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Abstract

The possibility of building intelligent sensing substrates that both collect informa-
tion about an environment and analyze it in real-time has been investigated theoret-
ically. In a typical setup, a dynamical system is assumed to interact with the environ-
ment over time. The system operates as a reservoir computer acting as a reservoir
of states. Due to the reservoir-environment interaction, the information about the
environment is encoded in the state of the reservoir. The information stored in the
system can be inferred (decoded) by analyzing the reservoir state, which is done by
observing how a system responds to an external stimulus being an external drive sig-
nal. This signal is optimized to ensure that under different environmental conditions
the reservoir visits distinct regions of the configuration space. If such a behavior is
possible, then a relatively simple readout layer can be used to achieve efficient sens-
ing. These ideas have been examined theoretically by simulating various networks
of environment-sensitive elements: the memristor, the capacitor, the constant phase
element, and the organic field effect transistor element. It was found that hetero-
geneity of the network is important for sensing. The simulations were done in the
context of ion sensing, which is an extremely complex, many-body, and multi-scale
modeling problem. A generic electrical circuit simulator has been developed with a
focus on understanding transient dynamics. The constant phase element has been
identified as an important primitive that is essential for modeling the experimental
data. A new algorithm has been develop to model its transient behavior. Likewise,
the same was done for the organic electrochemical transistor. To quantify the sens-
ing capacity of an environment sensitive network a precise mathematical measure
has been introduced, the state separability index, and evaluated in numerical exper-
iments. The theoretical work has been supported by the related set of experiments.
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Chapter 1

Introduction

1.1 Background

Moore’s law predicts that the number of transistors at the chip doubles roughly ev-
ery second year. [21] However, it is likely that this trend will slow down, owing to
practical engineering limitations or specific physical effects pertinent to small scales,
such as wiring problems or electron tunneling. There are problems that are sim-
ply too complex and that cannot be handled by the traditional CMOS technology.
In somewhat technical terms, one says that there are information processing ap-
plications that do not scale according to the Moore law. Typical examples include
problems in distributed, real-time, or embedded information processing applica-
tions. Accordingly, there is a need to develop alternative information processing
solutions by using non-CMOS based technologies. In the information processing
industry, and especially semiconductor industry, one talks about functional diversifi-
cation. The field of unconventional computation has emerged as a response to this
functional diversification challenge. Up to date unconventional computation en-
compasses a plethora of computing frameworks, such as neuromorphic computing,
molecular computing, reaction-diffusion computing, or quantum computing, and is
ever increasing in its scope. [28, 9, 10, 1, 2, 17]

In particular, reservoir computing has gained a considerable interest among the
unconventional computation community in the recent decade, both as a model of
computation and as a remarkably practical approach for realizing neuromorphic
computation. Historically, the field of reservoir computing started as an insight
about behavior of synaptic weights during the neural network training process. [13,
12, 20, 29] During the supervised learning the weights need to be adjusted to achieve
a desired computation. It has been realized that only a limited set of weights is ad-
justed in the network training process. While it is true that a neural network is es-
sentially a geometry free object, the weights that change belong mostly to the links
in the network that can be naturally described as an “outer layer”. This led to the
further insight that instead of neural network one could use an arbitrary dynamical
system as the core, and augment it with the outer layer. The dynamical system used
this way is referred to as a reservoir, and the outer layer is referred to as the readout
layer. The modern understanding of reservoir computing emphasizes the fact that a
Turing universal expressive power can be achieved in the context of time-series data
processing, if the reservoir exhibits separation property on the state of inputs. This
separation property is rather generic, it is not limiting in the engineering sense, and
is often realized by complex systems at the edge of chaos. [19]

Though the foundational ideas behind reservoir computing have been around
for quite some time, this is still an aggressively developing field which is gaining
in momentum. A reservoir computer is essentially a pattern recognition device. It
consists of two parts, a dynamical system, referred to as the reservoir, that can be
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driven by the external signal, and an easily trainable readout layer. The external sig-
nal is the input accepted by the system. By assumption, the readout layer is the only
part of the device that can be optimized. The external signal drives the system to a
specific region of the configuration space, which constitutes the act of computation
since the information stored in the external signal is transformed into the informa-
tion stored in the internal state of the reservoir. The term “reservoir” stands for the
reservoir of states. The readout layer is only used to assess in which state the reser-
voir is. The key claim is that any computation can be realized this way, provided the
dynamical system is complex enough. Due to the inherent flexibility and the ease of
use the reservoir computing approach is being applied frequently in many applica-
tions that require neuromorphic computation. The reservoir computer can be used
with a minimum of preparation as an artificial intelligence unit that process exter-
nal information. From the theoretical point of view, the specific feature that makes
reservoir computing popular is the ease of training. Likewise, from the engineering
point of view, the readout layer can be a relatively simple structure.

The sensing reservoir concept: The work done in this thesis focuses on other,
entirely novel aspect of reservoir computing. We investigate whether it is possible to
use reservoir computing to build intelligent sensing substrates that can both collect
and analyze information at the same time. The key idea is that the environment one
wishes to sense interacts with a dynamical system, which we refer to as a sensing
reservoir, or a state weaver. The sensing reservoir accumulates, or weaves in, the
information about the environment into its internal state over time. In such a setup
the flow of information is not linear (from the sensor to the artificial intelligence
unit), but the sensor and the associated information processing intelligence are the
same. More details on these ideas can be found in [16, 18] and in section 3.

1.2 The relation to the RECORD-IT research project

This thesis work has been strongly aligned with the activities in the RECORD-IT
research project. The aim of the RECORD-IT project is to develop an intelligent
biocompatible device sensitive to the environmental changes in ion concentrations.
Thus many of the ideas presented in the thesis have been motivated by a need to
understand the RECORD-IT experiments. The systems of interest feature elements
that can be described as wet nanoparticle organic memory field-effect transistors
(NOMFETs), coated Si nanowires, self-conjugated polymers, or arrays of photocells.
These elements are combined to build powerful sensing devices. A natural theoret-
ical paradigm for modelling these structures is a network of environment sensitive
electrical components. This defines the context in which this thesis work has been
done.

1.3 Aim and Scope

The overarching aim has been to exploit theoretically the possibility of using en-
vironment sensitive electrical circuit networks as intelligent sensing substrates. A
key feature that is investigated is how the coupling between the elements affects
the sensing capacity of the device. The hypothesis is that the existing interactions
between the network elements should increase the sensing capacity of the network.
The key idea is that the spatial-temporal information about the environment can be
accumulated in the state of the reservoir if the system is arranged properly. [18, 16]
This could happen if small pieces of information that are scattered over time, and
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that might be ignored in the standard sensing setup, can be accumulated, ampli-
fied, and ultimately stored in the state of the network. When should one use such
a device? The use of such devices would be advantageous in situations where em-
bedded information processing is necessary, e.g. in the case of distributed sensing
networks. If the information collected by sensors can be pre-processed in situ, this
would reduce the necessary communication bandwidth, provide real-time analysis
options, and accordingly make the whole system much more responsive. Moreover,
from the engineering point of view, such sensing solutions could be more flexible
and easier to implement, be low-power, or be bio-compatible.

1.4 Content of the Thesis

The content of the thesis follows the structure of the papers I - III which have been
either published or submitted. This is augmented with a highlights from the very
recent on-going work, a manuscript in preparation, paper IV.

In paper I it is demonstrated theoretically on a very simple classification problem
that a single memristor can be used to classify the environment it is exposed to. Only
two environmental conditions have been considered, describing a static and a vary-
ing environment. First, a suitable drive signal has been identified based on intuitive
analysis of the memristor dynamics. Then, a rigorous mathematical optimization
problem has been set up, and solved using genetic algorithms. Interestingly, the
optimization algorithm produced another drive signal. The two drive signals are
different from each other because the intuitive drive was a square-wave while the
optimization algorithm was allowed to search in the space of more complex sinu-
soidal drive signals. Under both drives the memristance is driven to two different
regions of the one-dimensional state space (under the influence of the two envi-
ronmental conditions). The environment can be easily inferred by monitoring the
memristance value, i.e. if it is “high” or “low”. The separation only occurs if there is
a synchronization between the drive and the environmental signals. To quantify the
magnitude of the separation, a quality of sensing index was introduced: The ability
to sense depends critically on the synchronization between the drive and environ-
mental conditions. If this synchronization is not maintained the quality of sensing
deteriorates.

