
Counting rational points on smooth cubic curves

Downloaded from: https://research.chalmers.se, 2025-06-18 03:11 UTC

Citation for the original published paper (version of record):
Tran, M. (2018). Counting rational points on smooth cubic curves. Journal of Number Theory, 189:
138-146. http://dx.doi.org/10.1016/j.jnt.2017.12.001

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology. It
covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004. research.chalmers.se is
administrated and maintained by Chalmers Library

(article starts on next page)



Journal of Number Theory 189 (2018) 138–146
Contents lists available at ScienceDirect

Journal of Number Theory

www.elsevier.com/locate/jnt

Counting rational points on smooth cubic curves

Manh Hung Tran
Department of Mathematical Sciences, Chalmers University of Technology, Sweden

a r t i c l e i n f o a b s t r a c t

Article history:
Received 26 October 2016
Received in revised form 6 December 
2017
Accepted 7 December 2017
Available online 2 February 2018
Communicated by A. Pal

Keywords:
Cubic curves
Rational points
Counting function
Elliptic curves
Global determinant method
Descent

We use a global version of Heath-Brown’s p-adic determinant 
method developed by Salberger to give upper bounds for the 
number of rational points of height at most B on non-singular 
cubic curves defined over Q. The bounds are uniform in the 
sense that they only depend on the rank of the corresponding 
Jacobian.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Let F (X0, X1, X2) ∈ Z[X0, X1, X2] be a non-singular cubic form, so that F = 0
defines a smooth plane cubic curve C in P2. We want to study the asymptotic behaviour 
of the counting function

N(B) = �{P ∈ C(Q) : H(P ) ≤ B},

with respect to the naive height function H(P ) := max{|x0|, |x1|, |x2|} for P = [x0, x1, x2]
with co-prime integer values of x0, x1, x2.
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It is known that if the rank r of the Jacobian Jac(C) is positive, then we have

N(B) ∼ cF (log B)r/2 (1)

as B → ∞. This result was shown by Néron. Moreover, if r = 0 then N(B) ≤ 16 by 
Mazur’s theorem (see Mazur [5], Theorem 8) on torsion groups of elliptic curves. But (1)
is not a uniform upper bound as the constant cF depends on C. The aim of this paper 
is to give uniform upper bounds for N(B) which only depend on the rank of Jac(C).

In this direction, Heath-Brown and Testa (see [4], Corollary 1.3) established the uni-
form bound

N(B) � (log B)3+r/2 (2)

by using the p-adic determinant method developed by the first author (see [3]). In [4], 
they also used a result of David [1] about the successive minima of the quadratic form 
given by the canonical height pairing on Jac(C) to prove the sharper uniform bounds 
N(B) � (log B)1+r/2 for all r and N(B) � (log B)r/2 if r is sufficiently large.

We shall in this paper give a direct proof of the bound

N(B) � (log B)2+r/2, (3)

based on the determinant method, which does not depend on any deep result about the 
canonical height pairing.

To do this, we follow the approach in [4] with descent. But we replace the p-adic 
determinant method by a global determinant method developed by Salberger [6]. The 
main result of this paper is the following

Theorem 1. Let F (X0, X1, X2) ∈ Z[X0, X1, X2] be a non-singular cubic form, so that 
F = 0 defines a smooth plane cubic curve C. Let r be the rank of Jac(C). Then for any 
B ≥ 3 and any positive integer m we have

N(B) � mr
(
B

2
3m2 + m2

)
logB

uniformly in C, with an implied constant independent of m.

This bound improves upon the estimate

N(B) � mr+2
(
B

2
3m2 logB + log2 B

)

in [4] (see Theorem 1.2). Taking m = 1 + [
√

logB] we immediately obtain the following 
result.
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Corollary 2. Under the conditions above we have

N(B) � (log B)2+r/2

uniformly in C.

In the appendix we include for comparison a short account of the bounds for N(B)
that can be deduced from David’s result.

2. The descent argument

We shall in this section recall the argument in [4], where the study of N(B) is reduced 
to a counting problem for a biprojective curve.

Let ψ : C ×C → Jac(C) be the morphism to the Jacobian of C defined by ψ(P, Q) =
[P ] − [Q]. Let m be a positive integer and define an equivalence relation on C(Q) as 
follows: P ∼m Q if ψ(P, Q) ∈ m(Jac(C)(Q)). The number of equivalence classes is at 
most 16mr by the theorems of Mazur and Mordell–Weil. There is therefore a class K
such that

N(B) � mr�{P ∈ K : H(P ) ≤ B}.

