we resolve the forward dependencies in which a demand’s blocking period depends on delays for objects with
higher index by iterating backwards. This backward iteration starts from d = M and counts downwards. Similarly, we use
forward iterations for resolving backward dependencies with respect to od ’s item inter-demand period, because all of od ’s
backward dependencies are resolved. This loop also updates the thread inter-demand periods (line 11). Together with the
estimation of the thread inter-demand periods, the procedure checks whether the OSE condition is violated (Section 2.4). In
case the OSE condition is violated, the loop breaks and the procedure returns. We show that each iteration takes O (M2 ·
N4 + M3) time (Section 10.5).

5. Modeling dependencies in shared-object systems

Overview In this section we give a comprehensive model for shared-object systems, on which we will base our analysis.
We start by defining all the events that occur in the system, through the concepts of job acquisition paths (Section 5.1)
and (thread) work cycles (Section 5.2). Then, we model the dependencies between events by defining the acquisition graph
(Section 5.3), conditional events that occur within a work cycle, as well as consecutive events that occur in consecutive
work cycles (Section 5.4). We also define the probability of conditional events to occur (Section 5.5), i.e., the probability of a
thread, tn , to demand access to an object, od , immediately after (i) tn has been assigned a job, or (ii) tn has acquired access
to an object, ok . We refer to items (i) and (ii) as supply events.

We build up on these definitions to model the system’s performance parameters, in a manner that captures the depen-
dencies between the system’s items. Given the occurrence of a supply event of a thread (see items (i) and (ii) above), we

8 I. Salem et al. / Theoretical Computer Science 731 (2018) 1–27
Notation Meaning Page

pathi,n acquisition path (tn,oi1 , . . . ,oik) 8

cycle(tn, jobi) work cycle of tn when carrying out jobi 8

σi(tn) event of jobi ’s assignment to tn 8

σi(tn,od)
event of tn gaining access to

8
od , while carrying out jobi

δi(tn,od)
event of tn demanding access

8
to od , while carrying out jobi

φi(tn,od)
event of tn releasing od ,

8
while carrying out jobi

i(tn) event of tn releasing all objects of jobi 8

• an arbitrary sequence (according to context) 9

G = (V , E) acquisition graph 9

δi,n(d | s) ≡
conditional demand event, for jobi and tn 9〈δi(tn, s) | σi(s, tn)〉

φi,n(d | s) ≡
conditional release event, for jobi and tn 8〈φi(tn,d) | σi(tn, s)〉

c[s,od] pairwise state for items s and d 10

s.T [d] inter-demand period for items s and d 10

s.D[d] delay for items s and d 10

s.B[d] blocking period for items s and d 10

R(s,od) pairwise request probability for items s and d 11

R request probability matrix 11

Ts item s’s inter-demand period 11

ψ(G) = {c[s,od]}(s,od)∈E state of system G = (V , E) 12

τ (G) = {Titem}item∈V \{oM } system inter-demand periods for system state ψ(G) 12

ψ∗(G) system state in OSE 12

f s,od job completion period 14

Fig. 3. A summary of the basic notation of Section 5.

define random variables for: (a) the time between consecutive (access) demand events for an object (inter-demand period),
(b) the time between the consecutive event in which the thread sends a demand request for an object until it releases that
object (blocking period), and (c) the time between the consecutive event in which the gains access to an object until the
thread releases that object (delay). We refer to these three random variables as the pairwise state, as they give the system’s
performance parameters with respect to pairs of system items (Section 5.5). To the end of defining the job throughput, as
well as the rate in which objects are released, we define the item inter-demand period in Section 5.6. We end the section
by using the pairwise states to refine the definition of a shared-object system equilibrium (Section 5.7), which we gave in
the system settings section. We give a summary of the section’s basic notation in Fig. 3, for quick reference.

5.1. Acquisition paths

Suppose that the system assigns jobi to tn : 1 ≤ n ≤ N . In this case, jobi ’s (acquisition) path is the vector, pathi,n =
(tn, oi1 , . . . , oik), which denotes that tn sequentially acquires oi1 , . . . , oik and then carries out jobi ’s operation, i.e., operationi .

5.2. Work cycles: demand, supply, and release

The thread work cycle, cycle(tn, jobi), refers to the events that occur during the period that starts when the system
assigns jobi to tn and ends immediately before the next assignment of any job to tn . It starts with the event σi(tn) in which
the system assigns jobi to tn . For each object o� of jobi ’s object vector, (oi1 , . . . , oik), the work cycle includes the events
in which tn demands (requests) access to o� , denoted by δi(tn, o�) and the event in which the system supplies (provides)
access to o� , denoted by σi(tn, o�). Upon the event of jobi ’s completion tn releases each o� , � ∈ {i1, . . . , ik}, which we
denote by the release event φi(tn, o�) of the work cycle. For simplicity, we refer to the sequence of these release events

i(tn) = (φi(tn, oi1), . . . , φi(tn, oik)) as a single event and assume that tn releases all its acquired objects instantaneously and
immediately after the operation time, O i , which is a known random variable. Immediately after the event
i(tn), the thread
work cycle starts a (possibly zero length) idle period, before the system assigns the next (and possibly different than the
previous) job to tn so that the next work cycle begins.

We illustrate the thread work cycle in Fig. 4. We assume that events are instantaneous and mark them as points on
a thread’s work cycle. Note however, that between a supply event and the next demand event (as well as between the
last supply event and the release event), there is a random length period which refers to scheduling uncertainties, i.e. the
(random) acquisition period A, which follows a known distribution (and the operation time O i , respectively). Hence, we
denote tn ’s work cycle for jobi as in Equation (1):

cycle(tn, jobi) ≡ (σi(tn), δi(tn,oi1),σi(tn,oi1), . . . , δi(tn,oi),σi(tn,oi),
i(tn)) (1)
k k

I. Salem et al. / Theoretical Computer Science 731 (2018) 1–27 9
Fig. 4. The work cycle of tn for jobi , with object set objsi = (oi1 , . . . , oik). After an idle period jobi is assigned to tn (σi(tn)), which acquires jobi ’s objects
(δi(tn, oi1) to σi(tn, oik)), executes jobi ’s operation (σi(tn, oik) to
i(tn)), and then releases jobi ’s objects (
i(tn)).

Fig. 5. An acquisition graph, G .

5.3. Subpaths and acquisition graph

Let s (source) and d (destination) be (possibly consecutive) items on a path. We define the set ε(s, od) = {(s, •, od)|∃ jobi :
pathi = (•, s, •, od, •)} of all subpaths between s and od , where • denotes a finite, possibly empty, item sequence. The
acquisition graph, G = (V , E), is a simple directed graph, where V = {t1, . . . , tN , o1, . . . , oM} are the system items (Fig. 5).
The edges E = {(s, od) | ∃ jobi : pathi = (•, s, od, •)} are two consecutive items on a path. That is, G includes an edge for two
system items if and only if there exists a job, such that these two items are consecutive in its path, e.g., a thread and the
first job object or two consecutive objects of a job.

5.4. Conditional and consecutive events

In this section, we consider an event that occurs at item d (destination) in condition to an event occurrence at item s
(source), where (•, s, od, •) is a subpath of jobi and both events belong to the same work cycle of jobi that tn carries out.
We define conditional events, which capture the dependencies within a work cycle, as well as consecutive events, which
capture the dependencies between consecutive work cycles. These definitions are the basis for modeling the system’s state
in Section 5.5.

5.4.1. Conditional demand and supply events
Consider a subsequence (σi(tn, s), δi(tn, od)) of cycle(tn, jobi)’s events. We denote by δi,n(od | s) ≡ 〈δi(tn, od) | σi(tn, s)〉 the

conditional (demand) event, δi(tn, od), in which tn requests access to od immediately after the supply event, σi(tn, s), in a
timing order (i.e. in the actual sequence in which these events occur). Note that the event σi(tn, s) may refer to: (1) access
to object s, or (2) jobi ’s assignment to s = tn (Fig. 4), i.e., σi(tn) ≡ σi(tn, tn). E.g., δi,n(o j | ok) denotes the conditional demand
event 〈δi(tn, o j) | σi(tn, ok)〉 in which tn requests access to o j immediately after gaining access to ok , where k ∈ [1, M − 1],
j ∈ (k, M], and n ∈ [1, N] (i.e., ok has lower index than o j). Another example is the case δi,n(o j | tn), where the conditional
demand event 〈δi(tn, o j) | σi(tn, tn)〉 refers to tn ’s request to access jobi ’s first object, o j , immediately after the assignment
of jobi to tn . In a similar manner, denote by φi,n(od|s) ≡ 〈φi(tn, od) | σi(tn, s)〉 the conditional (release) event, in which tn

releases od at event φi(tn, od) that occurs after the supply event, σi(tn, s) and at the same work cycle (we will mainly use
φi,n(s|s)).

5.4.2. Events of arbitrary jobs and threads
In some parts of our modeling, we consider an arbitrary jobi that an arbitrary tn carries out. We then write δ(od|s),

σ(s) and φ(od|s) instead of δ•,•(od|s), σ•,•(s), and respectively, φ•,•(od|s) when referring to events from the sets {δi,n(od|s) :
i ∈ [1, J], n ∈ [1, N]}, {σi,n(s) : i ∈ [1, J], n ∈ [1, N]}, and respectively, {φi,n(od|s) : i ∈ [1, J], n ∈ [1, N]}, where i ∈ [1, J] and
n ∈ [1, N]. Given subpath (•, �1, . . . , �k, •), denote by δ(�k|�1, . . . , �k−1) the occurrence of δ(�k|�k−1), which happens imme-
diately after δ(�k−1|�k−2), . . . , δ(�2|�1).

10 I. Salem et al. / Theoretical Computer Science 731 (2018) 1–27
Fig. 6. (s,od)’s inter-demand period, s.T [d], i.e., the period between two consecutive δ(od|s) events.

Fig. 7. The delay s.D[d] and blocking s.B[d] start from δ(od|s), and respectively, σ(od |s), and both end at φ(od |s).

5.4.3. Consecutive events
To the end of defining throughput (inter-demand period) of a system item s in Section 5.5, we define consecutive demand

events that follow supply events of s. We say that δi,n(ok|s) occurs consecutively after δ j,n′ (o�|s), when all the following
conditions hold:

(1) δ j,n′(o� | s) = 〈δ j(tn′ , o�) | σ j(tn′ , s)〉 is part of tn′ ’s work cycle that includes the event σ j(tn′ , s) and the event δ j(tn′ , o�)

in which after s’s supply, tn′ requests access to o� ,
(2) φ j(tn′ , s) in which tn′ releases item s, and
(3) δi,n(ok | s) = 〈δi(tn, ok) | σi(tn, s)〉 is part of tn ’s work cycle (which is the successive of cycle(tn′ , job j)), which includes

the events σi(tn, s) and δi(tn, ok), in which after the supply of s, tn requests access to ok .

5.5. Pairwise states and request probabilities

The definition of the studied equilibria (at the system level) is based on item-level definitions that consider G ’s edges,
(s, od) ∈ E . We present a definition of the (pairwise) state, c[s, od], which considers the delay, blocking and inter-demand
periods that are related to the edge (s, od) of G and its conditional events. These periods refer to the time it takes threads
to request access to od , and release it subsequently (after the acquisition of item s) as well as the time between such (con-
secutive) requests that are made by (possibly) different threads. Moreover, when estimating the value of the pairwise-state,
c[s, od], we need to consider the probabilities that are related to the edge (s, od) and its conditional events.

5.5.1. Pairwise states
To the end of approximating T̃tn , D̃tn , and blocking(n), for n ∈ [1, N], we define the pairwise states, which capture the

throughput, delay, and blocking between tn and every system object. To compute the latter, we extend the definition of
pairwise states to pairs of objects, since jobs might include more than one object. In sections 7–8 we will show how we
can approximate T̃tn , D̃tn , and blocking(n) through the pairwise states.

We refer to (s, d)’s pairwise state c[s, od] = s.〈T [d], D[d], B[d]〉 as the tuple that includes the request completion rate,
request delay, and respectively, blocking period with relation to the events δ(od|s), where d ∈ [1, M] refers to od and s
can be either a thread or o� , � ∈ [1, d). The (s, od)’s request inter-demand period, s.T [d], refers to the period between the
consecutive events, 〈δi(tn, od) | σi(tn, s)〉 and 〈δ j(tn′ , od) | σ j(tn′ , s)〉 (Fig. 6), where i, j ∈ [1, J] and n, n′ ∈ [1, N]. Furthermore,
(s, od)’s delay, s.D[d], refers to a period that starts on the event δ(od|s) in which a thread requests access to od (immediately
after gaining access to item s) and ends upon the event φ(od|s) in which that thread releases od (during the same work
cycle). In addition, (s, od)’s blocking, s.B[d], is the fraction of (s, od)’s delay s.D[d] in which the thread blocks other threads
from gaining access to od , i.e., the period between the event 〈σi(tn, od)|σi(tn, s)〉 in which tn gains access to od , and the
event φi(tn, od) in which tn releases od (Fig. 7). Note that each of c[s, od]’s three elements is a random variable (for which
maintaining the first three moments provides sufficient accuracy).

I. Salem et al. / Theoretical Computer Science 731 (2018) 1–27 11
Fig. 8. Illustration of the fact that Ttn (inter-demand period) and T̃tn (time between consecutive job completions) follow the same distribution. In both
figures, the horizontal line denotes the time horizon, while the vertical lines mark events that occurred, which are denoted below them. Ttn starts with
the first demand event (δ•(tn, •)) that follows the job assignment (σ•(tn)) and it continues until the job completion (
•(tn)). Then there is a possibly zero
length idle period (Fig. 8b) until the next job assignment (σ•(tn)), and Ttn ends at the event δ•(tn, •). Similarly, T̃tn starts at the event of job completion
(
•(tn)), which is followed by a possibly zero length idle period, and ends upon the job completion of the next job (σ•(tn) to
•(tn)).