In paper II, the cooperative behavior between memristor components has been
explored achieving an additional functionality. In particular, we investigated how
the interplay between various network features influences the sensing capacity of
the device. The features of interest included the number of network elements, their
connectivity pattern, and the complexity of the individual element. The big ques-
tions which have been addressed are as follows:

• Is it possible to quantify in a rigorous mathematical sense the sensing capacity
of the device?

• How much information about the environment can be ultimately stored in the
state of the substrate?

• How is the sensing capacity of the device depends on the number of the envi-
ronment sensitive elements in the network?

• Which topological features of the network strongly influence the sensing ca-
pacity?



4 Chapter 1. Introduction

In paper III, a new method has been introduced for the efficient simulation of
electronic circuits which contain Constant Phase Elements (CPEs). Finally, this pa-
per suggests an algorithm for simulating circuits with CPEs based on the Modified
Nodal Analysis (MNA). The algorithmic complexity of the suggested algorithm is
linear with the total time of the transient simulation. This algorithm is compared
to a simple method found in the literature: the consideration of resistance-capacitor
circuits with equivalent impedance to the CPEs. The comparison has been done both
in terms of the accuracy and the algorithmic complexity.

Paper IV is a typical device modelling paper. A simple dynamical model of
the Organic Electrochemical Transistor (OECT) element has been suggested and im-
plemented for simulation purposes. The model has been systematically improved
through a series of carefully designed numerical experiments. The key outcome of
this work is a rigorous simulation algorithm that can be used to predict the response
of the OECT changes in time, depending on the voltages that are applied at its pins.
A key challenge that has been addressed was to explain intriguing peaks in the ex-
perimental data for the drain current as a function of time.
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Chapter 2

Mathematical Primitives

In here some key mathematical primitives of the reservoir computing approach for
sensing are explained. These mathematical primitives feature frequently in the work
and manifest themselves in many different forms.

The filter is a mapping that converts an input series of data q ≡ {q(t)}t∈I into an
output time series data x ≡ {x(t)}t∈I ,

q F−→ x (2.1)

where I denotes the index set. The individual values in the series are indexed by the
variable t, e.g. as q(t) or x(t). In the following the index set will be omitted when
irrelevant for a discussion. The operation of the filter is denoted as

x = F [q] (2.2)

and a specific value indexed by t can be selected as x(t) = F [x](t). Further, the
input and output data types do not need to match at all. For example, a filter F can
take a vectorial data as the input, a series of values {(q(t), u(t)}t with q, u ∈ R and
produce a single valued series {x(t)}t with x ∈ R as the output, with R being the set
of real numbers. For a given index t one has x(t) = F [q, u](t).

The reservoir is a special type of a filter. It is a generic dynamical system, to
be denoted by R, that responds to a time-dependent external signal q(t) in a way
that the state of the system x at a particular time instance t depends on the way the
system has been driven in the past. Using the filter notation introduced above, this
behavior is represented as

x(t) = R[q](t) (2.3)

In this case the index set I is meant to describe the flow of time. Note that the
equation does not read x(t) = R(q(t)), which would imply that the state of the
system is an instantaneous function of the drive.

The reservoir should have another important property: one should be able to
query its state. Further, the apparatus used to query the state should be something
simple, with a low degree of computational complexity, and presumably something
that is easy to engineer. The readout layer, to be denoted by ψ, analyses the instan-
taneous state of the device x and produces the output y

y(t) = ψ(x(t)) (2.4)

Note that the equation does not read y(t) = ψ[x](t) which would imply that ψ rep-
resents a filter.

The key claim of reservoir computing: The abstract mathematical formulations
introduced above formalize the reservoir computing ideas. Clearly, without stating
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what the expressive power of this model of computation is, the mathematical prim-
itives are an empty shell without substance. What gives substance to the field is the
claim that if the filterR has some well-defined mathematical properties, notably if it
separates the input, then any computation is possible with one and the same reser-
voir R. Thus for every desired pattern recognition task Φ[q](t), it is possible to find
a related readout layer ψΦ such that

Φ[q](t) = ψΦ(R[q](t)) (2.5)

This implies that a single dynamical system has, in principle, infinite computing
power, i.e. it can be used to compute anything. At first this might sound as an
impossible claim, but in fact this key insight from the liquid state machine model
rests on rigorous mathematical foundations of the Stone Weierstrass Approximation
theorem. [29].

The sensing goal: Every sensing procedure is done with a certain goal in mind.
For example, one might be interested in inferring whether a solution containing ions
is static or changes in time. Thus a sensing procedure can be formally described as a
pattern recognition task, described by the filter φ,

ϕ(t) = Φ[q](t) (2.6)

The filter is constructed so that its output, the variable ϕ(t), convey the pattern
recognition information. For example, the filter could be constructed to output ϕ ≈ 0
for static ion concentration, or ϕ ≈ 1 for a varying one. It is useful to think of Φ as an
infinitely “intelligent” neural network that can be trained for any pattern recognition
task.

The sensing reservoir is a special dynamical system that can be driven by an
external input and interacts with the environment. Thus the state of the system, in
the filter notation, can be written as

x(t) = R[u, q](t) (2.7)

The sensing performed by the reservoir is represented as

y(t) = S [u, q](t) = ψ(x(t)) (2.8)

where y(t) is the variable that conveys the result of the sensing measurement. The
key idea pursued in this thesis is that all the sensing functionality should be done by the
reservoir, and not the readout layer. Thus the readout layer should be something simple
to engineer with a low degree of computational complexity. As an example of a
reservoir acting as a filter see Fig. 2.1.

Sensor optimization: The goal is to optimize the sensing reservoir so that it mim-
ics the behavior of Φ: Formally, one tries to achieve that y(t) ≈ ϕ(t) to the largest
extent possible, uniformly over time. This defines a rigorous mathematical opti-
mization problem, where the goal is to find the drive such that

u∗ = argminuδ[u, q] (2.9)

where δ[u, q] is a measure of how well the prediction of the sensing reservoir matches
the desired classification,

δ[u, q] ≡ ||S [u, q](t)−Φ[q](t)||t (2.10)
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FIGURE 2.1: A hand drawn illustration of the sensing reservoir con-
cept (a modification of a figure from [16]). The reservoir is denoted
by R with the state of the reservoir at time t denoted by x(t). This
state depends on the whole history of the drive signal u(t) and the
environmental condition signal q(t). To optimize the sensor, a drive
signal u(t) has to be found such that the output y(t) is driven to 1 if
the environmental condition is a varying one, and to 0 if the environ-

mental condition can be characterized as a stable one.

with ||...||t being a measure of the distance between two filters, the one realized by
the reservoirR and the one by Φ. The subscript on the distance symbol indicates that
one should in some sense provide a distance estimate over all times. For example,
one could define the distance as

||S [u, q](t)−Φ[q](t)||2t ≡ lim
T→∞

1
T

∫ T

0
dt {S [u, q](t)−Φ[q](t)}2 (2.11)

which is the definition used in the thesis. The distance measure generated this way
will be denoted as δ∗[u, q].
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Chapter 3

Part A - Memristor networks as
intelligent sensing substrates

Part A of this thesis summarizes the work done on memristor networks in papers
I and II. We describe how the mathematical primitives from Chapter 2 have been
implemented in the memristor network context, with the focus on advanced sensing
application of ionic concentrations. The memristor is one of the simplest electronic
elements which behaves as a filter. Further, it is straight forward to couple such
elements into a network. The response of such a network, at a given time instance,
resembles the one of a pure resistor network. The filter property, i.e. the memory
of the past, resides in the resistances which change over time. We studied such
networks to streamline the theoretical foundations of the reservoir computing for
sensing approach, and critically evaluate the workings of the sensing reservoir idea.