If we fix a point R in K then for any other point P in K, there will be a further point 
Q in C(Q) such that [P ] = m[Q] − (m − 1)[R] in the divisor class group of C. We define 
the curve X = XR by

XR := {(P,Q) ∈ C × C : [P ] = m[Q] − (m− 1)[R]}

in P2 × P2. Then N(B) � mr�K, where

K := {(P,Q) ∈ X(Q) : H(P ) ≤ B}.

We have thus reduced the counting problem for C to a counting problem for a biprojective 
curve X in P2 × P2. We shall also need the following lemma from [4] (see Lemma 2.1).

Lemma 3. Let C be a smooth plane cubic curve defined by a primitive form F with 
‖F‖ � B30, and R be a point in C(Q). There exists an absolute constant A with the 
following property. Suppose that (P, Q) is a point in XR(Q) and that B ≥ 3. Then if 
H(P ), H(R) ≤ B we have H(Q) ≤ BA.

3. The global determinant method

We shall in this section apply Salberger’s global determinant method in [6] to X and 
consider congruences between integral points on X modulo all primes of good reduction 
for C and X. It is a refinement of the p-adic determinant method used in [3] and [4].
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We will label the points in K as (Pj , Qj) for 1 ≤ j ≤ N , say, and fix integers a, b ≥ 1. 
Let I1 be the vector space of all bihomogeneous forms in (x0, x1, x2; y0, y1, y2) of bidegree 
(a, b) with coefficients in Q and I2 be the subspace of such forms which vanish on X. 
Since the monomials

xe0
0 xe1

1 xe2
2 yf0

0 yf1
1 yf2

2

with

e0 + e1 + e2 = a and f0 + f1 + f2 = b

form a basis for I1, there is a subset of monomials {F1, ..., Fs} whose corresponding cosets 
form a basis for I1/I2. As in [4] (see Lemma 3.1), if 1

a + m2

b < 3, then s = 3(m2a + b). 
Thus we shall always assume that a ≥ 1 and b ≥ m2 to make sure that s = 3(m2a + b). 
Consider the N × s matrix

M =

⎛
⎜⎜⎜⎜⎝

F1(P1, Q1) F2(P1, Q1) . . . Fs(P1, Q1)
F1(P2, Q2) F2(P2, Q2) . . . Fs(P2, Q2)

...
... . . .

...
F1(PN , QN ) F2(PN , QN ) . . . Fs(PN , QN )

⎞
⎟⎟⎟⎟⎠ .

If we can choose a and b such that rank(M) < s, then there is a non-zero column vector 
c such that Mc = 0. This will produce a bihomogeneous form G, say, of bidegree (a, b)
such that G(Pj , Qj) = 0 for all 1 ≤ j ≤ N . Hence all points in K will lie on the variety 
Y ⊂ P2 × P2 given by G = 0, while the irreducible curve X does not lie on Y . Thus

N ≤ �(X ∩ Y ) ≤ 3(m2a + b) (4)

by the Bézout-type argument in [4] (see Lemma 5.1).
In order to show that rank(M) < s, we may clearly suppose that N ≥ s. We will 

show that each s × s minor det(Δ) of M vanishes. Without loss of generality, let Δ be 
the s × s matrix formed by the first s rows of M .

Δ =

⎛
⎜⎜⎜⎜⎝

F1(P1, Q1) F2(P1, Q1) . . . Fs(P1, Q1)
F1(P2, Q2) F2(P2, Q2) . . . Fs(P2, Q2)

...
... . . .

...
F1(Ps, Qs) F2(Ps, Qs) . . . Fs(Ps, Qs)

⎞
⎟⎟⎟⎟⎠ .

The idea is now to give an upper bound for det(Δ) which is smaller than a certain 
integral factor of det(Δ). To do this, we first recall a result from [3] (see Theorem 4).

Lemma 4. For a plane cubic curve C defined by a primitive integral form F , either 
N(B) ≤ 9 or ‖F‖ � B30.
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Thus from now on, we may and shall always suppose that ‖F‖ � B30. It is not 
difficult to see that every entry in Δ has modulus at most BaBAb, where A is the 
absolute constant in Lemma 3. Since Δ is an s × s matrix, we get that

log|det(Δ)| ≤ slog s + slog Ba+Ab. (5)

Now we find a factor of det(Δ) of the form pNp , where p is a prime of good reduction 
for C. In order to do that, we divide Δ into blocks such that elements in each block have 
the same reduction modulo p.