5.5.2. Pairwise request probabilities
An essential component of our analysis is the probability of an event δ(od|s) to occur, i.e., the probability of a demand

event to object od to occur immediately after the supply event of item s, within the same work cycle. Given that a thread
has gained access to item s, i.e., σ•(t•, s) occurred, then either δ•(t•, od) will occur immediately after, or the thread will
release s in case the job is completed. We refer to the probability of δ(od|s) to occur as the (pairwise) request probability,
R(s, od).

The exact values of these probabilities can be computed when we are aware of all the events that occurred during a
time horizon t . In this case, we denote these probabilities with Rt(s, od). When the information about the number of system
events during the horizon t is not available or we consider the values of these probabilities independently of t , we use the
notation R(s, od). In the following we define R(s, od) and Rt(s, od). In this work, we do not focus on a specific horizon t
neither we assume that we have knowledge of the number of events that have occurred during some t . Hence, in Section 6
we propose an approximation of R(s, od), based on the system’s input parameters.

Definition of R(s, od) For a randomly chosen work cycle that includes the event, σ•(t•, s), of a thread gaining access to
item s, we define (s) = {δ(od|s) : (s, od) ∈ E is an edge in G } ∪ {φ(s|s)} as the probability space of the possible events to
occur immediately after σ•(t•, s). Moreover, R(s, od) and R(s, s) are the probabilities of (s)’s events δ(od|s), and respec-
tively, φ(s|s). Namely, R(s, od) denotes the probability of a demand event, δ•(t•, od) to occur immediately after the supply
event, σ•(t•, s) and in the same (randomly chosen) work cycle. Moreover, R(s, s) denotes the probability of a release event,
φ•(t•, s), to occur immediately after its related supply event, σ•(t•, s) and during the same (randomly chosen) work cycle.
Note that R(s, s)’s definition requires that s is the last object to which a thread gains access during its work cycle.

We define the request probability matrix R to be a (N + M) × (N + M) row stochastic matrix, such that the (s, od) element
of R is the probability R(s, od). Note that by the definition of the state space, (s), the following hold: (i) for every two
items s and x, such that (s, x) is not an edge of G , R(s, x) = 0 holds, and (ii) R(s, s) + �d R(s, od) = 1 holds. The matrix R
has a block form (Equation (2)), where R N,N is an N × N zero matrix, R N,M = (R(tn, o j))n∈[1,N], j∈[1,M] is an (N × M) matrix,
R M,N is an M × N zero matrix, and R M,M = (R(o j, ok)) j,k∈[1,M] is an M × M matrix. Note that R M,M is an upper triangular
matrix, since the acquisition order of objects (implied by the ascending index order of objsi in jobi = 〈objsi, operationi〉)
restricts each thread to request an object of higher index than the one of the last object that it gained access to.

R =
(

R N,N R N,M

R M,N R M,M

)
(2)

Definition of Rt(s, od) In this case, we restrict the (random) choice of the work cycle to the time interval t = [tstart, tend] and
assume the knowledge of all events that occurred in the system during that period. For the time interval t = [tstart, tend],
we define Rt(s, od) = αt(s, od)/ηt(s), to be the number of δ(od|s) occurrences, over the number of σ(s) occurrences and
Rt(s, s) = βt(s)/ηt(s) to be the number of φ(s|s) occurrences, over the number of σ(s) occurrences, where #t X denotes the
number of event X occurrences in t = [tstart, tend]. Moreover, we define (i) αt(s, od) = �i,n#tδi,n(od|s), when s = o� , � ∈ [1, d),
and (ii) αt(s, od) = �i#tδi,n(od|s), when s = tn : n ∈ [1, N], the number of δ(od|s) events that occurred during t = [tstart, tend].
Furthermore, βt(s) = �i,n#tφi,n(s|s) and ηt(s) = �i,n#tσi(tn, s) denote the number of φ(s|s), and respectively, σ(s) events
that occurred during t = [tstart, tend]. Note that profiling tools can be the basis for estimating Rt (s, od) and Rt(s, s).

5.6. Item inter-demand period

To the end of defining the job completion rate (throughput), as well as the rate in which an object is released, we define
the item inter-demand period. Consider jobi and jobi′ , where i, i′ ∈ [1, J], such that oi1 and oi′ are the first objects in the
1

12 I. Salem et al. / Theoretical Computer Science 731 (2018) 1–27
object vectors of jobi , and respectively, jobi′ , and assume that tn carries out jobi and jobi′ consecutively. We refer to tn ’s
inter-demand period, Ttn , as the period between δi(tn, oi1) and the demand event δi′ (tn, oi′1).

We remark that the time between (consecutive) job completions of tn , T̃tn (Section 2.3), follows the same distribution
with the thread inter-demand period, Ttn (essentially, the time between consecutive job assignments). We illustrate this
point in Fig. 8, as well as in the following. Recall that blocking(n) denotes the job blocking period for tn (Section 2.4),
i.e., the time between the assignment and completion of a job at tn . Also, recall that D̃tn denotes the job delay for tn

(Section 2.4), i.e., the time between a job arrival to Q thread(tn) and the completion of that job. When there is an idle period
after a job completion (tn ’s queue is empty), upon the next job arrival to tn ’s queue, the job is immediately assigned to tn .
In the latter case, the job delay and blocking period are equal. Let idltn be the random variable that denotes the length of
tn ’s idle periods (idltn = 0 when there is no idle period between consecutive jobs).

By the definition of the work cycle events (Section 5.2), T̃tn (time between job completions) follows the distribution of
idltn + blocking(n). That is, after a job completion event, there is an idle period (of possibly zero length), hence idltn . In case
tn ’s queue is empty, then the next job that arrives is immediately assigned to tn , hence the next job completion after the
idle period occurs after a period equal to blocking(n). In case tn ’s queue is not empty, then the next job is immediately
assigned to tn , hence the time until the next job completion is again blocking(n). Similarly, Ttn follows the distribution of
(blocking(n) − A) + idltn + A = blocking(n) + idltn . That is, Ttn starts with a demand event for the first object of a job, hence
there is a period of blocking(n) − A until tn completes that job. Then, there is an idle period of length idltn , until the next
job assignment. After the next job assignment, there is a period of length A (acquisition period) until the demand event for
the first object of that job.

We refer to ok ’s inter-demand period, Tok , as the period between two consecutive conditional (demand) events for ac-
cessing an object in {o� : � ∈ (k, M)} immediately after gaining access to ok by two, possibly different, threads, where
k ∈ [1, M − 1]. Namely, Tok is the period between δ(o j |ok) and the successive event δ(o j′ |ok), where j, j′ ∈ (k, M]. Similarly
to Ttn , 1/E(Tod) estimates (due to using the expected value of Tod) the number of job completions that include od per time
unit.

Note that in systems where jobs with paths (•, od, od′ , •) do not exist, we assume that Tod is the time between two
consecutive σ•(•, od) events (which definitely occur due to our assumptions in Section 2). Our definition of Ts for a system
item s, will play a crucial role in resolving dependencies in Section 9 (cf. Section 4). Specifically, it will allow us to define
subsystems that include less system items (hence the focus on the time between requests), that preserve the shared-object
system’s performance parameters.

5.7. Shared-object system equilibria

In this section, we refine the definitions of system state and OSEs given in Section 2.4, basing on the pairwise states.
For a given system, ψ(G) = {c[s, od]}(s,od)∈E is the system state (set), where G = (V , E) is the acquisition graph. For a given
ψ(G), the inter-demand period of the system is the set τ (G) = {Titem}item∈V \{oM } .

Suppose that the system is in a state in which �i∈[1, J]λi,n = 1/E[Ttn], for every n ∈ [1, N]. That is, the job arrival
and completion rates match for every thread’s queue. We say that ψ∗(G) = {c∗[s, d]}(s,od)∈E , is the shared-Object System
Equilibrium (OSE). Given ψ∗(G), the respective inter-demand period of the system is τ ∗(G) = {T ∗

item}item∈V \{oM } . For a
given ε > 0 and an OSE ψ∗(G), we say that the system state ψ(G) is an ε-OSE when ∀ item ∈ V \ {oM}, T ∗

item ∈ τ ∗(G),
Titem ∈ τ (G) : |T ∗

item − Titem| < ε holds. Namely, the corresponding values of each item in τ (G) and τ ∗(G) differ by less
than ε.

6. Request probabilities

In this section we provide approximations of the pairwise request probabilities R(s, od) (Section 5.5.2). Recall that R(s, od)

denotes the probability of a thread to demand access to od , immediately after the supply event σ•(•, s) (the latter denotes
either a job assignment event or the event of a thread gaining access to object s). Moreover, R(s, s) denotes the probability
of a job to be completed at object s.

The fact that the pairwise request probabilities depend on the arrival rates of the corresponding jobs is the basis of our
estimation of R(s, od) (Approximation 1), where (s, od) is an edge in the acquisition graph G . That is, a higher arrival rate
of jobs that include s and od in their acquisition paths, increases the probability of δ•,•(s, od) events to occur (Section 5.4.2).
We follow the approach of network approximations [8, Section 8.2] for estimating the probabilities R(s, od). In network
approximations, queuing systems (Section 3) with arrivals that follow exponential distributions and jobs that have deter-
ministic routing, but exponentially distributed service times, are approximated by Jackson queuing networks (for which an
exact analysis is feasible) [15,5]. This method cannot be applied entirely for the analysis of shared-object systems, since
it considers exponentially distributed blocking periods and it does not consider thread blocking. However, as mentioned
in [8, Section 8.2], combinations of multiple (non-exponentially distributed) arrivals to a system item’s queue, tend to be
exponentially distributed.

In Lemma 2 we prove that our estimations of R(s, od) and R(s, s) define indeed a probability, i.e., for any item s, R(s, s) +
�d �=s R(s, od) = 1. This implies that the probability matrix R , which contains the estimates of R(s, od) and R(s, s), is a

I. Salem et al. / Theoretical Computer Science 731 (2018) 1–27 13
stochastic matrix. Let 〈s1, . . . , s�〉 be a vector of objects, objsi be the object vector of jobi and i ∈ [1, J]. We define the
following characteristic functions with values in {0, 1}:

startsi(〈s1, . . . , s�〉) ⇔ objsi = (s1, . . . , s�,•) (3)

includesi(〈s1, . . . , s�〉) ⇔ objsi = (•, s1, . . . , s�,•) (4)

endsi(〈s1, . . . , s�〉) ⇔ objsi = (•, s1, . . . , s�) (5)

Approximation 1. Equation (6) and Equation (7) approximate R(s, od), when s = tn : n ∈ [1, N], and respectively, s = o j : j ∈
[1, M − 1]. Moreover, for any object s, Equation (8) approximates R(s, s).

R(tn,od) ≈
(
�iλi,n · startsi(〈od〉)

)
(
�iλi,n

) (6)

R(o j,od) ≈ �i,nλi,n · includesi(〈o j,od〉)
�i,nλi,n · includesi(〈o j〉) (7)

R(s, s) ≈
(
�i,nλi,n ·endsi(〈s〉))(

�i,nλi,n ·includesi(〈s〉)) (8)

Equation (6) estimates R(tn, od) by the sum of arrival rates of jobs that start with od at tn , divided by the sum of the arrival
rates of all the jobs that are assigned to tn . Equation (7) estimates R(o j, od) by the sum of arrival rates of jobs that include
the subvector (o j, od) in their object vector (assigned to any thread), divided by the sum of arrival rates of jobs that include
the subvector (o j) in their object vector (to any thread), where j ∈ [1, M − 1] and d ∈ (j, M]. Equation (8) estimates R(s, s)
by the sum of arrival rates of jobs with object vectors that end with the subvector (s) (assigned to any thread), divided by
the sum of arrival rates of jobs that include the subvector (s) in their object vector (assigned to any thread), where s is a
system object. Note that in any other case, we define R(s, od) = 0, since no conditional demand events δ(od|s) or conditional
release events φ(s|s) occur in these cases.

We prove that the estimation of the request probabilities in Approximation 1 also defines a probability (Lemma 2).

Lemma 2. For R(s, od)’s estimation (Approximation 1), it holds that: (1) �d R(tn, od) = 1, where n ∈ [1, N] and od is an object,
(2) R(s, s) + �d �=s R(s, od) = 1, and (3) R is a row stochastic matrix.

Proof. Equation (9) demonstrates claim (1).

�d R(tn,od) = �d�iλn,i · startsi(〈od〉)
�iλn,i

= �iλn,i�d startsi(〈od〉)
�iλn,i

= �iλn,i · 1

�iλn,i

= 1 (9)

For any object s �= oM , Equation (11) demonstrates claim (2) due to Equation (10), which holds since a job object vector that
includes object s, either ends with s or includes more items od �= s.

endsi(〈s〉) + �d �=s includesi(〈s,od〉) = includesi(〈s〉) (10)

R(s, s) + �d �=s R(s,od) = �n,iλn,i · endsi(〈s〉)
�n,iλn,i · includesi(〈s〉) + �d �=s�n,iλn,i · includesi(〈s,od〉)

�n,iλn,i · includesi(〈s〉)
= �n,iλn,i · endsi(〈s〉) + �d �=s�n,iλn,i · includesi(〈s,od〉)

�n,iλn,i · includesi(〈s〉)
= �n,iλn,i

(
endsi(〈s〉) + �d �=s includesi(〈s,od〉)

)
�n,iλn,i · includesi(〈s〉)

= �n,iλn,i · includesi(〈s〉)
�n,iλn,i · includesi(〈s〉)

= 1 (11)

As for claim (3), we note that claims (1) and (2) imply that our estimation of the block matrices R N,M and R M,M of the
matrix R are row stochastic (Equation (2)). Since the block matrices R N,N and R M,N are zero matrices, our estimation of R
forms a row stochastic matrix. �

14 I. Salem et al. / Theoretical Computer Science 731 (2018) 1–27
7. Blocking periods

In this section we estimate the blocking periods of the pairwise states (Section 5.5.1), i.e., the time between the events
of supply and release of access to an object. Recall that the supply event of item s, may refer to either the assignment of a
job to s = tn or the event in which a thread acquires access to s = o j . We estimate the blocking period s.B[d], i.e., the time
from the event in which a thread acquires access to od immediately after the occurrence of a supply event of item s, until
that thread releases od .