3.1 The sensing reservoir model

An implementation of the sensing reservoir idea using a memristor network is shown
in Fig. 3.1. The memristor network is used as a dynamical system, the reservoir R.
The memristor network naturally implements the filter primitive since the memris-
tance changes in time depending on the voltages that are applied at the external
contacts of the element: Ṙ = f (V1, V2), where here and in the following the dot over
a symbol defines a time derivative. The law that describes the rate of the memris-
tance change is shown in Fig. 3.2. Thus x(t) depends on the whole past of the drive
signal u and environmental condition q, i.e. the time-series of u, q and not their in-
stantaneous values. In the case of the memristor network the most natural way to
realize the external drive is by applying external voltages.

The memristor model used in this thesis has been suggested in [24]. The mem-
ristance R changes in time depending on the applied voltage across the element ∆V,
and other device parameters αM, βM, Vthr, Rmin and Rmax,

Ṙ(t) = fM[∆V(t), αM, βM, Vthr] θ[RM(t)− RM,min] θ[RM,max − RM(t)] (3.1)

where t denotes time, θ(x) is the step function [θ(x > 0) = 1, θ(x ≤ 0) = 0]. Pa-
rameters αM and βM control how fast the memristance changes, Vthr is the threshold
voltage, Rmin and Rmax denote the minimum and the maximum values of the resis-
tance; the resistance of a memristor cannot be lower than Rmin or higher than Rmax.
A typical behavior of fM is illustrated in Fig. 3.2.

The environment model: By assumption, the network is affected by the envi-
ronmental conditions of the ionic solutions surrounding it. The key challenge is to
assume a suitable model for the environment-reservoir interaction. There are nu-
merous options, and special care has been given to choosing an appropriate model.
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Input: Environmental condition

Sensor: Reservoir as a Memristor network

Readout

layer
Classification: ion-memristor interactions

-

-

-

-

- -

+

+ +

+ +

+

+
+ +

+

+

+

+

+

-

-

-

-

- -

-

-

-

-

Drive: Voltage source

FIGURE 3.1: The memristor network is driven by a drive signal and
is affected by the environmental conditions of ionic solutions. The
readout layer receives the instantaneous values of the network state
and contributes to the classification of the environmental condition.

In paper I, based on a careful literature study, it has been argued that it is reason-
able to assume that the rate of the memristance change should depend on the ion-
concentration. Thus, for simulation purposes, it has been assumed that the parame-
ter βM is environment sensitive. Assuming that the variations of the environmental
signal are small, one can use the standard working point model used in electronics:
βM = a + bq(t). This behavior is illustrated in Fig. 3.2. The slope of graph changes
depending on the environmental signal.

The state of the whole memristor network x at time t is described as an ordered
list of resistances for each time instance

x(t) ≡ (R1(t), R2(t), · · · , RNR(t)) (3.2)

where NR is the dimensionality of the state and denotes the number of memristors
in a network. The variable x(t) denotes the trajectory in the state space. This is
illustrated in Fig. 3.3. Further, the figure illustrates the operation of the readout
layer. The readout layer is assumed to be able to access the values of the individual
resistances, which provides the output of the computation

y(t) = ψ(x1(t), x2(t), · · · , xN(t)) (3.3)

Now the meaning of the equation x(t) = R[u, q](t) should be transparent: the
network is driven by external voltages, and resistances change according to the spec-
ified law. The state depends on the whole history of the drive u and the environmen-
tal condition q. The state can be given as input to a readout layer which infers the
environmental condition. The simplest form of a readout layer is given, being a
weighted linear sum of the network memristances.

Supervised learning and fitness function: How does one optimize the device
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FIGURE 3.2: The rate of memristance change Ṙ ≡ dR/dt depicted as
a function of the voltage drop across the memristor element ∆V. The
memristance change is depicted for two cases. All parameters are the
same for both cases except for βM being larger for the model plotted

with the solid line than the model plotted with the dashed line.
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FIGURE 3.3: The state of the memristor network is a vector of all the
memristances included in the network. The network is driven by a
signal u. The output y(t) is as a linear combination of the memris-

tance values.
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then for a particular pattern recognition task? One of the recurring challenges in this
thesis is to, for a given network, find a drive signal u∗ that maximizes the sensing
capacity SC[u, q]:

u∗ = argmaxuSC[u, q] (3.4)

It is hard to define the sensing capacity rigorously. We posit that the sensing capacity
should be related to the state space separability. In some sense, the sensing capacity
should be a function of the differences δ[u, q]. In machine learning one measures the
total prediction error,

ε = ∑
q

δ[u, q] (3.5)

and a viable definition of the sensing capacity measure would be

SC[u, q] ∼ 1
ε

(3.6)

indicating that a small prediction error should be associated with a large fitness.
However, we have often used a slightly different estimate

SC[u, q] ∼∑
q

1
δ[u, q]

(3.7)

Herein, the sensing capacity SC[u, q] has been introduced to be used as a common
metric in both papers I and II.

Papers I and II critically assess which dynamical features of the memristor net-
work could possibly control the sensing capacity. The key insight from these stud-
ies is that the trajectory separation in the phase space controls the sensing capacity.
Mathematically, this can be formalized as the following requirement. Let q1, q2, · · · , qE
denote the set of distinct environmental conditions we wish to classify. If the drive
signal is found such as the state of the memristor network (or any reservoir or in-
terest) occupies different regions Ω1, Ω2, · · · , ΩE, when exposed to the conditions
q1, q2, · · · , qE then a classification is possible. In particular, if the separation of the
trajectories is strong, the classification could be achieved with relatively simple read-
out layer, e.g. a linear classifier might be sufficient.

3.1.1 Sensing with one-memristor network

The simplest possible network, a single-memristor network, has been trained to han-
dle a classification problem with two environments. Since the emphasis is on testing
the overall workings of the method, a relatively simply classification problem has
been chosen. The goal is to distinguish between two different environments, a sta-
ble and a varying one. These were represented by a relatively simple signal pair
denoted by q1 and q2 and shown Fig. 3.4. The figure has been taken from paper I.
Normally, in the supervised learning approach, a class is represented by a group of
similar signals, but we have considered only one signal per class. In such a way it is
possible to have an intuitive understanding how the optimal drive should look like.

As discussed in chapter 2, this classification problem can be represented as an
optimization problem where the goal is to minimize the distances between the clas-
sification performed by the system and the desired classification. The goal is to train
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FIGURE 3.4: Figure taken from paper I. The environmental condi-
tions which are denoted as q1 and q2.

the system, i.e. to find the drive u∗, so that the sensing is done as

S[u∗, q1] ≈ Φ[q1] (3.8)
S[u∗, q2] ≈ Φ[q2] (3.9)

where the pattern recognition problem that needs to be learned by the memristor is
given by Φ[q1](t) = 0 and Φ[q2](t) = 1.

The above optimization problem has been solved using genetic algorithms, where
we used the following fitness function as the optimization goal:

SC1[u] = ∑
q

1
δ∗[u, q]

(3.10)

The sum is over environmental conditions. Effectively, the fitness function above,
describes the fact that the goal is to find the smallest possible distances for every
environmental condition. If both distances are small, SC1 is large.

A drive signal was found firstly by direct intuitive reasoning. The dynamics of
the memristor element were analyzed and we had a good understanding of how
to choose a drive signal to lead the memristance to a specific direction under one
specific environmental conditions. Therefore, for the two environmental conditions
we identified a drive signal for the memristance to occupy two different regions
under the two environmental conditions respectively. This intuitive solution was
found to be in a good agreement with the drive obtained by running the genetic
algorithm. The output for those two drive signals and each of the environmental
conditions q1 and q2 is shown in Figs. 3.8 and 3.9. Interestingly, under the optimized
drive the output is driven faster to the target values Φ[q](t) but there is a larger
variance around Φ[q1] and Φ[q2].