Let p be a prime number and Q∗ be a point on C(Fp). Then we define the set

S(Q∗, p,Δ) = {(Pj , Qj) : 1 ≤ j ≤ s, Qj = Q∗},

where Qj denotes the reduction from C(Q) to C(Fp). Suppose �S(Q∗, p, Δ) = E. We 
consider any E×E sub-matrix Δ∗ of Δ corresponding to S(Q∗, p, Δ) and recall a result 
from [4] (see Lemma 4.2). Note that our set S(Q∗, p, Δ) has fewer elements than the set 
S(Q′; p, B) defined at the beginning of Section 3 in [4] but the proof still works.

Lemma 5. If p is a prime of good reduction for C, then pE(E−1)/2 divides det(Δ∗).

From this lemma we obtain a factor of det(Δ) of the form pNp by means of Laplace 
expansion. Moreover, we can do the same argument for all primes of good reduction for C
and then obtain a very large factor of det(Δ). That is the idea of the global determinant 
method in [6].

Lemma 6. Let p be a prime of good reduction for C. There exists a non-negative integer 
Np ≥ s2

2np
+ O(s) such that pNp |det(Δ), where np is the number of Fp-points on C(Fp).

Proof. Let P be a point on C(Fp) and sP be the number of elements in S(P, p, Δ). Then 
by Lemma 5, there exists an integer NP = sP (sP − 1)/2 such that pNP |det(Δ∗) for each 
sP × sP sub-matrix Δ∗ of Δ corresponding to S(P, p, Δ).

If we apply this to all points on C(Fp) and use Laplace expansion, then we get that 
pNp |det(Δ) for

Np =
∑
P

NP = 1
2
∑
P

sP
2 − s

2 ≥ s2

2np
+ O(s)

in case C has good reduction at p. This completes the proof of Lemma 6.

We now give a bound for the product of primes of bad reduction for C. Since ‖F‖ �
B30, the discriminant DF of F will satisfy log|DF | � log B. Thus log ΠC � log B, 
where ΠC is the product of all primes of bad reduction for C. We have therefore the 
following bound.



M.H. Tran / Journal of Number Theory 189 (2018) 138–146 143
Lemma 7. Suppose that ‖F‖ � B30. The product ΠC of all primes of bad reduction for 
C satisfies log ΠC = O(log B).

We need one more lemma from [6] (see Lemma 1.10).

Lemma 8. Let Π > 1 be an integer and p run over all prime factors of Π. Then

∑
p|Π

log p

p
≤ log log Π + 2.

Proof. We may and shall assume that Π is a square-free. Let l be a positive integer 
such that l ≤ Π and vp(n) be the highest integer such that pvp(n)|n. We then have (see 
Tenenbaum [7], pp. 13–14)

l
∑
p|Π

log p

p
−

∑
p|Π

log p ≤
∑
p|Π

vp(l!)log p

≤
∑
p≤Π

vp(l!)log p = log l! ≤ llog l,

⇒
∑
p|Π

log p

p
≤ log l + 1

l

∑
p|Π

log p ≤ log l + (1/l)log Π.

To obtain the assertion, let l = [log Π] for Π > 2.

4. Proof of Theorem 1

We now use the lemmas in Section 3 to prove that det(Δ) vanishes if s is large enough. 
Let ΠC be the product of all primes p of bad reduction for C. Then

∑
p|ΠC

log p

p
≤ log log B + O(1) (6)

by Lemma 7 and Lemma 8. We apply Lemma 6 to the primes p ≤ s of good reduction 
for C and write 

∑
p≤s

∗
for a sum over these primes. We then obtain a positive factor T of 

det(Δ) which is relatively prime to ΠC such that

log T ≥ s2

2
∑
p≤s

∗ log p

np
+ O(s)

∑
p≤s

∗
log p.

The last term is O(s2) since 
∑

p≤s log p = O(s) (see [7], p. 31). Also,

log p ≥ log p − (np − p)log p
2 .
np p p
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Moreover, it is well-known that if p is a prime of good reduction for C, then np =
p + O(√p). Thus we conclude that

log p

np
≥ log p

p
+ O

(
log p

p3/2

)

for all primes p of good reduction for C. Therefore,

∑
p≤s

∗ log p

np
≥

∑
p≤s

∗ log p

p
+ O(1)

and then

log T ≥ s2

2
∑
p≤s

∗ log p

p
+ O(s2).