The s.B[d] blocking period is an effect of multiple threads’ job paths, i.e., the (•, s, od) and the remaining (•, s, od, •)

paths. The former case corresponds to the job completion period (Approximation 3), whereas the latter also includes the
dependency on the delay of acquiring the path’s remaining objects (Approximation 4). Our approximations follow the ap-
proach of [23]. In Section 9 we show that the computation of the pairwise states can be indeed based on tools from [23].

7.1. Job completion periods

Let f s,od denote the fraction of the blocking period that refers to jobs with paths (•, s, od). That is, f s,od is the time be-
tween the supply event σ•,•(•, od) and the release event φ•,•(•, od) of the same work cycle, for jobs with paths (•, s, od) (cf.
Section 5.4.2). We estimate f s,od by the operation time average of jobs with (•, s, od) paths, weighted by the probability for
the related events to occur (Approximation 3). Approximation 3 defines f s,od = �

J
i=1 weighti(s, od) · O i as a weighted average

of all the operation times. We define these weights as follows. If s is an object, then Equation (13) defines weighti(s, od)

and Equation (12) defines the normalizing constant for all weights.

W s,od = �
J
i=1�

N
n=1λi,n · endsi(〈s,od〉) (12)

weighti(s,od) = (�N
n=1λi,n · endsi(〈s,od〉))/W s,od (13)

Similarly, if s is a thread, tn , then Equation (15) defines weighti(s, od) and Equation (14) defines the normalizing constant
for all weights.

W s,od = �
J
i=1λi,n · endsi(〈od〉) (14)

weighti(s,od) = (λi,n · endsi(〈od〉))/W s,od (15)

Approximation 3 (as in [23]). The blocking period of jobs with paths (•, s, od) is a weighted average, f s,od = �
J
i=1 weighti(s, od) · O i ,

of the respective job operation times.

7.2. Acquiring the remaining objects

In the case of (•, s, od, •) paths, the blocking period s.B[d] depends on the completion period of jobs with (•, s, od) paths,
f s,od , as well as on the jobs with (•, s, od, od′ , •) paths. In the case of jobs with (•, s, od, od′ , •) paths, the blocking period
of od equals the delay for od′ . That is, the time between the events of acquiring and releasing access to od , equals the time
between the events of queuing an acquisition request in the queue of od′ and the release of od′ (as well as the other objects
of that job). Since d′ ∈ (d + 1, M], Approximation 4 is an average over all possible choices of d′ , weighted by the pairwise
probabilities, as in [23].

Approximation 4 (as in [23]). The blocking period of jobs with (•, s, od, •) paths can be estimated by s.B[d] = R(s, od) · R(od, od) ·
f s,od + �M

d′=d+1 R(s, od) · R(od, od′) · (A + od.D[d′]).

Note that Approximation 4’s recursive equation details a forward dependency on the delays od .[d′], d ∈ (d + 1, M]. Thus,
it is possible to compute this estimation for d = M directly from the input parameters (sections 6 and 7.1), i.e., s.B[M] =
R(s, oM) · R(oM , oM) · f s,oM . Then, given the delays s.D[M], it is possible to compute the blocking periods s.B[M − 1], and
so on until s.B[1]. This computation is the basis of the backward iterations (Section 4) to resolve these dependencies
(Section 9).

8. Item inter-demand periods

The inter-demand period of an item s, Ts , is the time between two consecutive demand requests that follow the supply
of item s (Section 5.6). In this section, we approximate the item inter-demand period, which together with the blocking
period, s.B[d] (Section 7), are essential for calculating the delay, s.D[d] (Section 9), where d ∈ [1, M] and (s, od) is an edge
in the acquisition graph G . In Section 8.1 we estimate Ttn , for every thread tn and in Section 8.2 we estimate Tod , for every
object od . The estimation of Ttn depends on the job arrival process and the job blocking period, and the estimation of Tod

bases on the pairwise inter-demand periods, s.T [d], where s is a system item.

I. Salem et al. / Theoretical Computer Science 731 (2018) 1–27 15
Fig. 9. The Markov process that models T̃tn . The process starts after a job completion on tn . If Q thread(tn) is empty (with steady-state probability u0) the
next job arrives with rate λ. After a job has arrived or in case Q thread(tn) is not empty (which occurs with probability 1 − u0), the blocking period begins.
The blocking period follows a Coxian-2 distribution, and thus it consists of two states with rates ν1 and ν2. The blocking period ends with rate ν1 with
probability 1 − q, by moving to the absorbing (ending) state, marked with 0. Otherwise, the blocking period continues to the second state (of rate ν2) with
probability q, after which it also moves to the absorbing state.

8.1. Thread inter-demand period

We estimate the inter-demand period of a thread tn , Ttn , through a Markov process, following the approach of [23].
Recall that Ttn follows the same distribution with the time between job completions, T̃tn (Fig. 8, Section 5.6). Thus, we focus
on computing the first three moments of T̃tn . We achieve the latter, by defining a Markov process which describes T̃tn ,
such that T̃tn follows the distribution of the time until the Markov process reaches an absorption (ending) state [23]. By the
definition of T̃tn , the absorbing state is the event of job completion. In Fig. 9 we define a Markov process that models T̃tn ,
which we explain below.

The Markov process of Fig. 9 is defined as follows. By the definition of T̃tn , the process starts upon a job completion
event (and ends in the next job completion event). Hence, in the beginning of the process the queue of tn is empty with
steady-state probability u0 (Section 3.1), or non-empty (with probability 1 − u0), and in the latter case the blocking period
of the next job begins. Thus, if tn ’s queue is empty, the next job arrives with rate λ = �

J
i=1λi,n (first state in Fig. 9), and the

blocking period begins immediately after the job arrival.
Since the distribution of the blocking period, blocking(n), is unknown, we use its moments to match it with a Coxian-2

distribution (Section 3.1 and [2]). We denote the parameters of the Coxian-2 distribution that matches the moments of
blocking(n) with ν1, q, and ν2 (Section 3.1). By the definition of Coxian-2 distributions, the blocking period either ends after
the state with rate ν1 with probability q, or it continues (with probability 1 − q) to the state with rate ν2, after which
it certainly ends. The end of the blocking period (job completion) sets the end of T̃tn ’s period, which is modeled by the
absorbing (ending) state of the Markov process (state 0 in Fig. 9).

Recall that T̃tn follows the distribution of the time until the Markov process of Fig. 9 reaches an absorption state. The lat-
ter time follows a phase-type distribution, by the distribution’s definition [1,21]. In the following we define the parameters
of T̃tn ’s phase-type distribution, based on the Markov process of Fig. 9, which will then allow us to compute T̃tn ’s moments.

A phase-type distribution is defined by an initial probability vector c (probability of starting in each state) and
a transition rate matrix Q (rates of transitions between states), both determined by the Markov process. By Fig. 9,
c = (u0, 1 − u0, 0, 0), where each of the elements corresponds to the probability of starting in each of the states of the
Markov process in the following order: λ, ν1, ν2, and 0. Similarly, the matrix Q is a 4 × 4 matrix with block form

Q =
[

S S0

0 0

]
, where Q (x, y) is the transition rate of moving from state x to state y, multiplied by the transition’s prob-

ability, 0 is a 1 × 3 vector of zeros, 1 is a 3 × 1 vector of ones, and S0 = −S1. Note that the last column and row of Q
correspond to the absorbing state and each diagonal element is defined by the row’s sum times −1. By Fig. 9, we have the
following:

Q =

⎡
⎢⎢⎣

−λ λ 0 0
0 −ν1 qν1 (1 − q)ν1
0 0 −ν2 ν2
0 0 0 0

⎤
⎥⎥⎦ and S =

⎡
⎣ −λ λ 0

0 −ν1 qν1
0 0 −ν2

⎤
⎦.

The m-th moment of Ttn , which equals the one of T̃tn , is E[T m
tn

] = E[T̃ m
tn

] = (−1)mm!cS−m1 [1].
We define the function augmntT hreadBlock(I(n), blocking(n)), which estimates Ttn ’s moments as we explained above.

The function input includes the inter-arrival times I(n) (which follows an Exp(�
J
i=1λi,n) distribution) and the function

blocking(n), which we approximate by blocking(n) = A +�M
d=1 R(tn, od) · tn.D[d], i.e., the average time it takes tn to complete

a job (tn.D[d] ends on job completion). Moreover, augmntT hreadBlock(I(n), blocking(n)) outputs the estimation of Ttn and
checks if the OSE condition is violated (line 11 in Algorithm 1 of Section 4.3), i.e., the rate � J

i=1λi,n that defines I(n) is
greater or equal than 1/E[blocking(n)] for every n ∈ [1, N]. We detail the calculation of the pairwise delays, s.D[d], in
Section 9.

8.2. Object inter-demand period

The inter-demand period Tod of an object od is the time between two consecutive demand events that immediately fol-
low the events of a thread gaining access to od (Section 5.6). As we showed in Section 5.6, To follows the same distribution
d

16 I. Salem et al. / Theoretical Computer Science 731 (2018) 1–27
with the time between two consecutive release events of od , which defines the completion rate of jobs that include od (od ’s
throughput). By its definition, Tod depends on the rate in which threads place acquisition requests in od ’s queue, as well as
on the job completion period on od , f•,od (Section 7). In the following, we detail an approximation of Tod (Approximation 5),
which follows the approach of [23].

Consider an edge (s, od) of the acquisition graph G . Threads that execute jobs that have an acquisition path equal to
(•, s, od, •) request access to od , immediately after the supply of item s. Therefore, Approximation 5 computes Tod by a
weighted average of Ts (inter-demand period of item s) and f s,od (job completion period), for every item s, such that (s, od)

is an edge in G . The weight ω(s, od) depends on the probability R(s, od) as well as on the pairwise inter-demand period
s.T [d]. That is, ω(s, od) depends on the probability of a thread to demand access to od , immediately after a supply event of
item s, as well as on the time between such demands. We denote with arrivals(od) the set of all items s, such that (s, od)

is an edge in G . For example, arrivals(o2) = thread ∪ {o1} and thread = {t1, . . . , tN}.

Approximation 5 (as in [23]). Let ω(s, od) = R(s, od) · s.T [d] and arrivals(od) = thread ∪ {o j | j ∈ [1, d − 1]}. The inter-demand
period Tod of od is:

Tod = �s∈arrivals(od)ω(s,od) · (Ts + f s,od)

�s∈arrivals(od)ω(s,od)

Approximation 5 details Tod ’s backward dependency via its recursive equation that calculates To j , j ∈ [1, d − 1], before
calculating Tod . Moreover, the calculation of Tod depends on the inter-demand periods, which is tn.T [d], of (tn, od) and
respectively, s.T [d], where d ∈ [1, M] and s ∈ thread ∪ {o j | j ∈ [1, d − 1]}. We use forward iterations (Section 4) for resolving
such dependencies (Section 10). Furthermore, in Section 9 we calculate the pairwise inter-demand periods s.T [d] for (s, od)

in G .

9. Resolving dependencies: pairwise delay and throughput computation

We showed how to estimate the blocking period of an object, s.B[d], while depending on the delay for acquiring other
objects, od.D[d′] (Section 7), as well as how to estimate the inter-demand periods Ttn and Tod , while depending on the
s.T [d] pairwise inter-demand periods, due to (•, s, od, •) paths (Section 8). Recall that these variables are inter-dependent
due to blocking. Theorem 6 demonstrates that we can resolve these interdependencies by representing the thread work
cycles as a contention subsystem, in a way that is not subject to blocking and yet preserves these interdependencies.

To the end of proving Theorem 6, we first define contention subsystems in Section 9.1. Contention subsystems are closed
systems that we construct basing on the items s and od , as well as on distinct copies (relay nodes) of every object o j ,
such that (•, s, o j, •) is a job path, where j �= d. These subsystems effectively represent the system parameters and thread
blocking, because by their definition the time during which a thread is accessing an item in the contention subsystem
includes the item’s entire blocking period in the shared-object system.

Then, we present the Baynat–Dallery framework (Section 9.2), which is an adaptation of Baynat and Dallery’s algo-
rithm [4] to the setting of shared-object systems. The Baynat–Dallery framework’s input is a contention subsystem for item
s and od and its output is (the distributions of) s.T [d] and s.D[d]. We provide the key steps of Theorem 6’s proof by looking
into the case of M = 3 in Section 9.3, before giving the complete proof in Section 9.4, using background knowledge [4,23]
(which we refer to in Section 3).

Theorem 6. Let s ∈ Sod , where Sod ∈ {thread} ∪{{o j} | j ∈ [1, d)}. The Baynat–Dallery framework can approximate the pairwise delay
s.D[d] and pairwise inter-demand period s.T [d] through the contention subsystem CS(Sod , od) = (H(Sod , od), (Rs)s∈Sod

, (Bs)s∈Sod
),

where Sod ∈ {thread} ∪ sod and sod = {{oi} | i ∈ [1, d − 1]}. The running time of each framework iteration is O (M · N4).

9.1. Contention subsystems

Given any pair of system items, s and od , we calculate the (pairwise) state c[s, od] for G ’s edge (s, od) using a construction
that we name contention subsystem CS(Sod , od), where d ∈ [1, M], s ∈ Sod and Sod is either the set of all threads, Sod = thread,
representing (tn, d, •) job paths, or a set including a single object, Sod = {o j}, j ∈ [1, d − 1], representing (•, o j, od, •) paths.
For every item s ∈ Sod , we use the thread work cycle, cycle(tn, job j) of tn , n ∈ [1, N], carrying out job j , (Section 5), to
show that the contention subsystem CS(Sod , od) represents the state of the shared-object system, with respect to the
interdependencies among the delay s.D[d] and the pairwise inter-demand period s.T [d] when the blocking time and the
item inter-demand periods are known.