The figures illustrate nicely the phase space separability idea. The output has
been driven to different regions for the two environmental conditions. However,
since the drive signal has been optimized only on two environmental conditions,
then, it would be expected that this drive signal cannot be used generally to classify
stable and varying environmental signals. This expectation has been confirmed by
numerically experiments.
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3.1.2 Towards collaborative sensing

The key result of paper I is that a one-memristor network can be used for classifying
two environment time-series q1 and q2. This indicates that a many-memristor net-
work, with many different memristors, could be used to separate between different
features of the environmental conditions, and perform a generic classification. This
has been investigated in paper II where the classification task is the same as in paper
I, i.e. the network should distinguish between a varying or a stable environment.
However, to test how well the system generalizes, a larger number of environmen-
tal conditions is considered. Every environment qi is represented as group of signals
qi ≡ {qa

i ; a ∈ Ei} where Ei is the index set that describes the environment qi.
The simulations were done to investigate a specific idea. One-memristor of the

network could contribute to the separation based on different features between a
constant environment qa

1 and a varying qa
2 and another memristor could contribute

on the separation based on other different features between a constant environment
qb

1 and a varying environment qb
2. For this to be done, all the memristor elements

ought to be connected so that the separation of different features can be distributed
among the network elements.

Assuming that a collaboration between memristor elements can be exploited as
advocated, how should they be connected into a network for the best possible ef-
fect? In paper II, we have attempted to answer this very broad question. We have
investigated how the number of network elements, their connectivity pattern and
the complexity of the elements affect the sensing capacity of the network. Thus the
big questions of paper II are as follows:

• How can one quantify the sensing capacity of the device without considering
the readout layer? An equivalent question is, how much information about the
environment can be stored in the state of the substrate?

• Is the sensing capacity necessarily favored by an increased number of the envi-
ronment sensitive elements or is there an upper bound of the sensing capacity
that cannot not be exceeded?

• Which connectivity pattern are favorable for a larger sensing capacity? In par-
ticular, can delay feedback mechanisms be used with an advantage?

The time series of the environmental conditions (the training data) are shown
in Fig. 3.5. These conditions will be called the training data since the drive signal
has been optimized for these conditions. The training data are labeled with their
corresponding class and therefore finding the optimum drive signal is a supervised
learning task. In order to test whether the optimum network can be generally used
for classifying stable and varying environmental conditions, we created a bigger
labeled dataset, the testing data. The testing data consists of thousand randomly
created conditions accompanied with the label of their corresponding class.

In paper II, we have not considered a readout layer because we did not want the
readout layer to affect the optimization process, or influence the conclusions. If the
sensing capacity of the network is relatively large then a simple readout layer would
be sufficient for implementing the classification task. An attempt has been made to
focus exclusively on the sensing capacity of the reservoir per se. There is a danger
that the readout layer actively participates in sensing, and it is hard to control its
computational complexity. In papers I and II, the sensing capacity of the network
was based on measuring the interclass separability, i.e. when the network is driven
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Class 0: Stable environmental conditions

(10 randomly generated conditions)

Class 1: Varying environmental conditions

(10 randomly generated conditions)

Training data

a b

FIGURE 3.5: Figure taken from paper II. The training data for the two
different classes. a) The training data for Class 0 b) The training data

for class 1.
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FIGURE 3.6: a) An example of low separability index ν. When the
memristance R0 is driven on average to similar regions under both
environmental conditions q1 and q2, then this contributes to decreas-
ing the separability index ν. b)When the memristance R0 is driven on

average to different regions then this contributes to increasing ν.

by different environmental conditions, then the state should be driven to different
regions. In paper I, due to the fact that the state is one-dimensional, the intraclass
separability is a consequence of interclass separability.

In paper II we developed a measure which is indicative of the state separation,
the separability index ν. The concept behind the definition of the index ν is illus-
trated in Fig. 3.6. In Fig. 3.6a, the memristance R0 is driven on average to similar
regions under different environmental conditions and that would make the sepa-
rability index lower. In Fig. 3.6b, the memristance R0 is driven on average to two
different regions under two different environmental conditions, leading to a larger
separability index.

Mathematically, the ideas discussed above were implemented as follows. The
mean value of the mth memristance of a network under the environmental condition
qa

i is given as:

R̄m[u, qa
i ] =

1
T

∫ T

0
dtRm[u, qi

j](t) (3.11)

For a given network with NR memristors and under a drive signal u, the distance
between two environmental conditions belonging to classes i and j, qa

i and qb
j , is
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NFB1

MFB unit

NFB2

FIGURE 3.7: Figure taken from paper II. In network NFB1, the de-
layed signal is added to the provided drive. In the network NFB2
an MFB unit is added. The memristance signal R1 is converted to

voltage and is used to drive the added MFB unit.

given as:

di,a
j,b =

√√√√ 1
NR

NR

∑
m=1

(
R̄m[u, qa

i ]− R̄m[u, qb
j ]
)2

(3.12)

Totally, for a given network, a drive signal u and a set of training data with classes
c1, c2, · · · , ck, the index ν is calculated as the geometric mean of all the possible ND

distances di,a
j,b

The structures of the memristor networks were investigated in two ways. Firstly,
the complexity of the network topology was increased by adding memristors in par-
allel and in series. Six networks were considered: N1, N2, · · · , N6 with the number
of memristors given by NR = 1, NR = 2, · · · , NR = 6 respectively. Secondly, the
complexity of the elements was increased by introducing the MFB element: a mem-
ristor with a time-delay feedback loops. We used time-delay feedback loops because
the system is expected to gain additional memory properties. The MFB unit at the
time t keeps track of the memristance of a previous time with a delay τ, R(t− τ), and
converts it to a voltage signal with a linear mapping. The converted voltage is added
to the voltage signal across another memristor element. An example is given in Fig.
3.7 which shows two networks the NFB1 and the NFB2 with 1 and 2 MFB units
respectively. In the network NFB2 an MFB unit is added to the network NFB1: The
memristance signal of NFB1 is converted to voltage and is used to drive the added
MFB unit. Similarly, the network NFB3 was considered by adding an MFB unit
to NFB2, the network NFB4 by adding an MFB unit to NFB3. In a similar way,
NFB5 and NFB6 networks were considered. For the networks NFB2, NFB3, · · · ,
NFB6, the time delays of the MFB units were also considered as free parameters to
be optimized.



3.2. Results 17

q=q1

q=q2

FIGURE 3.8: Figure taken from paper I. The simulated outputs of the
one-memristor network under the intuitively found drive signal and

the environmental conditions q1, q2.

3.2 Results

3.2.1 A simple classification problem with a one-memristor network

The network: the single-memristor network with one node grounded and other
node serves as voltage imput. The classification task: two environmental conditions
q1 and q2 and an one-memristor network.

State space separation was achieved by identifying a drive signal based on intu-
itive reasoning by understanding the memristor dynamics. The outputs under the
intuitive drive signal and the environmental conditions q1 and q2 is shown in Fig.
3.8.

The intuitive reasoning was based on the fact that a drive signal can be found
such as the memristance increases and decreases with the same rate under the stable
environment q1 resulting in stable memristance around the initial value. Addition-
ally, for the same drive signal, under the environmental condition q2, the memris-
tance increased with a larger rate than decreased. This resulted in a constantly in-
creasing memristance. Therefore, the memristance occupied different regions under
the conditions q1 and q2.

For the drive signal u∗ found by using the genetic algorithm optimization, the
generated outputs are shown in Fig. 3.9. Under the condition q1 and the drive signal
u∗, the dynamics were such so as the memristance decreases on average. However,
under the condition q2 and the drive signal u∗, the memristance increased on aver-
age. By comparing the Figs. 3.8 and 3.9 one notices that the optimization algorithm
found a drive signal for a faster response, i.e. the output approximated the Φ[q1]
and Φ[q2] faster than when finding the drive signal intuitively. However, there was
a larger variation of the outputs around the targets Φ[q1] and Φ[q2] when using the
optimized drive rather than when using the intuitively found drive.