But by (6),

∑
p≤s

log p

p
−
∑
p≤s

∗ log p

p
≤ log log B + O(1)

and 
∑
p≤s

log p

p
= log s + O(1) (see [7], p. 14). Hence,

log T ≥ s2

2 log
(

s

log B

)
+ O(s2). (7)

Thus from (5) and (7) we obtain

log
(
|det(Δ)|

T

)
≤ slog s + slog Ba+Ab − s2

2 log
(

s

log B

)
+ O(s2)

= s2

2

(
logB

2(a+Ab)
s − log

(
s

log B

))
+ O(s2).

There is therefore an absolute constant u ≥ 1 such that

log
(
|det(Δ)|

T

)
≤ s2

2

(
logB

2(a+Ab)
s − log

(
s

ulog B

))
.

If

s > uB
2(a+Ab)

s log B (8)

we have in particular that log
(

| det(Δ)|
)
< 0 and hence det(Δ) = 0 as | det(Δ)| ∈ Z≥0.
T T
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Remember that s = 3(m2a + b) if a ≥ 1 and b ≥ m2. We now choose b = m2 and

a = 1 +
[
uB

2
3m2 logB
m2 + A logB

]
.

Then

uB
2(a+Ab)

s log B = uB
2(a+Am2)
3m2(a+1) log B

< uB
2

3m2 B
2A
3a logB < s.

Thus (8) holds and hence det(Δ) = 0. Then rank(M) < s such that there is a bihomoge-
neous form in Q[x0, x1, x2, y0, y1, y2] which vanishes at all (Pj , Qj) ∈ X(Q), 1 ≤ j ≤ N , 
with H(Pj) ≤ B but not everywhere on X. Hence (see (4))

N ≤ 3(m2a + b) �
(
B

2
3m2 + m2

)
logB

⇒ N(B) � mr
(
B

2
3m2 + m2

)
logB.

This completes the proof of Theorem 1.
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Appendix A

In this appendix we record the following more precise version of a result in [4].

Theorem 9. Let C be any smooth plane cubic curve and r be the rank of Jac(C). Let 
ml = l2−4l−4

8l2+8l for l ≥ 1. Then

N(B) �
{

(logB)−(m1+...+mr)+r/2, if 1 ≤ r < 16;
(logB)r/2, if r ≥ 16,

with an absolute implied constant. In particular, N(B) � (logB)1+r/2 for all r.

Proof. The proof is just a careful re-examination of the argument of Heath-Brown and 
Testa [4]. This argument is based on a result of David [1] about successive minima for the 
quadratic form Q corresponding to the canonical height on Jac(C). As in [4] (see (11)),
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N(B) �
∏
j≤r

max
{

1, 4
√
clog B

Mj

}
, (9)

where c is an absolute constant and Mj , j = 1, ..., r are successive minima of 
√
Q.

We now recall Corollary 1.6 from [1], which shows that if D is the discriminant of 
Jac(C) then for all l ≤ r, Ml � (log|D|)ml , where ml = l2−4l−4

8l2+8l . Note that David’s 
result refers to the successive minima for Q, while we have given the corresponding 
results for

√
Q.

In Lemma 4 we saw that ‖F‖ � B30 if N(B) > 9. There is, therefore, in that case 
an absolute constant k such that

max
{

1, 4
√
c logB
Mj

}
≤ k(logB)1/2(log |D|)−mj

for j = 1, ..., r since |mj | < 1/2 and log |D| � logB. Hence, if N(B) > 9, then from (9)
we obtain

N(B) � kr(logB)r/2(log |D|)−(m1+...+mr). (10)

If 1 ≤ r < 16, then −(m1 + ... + mr) > 0 and the assertion holds. If r ≥ 16, let 
D0 = exp(k1/m16). Then k(log |D|)−mj ≤ 1 for j > 16 and |D| ≥ D0. Hence

N(B) � (logB)r/2(log |D|)−(m1+...+m16) � (logB)r/2

as −(m1 + ... + m16) < 0. When |D| ≤ D0 the rank r is bounded and we get the same 
assertion by (10).

So in any case, N(B) � (log B)r/2, if r ≥ 16. It should thereby be noted that Elkies 
(see [2]) has shown that there exist elliptic curves of rank r ≥ 28.
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