Let od ∈ {o1, . . . , oM}, sod = {{o1}, . . . , {od−1}} (i.e., sod = ∅ when d = 1), and Sod ∈ {thread} ∪ sod , where thread =
{t1, . . . , tN}. Moreover, let Rel(thread, od) = [1, M] \ {d} and Rel({oi}, od) = [i + 1, M] \ {d}, where {oi} ∈ sod . We parti-
tion the (•, s, •) paths to three sets, P(s, od) = ∪�∈[1,3]P� , where P1 = {path | path = (•, s, od, •)}, P2 = {path | path =
(•, s, oi, •, od, •) ∧ i ∈ Rel(Sod , od)\ [d + 1, M]}, P3 = {path | path = (•, s, •) ∧ od /∈ path}.

A contention subsystem, is denoted by CS(So , od) = (H(So , od), (Rs)s∈So , (Bs)s∈So) and defined by (1)–(3).
d d d d

I. Salem et al. / Theoretical Computer Science 731 (2018) 1–27 17
(1) The contention graph H(Sod , od) = (V, E) has the set of vertices V = ∪s∈Sod
Vs , and the set of edges E = ∪s∈Sod

Es ,
such that for every s ∈ Sod , Vs = {s} ∪ {d} ∪ {relay(s, o j) | j ∈ Rel(Sod , od)} and Es = E1

s ∪ E2
s ∪ E3

s , where E1
s = {(s, od), (od, s)},

E2
s = ∪ j∈Rel(Sod ,od)\[d+1,M]{(s, relay(s, o j)), (relay(s, o j), od), (od, s)}, and E3

s = ∪ j∈Rel(Sod ,od){(s, relay(s, o j)), (relay(s, o j), s)},
i.e., Ek

s corresponds to the partition Pk , where k ∈ [1, 3]. Note that H(Sod , od) is a simple graph, i.e., there are no multiple
edges between two vertices. Moreover, relay(s, o j) is a distinct copy of a relay o j , j ∈ Rel(Sod , l), for s ∈ Sod . A relay node
relay(s, o j) will allow us to separately analyze the effect of jobs with paths (•, s, o j, •) on s.T [d] and s.D[d]. For example,
jobs with paths (tn, o j, •) and (tn′ , o j, •) effect differently s.T [d] and s.D[d], for s ∈ {tn, tn′ }. This decomposition technique
follows the approach of [23].

(2) The request probability matrices Rs for H(Sod , od) = (V, E) and s ∈ Sod . Rs(s, od) depicts the probability of a path
(•, s, od, •). Moreover, Rs(s, relay(s, o j)) depicts the probability of a path r = (•, s, o j, •), while Rs(relay(s, o j), od) depicts
the probability that r = (•, s, o j, •, od, •). Furthermore, Rs(v, s), v ∈ Vs \ {s}, depicts the probability of a thread becoming
idle or starting a new job after the completion of a job, which is a certain event and therefore Rs(v, s) = 1, v ∈ Vs \ {s}.

(3) The blocking periods, (Bs)s∈Sod
, where Bs is a function over the set of items in Vs , and s ∈ Sod refers to the thread

blocking periods on each of Vs ’s items. Note that E i
s forms a directed circle in H(Sod , od), where s ∈ Sod and i ∈ [1, 3].

A demand request to od that follows the supply of s ∈ Sod and possibly the supply of a relay object, o j , j ∈ Rel(Sod , od) \
[d + 1, M], is blocking od for Bs(od) = s.B[d] time. A demand request to node relay(s, o j) that follows the supply of s ∈ Sod ,
blocks that node for a period of Bs(relay(s, o j)) = s.D[j], if j ∈ [d + 1, M] and Bs(relay(s, o j)) = W (s, relay(s, o j), od), if
j ∈ Rel(Sod , od) \ [d + 1, M], where W (s, relay(s, o j), od) equals the delay s.D[j] minus the blocking period of a possibly
subsequent demand event to od . Once a job is completed, another demand event follows the supply of s ∈ Vs after a
period of Bs(s) = Ts (by the definition of Ts). Lemma 7 of Section 9.4 shows that a contention subsystem represents the
dependencies among the threads in a shared-object system with respect to its state.

9.2. Baynat–Dallery framework

In this section, as a background knowledge, we discuss a variation on Baynat and Dallery’s framework [4] that we
adapt to the context of shared-object systems (Algorithm 2). The B D F () function denotes our adapted version of Baynat
and Dallery’s framework. For every s ∈ Sod , this function takes a contention subsystem, CS(Sod , od), which is the tuple
(H(Sod , od), (Rs)s∈Sod

, (Bs)s∈Sod
), as an input and returns an estimation of the delay s.D[d] and inter-demand period s.T [d].

Namely, (s.T [d], s.D[d])s∈Sod
= B D F (CS(Sod , od)). The solution of Baynat and Dallery is based on iterative approximations

of the demand arrival rates and request completion rate to od with the ones in the subgraph Hs(Sod , od) = (Vs, Es), and
vice versa, until, for every s ∈ Sod , their absolute difference is below a given threshold. The authors of [4] demonstrate
the convergence of their iterative methods via numerical experiments. Baynat and Dallery [4] show that each iteration has
polynomial running time, which is O (M · N4) for the OSE case (Lemma 9).

We complete this section with a detailed explanation of Algorithm 2. The procedure starts by an initialization phase
(lines 7–9), which is followed by a repeat-until loop (lines 10–24) and the output calculation (lines 25–26) before returning
the output (line 27).

9.2.1. Variables
Let s ∈ Sod denote a thread, if Sod = thread, or an object, if Sod = {o j}, where j ∈ [1, d − 1]. For item v ∈ Vs , we define

Is(v), Bs(v) and Cs(v) to be item v ’s the inter-arrival time Is(v), blocking period Bs(v), and respectively, inter-demand
period Cs(v). With respect to the B D F () function, Is(v) is the time between two demand events to item v , Bs(v) is the
blocking period of an arbitrary demand event to v , and respectively, Cs(v) is the time between two release events on v .
Note that when s is a thread (Sod = thread), Is(s) is the time between two object release events by s, Bs(s) is the time from
an object release event until the next job completion by s, and respectively, Cs(s) is the time between two job completions
by s. Baynat and Dallery approximate Is(v), Bs(v) and Cs(v) using exponential distributions with parameters (rates) γs(v),
μs(v), and respectively, νs(v). Note that these random variables depend only on s and v , due to the definition of the
contention subsystem (Section 9.1) and Lemma 7 of Section 9.4. The B D F () function estimates γs(v), μs(v) and νs(v) and
uses them to compute s.D[j] and s.T [j] for every s ∈ Sod .

We define the subgraph Hs(Sod , od) = (Vs, Es) of H(Sod , od) (Section 9.1). Note that when Sod = thread, thread s = tn

requests to access only to items in Hs(Sod , od)’s subgraph. Similarly, when Sod = {o�}, a thread that has access to s = o� re-
quests to access only to Hs(Sod , od)’s items, where � ∈ [1, d −1]. Baynat and Dallery treat these subgraphs as Gordon–Newell
networks [9,6]. The B D F ()’s repeat-until loop (lines 10–24) alternates between computing γs(v), μs(v) and νs(v) for the
Gordon–Newell network defined by the subgraph Hs(Sod , od), for every s ∈ Sod and the same values for every individual
item v ∈ V . The iterations stop when for two consecutive loops there is no s ∈ Sod and v ∈ Vs , such that the values of μs(v)

differ more than a given ε (line 24).

9.2.2. Initialization phase
The B D F () function initializes μs(v) with 1/E(Bs(v)) (lines 7–8) and computes the steady-state probabilities of a thread

to demand or have access to item v , after the supply of item s. It does that through the function stationary(), which takes

18 I. Salem et al. / Theoretical Computer Science 731 (2018) 1–27
Algorithm 2: The B D F () function for estimating delay and pairwise inter-demand period through a contention subsys-
tem.

1 Input: CS(Sod , od) = (H(Sod , d), (Rs)s∈Sod
, (Bs)s∈Sod

);

2 Output: (s.T [d], s.D[d])s∈Sod
;

3 Macros:
4 converged(prev, curr) = (� μs(v) ∈ prev, μ′

s(v) ∈ curr : |μs(v) − μ′
s(v)| ≥ ε);

5 Z(v) = {s ∈ Sod |v ∈Vs};
6 begin
7 foreach s ∈ Sod do
8 foreach v ∈Vs do μs(v) ← 1/E(Bs(v))

9 foreach s ∈ Sod do (steadyStateProbabilitiess(v))v∈Vs ← stationary(Rs)

10 repeat
11 let oldV alues = (μs(v))s∈Sod ,v∈V ;

12 foreach s ∈ Sod do
13 GordonNewellConstants ← ∑

v∈�(s)
steadyStateProbabilitiess(v)/μs(v);

14 foreach v ∈Vs do
15 subgraphMarginalProbss,v (1) ← steadyState Probabilitiess(v)

μs(v)·GordonNewellConstants
;

16 subgraphMarginalProbss,v (0) ← 1 − subgraphMarginalProbss,v (1);

17 γs(v) ← μs(v) · subgraphMarginalProbss,v (1)

subgraphMarginalProbss,v (0)
;

18 foreach v ∈ V do
19 foreach s ∈ Z(v) do
20 itemMarginalProbss,v (0) ← idleProb(v, s, {γs(v)}s∈Sod

, {μs(v)}s∈Sod
, (Rs)s∈Sod

);

21 itemMarginalProbss,v (1) ← 1 − itemMarginalProbss,v (0);

22 foreach s ∈ Z(v) do νs(v) ← γs(v) · itemMarginalProbss,v (0)

itemMarginalProbss,v (1)

23 foreach s ∈ Sod do (foreach v ∈Vs do μs(v) ← νs(v));
24 until converged(oldV alues, {μs(v)}s∈Sod ,v∈V);

25 foreach s ∈ Sod do
26 let (s.D[d], s.T [d]) = (1/(μs(od) · subgraphMarginalProbss,od (0)), 1/γs(od));

27 return (s.T [d], s.D[d])s∈Sod
;

the stochastic matrix Rs as an input. The function stationary() outputs the steady state vector, steadyState Probabilitiess ,
which has the size of |Vs|. Moreover, steadyState Probabilitiess satisfies the equations π ·Rs = π and �|Vs |

i=1πi = 1 (line 9).

9.2.3. The repeat-until loop
The B D F () function’s repeat-until loop calculates γs(v) (lines 12–17), νs(v) (lines 18–22) and μs(v) (line 23). We cal-

culate the Gordon–Newell normalizing constant (line 13) and the marginal probabilities of Gordon–Newell (lines 14–16).
Using these marginal probabilities, we calculate γs(v) for every s ∈ Sod and v ∈ Vs (line 17).

We find the marginal probability of an item to be idle through the idle Prob() function (lines 18–21) and then calculate
νs(v) (line 22) for every s ∈ Z(v), where Z(v) = {s ∈ Sod | v ∈ Vs} (line 5). The idleProb() function calculates item v ’s
marginal probability to be idle through the underlying Markov chain of a multi-class queue with exponential arrivals (γs(v)

for every s ∈ Z(v)). It also calculates the blocking periods (μs(v) for every s ∈ Z(v)). Note that the queue length is limited
by the maximum number of pending demands (N when Sod = thread and 1 when Sod = {o j}, j ∈ [1, d − 1]) [4,5].

The calculation μs(v)’s new estimates (line 23) happens before the next iteration. In order to check the convergence
condition, each iteration begins with storing in the oldV alues variable the last estimations of μs(v) for every s ∈ Sod and
v ∈ Vs (line 24).

9.2.4. B D F ()’s output
We estimate s.D[d] through the delay in od ’s queue in the contention subsystem (line 26), i.e. by Exp(μs(od) ·

subgraphMarginalProbss,od (0)). Moreover, we obtain an estimation of the inter-demand period s.T [d] through Exp(γs(od))

(line 26). The B D F () function returns the output in line 27.

9.3. The case of systems with M = 3 objects

We use an illustrative example that shows how the contention subsystem of So2 = thread and o2 represents the de-
pendencies among the threads of a system with M = 3 objects and N threads, with respect to the delays and pairwise
inter-demand periods, when the blocking times and the item inter-demand periods are known. We construct the contention
subsystem CS(thread, o2) = (H(thread, o2), (Rs)s∈thread, (Bs)s∈thread) based on the work cycles related to the delay tn.D[2]
and inter-demand period tn.T [2], for every s = tn ∈ thread. We explain the representation of work cycles by a contention
graph, which is illustrated in Fig. 10a, and the adaptation of the request probabilities and blocking times to the ones of the

I. Salem et al. / Theoretical Computer Science 731 (2018) 1–27 19
Fig. 10. The contention graph for CS(thread, 2) and the work cycles partitions, P(s, o2) = ∪�∈[1,3]P� , of (s, •) paths, where P1 = {χ |χ = (s, o2, •)}, P2 =
{χ |χ = (s, o1, o2, •)}, P3 = {χ |χ = (s, •) ∧ o2 /∈ χ}, s = tn .

contention subsystem. The challenge here is to demonstrate that a dynamic system that is based on correlated events with
dependencies that are due to blocking and follow non-deterministic schedules can be represented by these subsystems. Af-
ter demonstrating this part of the proof, the rest of the proof follows by matching between the subsystems presented here
to the one by Ramesh–Perros [23], which use a framework proposed by Baynat and Dallery [4] for estimating our system’s
state.