An important result was the following: We implemented several numerical sim-
ulations and found that when increasing the amplitude of the drive signal, there was
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q=q1

q=q2

FIGURE 3.9: Figure taken from paper I. The simulated outputs of the
one-memristor network under the optimum drive signal (from the

genetic algorithm) and the environmental conditions q1 and q2.

a faster response and a larger variation around the target Φ[q]. This indicates that
there is a trade-off between time response and variation around the target Φ[q].

3.2.2 Network structures for environment classification

In this section, the optimum separability index ν is shown for the different memristor
networks studied. The index ν was maximized by training the memristor networks
with the training data. Additionally, to evaluate the performance of the optimized
networks, we measured the separability index on the test data. The index ν for
both cases is shown in Fig. 3.10, when the networks were constructed by adding in
parallel and in series memristors, and in Fig. 3.11, when the MFB units were used.

In Fig. 3.10 it is shown that the separability index did not increase when adding
memristor elements in parallel and in series. With such network structures there is
no adequate collaboration between the memristor elements.

In Fig. 3.11 it was shown that the increase of the elements complexity favored
a larger separability index. More specifically, in this figure, as the dimension of the
state increases from (NR = 1 for N1) towards (NR = 4 for NFB4), then, the separabil-
ity index on both training and test increased. This means that elements collaborate
when added into the network. Additionally, the index ν did not improve consid-
erably for both the training and the test data when adding MFB units to NFB4.
Therefore, NFB4 can be considered as the network with the minimum amount of
resources for achieving the largest index ν. One can also notice in Fig. 3.11 that the
index ν on the testing data is favored by an increased number of MFB units. Espe-
cially, the distance between the index ν on training and testing data tends to be very
small when considering the network NFB6. This happens because when the dimen-
sionality of the state increases, then, there are more chances for the state to occupy
different regions for different environmental conditions.
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N1 N2 N3 N4 N5 N6

 /!"

training data

test data

FIGURE 3.10: Figure taken from paper II. The optimum separability
index when considering the training data and the measured separa-
bility index on the test data for the different network structures N1,

N2, N3, N4, N5 and N6.

N1 NFB1 NFB2 NFB3 NFB4 NFB5 NFB6

 /!"

training data

test data

FIGURE 3.11: Figure taken from paper II. The optimum separability
index when considering the training data and the measured separa-
bility index on the test data for the different network structures N1,

NFB1, NFB2, NFB3, NFB4, NFB5 and NFB6.
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3.3 Discussions

In this part of the thesis, the possibility of using networks of environment sensitive
elements for advanced sensing applications has been investigated theoretically, in
the context of the SWEET sensing setup. Memristors were considered as an example
of environment sensitive elements where a relatively simple model of the interaction
between the environment and the memristor has been assumed.

There are important lessons to be learned from the numerical work carried out
in paper I. These can be used to speculate on the behavior of larger networks with
larger training datasets. The synchronization between the drive signal and the environ-
mental conditions is important. A natural question that naturally suggests itself is: Is
it still possible to identify a distinct drive signal which synchronizes with a larger
dataset of training data? Additionally, the strength of the drive signal was found
to regulate the trade-off between the response time and the error. Here it would be
very interesting to check whether this finding is true for the larger and more com-
plex networks considered in paper II. If this is not true, then, it might be that this
finding is valid only for simple networks of memristors (i.e. connections in parallel
and series).

The main question addressed in paper II was: How to design a network to
achieve a collaboration between environment sensitive elements? The sensing ca-
pacity of the device was found to increase if heterogeneous time delay feedback
mechanisms were used (with different time delays). This is an important finding.
It shows that heterogeneity is significant for the performance of the device. However, we
found that after the usage of a specific number of memristors with time delay feed-
back mechanisms connected to the network, there was no further increase in the
sensing capacity, the sensing capacity reached a plateau.

It is also interesting to notice that the memristor networks in paper II constitute
an implementation of an artificial neural network primitive: an important part of the
integrate and fire concept, a highly non-linear function that takes the weighted sum
of the inputs to a neuron and produces an output in a given range. By using delay
feedbacks, the memristor elements achieve a similar behavior as neurons: except for
adding non-linearity to the network, their memristance can be driven in relatively
short times to two states of operation, either their maximum (firing state) or mini-
mum value (non-firing state). However, in contrary to artificial neural networks, we
noticed that by adding more and more complex elements to the network, the sep-
arability index on the test data did not worsen, i.e. overfitting was not a problem.
We argue that this happened because the dimensionality of the state space increased
and there were few chances for the state to occupy similar regions of the state under
different environmental conditions.

Possibly, if we implemented numerical experiments with larger networks, then,
we could see effects of overfitting. This poses a question: for a given classification
task, who performs better, the neural network or a memristor network? For choos-
ing whether to use complex memristor networks (with delay feedback units) as sug-
gested in paper II, or software based solution (e.g. artificial neural networks), deci-
sive factors would be the cost (in energy or hardware) to use delay feedback mech-
anisms. Additionally, memristor networks and artificial neural networks could be
used together in hybrid solutions, where the output of memristor networks, which
perform hardware computations, could be used as input in software based artificial
neural networks.

In this thesis, we constructed a simple way to measure the state separation with a
simple number and introduced the separability index ν. Clearly, there could be other
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ways for estimating the sensing capacity by accounting the temporal behavior of the
signals representing the state. For example, a way would be to use a generic mea-
sure of the mutual information concept to quantify how much information about
the environment is stored in the state of the system. Another would be sensing by
identifying specific patterns at the state of the network.

The concepts developed in this part are intended to be used in the RECORD-IT
project. Already, an experimentalist group involved in the RECORD-IT project have
implemented the ideas of heterogeneity in time delay feedbacks. They have used in
their system two different time delay feedbacks and they have noticed sensitivity of
the state to the chemical concentrations around their network of sensors.
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Chapter 4

Part B - Exploiting algorithms for
efficient transient simulations

Part B of this thesis summarizes the work done in papers III and IV. There has been
a need to simulate accurately and efficiently several SWEET device prototypes. We
developed a generic electronic circuit simulator for simulating the transient behav-
ior of electronic circuits with environment sensitive elements. The ultimate goal was
to use the simulator as an optimization tool to identify optimal network designs (e.g.
the drive signal and the network parameters). The simulator has been implemented
as an integral part of an automatic genetic algorithm optimization procedure where
many network designs are tested at random until the one with a desired function-
ality is found. Since such a numerical optimization process involves an extremely
large number of simulations, then, each simulation should be executed in a relatively
short time, to make such an optimization approach feasible.

While many electronic component models have been imported to the simulator
from the literature, e.g. the widely used models for resistor, memristor, capacitor,
inductor, some components were modelled from scratch. In particular, a lot of effort
has been put into developing efficient simulation algorithms for the constant phase
element (CPE) and the organic electrochemical transistor (OECT). CPEs are models
of electronic circuits that are used in equivalent electronic circuits of elements where
ionic diffusion is involved. The OECTs are special purpose devices used for analyz-
ing ionic solutions. There is a genuine lack of accurate and algorithmically efficient
models for simulating OECT and CPE transient behaviors. Further, for the OECT
element of interest, some models are available, but because of their special-purpose
nature, they have severe limitations and could not be used directly.

In section 4.1, a new method for simulating the transient response of CPEs is
given. In section 4.2, a generic theory of OECT transistors is given which can be
used to develop a model for simulating the transient response of OECTs.

4.1 Transient simulation of electronic circuits with Constant
Phase elements

The problem regarding the transient simulation of electrical circuits with CPEs is
that a repeated numerical evaluation of a computationally expensive convolution
integral is needed, shown in Eq. (4.1). This integral relates the instantaneous voltage
drop Vw(t) across the element, with the current that has passed through it Iw(t′) with
t′ ≤ t. To avoid this problem, various methods have been suggested in the literature.

The standard method is to approximate the CPE element by an equivalent RLC
circuit. [26, 30, 31, 4] These circuits are easier to simulate. For example, there are
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commercial packages available that can be used to simulate them efficiently. How-
ever, these methods are only accurate in a short range of frequencies due to a finite
(often a relatively small) number of resistors, capacitors or inductors. The accuracy
in a wide range of frequencies requires the increase in the number of elements, and
this increase implies a larger algorithmic complexity cost. It has been pointed out in
[4] that the accurate approximation of RLC circuits in a wide range of frequencies is
still an open problem.

Another set of methods focuses on expanding the convolution kernel as an infi-
nite series of special functions. [14, 8] The advantage of these approaches is that if
the series converges fast then only few terms in the series expansion need to be kept.
However, in general it is hard to know how many terms should be kept.

We have developed a novel method for simulating the transient dynamics of
CPEs that is both generic, remarkably efficient, and surprisingly accurate. For sim-
plicity reasons this thesis focuses on a specific type of CPE, the Warburg element.
The Warburg element is one type of CPE where the applied voltage difference Vw at
time instance t, Vw(t), and the current passing through it Iw at time instance t, Iw(t)
have a phase difference equal to 45 degrees. The method for simulating transient
response of the Warburg element can be easily extended to CPEs.

The need for developing the new method emerges from the fact that the calcu-
lation of the voltage across the CPE, Vw(t), requires the calculation of the following
convolution integral [15]:

Vw(t) =
Aw(αw)

Γ(αw)

∫ t

0
(t− u)αw−1 Iw(u) du, αw ∈ [0, 1) (4.1)

with Γ being the usual Gamma function, e.g. Γ(1/2) =
√

π, and Aw(αw) is a device
dependent constant.

Calculating numerically the convolution integral is reasonable for short time in-
tervals. However, a repeated numerical evaluation of the convolution integral can be
very expensive for long times. Problems arise regarding the memory usage and the
computation time because the time instances of the current Iw(t) have to be stored
for a long time interval [0, t]. Additionally, the larger this time interval is, the more
computationally expensive the calculation of this integral becomes. [15] For exam-
ple, assuming a grid of n time points {t0 = 0, t1, · · · , tm, · · · , tn}, the computational
cost of evaluating the convolution integral scales as

O(n2) ∼
n

∑
m=0

O(m) (4.2)

where O(m) is the algorithmic cost of evaluating the integral for a fixed time instance
tm. Paper III suggests a generic method for decreasing the algorithmic complexity
by one order of magnitude.

4.1.1 Updating the convolution integral

For the Warburg element, αw = 1/2 and the voltage is calculated as the following
convolution (’*’ denotes the convolution operation):

Vw(t) =
Aw√

π

1√
t
∗ Iw[t] =

Aw√
π

Φw(t) (4.3)

where Aw ≡ Aw(αw = 1/2).
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The computational cost of any standard quadrature algorithm for the approxi-
mation of the convolution integral Φw(tn) in a discrete grid of n time-points {t0, t1,
· · · , tm, · · · , tn} scales with the size of the time grid n, where t0 = 0 and the distance
between two successive time-points is given as ∆ti = ti − ti−1:

Φw(tm) ≈
m

∑
j=0

wm
j Iw,j (4.4)

where for further convenience we use the notation: Iw,j = Iw(tj) and, the weight wm
j

depends on the time-points of the grid tj and tm.
While the computational cost of evaluating Eq. (4.4) at a fixed time instance tm is

O(m), the problem is that a repeated evaluation for many time instances leads to a
quadratic cost O(n2), and here we assume that the time grid of the simulation con-
sists of n time points. To deal with this problem, in paper III, we have developed a
method to calculate the convolution integral at time tm, Φw(tm), by using the already
calculated Φw(tm − dt). To do that, the convolution integral Φw(tm) is split in two
parts:

Φw(tm) = H(tm, tλ) + Ψ0(tm, tλ) (4.5)

where,

H(tm, tλ) =
∫ tm

tλ

Iw(u) du√
t− u

(4.6)

and,

Ψ0(tm, tλ) =
∫ tλ

0

Iw(u) du√
t− u

(4.7)

where H(tm, tλ) is calculated with high precision and Ψ0(tm, tλ) is calculated by a
simple update of the previously calculated Ψ0(tm−1, tλ−1).

The key idea is shown in Fig. 4.1. The One part, Ψ0(tm, tλ), is used to approx-
imate the convolution integral between 0 and tλ and the other part, H(tm, tλ), for
the approximation between tλ and tm. At the next time step tm+1, the convolution
integral is written again a sum of the two parts:

Φw(tm+1) = H(tm+1, tλ+1) + Ψ0(tm+1, tλ+1) (4.8)

Notice here that the successive distances tm − tλ and tm+1 − tλ+1 are approximately
equal. Therefore, the calculation of H(tm, tλ) would require similar algorithmic com-
plexity to the calculation of H(tm+1, tλ+1). However, the calculation of Ψ0(tm+1, tλ+1)
requires larger algorithmic complexity than the calculation of Ψ0(tm, tλ) because
tλ+1 > tλ.

Since the algorithmic complexity of calculating H(tm, tλ) is similar at every time
point tm, we calculate this part with high precision. However, the algorithmic com-
plexity of calculating Ψ0(tm, tλ) increases as tm increases.

In paper III, we developed a method where Ψ0 at the next time point, Ψ0(tm+1, tλ+1),
can be approximated by a simple update of Ψ0 at the previous time point, Ψ0(tm, tλ).
For this purpose, we suggested a dynamical system with N + 1 equations and a clo-
sure function. This dynamical system is shown in Eqs. (50) and (51) in paper III. The
definition of the closure function is given in Eq. (49) in paper III:

r(tm+1, tλ) =

∫ tλ

0
Iw(u) du

(tm+1−u)
2·N+3

2∫ tλ

0
Iw(u) du

(tm+1−u)
2·N+1

2

(4.9)
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FIGURE 4.1: Figure taken from paper III. The concept of calculating
the convolution integral at the time-point tm + ∆tm+1 by using the
previous convolution integral at the time-point tm. The integral Φ(tm)
( Φ(tm + ∆tm+1)) is calculated by convolution between the current
and the curve reaching the time-point tm (tm + ∆tm+1). The integral
Φ(tm + ∆tm+1) is approximated by three different calculations. Re-
gion 1 refers to the tail window calculation by using information from
the previous convolution integral. Regions 2 and 3 refer to analytical
calculation of the convolution integral by linear interpolating the cur-

rent Iw(t).

One of the questions of this paper is how to calculate the closure function above. To
calculate it analytically, it has been chosen that the current is constant Iw(u) = Io.

Finally, an algorithm is suggested for performing transient simulations of elec-
tronic circuits with Warburg elements by using the Modified Nodal Analysis (MNA).
The Warburg element is suggested to be used similarly to a Voltage source object
with the MNA. The MNA is widely used in electronic circuit simulators for transient
simulations and therefore the integration of the developed method with electronic
circuit simulators is amenable.

4.1.2 Results

In paper III the designed algorithm was tested on a simple circuit driven a voltage
source. Different numerical simulations were performed for two different cases of
the voltage source signal: DC and AC signals of different frequencies. The size of
the dynamical system was set for all the simulations as N = 1.

By performing those numerical simulations, we investigated the effect of the dis-
tance tm − tλ on the algorithmic complexity and the error. We found that there is
a trade-off between the error and the algorithmic complexity. By choosing the dis-
tance tm− tλ one can regulate this trade-off. By increasing the distance tm− tλ, then,
the error decreases at the cost of a larger execution time of the algorithm.