9.3.1. Contention graph of CS(thread, o2)

Let H(thread, o2) = (V, E) for Sod = thread (Fig. 10a). Given an arbitrary thread, s = tn , n ∈ [1, N], let P(s, o2) =
∪�∈[1,3]P� be a partition of (s, •) paths, where P1 = {path | path = (s, o2, •)}, P2 = {path | path = (s, o1, o2, •)} and
P3 = {path | path = (s, •) ∧ o2 /∈ path}. Moreover, let V = ∪n∈[1,N]Vs be the union of Vs = {s, relay(s, o1), od, relay(s, o3)},
where relay(s, o j), j ∈ {1, 3}, are s’s distinct copies of a relay object, o j , which allow us to distinguish paths with respect to
threads. The contention graph’s nodes s, relay(s, o j) and od represent s, o j and, respectively od , in the shared-object system,
where j ∈ {1, 3}.

The edges E = ∪n∈[1,N]Es follow the path partition cases, {E�}�∈[1,3] . Let jobi be a job that s = tn carries out. The edge
sets E� , where � ∈ [1, 3], are defined as follows:

• P1’s case refers to work cycles, for which s demands access to o2, once it is assigned with jobi . When s gains ac-
cess to od , jobi might require s to demand access to o3. Upon jobi ’s completion s releases any acquired object.
Thus, the edges in E1 = {(s, o2), (o2, s)} (Fig. 10a) represent the work cycle subvectors (δi(s, o2)), and respectively,
(σi(s, o2), . . . , φi(s, o2), . . .) (Fig. 10b).

• P2’s case refers to work cycles, for which s’s demand for access to o1 is followed by s’s demand for ac-
cess to o2 after o1’s supply, which is then followed by jobi ’s completion. Thus, the edges in the set E2 =
{(s, relay(s, o1)), (relay(s, o1), o2), (o2, s)} (Fig. 10a) represent the work cycle subvectors (δi(s, o1)), (σi(s, o1), δi(s, o2)),
and respectively, (σi(s, o2), . . . , φi(s, o2), . . .) (Fig. 10c).

• P3’s case refers to work cycles, for which s demands access to o j and then completes jobi , where j ∈ {1, 3}. There-
fore, the edges in E3 = {(s, relay(s, o j)), (relay(s, o j), s)} (Fig. 10a), represent the subvector (δi(s, o j)), and respectively,
(σi(s, o j), . . . , φi(s, o j), . . .) of the work cycle (Fig. 10d).

9.3.2. CS(thread, o2)’s blocking times and request probabilities
We complete the example in which we show how the contention subsystem represents the dependencies among the

threads in the shared-object system. We refer to an arbitrary job, say jobi , that s = tn carries out and explain how the
contention subsystem’s request probabilities (Rs)n∈[1,N] and blocking periods (Bs)n∈[1,N] represent the request probabilities,
and respectively, the blocking periods in the shared-object system. We justify this representation using the work cycle of
jobi , when its path is in the path partition P j , for every j ∈ [1, 3]. Note that for each such path partition, the period

20 I. Salem et al. / Theoretical Computer Science 731 (2018) 1–27
between two consecutive work cycles completed by s is represented by Bs(s) = Ts (Fig. 10). Namely, if s carries out jobi
and consecutively jobi′ , and their first demand requests are δi(s, o2), and respectively, δi′ (s, d′), the blocking period Bs(s)
represents the period between these two events (in the contention subsystem).

The case of (s, o1, •) paths Consider the case where s carries out jobi with path r = (s, o1, •), where r ∈P2, if o2 is included
in r and r ∈ P3, if o2 is not included in r. We present the request probabilities among s, relay(s, o1) and o2, as well as the
blocking times on each of these items in the contention subsystem.

The probability Rs(s, relay(s, o1)) The probability Rs(s, relay(s, o1)) = R(s, o1) (by the definition of R) denotes the con-
tention subsystem event of s demanding access to relay(s, o1), which represents s demanding access to o1 immediately
after jobi ’s assignment in the shared-object system (Figs. 10c and 10d, when j = 1).

The blocking period Bs(relay(s, o1)) Let W (s, o1, o2) denote the period during which s blocks o1, minus the possible blocking
period on o2 (after the supply of access to o1) in the shared-object system. Moreover, let X(s, o1, o2) = Pr[(s, o1, o2)] ·o1.B[2]
denote the (possible) blocking period of s = tn to o2, after gaining access to o1 in the shared-object system, where the
probability Pr[(s, o1, o2)] = R(s, o1) · R(o1, o2) denotes the event of s demanding access to o1 and successively to o2. Namely,
X(s, o1, o2) is the time between the work cycle events δi(s, o2) and φi(o2, s) times the probability of s to demand access
to o2 after gaining access to o1 (Fig. 10c). Thus, in the shared-object system W (s, o1, o2) = s.D[1] − X(s, o1, o2). Therefore,
Bs(relay(s, o1)) = W (s, o1, o2) represents the period during which s blocks relay(s, 1) before possibly demanding access to
o2 in the contention subsystem.

The probabilities Rs(relay(s, o1), o2) and Rs(relay(s, o1), s) Let F(s,o1,o2) and F ′
(s,o1,o2) denote the events in which s de-

mands access to o2 after gaining access to o1 in the shared-object system, and respectively, to relay(s, o1) in the contention
subsystem. The event F ′

(s,o1,o2) in the contention subsystem represents the event F ′
(s,o1,o2) in the shared-object system, and

therefore, the probability of F ′
(s,o1,o2) is given by Rs(relay(s, o1), o2) = Pr[(s, o1, o2)] (Fig. 10c). Moreover, when the event

F ′
(s,o1,o2) (and thus the event F(s,o1,o2)) does not occur (Fig. 10d), the respective job is completed and s = tn becomes idle

or starts a new job with probability Rs(relay(s, o1), s) = 1 −Rs(relay(s, o1), o2).

The case of (s, o2, •) paths Consider the case where jobi ’s path is (s, o2, •) ∈P1. In Fig. 10b, s demands access to o2 imme-
diately after it is assigned with jobi . This is represented in CS(thread, o2) by s demanding access to o2, with probability
Rs(s, o2) = R(s, o2). Moreover, s blocks o2 for a period of Bs(o2) = s.B[2] in CS(thread, o2), which represents the period
between the events σi(s, o2) and φi(s, o2) in Figs. 10b and 10c. After the job completion and the release event of o2 in
CS(thread, o2), s enters, with probability Rs(o2, s) = 1, an idle period (of possibly zero length) until it starts carrying out a
new job.

The case of (s, o3) paths Consider the case where s carries out jobi with path r = (s, o3) ∈P3. In CS(thread, o2), s demands
access to relay(s, o3), with probability Rs(s, relay(s, o3)) = R(s, o3), which represents s demanding access to o3 immediately
after jobi ’s assignment in the shared-object system (Fig. 10d). The blocking period of s on relay(s, o3) is Bs(relay(s, o3)) =
s.D[3], which in the shared-object system represents the time that s is waiting to gain access to o3 and then blocking it, i.e.,
the period between the work cycle events δi(s, o3) and φi(s, o3) (Fig. 10d). After the job completion and the release event
of relay(s, o3) in CS(thread, o2), s enters, with probability Rs(relay(s, o3), s) = 1, an idle period (of possibly zero length)
until it starts carrying out a new job.

The subsystem CS(thread, o2) = (H(thread, o2), (Rs)s∈thread, (Bs)s∈thread), which we described above, is a contention sub-
system that represents the dependencies among the thread set, thread, and o2 in the shared-object system.

9.4. The case of systems with M objects

In this section we prove that Theorem 6 follows from Lemmas 7, 8 and 9 (Corollary 10).

Lemma 7. Consider a contention subsystem CS(Sod , od) = (H(Sod , od), (Rs)s∈Sod
, (Bs)s∈Sod

), where Sod ∈ {thread} ∪ sod and sod =
{{oi} | i ∈ [1, d − 1]}. Suppose that we are given the shared-object system’s blocking and item inter-demand periods, as well as the
request probabilities R. It holds that CS(Sod , od) represents the dependencies among the threads in the shared-object system and the
system’s state.

Proof. We show a mapping of the shared-object system’s state to the contention subsystem CS(Sod , od). Given the shared-
object system’s blocking and item inter-demand periods, as well as the request probabilities, we construct the contention
subsystem CS(Sod , od) = (H(Sod , od), (Rs)s∈Sod

, (Bs)s∈Sod
) based on the work cycles related to jobs with (•, s, •) paths,

where s ∈ Sod and sod = {{oi} | i ∈ [1, d − 1]}. We explain the representation of work cycles by the contention graph
H(So , od), as well as the representation of the shared-object system’s request probabilities and state, i.e., blocking, pairwise
d

I. Salem et al. / Theoretical Computer Science 731 (2018) 1–27 21
Fig. 11. The contention graph for CS(Sod , od) and the work cycles partitions, P(s, od) = ∪�∈[1,3]P� , of (•, s, •) paths, where P1 = {path | path = (•, s, od, •)},
P2 = {path | path = (•, s, oi , •, od, •) ∧ i ∈ Rel(Sod , od) \ [d + 1, M]}, P3 = {path | path = (•, s, •) ∧ od /∈ path}.

inter-demand period and delay, by (Rs)s∈Sod
, and respectively, (Bs)s∈Sod

in the contention subsystem. This construction is
the mapping that proves the lemma’s statement.

The proof is organized as follows. In the first part, we construct the contention graph H(Sod , od) = (V, E) using the work
cycles related to (•, s, •) paths. Moreover, in the second part we show that (Rs)s∈Sod

and (Bs)s∈Sod
represent the depen-

dencies and the shared-object system’s state with respect to (•, s, •) paths. In our construction, we assume the knowledge
of the item inter-demand periods Tv , the system’s state delay and blocking periods, as well as the request probabilities R .

Part I: The graph H(Sod , od) represents the work cycles related to the (•, s, •) paths. Let H(Sod , od) = (V, E) be the con-
tention graph of CS(Sod , od) (Fig. 11a) and consider s to be an arbitrary element of Sod . Recall that Rel(thread, od) =
[1, M] \ {d} and Rel({o�}, od) = [� + 1, M] \ {d}, where � ∈ [1, d). Moreover, let P(s, od) = ∪�∈[1,3]P� be a path partition of
(•, s, •) paths, where P1 = {path | path = (•, s, od, •)}, P2 = {path | path = (•, s, o�, •, od, •) ∧ � ∈ Rel(Sod , od) \ [d + 1, M]}
and P3 = {path | path = (•, s, •) ∧ od /∈ path}. We explain the representation of the thread work cycles for jobs with (•, s, •)

paths by the graph H(Sod , od).
We define the elements of V and E . Let V = ∪s∈Sod

Vs , where Vs = {s, od} ∪ {relay(s, o j) | j ∈ Rel(Sod , od)}. The nodes
relay(s, o j), j ∈ Rel(Sod , od), are s’s distinct copies of a relay object, o j , which allow us to distinguish paths with respect
to threads. The edges E = ∪s∈Sod

Es follow the three path partition cases, i.e., Es = ∪�∈[1,3]E� , where E1 = {(s, od), (od, s)},
E2 = {(s, relay(s, o j)), (relay(s, o j), od), (od, s)} and E3 = {(s, relay(s, o j)), (relay(s, o j), s)}. Let jobi be a job that tn carries
out, such that item s is either included in jobi ’s object vector or s = tn , and let cycle(tn, jobi) be the respective work cycle.
The edges in the sets E� , where � ∈ [1, 3], represent the events in every possible cycle(tn, jobi) after the supply of item s,
if s is an object, or after the assignment of jobi to s, if s = tn . For brevity, we refer to both events as the supply of item s.
The edge sets are defined according to the three sets of the path partition P(s, od) = ∪�∈[1,3]P� as follows.

• P1’s case refers to work cycles, for which tn demands access to od , immediately after the supply of item s. When tn

gains access to od , jobi might require tn to demand access to another object, od′ , where d′ ∈ [d + 1, M]. Upon jobi ’s
completion tn releases any acquired object (event
i(tn) of the work cycle). Thus, the edges (s, od) and (od, s) of E1
(Fig. 11a) represent the subvectors (δi(tn, od)), and respectively, (σi(tn, od), . . . ,
i(tn)) of the work cycle (Fig. 11b).

• P2’s case refers to work cycles for which tn , after the supply of item s, demands access to o j , where j ∈ Rel(Sod , od) \
[d + 1, M], and subsequently to od . Note that, by the definition of P2, tn might also demand access to other objects in
{o j+1, . . . , oM} \ {od}. Thus, the edges (s, relay(s, o j)), (relay(s, o j), od), (od, s) of E2 (Fig. 11a) represent the subvectors
(δi(tn, o j)), (σi(tn, o j), . . . δi(tn, od)), and respectively, (σi(tn, od), . . . ,
i(tn)) of the work cycle (Fig. 11c).

• P3’s case refers to work cycles, for which tn , after the supply of item s, demands access to o j , where j ∈ Rel(Sod , od).
Note that, by the definition of P3, tn might also demand access to other objects in {o j+1, . . . , oM}, but not to od . Thus,
the edges (s, relay(s, o j)) and (relay(s, o j), s) of E3 (Fig. 11a), represent the subvectors (δi(tn, o j)), and respectively,
(σi(tn, o j), . . . ,
i(tn)), where j ∈ Rel(So , od) of the work cycle (Fig. 11d).
d

22 I. Salem et al. / Theoretical Computer Science 731 (2018) 1–27
Part II: (Rs)s∈Sod
and (Bs)s∈Sod

represent the dependencies and the shared-object system’s state with respect to (•, s, •)

paths. We refer to an arbitrary job, say jobi , that tn carries out and explain how the contention subsystem’s request
probabilities (Rs)s∈Sod

and blocking periods (Bs)s∈Sod
represent the request probabilities, and respectively, the blocking

periods in the shared-object system. We verify this representation using the work cycle of jobi , when its path is in the path
partition P j , for every j ∈ [1, 3]. We remind that throughout this proof we refer to the supply of item s as the supply of
access to o� for tn , if s = o� , � ∈ [1, d − 1], or the assignment of jobi to tn , if s = tn .