By comparing our method with a simple RC (resistor-capacitor) circuit, we found
that the execution time of our method is similar to a Three-RC circuit (with three ca-
pacitors and three resistors). This finding is interesting because one would expect a
much larger execution time with our method since our method is heavily dependent
on the approximation of H(tm, tλ) being computed with high precision. However,
the execution time with RC methods is relatively large due to the larger number of
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FIGURE 4.2: Figure taken from paper III. The error(%) when the cir-
cuit was simulated with an AC voltage source as a sinus signal with
amplitude 0.001V and four different cases: with period 1/ f0 = 0.628s,
1/(103 f0), 1/(106 f0) and 1/(109 f0) respectively. The time-step dt
was such that 100 time-points were sampled per sinus cycle. The cir-
cuit was simulated for five cases: k = 30, k = 100, k = 200, k = 500
and k = ∞. The parameter k denotes the number of time-points
which have been used to calculate H(tm, tλ) with high precision. The
error is calculated as the absolute difference between the ideal case
k = ∞ and the every other case k = 30, 100, 200, 500 divided by the
maximum value of the simulation for k = ∞. In the time domain, the
error is oscillating from 0 to a maximum value. The maximum error is
depicted on the vertical axes. The error(%) when k = 30 is not shown
in this figure for resolution reasons. This error was found as 2.54%,

4.17%, 4.69% and 4.71% at the four frequencies respectively.

nodes in the equivalent circuits (6 nodes were used with the Three-RC circuit and 3
nodes with our method).

A key result is that our method is stable at a large range of frequencies (1Hz−
1GHz) as it is shown in Fig. 4.2. This is a great advantage of our method: The RLC
circuits have equivalent impedance to constant phase elements in a small range of
frequencies while our method is stable in very large range of frequencies. If we
wanted to use the "Three-RC circuit" method for achieving a low error in a larger
range of frequencies, then, we should design an RC circuit with more components
and voltage nodes and the algorithmic complexity would be heavily increased.

4.1.3 Discussions

In paper III, a new method has been designed and tested for performing transient
simulations of electrical circuits that contain CPEs. In particular, the problem is that
the numerical evaluation of the convolution integral describing the response of the
Warburg element is computationally very expensive. By default, the convolution
integral has an algorithmic complexity O(n2) for a grid with n time-points. We iden-
tified a way to reduce the algorithmic complexity by one order of magnitude.

One important finding was that the trade-off between error and execution time
can be regulated by the distance tm − tλ. It would be interesting to investigate in
future how the choice of the total number of equations in the dynamical system
affects this trade-off. This presents an intriguing algorithmic challenge for future work:
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We performed some numerical simulations with N > 1 and the error was increased
instead of our expectations for a decreased error. Therefore, the question is how is it
possible to increase the number of dynamical equations and decrease the error. Such
a finding would be of great significance since a better trade-off between error and
execution time could be found.

Additionally, regarding the analytical calculation of the closure function, one
could argue that it is not reasonable to consider a constant current. A constant cur-
rent passing through a CPE means that it will charge (or discharge) for the whole
time of the simulation which is a rare case in experiments. In the simulations un-
der both AC and DC voltage source signal, the current was not stable. Therefore, the
question is if one could use another way to calculate analytically the closure function
and achieve less error. A possibility is to switch between different update schemes as
the simulation progresses.

Finally, the developed methods in paper III can be used to integrate a CPE object
in a simulator operating with Modified Nodal Analysis in a large range of frequen-
cies. This has not been achieved before. For example by using RLC methods, e.g.
as the one suggested in [26], one should consider a quite large RLC circuit to op-
erate with equivalent impedance to CPEs in the range of frequencies 1Hz− 1GHz.
However, the simulation of quite large circuits requires quite large execution times.
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4.2 Transient simulation of electronic circuits with Organic
Electrochemical Transistors

Transient simulations of electrical circuits with OECTs can be a useful tool for de-
signing efficient environment sensitive networks for biosensors applications. Such
simulations can provide mechanistic understanding of the underlying physical con-
cepts. They can be used to infer circuit parameters by fitting simulations to experi-
mental data, etc.

In the literature, there have been successful theoretical models which unravel the
underlying principles of OECTs. [3, 25, 7, 5] However, there are limitations regarding
the usage of these models for building simulator primitive that are easily integrated
in the electric circuit simulators, e.g. such as SPICE.

For example, Faria et al. [5] have proposed a model for the drain current tran-
sient response. Their model is useful for predicting the transient drain current in a
range of time when the gate voltage input is known in the whole range before the
start of the simulation. However, when connecting OECTs in a network then the
gate voltage cannot be known in the whole range. As an example, the gate volt-
age driving one OECT might be dependent on the chemical concentrations around
other OECTs, and therefore this gate voltage cannot be known before the simulation.
Sideris et al [27] have also suggested a method for simulating the OECT transient.
Their method is based on polynomial approximations of the drain current.

In paper IV, we have proposed a theoretical setup for describing the OECT tran-
sient response when exposed to arbitrary voltage signals at the electrodes. Our ap-
proach is more generic than the one by Sideris et al, since it is based on a genuine
dynamic ODE paradigm, and allows for more flexible numerical integration tech-
niques.

4.2.1 Equations of motion

In our approach, we generalize the equations of motion previously developed by
Bernards and Malliaras [3], and obtain a system of partial differential equations that
describe how ionic degrees of freedom are coupled with the electrical degrees of
freedom in the material.

The geometry of both the device and the electrolyte are given in Fig. 4.3. The de-
vice is a semiconducting substrate with dimensions {L, w, y} and is covered by ionic
solution above. The device volume is divided in vertical slices with infinitesimal
volumes, as shown in Fig. 4.3a. Every infinitesimal volume is described by using
the equivalent circuit model, as shown in Fig. 4.3b. The gate voltage Vg(t) is applied
on the top of the electrolyte. The voltage on the boundary between the semiconduc-
tor and the electrolyte at the position x and time t is denoted as Vch(x, t). V(x, t)
denotes the voltage inside the electrolyte. This simple model features a resistance Re
coupled in series to a capacitor Cd. The resistance describes the flow of ions through
the slice of the electrolyte above the semiconductor (Fig. 4.3c).

After passing the electrolyte, the ions enter into the semiconductor material. It
has been argued that a good model that describes this process is a volume capaci-
tance. The capacitance of the piece of material with volume v = ywdx is given by
Cd = cdv where cd is the volume capacitance of the device material (Fig. 4.3d).

In every small volume of the device there is an accumulated charge density
Q(x, t). In the equivalent circuit, this charge density is the charge of the capacitor
Cd. By solving Kirchhoff laws in the equivalent circuits, the following dynamical
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FIGURE 4.3: a) The geometry of the electrolyte and the device is di-
vided in infinitesimal slices with length dx. Each slice contains two
parts. The volume dx w y occupies the region in the OECT material.
Above this volume, there is a volume of electrolyte dx w z. b) The
equivalent circuits of the device and the electrolyte. The material acts
as a volume capacitance where Cd is the capacitance of the device
sub-volume. The electrolyte sub-volume has a resistance Re. Applied
voltages are: the gate voltage Vg, Vch(x, t) is the time-dependent volt-
age at the boundary between electrolyte and device at the position
x, and V(x, t) is the local voltage in the device sub-volume. c) The
electrolyte is modeled by an equivalent resistance Re. d) The device

is modeled by an equivalent capacitor Cd.
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equation is derived:

∂Q(x, t)
∂t

= −Q(x, t)
τ

+
1
τ

cd y w [Vg(t)−V(x, t)] (4.10)

with the time constant of the equivalent circuit given by τ = recdzy.
Across the semiconductor material, the Ohm’s law relates the current density

J(x, t) flowing through the semiconductor device and the voltage V(x, t).