Note that for each such path partition, the period between two consecutive work cycles for jobs that include item s is
represented by Bs(s) = Ts (Fig. 10). Namely, the blocking period Bs(s) in the contention subsystem represents the period
between the event of tn releasing item s due to jobi , and consecutively, another thread, say tn′ , releasing item s due to a
job, say jobi′ , in the shared-object system. We show this representation by looking into three cases of path partitions, i.e.,
(1) paths (•, s, od, •) in P1, (2) paths r = (•, s, o j, •), where j ∈ Rel(Sod , od) \ [d + 1, M] (r ∈ P2, if od is included in r and
r ∈P3, if od is not included in r) and (3) paths r = (tn, •, s, o j, •), where j ∈ Rel(Sod , od), and od /∈ r, i.e., r ∈P3.

(1) Consider the case where jobi ’s path is in partition P1, i.e., tn carries out jobi with path (•, s, od, •). In Fig. 11b, tn

demands access to od immediately after the supply of item s. This event is represented in the contention subsystem by
tn demanding access to od , with probability Rs(s, od) = R(s, od)/K (Sod , od) (by the definition of R), where K (Sod , od) =
�v∈Rel(Sod ,od)∪{d} R(s, ov) is a normalizing constant. Furthermore, tn blocks od for a period of Bs(od) = s.B[d] in the
contention subsystem, which represents the period between the events σi(tn, od) and
i(tn) in the work cycles pre-
sented in Figs. 11b and 11c. This is due to the fact that s.B[d] also considers requests for accessing od while following
either job path (tn, •, s, od, •) or (tn, s, •, od, •) (Approximation 4). After the job completion and the release event of od ,
another supply event of item s occurs or it becomes idle. Namely, if s = tn , s will either start carrying out the next
pending job or it will become idle, and if s = o� , the thread on s’s queue top will gain access to s in case the queue is
not empty, otherwise s will become idle. These are certain events in the shared-object system and therefore occur with
probability Rs(od, s) = 1 in the contention subsystem.

(2) Consider the case where tn carries out jobi with path r = (•, s, o j, •), where j ∈ Rel(Sod , od) \[d +1, M]. Note that r ∈P2,
if od is included in r and r ∈ P3, if od is not included in r. We present the request probabilities among s, relay(s, o j)

and od , j ∈ Rel(Sod , od) \ [d + 1, M], as well as the blocking times on each of these items in the contention subsys-
tem. We present (i) the probability Rs(s, relay(s, o j)), (ii) the blocking period Bs(relay(s, o j)) and (iii) the probabilities
Rs(relay(s, o j), od) and Rs(relay(s, o j), s).

(i) The probability Rs(s, relay(s, o j)) = R(s, o j)/K (Sod , od) (by the definition of R) denotes the contention subsystem
event of tn demanding access to relay(s, o j) after the supply of item s, which represents tn demanding access to o j

immediately after the supply of item s in the shared-object system (Figs. 11c and 11d, when j ∈ Rel(Sod , od) \ [d +
1, M]).

(ii) Consider the case where tn might demand access to objects in {o j+1, . . . , oM}, after the supply of o j in the shared-
object system. Let W (s, o j, od) as the period during which tn blocks o j minus tn ’s possible blocking period on od

in the shared-object system, due to a path in P2. We refer to X(s, o j, od) = �d−1
�= j Pr[(s, o j, •, o�, od)] · o�.B[d] as the

possible blocking period of tn to od , after gaining access to o j in the shared-object system. Note that the proba-

bility Pr[(s, o j, •, o�, od)] = R(s, o j) · [� j−�

k=1 Rk(o�, o j)] · R(o�, od) denotes the event in which tn , after the supply of
item s, demands access to o j , possibly to other objects in {o j+1, . . . , o�−1}, to o� and successively to od (since R is
a stochastic matrix). Namely, let X(s, o j, od) denote the time between the work cycle events δi(tn, od) and
i(tn)

times the probability of tn to demand access to o j , after gaining access to s, and subsequently to od (Fig. 11c).
Thus, in the shared-object system W (s, o j, od) = s.D[j] − X(s, o j, od). Therefore, the period during which tn blocks
relay(s, o j), after the supply of item s, and before possibly demanding access to od in the contention subsystem is
represented by Bs(relay(s, o j)) = W (s, o j, od).

(iii) Let F(s,o j ,od) and F ′
(s,o j ,od)

denote the event in which tn , demands access to o j , after the supply of item s, and
subsequently to od in the shared-object system, and respectively, the event in which tn , after the supply of item
s, demands access to relay(s, o j) and consecutively to od in the contention subsystem. Note that tn might demand
access to other objects in {o j+1, . . . , od−1} in the shared-object system. The event contention subsystem F ′

(s,o j ,od)

represents the event F ′
(s,o j ,od) in the shared-object system, and therefore, the probability of F ′

(s,o j ,od) is given by
Rs(relay(s, o j), od) which equals to Pr[(s, o j, od)] (Fig. 11c). Moreover, when the event F ′

(s,o j ,od) (and thus the event
F(s,o j ,od)) does not occur (Fig. 11d), the respective job is completed and tn becomes idle or starts a new job with
probability Rs(relay(s, o j), s) = 1 −Rs(relay(s, o j), od).

(3) Consider the case where tn carries out jobi with path r = (tn, •, s, o j, •), where j ∈ Rel(Sod , od), and od /∈ r, i.e.,
r ∈ P3. In the contention subsystem, tn , after the supply of item s, demands access to relay(s, o j), with proba-
bility Rs(s, relay(s, o j)) = R(s, o j) (by the definition of R), which represents tn demanding access to o j immedi-
ately after the supply of item s in the shared-object system (Fig. 11d). The blocking period of tn on relay(s, o j) is
Bs(relay(s, o j)) = s.D[j], which in the shared-object system represents the time that tn is waiting to gain access to o j ,
blocks o j , possibly demands access to other objects (except for od), and then releases all of its acquired objects. Namely,
Bs(relay(s, o j)) represents the period between the work cycle events δi(tn, o j) and
i(tn), after the supply of item s

I. Salem et al. / Theoretical Computer Science 731 (2018) 1–27 23
(Fig. 11d). After the job completion and the release event of relay(s, o j) in the contention subsystem, either another
thread gains access to item s or item s becomes idle (no thread is accessing it), i.e., this event is certain to happen in
the shared-object system.

The CS(Sod , od) = (H(Sod , od), (Rs)s∈Sod
, (Bs)s∈Sod

) contention subsystem, which we described above, represents the de-
pendencies among the item set, Sod , and od in the shared-object system. Therefore, the proof is complete. �
Lemma 8. The framework of Baynat and Dallery can approximate the delay s.D[d] and inter-demand period s.T [d] through the
contention subsystem CS(Sod , od).

Proof. We first give the definition of a Ramesh–Perros subsystem (RPS) that is introduced in [23] and show that a contention
subsystem can be directly mapped to an RPS. Ramesh and Perros show that we can find the pairwise inter-demand period,
and delay of (blocking) communications in an RPS using a framework proposed by Baynat and Dallery in [4]. Thus, we
can use the Baynat–Dallery framework to estimate the values of s.T [d] and s.D[d], for every s ∈ Sod , given a contention
subsystem CS(Sod , od) as an input. In Section 9.2, we presented an adapted version of the Baynat–Dallery framework (Algo-
rithm 2) and explained the calculation of the delay s.D[d] and inter-demand period s.T [d], given the contention subsystem
CS(Sod , od).

A Ramesh–Perros subsystem is defined as follows. Let {o[1], . . . , o[M]} be a set of servers, such that tier-d includes
only server o[d], where d ∈ [1, M], and {t[1], . . . , t[N]} be a set of clients. Moreover, let sod = {{o[1]}, . . . , {o[d − 1]}}
(i.e., sod = ∅ when d = 1) and Sod ∈ {{t[1], . . . , t[N]}} ∪ sod . A Ramesh–Perros subsystem, is denoted by RP(Sod , od) =
(H(Sod , od), (Rx)x∈Sod

, (Bx)x∈Sod
) and defined as follows:

(1) The RPS graph H(Sod , od) = (V, E) has the set of vertices V = ∪x∈Sod
Vx , and the set of edges E = ∪x∈Sod

Ex , such that
Vx = {x} ∪ {o[d]} ∪ {relay(x, o j) | j ∈ Rel(Sod , od)} and Ex = E1

x ∪ E2
x ∪ E3

x , where Rel({t[1], . . . , t[N]}, od) = [1, M] \ {d},
Rel({o[i]}, od) = [i + 1, M] \ {d}, where o[i] ∈ sod , E1

x = {(x, o[d]), (o[d], x)}, E2
x = ∪ j∈Rel(Sod ,od)\[d+1,M]{(x, relay(x, o j)),

(relay(x, o j), o[d]), (o[d], x)}, and E3
x = ∪ j∈Rel(Sod ,od){(x, relay(x, o j)), (relay(x, o j), x)}. Note that H(Sod , od) is a simple

directed graph, i.e., there are no multiple edges between two vertices.
(2) The RPS request probability matrices Rx for H(Sod , od) = (V, E) and x is an element of a set in Sod , where, Rx[vu, v�] is the

probability that the process at vertex vu ∈ Vx forwards the client request to the server at vertex v� ∈ Vx , for an edge
(vu, v�) in Ex .

(3) The RPS blocking periods, (Bx)x∈Sod
, where Bx is a function over Vx , and x ∈ Sod refers to client or server processes. Note

that the edges in Ei
x form a directed circle in the graph H(Sod , od), where x ∈ Sod and i ∈ [1, 3]. A client request of x ∈ Vx

to server o[d], is blocking o[d] for Bx(o[d]) = x.B[d] time. A client request of x ∈ Vx to server relay(x, o j), blocks that
server for a period of Bx(relay(x, o j)) = x.D[j], if j ∈ [d + 1, M] and Bx(relay(x, o j)) = W(x, relay(x, o j), o[d]) otherwise
(j ∈ Rel(Sod , od) \ [d + 1, M]). Once the servers return to process x ∈ Vx with an answer, after a period of Bx(x) = Tx ,
process x sends a new client request to a server in Vx \ {x}. Note that x.B[d], x.D[j], W(x, relay(x, o j), o[d]) and Tx are
functions of x and o[d], x and j, x, relay(x, o j) and o[d], and respectively, x.

Note that this definition of an RPS is a special case of the definition given in [23], which is adapted to our purposes.
A contention subsystem CS(Sod , od) is directly mapped to an RPS RP(Sod , od), by setting o[d] = od , t[n] = tn , a message
to be a demand request, H(Sod , od) = H(Sod , od), (Rx)x∈Sod

= (Rs)s∈Sod
, and (Bx)x∈Sod

= (Bs)s∈Sod
, where d ∈ [1, M] and

n ∈ [1, N]. Namely, we set x.B[d] = s.B[d], x.D[j] = s.D[j], W(x, relay(x, o j), o[d]) = W (x, relay(s, o j), od) and Tx = Ts , where
x ∈ Sod equals to the respective s ∈ Sod following the mapping that we described above. �
Lemma 9. The running time of each framework iteration is O (M · N4).

Proof. The running time per iteration of the Baynat and Dallery algorithm [4] is in O (|stations| · |classes|3), where |stations|
and |classes| are the numbers of the network’s stations and classes, respectively. In the context of shared-object systems,
the number of stations, |stations|, corresponds to the number of vertices |V| of the contention graph H(Sod , od) = (V, E)

and the number of classes to Sod ’s cardinality, where d ∈ [1, M]. Thus, the running time of each iteration is in O (|V| · |Sod |3).
Notice that |V| = N + N · (M − 1) + 1 and |Sod | = N , if Sod = thread, and |V| = M − � + 1 and |Sod | = 1, if Sod = {o�}, where
� ∈ [1, d − 1]. The result follows by taking the maximum |V| and |Sod | of these two cases. �
Corollary 10. Lemmas 7, 8 and 9 imply Theorem 6.

10. Finding an ε-OSE

We present a procedure (Algorithm 3) for finding ε-OSEs. We give a detailed explanation of Algorithm 3 (Section 10.1)
and analyze its running time (Lemma 11 of Section 10.5). We also detail the algorithm’s functions (sections 10.2, 10.3, and
respectively, 10.4), which are initializeS ystemState(), updateStates(), and recalcB() and recalcT ().

24 I. Salem et al. / Theoretical Computer Science 731 (2018) 1–27
Algorithm 3: The procedure for finding an ε-OSE.

1 Input: Number of objects, M and threads, N; jobs { jobi}i∈[1, J] and their arrival rates to threads {λi,n}n∈[1,N],i∈[1, J]; R request probability matrix; ε;
2 Variables: The item states are recorded in tn , n ∈ [1, N], and od , d ∈ [1, M − 1], such that tn has the form 〈(inter-demand period)T [1, M],

(delay)D[1, M], (blocking period) B[1, M]〉 and od is of the form 〈(inter-demand period)T [d + 1, M], (delay) D[d + 1, M], (blocking period)
B[d + 1, M]〉; Tv , item v ’s inter-demand period, for every v = tn such that n ∈ [1, N] and v = od such that d ∈ [1, M − 1]; loopEnd (Boolean) this
variable is true when the function augmT hrBlock() decides that no OSE can be found and thus the loop should stop.