J(x, t) = eµρ(x, t)
∂V(x, t)

∂x
(4.11)

where ρ(x, t) is the local density of charge carriers, e is the charge of the carrier,
and µ is their mobility. The free charge carrier density ρ(x, t) is regulated by the
concentration of ions Q(x, t) that are absorbed in the material: an increase in Q(x, t)
leads to a decrease in ρ(x, t). An approximate relationship between ρ and Q has been
suggested in [3]:

ρ(x, t) = ρ0

(
1− Q(x, t)

Qmax

)
(4.12)

where ρ0 and Qmax are device parameters.
Equations (4.11) and (4.10) have been solved and analyzed by making the as-

sumption that the transient charge in the device Q(x, t) can be approximated by the
charge density at the steady state condition Qst(x, t) times a variable T:

Q(x, t) ≈ T(t)Qst[x, ξ(t)] (4.13)

The variable T denotes how far the system is from the steady state condition. If
T = 1, then the system is at the steady state. Otherwise, the system has less charge
(T < 1) or more charge (T > 1) than in the steady state condition. The externally
controlled electrode voltages: gate Voltage Vg(t), drain voltage Vd and source Volt-
age Vs are collectively denoted as ξ(t). These voltages determine the stationary state
charge density profile. If ξ is altered, the charge density profile Qst(x) changes too,
and to emphasize this we use Qst(x, ξ)

After the straight forward but somewhat tedious algebra, which will not be re-
produced here, the solution of the Eq. (4.11) by using the above assumption results
in an analytical equation for the drain current ID:

ID(t) = fO[T(t), ξ(t)] =

= G

(
1−

Vg − Vd
2

Vp

)
(Vd T)2

T Vd −
[
Vp (1− T)

]
Log

(
1 + T Vg

Vp−T Vg

) (4.14)

where G is the conductance of the semiconductor given as G = eµρoW Y
L and Vp is

the pinch-off voltage of the semiconductor.
The analysis of the Eq. (4.10) with the above assumption considering a discrete

time grid with time step ∆t results in the following update rule for the parameter T:

T(t) =
τ

τ + ∆t
Λ(t, ∆t) T(t− ∆t) +

∆t
∆t + τ

Ξ(t) (4.15)
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where

Λ(t, ∆t) ≡ 〈Λ(x, t, ∆t)〉x (4.16)
Ξ(t) ≡ 〈Ξ(x, t)〉x (4.17)

with

Λ(x, t, ∆t) =
Qst[x, ξ(t− ∆t)]

Qst[x, ξ(t)]
=

Vg(t− ∆t)−Vst[x, ξ(t− ∆t)]
Vg(t)−Vst[x, ξ(t)]

(4.18)

and

Ξ(x, t) =
Vg(t)−V[x, T(t), ξ(t)]

Vg(t)−Vst[x, ξ(t)]
(4.19)

Herein, due to the fact that it is computationally expensive to calculate the integrals
in Eqs. (4.16) and (4.17), Λ(t, ∆t) and Ξ(t) are calculated by setting x = L

2 in Eqs.
(4.18) and (4.19). It is not set x = 0 or x = L because there are not transient dynamics
at the bounds.

The parameter Ξ(t) indicates how far the transient dynamics is from the steady
state conditions. If V[x, T(t), ξ(t)] = Vst[x, ξ(t)], then, T = 1 and Ξ(t) = 1, other-
wise, Ξ(t) 6= 1 and the update rule has a tendency to move T towards 1.

The parameter Λ(t, ∆t) indicates if the steady state conditions have changed. If
ξ(t − ∆t) = ξ(t), then, Λ(t, ∆t) = 1, otherwise, Λ(t, ∆t) 6= 1. This means that if
Λ(t, ∆t) 6= 1 then Λ(t, ∆t) T(t− dt) 6= T(t− dt) and the update rule is done from a
different point of view.

However, up to here, the contribution of the current coming through the gate,
gate current, has not been considered to contribute to the drain current. In previous
works, it has been assumed that when the steady state conditions change, then a
specific amount of the gate current is driven to the drain and the rest to the source
electrode. This gate current is the reason for spikes observed experimentally in the
drain current. [6, 5] Therefore, the total current through the drain electrode ID,tot
would be calculated by adding a portion of the gate current ∆Ig(t):

ID,tot(t) = ID(t) + α1 ∆Ig(t) (4.20)

where 0 < α1 < 1, while (1− α1) ∆Ig(t) flows into the source electrode. It has been
assumed that the gate current is given by

∆Ig(t) =
Qst,tot(t)−Qst,tot(t− dt)

dt
(4.21)

with the notation Qst,tot(t) ≡ Qst,tot[ξ(t)], where

Qst,tot[ξ(t)] ≡
∫ L

0
dxQst[x, ξ(t)] (4.22)

Finally, an algorithm is introduced for the transient simulation of OECT models
connected to an electronic circuit by using the MNA [11]. The key primitive of the
MNA paradigm is the idea of a stamp, as explained in paper III. The stamp of the
OECT element is represented by three voltage dependent current sources: one cur-
rent source at the drain node with the total drain current given by Eq. (4.20), one
current source at the gate node with the current given as −∆Ig(t) in Eq. (4.21) and
one current source at the source node given as −ID + ∆Ig(1− α1).

The four parameters of the model: The OECT model developed in this thesis is
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FIGURE 4.4: The OECT four-parameter model suggested in this the-
sis; S, G and D denote the electrode voltage nodes at the source, gate

and drain respectively.

parameterized by the following quantities: the conductance G, the pinch-off voltage
VP, the time constant τ and the parameter α1 as shown in Fig. 4.4.

4.2.2 Fitting the model to data

An example of fitting the model to experimental data is shown in Fig. 4.5. The exper-
imental drain current was recorded by collaborators in the RECORD-IT project by
using the methods given in [23, 22]. The experimental setup: Vs = 0V, Vd = −0.1V
and the gate voltage was pulsed with a square wave pulse of two levels 0V and 0.3V
with 50% duty cycle. The four parameters of the model have been optimized so as
the simulated total drain current ID,tot fits the experimental data.

As one can see in Fig. 4.5, the simulated total drain current agrees with the
experimental one. The spike behaviour is correctly reproduced, both the onset and
the recovery phases. Additionally, the simulated output relaxes towards the same
steady state condition as the one in the experiment. However, there is a behavior that
cannot be explained by the current model. In the experiment, the upward spikes are
larger than the downward ones. The theoretical model predicts a fully symmetric
behavior. For example, when the gate voltage increases from 0V to 0.3V and when
it decreases from 0.3V to 0V, then, the spike currents should have the same absolute
value according to the analytical equations derived.

We also noticed in numerical simulations, that when the total current converges
towards the steady state solution, then, the variable T converges towards 1. Ad-
ditionally, when the total current decreased towards the steady state current, the
variable T had larger values than one T > 1 and when the total current increased,
then, it was that T < 1. This behavior of T shows that the dynamical system is stable.

4.2.3 Discussions

We developed a theoretical approach for simulating the transients of electrical cir-
cuits that contain OECT elements. The dynamical system is stable since the param-
eter T always converges to T = 1 when the external voltages are kept constant.
Thus the OECT element always attains the steady state if given enough time, which
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FIGURE 4.5: The simulated and the experimental drain current, with
the theoretical parameters fitted to the experimental data. Dashed

line: experimental data; The full line: the theoretical prediction.

is an important consistency check. The developed model is relatively easy to inte-
grate into an arbitrary electric circuit simulator, especially the ones that use the MNA
method.

The model describes nicely the experimental data, apart from predicting sym-
metric spike currents. It is possible that the asymmetric spike currents observed in
the experiment, are a result of the low sampling frequency of the experimental data,
and are in fact symmetric in reality. It would be interesting to test against experimen-
tal data collected with a larger sampling frequency. Further, regarding the relaxation
to the state condition, we speculate that it might be that there are different time de-
cay constants for the two different phases of increasing and decreasing towards the
steady state conditions.

The model that has been developed can be used for reverse engineering of the
OECT operation to understand underlying principles of the OECTs. Additionally,
the fitting of the model to data can be used to investigate the sensitivity of the four
OECT parameters (Fig. 4.4) to environmental conditions. For example, inferring
the dependencies of the model parameters on chemical concentrations is a crucial
task necessary for designing efficient sensors. These can be extracted by fitting the
models to data for different ionic concentrations.
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