3 Output: ({tn}n∈[1,N], {od}d∈[1,M−1], {Tv }v∈allStates, loopEnd);
4 Macros: objT hrdSet() = {〈tag, i, τ 〉|(tag = #o ∧ Toi = τ) ∨ (tag = #t ∧ Tti = τ)};
5 converged(prev, curr) = (� 〈tag, i, τ 〉 ∈ prev, 〈tag, i, τ ′〉 ∈ curr : |τ − τ ′| ≥ ε);
6 blocking(n) = A + �M

d=1 R(tn, od) · tn.D[d];
7 allStates = {tn|n ∈ [1, N]} ∪ {od|d ∈ [1, M − 1]};
8 begin
9 initializeS ystemState(N, M, { jobi}i∈[1, J], {λi,n});

10 loopEnd ← false;
11 repeat
12 let prev Set ← objT hrdSet();
13 for d = M to 1 do updateStates(#B, d, thread, object, {Tv }v∈allStates, R);
14 foreach n ∈ [1, N] do (Ttn , loopEnd) ← augmT hrBlock(�iλi,n, blocking(n));
15 for d = 1 to M − 1 do updateStates(#T , d, thread, object, {Tv }v∈allStates, R);
16 until converged(prev Set, objT hrdSet()) ∨ loopEnd = true;
17 return ({tn}n∈[1,N], {od}d∈[1,M−1], {Tv }v∈allStates, loopEnd);

18 procedure initializeS ystemState(N, M, { jobi}i∈[1, J], {λi,n}) begin
19 for d = M to 1 do
20 foreach item s such that (s, od) is an edge in G do
21 s ← init Record(s, d, {tn}n∈[1,N], {od}d∈[1,M−1]);

22 for n = 1 to N do Ttn ← augmT hrBlock(�iλi,n, blocking(n));
23 for d = 1 to M − 1 do Tod ← �M

�=d+1 R(od, o�) · od .T [�];
24 procedure updateStates(tag, d, thr Set, objSet, (Tv)v∈allStates, R) begin
25 CS(thr Set, d) ← def ContentionSubsystem({tn}n∈[1,N], {od}d∈[1,M−1], d, (Tv)v∈allStates, R);
26 (thr Set[n].T [d], thr Set[n].D[d])n∈[1,N] ← B D F (CS(thr Set, d));
27 for j = 1 to d − 1 do
28 CS({objSet[j]}, d) ← def ContentionSubsystem({objSet[j]}, {od}d∈[1,M−1], d, (Tv)v∈allStates, R);
29 (objSet[j].T [d], objSet[j][n].D[d]) ← B D F (CS(thr Set, d));

30 if tag = #B then recalcB(d), else if tag = #T then recalcT (d);

10.1. The ε-OSE solver

The procedure always halts and computes an approximate equilibrium, ε-OSE, when such is reachable. Namely, whenever
the job arrival and completion rates differ by at most ε, the procedure returns the system state in an ε-OSE, or indicates
that an OSE is not a state that the system can be in. The procedure sets initial values to the system state, c[s, od], and then
uses the proposed methods (sections 6 to 9) for estimating c[s, od] iteratively, until convergence. The decision on when to
stop considers the system inter-demand period, {Titem}item∈V \{oM } , and stops whenever there is no item ∈ V \ {oM} for which
the change in Titem is greater than ε since the previous iteration, where G = (V , E) is the acquisition graph.

The procedure’s input includes the system parameters, i.e., number of threads N and objects M , the jobs, jobi , i ∈ [1, J],
and their arrival rates {λi,n}i∈[1, J],n∈[1,N] to each tn , n ∈ [1, N], as well as the request probability matrix, R . The algorithm
uses the Boolean variable loopEnd, which is true when the algorithm decides that no OSE can be found. The procedure’s
output includes the delay D , inter-demand period T and blocking period B between all system items, as well as, the item
inter-demand periods Tv , for every item v �= oM , and loopEnd.

The procedure starts with a system state that represents the case in which all queues are empty (see the function
initializeS ystemState()). It then estimates the state of a system in which threads can block one another, and the delay
grows as more requests are pending in the queues. The main part of the pseudocode (Algorithm 3) consists of a repeat-until
loop (lines 11–17) that follows the procedure’s initialization (line 9). Before the procedure can return its output value, the
loop has to end either when the ε-OSE conditions are satisfied or when the procedure detects that an OSE cannot be
reached. Each iteration aims at further improving the ε-OSE estimation. The repeat-until loop exits when no item changes
by at least ε between every two iterations (and thus the system state satisfies the conditions of an ε-OSE).

In every iteration, the procedure computes (i) the blocking periods of demand requests for objects, s.B[d] (the function
updateStates()), (ii) the thread inter-demand periods, Ttn (the function augmntT hreadBlock()), and (iii) the object inter-
demands, Tod (which is the function updateStates()), where (s, od) is an edge of the acquisition graph G , n ∈ [1, N] and
d ∈ [1, M − 1]. The repeat-until loop repeats the steps (i), (ii) and (iii), which deals with interdependencies using alternating
backward and forward iterations. Namely, it resolves the forward dependencies in which (s, od)’s blocking period, s.B[d],
depends on o� ’s delay by iterating backward, where � ∈ (d, M], i.e., starting from d = M and counting downwards, we can
estimate s.B[d], because (in a system that its state satisfies the equilibrium conditions) all of (s, od)’s forward dependencies
can be resolved. Similarly, it uses forward iterations for resolving backward dependencies with respect to od ’s item inter-

I. Salem et al. / Theoretical Computer Science 731 (2018) 1–27 25
demand period, Tod , because all of od ’s backward dependencies are resolved. Moreover, the function augmntT hreadBlock()

allows the repeat-until loop to stop whenever the job inter-arrival time becomes less or equal than the time it takes that
thread to complete such jobs, i.e., there’s no OSE.

The blocking period estimation, step (i), starts from the last system object, oM , where there are no depen-
dencies on the delay of subsequent demand requests. For every s such that (s, oM) is an edge of G , we cal-
culate the delay, s.D[M], and the pairwise inter-demand period, s.T [M], of demand requests to oM through the
updateStates(#B, d, thread, object, {Tv}v∈allStates, R) function (line 13), where allStates = {tn | n ∈ [1, N]} ∪{od | d ∈ [1, M −1]}.
Therefore, the procedure can compute the blocking period of demand requests to oM−1, s.B[M − 1], because it has just esti-
mated the dependencies of subsequent demand requests for oM . Repeating this process for d = M − 1, . . . , 1, the procedure
compute the blocking periods of demand requests to any od , s.B[d], where d ∈ [1, M]. Note that this is possible, since in
every step d, d = M − 1, . . . , 1, of this for loop, we have already computed the demand request delays and the inter-demand
periods of every od′ , od.D[d′], and respectively, od.T [d′], where d′ ∈ [d + 1, M] (Section 7).

After computing the blocking periods, delays and pairwise inter-demand periods, the procedure estimates the threads’
inter-demand periods (Section 8.1), which can be used to estimate the job completion rates. It does this in step (ii), through
the function augmntT hreadBlock(�iλi,n, blocking(n)) (line 14) and by using the thread idle probability (Section 3), where
blocking(n) = A + �M

d=1 R(tn, od) · tn.D[d]. Moreover, note that the augmntT hreadBlock() function (Section 8.1) allows the
repeat-until loop to stop whenever it detects that the inter-arrival time of jobs to a thread becomes less or equal than
the time it takes that thread to complete such jobs (i.e., there’s no OSE). Note that the repeat-until loop breaks when the
Boolean variable loopEnd is true (line 14).

Step (iii) uses the updateStates() function (line 15) for calculating the object inter-demand periods, after calculating
the new estimates for the delay and the pairwise inter-demand periods. The procedure estimates the inter-demand period
Tod , for each od , d ∈ [1, M − 1], via the item inter-demand period of demand requests for items that precede od in a job
path (•, item j, od, •) (Section 8.2). Therefore, the procedure estimates the inter-demand periods for each od in the order of
d = 1, . . . , M − 1.

Once the procedure verifies the satisfaction of the ε-OSE conditions (Section 5), the repeat-until loop end (line 16) and
the procedure returns.

10.2. The initializeS ystemState() function

The procedure initializeS ystemState() initializes Algorithm 3 assuming that there is no contention, i.e., all queues have
zero length in the shared-object system (lines 9 and 18). In the context of shared-object systems, no contention means
that the delay of each demand request equals its blocking period, s.D[d] = s.B[d], for all items s and od . Thus, the
procedure initializes the blocking periods s.B[d] through the function init Record() (lines 19–21). It uses the average de-
mand completion period f s,od , as proposed in Section 7.1, which is a random variable with a known distribution. That
is, s.B[M] = A + R(s, od) · R(od, od) · f s,od , if d = M and s.B[d] = A + R(s, od) · R(od, od) · f s,od + �M

�=d+1 R(d, o�) · d.D[�], if
d ∈ [1, M − 1], where s ∈ {tn | n ∈ [1, N]} ∪ {oi | i ∈ [1, d − 1]}. Namely, the blocking period of a request to access (demand)
the last object equals to the acquisition period plus the average demand completion period on that object and the blocking
period of a demand to od , d ∈ [1, M − 1], is recursively computed as the sum of the acquisition period, A, the average
demand completion period R(s, od) · R(od, od) · f s,od plus the average blocking period of a subsequent demand to one of
the following objects d.B[�], � ∈ [d + 1, M], weighted by the probability of sending such a demand, R(d, o�), � ∈ [d + 1, M].
Moreover, the s.T [d] pairwise inter-demand periods are set to equal s.B[d].

The Ttn (thread) inter-demand periods are computed (line 22) through the function augmT hrBlock(�iλi,n, blocking(n)),
where blocking(n) is defined in line 6. Furthermore, the To j (object) inter-demand periods are set to �M

�= j+1 R(o j, o�) ·
o j .T [�] (line 23). Algorithm 3 iteratively finds the correct values of the pairwise and item inter-demand periods (arbitrary
initialization of the system’s state is proposed in [23]).

10.3. The updateStates() function

This function updates the blocking periods and the item inter-demand periods with respect to od (lines 24–30). If the
input tag is #B , the function updates the blocking periods s.B[d] for every s ∈ {tn | n ∈ [1, N]} ∪ {o j : j ∈ [1, d − 1]}, as in
Section 7. Otherwise, if the input tag is #T , the function updates the inter-demand period of od , Tod , as in Section 8.

The procedure updateStates() defines the contention subsystem for every set of item sources Sod using the function
def ContentionSubsystem() (line 25 if Sod = thread and line 28 if Sod = {o j}, j ∈ [1, d − 1]). It then calculates the delay,
s.D[d], and pairwise inter-demand period, s.T [d], for every s ∈ Sod using the B D F () function of Section 9.2 (line 26 if
Sod = thread and line 29 if Sod = {o j}, j ∈ [1, d − 1]). The procedure ends with the computation of the blocking periods or
the inter-demand periods, depending on the tag with which the procedure was called.

10.4. The recalcB() and recalcT () functions

We present the exact formulas that give the first three moments of s.B[d], i.e., the function recalcB(), and Tod , i.e., the
function recalcT (). We find these formulas using the equations in sections 7, and respectively, 8.

26 I. Salem et al. / Theoretical Computer Science 731 (2018) 1–27
Let Fs,od = A + R(s, od) · R(od, od) · f s,od , be the sum of the acquisition time and the job completion period times the
related probabilities (A and Fs,od can be bound by a constant and thus can be treated as such). The first three moments of
the blocking time for d = M are

E(s.B[M]m) = (Fs,M)m, for m = 1,2,3 (16)

and if d ∈ [1, M − 1], we have that

E(s.B[d]) = Fs,od + �M
d′=d+1(Pr[(s,•,d,od′)] · E(d.B[d′]) (17)

E(s.B[d]2) = (Fs,od)
2 + �M

d′=d+1 Pr[(s,•,d,od′)](E(d.D[d′]2) + 2Fs,od · E(d.D[d′])) (18)

E(s.B[d]3) = (Fs,od)
3 + �M

d′=d+1 Pr[(s,•,d,od′)](E(d.D[d′]3) + 3(Fs,od)
2 · E(d.D[d′]) + 3Fs,od · E(d.D[d′]2)) (19)

Moreover, the first three moments of Tod are

E(Tod) = �s∈arrivals(od)ω(s,od) · (Fs,od + E(Ts))

�s∈arrivals(od)ω(s,od)
(20)

E(T 2
od

) = �s∈arrivals(od)ω(s,od) · ((Fs,od)
2 + E(T 2

s) + 2Fs,od · E(Ts))

�s∈arrivals(od)ω(s,od)
(21)

E(T 3
od

) = �s∈arrivals(od)ω(s,od) · ((Fs,od)
3 + E(Ts)

3) + 3(Fs,od)
2 E(Ts) + 3Fs,od E(T 2

s))

�s∈arrivals(od)ω(s,od)
(22)

We remind that arrivals(od) = thread ∪ {o j | j ∈ [1, d − 1]} and ω(s, od) = R(s, od) · s.T [d] (Section 8.2).

10.5. Running time

Notice that the running times of Algorithm 2 (Baynat–Dallery framework) and Algorithm 3 depend on the number of
iterations of these algorithms. Lemma 11 bounds the procedure running time for one iteration.

Lemma 11. The running time of one iteration of Algorithm 3 is in O (M2 · N4 + M3).

Proof. We look at the running time of each step of the repeat-until loop to find the algorithm’s running time. Steps (i) and
(iii) call the function updateStates() so at most M; M , and respectively M − 1 times. Note that the function updateStates()
calls at most 1 + (M − 1) times the function B D F (), because the input parameter d, which denotes the object whose state
is to be updated, is at most M (line 27). The first call is done by setting Sod = thread and (at most) M − 1 calls are done
by setting Sod = {o j}, j ∈ [1, d − 1]. The B D F () function has running time in O (M · N4 · I f) and O (M · I f) (Lemma 9), when
B D F () is called for Sod = thread, and respectively, for Sod = {o j}, j ∈ [1, d − 1], where I f denotes the maximum number of
framework iterations (Lemma 9). It also holds that the function augmntT hreadBlock() is called N times in step (ii) and it’s
the running time is practically constant (see Section 3 with respect to the findings of Latouche and Ramaswami [16]). Thus,
the running time of one iteration of Algorithm 3 is in O (M · (M · N4 · I f) + N + M · ((M − 1) · M · I f)) = O (M2 · N4 + M3). �
11. Conclusions

We consider a resource allocation problems that can be modeled as generalized dynamic dining philosophers problems.
We formulate questions that are associated with equilibrium situations in such systems, where input and output rates
match. We believe that the way we find the equilibrium as well as estimate the delay and throughput in such systems can
be the basis for an analysis of further generalizations of the problem studied here, such as the ones that are described in
the literature on resource allocation, e.g., non-sequential scheduling, such as parallel resource acquisition (2-phase locking)
and resource acquisition that is reactive to contention conditions [14,19,10,11,22]. Another research direction is to consider
the approach proposed by Reif and Spirakis [24] that does deterministic object acquisition via FIFO queues. They rather
consider resource granting systems for satisfying probabilistically the changing user requests for resource allocation, using
local communication between granting and requesting processes.

References

[1] Ivo Adan, Jacques Resing, Queuing Theory, Eindhoven University of Technology, Eindhoven, 2002, can be accessed via www.win .tue .nl /~iadan /queueing .
pdf.

[2] Altiok Tayfur, On the phase-type approximations of general distributions, IIE Trans. 17 (2) (1985) 110–116.
[3] Forest Baskett, K. Mani Chandy, Richard R. Muntz, Fernando G. Palacios, Open, closed, and mixed networks of queues with different classes of cus-

tomers, J. ACM 22 (2) (1975) 248–260.
[4] Bruno Baynat, Yves Dallery, A product-form approximation method for general closed queuing networks with several classes of customers, Perform.

Eval. 24 (3) (1996) 165–188.

http://www.win.tue.nl/~iadan/queueing.pdf
http://refhub.elsevier.com/S0304-3975(18)30208-1/bib616C74696F6B313938357068617365s1
http://refhub.elsevier.com/S0304-3975(18)30208-1/bib6261736B657474313937356F70656Es1
http://refhub.elsevier.com/S0304-3975(18)30208-1/bib6261736B657474313937356F70656Es1
http://refhub.elsevier.com/S0304-3975(18)30208-1/bib44424C503A6A6F75726E616C732F70652F4261796E6174443936s1
http://refhub.elsevier.com/S0304-3975(18)30208-1/bib44424C503A6A6F75726E616C732F70652F4261796E6174443936s1
http://www.win.tue.nl/~iadan/queueing.pdf

I. Salem et al. / Theoretical Computer Science 731 (2018) 1–27 27
[5] Gunter Bolch, Stefan Greiner, Hermann de Meer, Kishor S. Trivedi, Queuing Networks and Markov Chains: Modeling and Performance Evaluation with
Computer Science Applications, John Wiley & Sons, 2006.

[6] Jeffrey P. Buzen, Computational algorithms for closed queuing networks with exponential servers, Commun. ACM 16 (9) (1973) 527–531.
[7] Junghoo Cho, Hector Garcia-Molina, Synchronizing a database to improve freshness, in: Weidong Chen, Jeffrey F. Naughton, Philip A. Bernstein (Eds.),

SIGMOD Conference, ACM, 2000, pp. 117–128, SIGMOD Rec. 29 (2) (June 2000).
[8] Richard Martin Feldman, Ciriaco Valdez-Flores, Applied Probability and Stochastic Processes, Springer, 2010.
[9] William J. Gordon, Gordon F. Newell, Closed queuing systems with exponential servers, Oper. Res. 15 (2) (1967) 254–265.

[10] Phuong Hoai Ha, Marina Papatriantafilou, Philippas Tsigas, Self-tuning reactive distributed trees for counting and balancing, in: Teruo Higashino (Ed.),
Principles of Distributed Systems, 8th International Conference, Revised Selected Papers, OPODIS 2004, Grenoble, France, December 15–17, 2004, in:
Lecture Notes in Computer Science, vol. 3544, Springer, 2004, pp. 213–228.

[11] Phuong Hoai Ha, Philippas Tsigas, Reactive multi-word synchronization for multiprocessors, J. Instr.-Level Parallelism 6 (2004) 1–25.
[12] Mor Harchol-Balter, Takayuki Osogami, Alan Scheller-Wolf, Adam Wierman, Multi-server queuing systems with multiple priority classes, Queuing Syst.

51 (3–4) (2005) 331–360.
[13] Timothy L. Harris, Keir Fraser, Ian A. Pratt, A practical multi-word compare-and-swap operation, in: International Symposium on Distributed Computing,

Springer, 2002, pp. 265–279.
[14] Maurice Herlihy, Nir Shavit, The Art of Multiprocessor Programming, Elsevier, 2012, revised reprint.
[15] James R. Jackson, Jobshop-like queuing systems, Manage. Sci. 50 (12 Suppl.) (2004) 1796–1802.
[16] Guy Latouche, V. Ramaswami, A logarithmic reduction algorithm for quasi-birth-death processes, J. Appl. Probab. 30 (3) (1993) 650–674.
[17] Victor Luchangco, Mark Moir, Nir Shavit, Nonblocking k-compare-single-swap, in: Proceedings of the Fifteenth Annual ACM Symposium on Parallel

Algorithms and Architectures, ACM, 2003, pp. 314–323.
[18] Nancy A. Lynch, Upper bounds for static resource allocation in a distributed system, J. Comput. System Sci. 23 (2) (1981) 254–278.
[19] Nancy A. Lynch, Distributed Algorithms, Morgan Kaufmann, 1996.
[20] Marcel F. Neuts, Matrix-Geometric Solutions in Stochastic Models – An Algorithmic Approach, Dover Publications, 1994.
[21] Takayuki Osogami, Analysis of Multi-Server Systems via Dimensionality Reduction of Markov Chains, PhD thesis, IBM, Tokyo, 2005.
[22] Marina Papatriantafilou, Philippas Tsigas, On distributed resource handling: dining, drinking and mobile philosophers, in: Alain Bui, Marc Bui, Vincent

Villain (Eds.), On Principles of Distributed Systems, Proceedings of the 1997 International Conference, Chantilly, France, December 10–12, Hermes,
1997, pp. 293–308.

[23] Sridhar Ramesh, Harry G. Perros, A multi-layer client-server queuing network model with non-hierarchical synchronous and asynchronous messages,
Perform. Eval. 45 (4) (2001) 223–256.

[24] John H. Reif, Paul G. Spirakis, Real time resource allocation in distributed systems, in: Robert L. Probert, Michael J. Fischer, Nicola Santoro (Eds.), ACM
SIGACT-SIGOPS Symposium on Principles of Distributed Computing, Ottawa, Canada, August 18–20, 1982, ACM, 1982, pp. 84–94.

[25] Iosif Salem, Elad M. Schiller, Marina Papatriantafilou, Philippas Tsigas, Shared-object system equilibria: delay and throughput analysis, arXiv:1508 .
01660, 2015.

[26] Iosif Salem, Elad M. Schiller, Marina Papatriantafilou, Philippas Tsigas, Shared-object system equilibria: delay and throughput analysis, in: Proceedings
of the 17th International Conference on Distributed Computing and Networking, ICDCN ’16, ACM, New York, NY, USA, 2016, pp. 30:1–30:10.

http://refhub.elsevier.com/S0304-3975(18)30208-1/bib626F6C6368323030367175657565696E67s1
http://refhub.elsevier.com/S0304-3975(18)30208-1/bib626F6C6368323030367175657565696E67s1
http://refhub.elsevier.com/S0304-3975(18)30208-1/bib62757A656E31393733636F6D7075746174696F6E616Cs1
http://refhub.elsevier.com/S0304-3975(18)30208-1/bib636F6E662F7369676D6F642F43686F473030s1
http://refhub.elsevier.com/S0304-3975(18)30208-1/bib636F6E662F7369676D6F642F43686F473030s1
http://refhub.elsevier.com/S0304-3975(18)30208-1/bib66656C646D616E323031306170706C696564s1
http://refhub.elsevier.com/S0304-3975(18)30208-1/bib676F72646F6E31393637636C6F736564s1
http://refhub.elsevier.com/S0304-3975(18)30208-1/bib44424C503A636F6E662F6F706F6469732F486150543034s1
http://refhub.elsevier.com/S0304-3975(18)30208-1/bib44424C503A636F6E662F6F706F6469732F486150543034s1
http://refhub.elsevier.com/S0304-3975(18)30208-1/bib44424C503A636F6E662F6F706F6469732F486150543034s1
http://refhub.elsevier.com/S0304-3975(18)30208-1/bib6861323030347265616374697665s1
http://refhub.elsevier.com/S0304-3975(18)30208-1/bib68617263686F6C323030356D756C7469s1
http://refhub.elsevier.com/S0304-3975(18)30208-1/bib68617263686F6C323030356D756C7469s1
http://refhub.elsevier.com/S0304-3975(18)30208-1/bib6861727269733230303270726163746963616Cs1
http://refhub.elsevier.com/S0304-3975(18)30208-1/bib6861727269733230303270726163746963616Cs1
http://refhub.elsevier.com/S0304-3975(18)30208-1/bib6865726C69687932303132617274s1
http://refhub.elsevier.com/S0304-3975(18)30208-1/bib646F693A31302E313238372F6D6E73632E313034302E30323638s1
http://refhub.elsevier.com/S0304-3975(18)30208-1/bib6C61746F75636865313939336C6F6761726974686D6963s1
http://refhub.elsevier.com/S0304-3975(18)30208-1/bib6C756368616E67636F323030336E6F6E626C6F636B696E67s1
http://refhub.elsevier.com/S0304-3975(18)30208-1/bib6C756368616E67636F323030336E6F6E626C6F636B696E67s1
http://refhub.elsevier.com/S0304-3975(18)30208-1/bib44424C503A6A6F75726E616C732F6A6373732F4C796E63683831s1
http://refhub.elsevier.com/S0304-3975(18)30208-1/bib44424C503A626F6F6B732F6D6B2F4C796E63683936s1
http://refhub.elsevier.com/S0304-3975(18)30208-1/bib44424C503A626F6F6B732F6461676C69622F30303138353430s1
http://refhub.elsevier.com/S0304-3975(18)30208-1/bib6F736F67616D6932303035616E616C79736973s1
http://refhub.elsevier.com/S0304-3975(18)30208-1/bib44424C503A636F6E662F6F706F6469732F50617061747269616E746166696C6F75543937s1
http://refhub.elsevier.com/S0304-3975(18)30208-1/bib44424C503A636F6E662F6F706F6469732F50617061747269616E746166696C6F75543937s1
http://refhub.elsevier.com/S0304-3975(18)30208-1/bib44424C503A636F6E662F6F706F6469732F50617061747269616E746166696C6F75543937s1
http://refhub.elsevier.com/S0304-3975(18)30208-1/bib44424C503A6A6F75726E616C732F70652F52616D657368503031s1
http://refhub.elsevier.com/S0304-3975(18)30208-1/bib44424C503A6A6F75726E616C732F70652F52616D657368503031s1
http://refhub.elsevier.com/S0304-3975(18)30208-1/bib44424C503A636F6E662F706F64632F52656966533832s1
http://refhub.elsevier.com/S0304-3975(18)30208-1/bib44424C503A636F6E662F706F64632F52656966533832s1
http://refhub.elsevier.com/S0304-3975(18)30208-1/bib73616C656D32303135736861726564s1
http://refhub.elsevier.com/S0304-3975(18)30208-1/bib73616C656D32303135736861726564s1
http://refhub.elsevier.com/S0304-3975(18)30208-1/bib53616C656D3A323031363A5353453A323833333331322E32383333333235s1
http://refhub.elsevier.com/S0304-3975(18)30208-1/bib53616C656D3A323031363A5353453A323833333331322E32383333333235s1

	Shared-object system equilibria: Delay and throughput analysis
	1 Introduction
	1.1 Related work
	1.2 Our contribution

	2 System settings and problem deﬁnition
	2.1 Job arrival rates and job-to-thread assignment
	2.2 Acquisition requests and periods
	2.3 Job delay and throughput
	2.4 Problem deﬁnition: computing shared-object system equilibria

	3 Background
	3.1 Computing job delay and throughput when the job blocking period is known
	3.2 Relevant tools from queuing networks

	4 Overview of the proposed solution
	4.1 Modeling dependencies and approximating the system's performance parameters
	4.2 Resolving dependencies
	4.3 Finding approximate equilibria

	5 Modeling dependencies in shared-object systems
	5.1 Acquisition paths
	5.2 Work cycles: demand, supply, and release
	5.3 Subpaths and acquisition graph
	5.4 Conditional and consecutive events
	5.4.1 Conditional demand and supply events
	5.4.2 Events of arbitrary jobs and threads
	5.4.3 Consecutive events

	5.5 Pairwise states and request probabilities
	5.5.1 Pairwise states
	5.5.2 Pairwise request probabilities
	Deﬁnition of R(s, od)
	Deﬁnition of Rt(s, od)

	5.6 Item inter-demand period
	5.7 Shared-object system equilibria

	6 Request probabilities
	7 Blocking periods
	7.1 Job completion periods
	7.2 Acquiring the remaining objects

	8 Item inter-demand periods
	8.1 Thread inter-demand period
	8.2 Object inter-demand period

	9 Resolving dependencies: pairwise delay and throughput computation
	9.1 Contention subsystems
	9.2 Baynat-Dallery framework
	9.2.1 Variables
	9.2.2 Initialization phase
	9.2.3 The repeat-until loop
	9.2.4 BDF()'s output

	9.3 The case of systems with M=3 objects
	9.3.1 Contention graph of CS(thread, o2)
	9.3.2 CS(thread, o2)'s blocking times and request probabilities
	The case of (s, o1, •) paths
	The probability Rs(s, relay(s,o1))
	The blocking period Bs(relay(s, o1))
	The probabilities Rs(relay(s, o1), o2) and Rs(relay(s, o1), s)
	The case of (s,o2,•) paths
	The case of (s,o3) paths

	9.4 The case of systems with M objects

	10 Finding an ε-OSE
	10.1 The ε-OSE solver
	10.2 The initializeSystemState() function
	10.3 The updateStates() function
	10.4 The recalcB() and recalcT() functions
	10.5 Running time

	11 Conclusions
	References

