
Pure spinor superspace action for D = 6, N = 1 super-Yang-Mills
theory

Downloaded from: https://research.chalmers.se, 2022-01-23 16:34 UTC

Citation for the original published paper (version of record):
Cederwall, M. (2018)
Pure spinor superspace action for D = 6, N = 1 super-Yang-Mills theory
Journal of High Energy Physics, 2018(5)
http://dx.doi.org/10.1007/JHEP05(2018)115

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology.
It covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004.
research.chalmers.se is administrated and maintained by Chalmers Library

(article starts on next page)



J
H
E
P
0
5
(
2
0
1
8
)
1
1
5

Published for SISSA by Springer

Received: February 19, 2018

Revised: April 6, 2018

Accepted: April 16, 2018

Published: May 17, 2018

Pure spinor superspace action for D = 6, N = 1

super-Yang-Mills theory

Martin Cederwall

Division for Theoretical Physics, Department of Physics, Chalmers University of Technology,

SE 412 96 Gothenburg, Sweden

E-mail: martin.cederwall@chalmers.se

Abstract: A Batalin-Vilkovisky action for D = 6, N = 1 super-Yang-Mills theory, includ-

ing coupling to hypermultiplets, is given. The formalism involves pure spinor superfields.

The geometric properties of the D = 6, N = 1 pure spinors (which differ from Cartan pure

spinors) are examined. Unlike the situation for maximally supersymmetric models, the

fields and antifields (including ghosts) of the vector multiplet reside in separate superfields.

The formalism provides an off-shell superspace formulation for matter hypermultiplets,

which in a traditional treatment are on-shell.

Keywords: Extended Supersymmetry, Superspaces

ArXiv ePrint: 1712.02284

Open Access, c© The Authors.

Article funded by SCOAP3.
https://doi.org/10.1007/JHEP05(2018)115

mailto:martin.cederwall@chalmers.se
https://arxiv.org/abs/1712.02284
https://doi.org/10.1007/JHEP05(2018)115


J
H
E
P
0
5
(
2
0
1
8
)
1
1
5

Contents

1 Introduction 1

2 D = 6, N = 1 pure spinors 2

2.1 Minimal pure spinor variables 2

2.2 Non-minimal variables and integration 3

3 Cohomology and supermultiplets 4

3.1 The vector multiplet 5

3.2 The current (antifield) multiplet 5

3.3 The hypermultiplet 6

4 Batalin-Vilkovisky actions 7

4.1 Some useful operators 8

4.2 SYM action 9

4.3 Matter action 9

4.4 Interactions 10

5 Conclusions 10

A Some spinor relations 11

1 Introduction

Pure spinor superfields (see ref. [1] and references therein) have been used in the construc-

tion of actions for maximally supersymmetric theories [2–13]. It is there that the formalism,

originating in superstring theory [14–17] and in the deformation theory for maximally su-

persymmetric super-Yang-Mills theory (SYM) and supergravity [18–25], has its greatest

power. The superspace constraints, turned into a relation of the form “QΨ + . . . = 0”,

where Q is nilpotent, become the equations of motion in a Batalin-Vilkovisky (BV) frame-

work. Not only does this allow for a solution to the long-standing problem of off-shell

formulation of maximally supersymmetric theories, the actions are also typically of a very

simple kind. Generically, they turn out to be of finite and low order in the fields, even

when the component field dynamics is non-polynomial.

Surprisingly little work has been done on pure spinor superfields for models with less

than maximal supersymmetry. A classical description of D = 6, N = 1 super-Yang-Mills

theory was given in ref. [26]. It was based on minimal pure spinor variables, which precludes

the treatment of important issues like integration. It is the aim of the present work to take

this construction to the level of an action principle. Such a formulation may, after gauge

fixing, be used for quantum calculations, to be compared e.g. to the ones performed in

harmonic superspace [27].
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Figure 1. Labelling of the Dynkin diagram for D3 ×A1.

2 D = 6, N = 1 pure spinors

2.1 Minimal pure spinor variables

The important property for pure spinors in relation to supersymmetry is the constraint

(λγaλ) = 0 . (2.1)

When the anticommutator of two fermionic covariant derivatives contains the torsion

Tαβ
a = 2γaαβ , this ensures that the BRST operator

q = λαDα (2.2)

is nilpotent, and (physical) fields may be defined as belonging to some cohomology of q.

The pure spinor λ carries ghost number one.

The D = 6, N = 1 spinors transform under Spin(1, 5) × SU(2), the latter being the

R-symmetry group. For Minkowski signature, this allows for (pseudo-)real 8-dimensional

chiral spinor representations in the form of so called SU(2)-Majorana spinors. A convenient

way to represent them is as two-component spinors with quaternionic entries. One then

uses the isomorphism SL(2;H) ≈ Spin(1, 5), and the R-symmetry SU(2) acts by quater-

nionic multiplication with elements of unit norm from the right. We will use this language

only occasionally, but instead work with matrices (γa)αβ or (γa)αβ , a = 1, . . . , 6, acting

on the respective chiral spinors, and (σi)
α
β or (σi)α

β , i = 1, 2, 3. In the quaternionic

language, the latter are identified with right multiplication by −ei, the imaginary quater-

nionic units. They satisfy σiσj = −δij + εijkσk. Some more spinor identities are collected

in appendix A. The numbering for Dynkin labels is that of figure 1, where an upper spinor

index is represented by (001)(1).

The symmetry properties of spinor bilinears are:

symmetric: (γa)αβ (γabcσi)αβ

antisymmetric: (γaσi)αβ (γabc)αβ
(2.3)

A bosonic spinor λα in (4,2) = (001)(1), subject to the pure spinor constraint (2.1),

will only yield the single representation (00n)(n) in its n’th power. Counting the dimensions

of these representations immediately gives the partition function for the pure spinor (cf.

refs. [17, 28–31])

Z(t) =
∞∑
n=0

(n+ 1)

(
n+ 3

3

)
=

1 + 3t

(1− t)5
=

1− 6t2 + 8t3 − 3t4

(1− t)8
. (2.4)

– 2 –



J
H
E
P
0
5
(
2
0
1
8
)
1
1
5

A refined partition function, counting the actual representation content at each level, is

given by

Z(t) =
∞∑
n=0

(00n)(n)tn = Z0(t)⊗
[
(000)(0)− (100)(0)t2 + (010)(1)t3 − (000)(2)t4

]
, (2.5)

where Z0 is the partition function for an unconstrained spinor,

Z0(t) =
∞∑
n=0

⊗ns (001)(1)tn . (2.6)

As usual, the second factor in eq. (2.5) encodes the zero mode cohomology of the BRST

operator q, which will be described in section 3.

An attempt to solve the pure spinor constraint immediately shows that complex pure

spinors are needed. The manifold of pure spinors is a 5-dimensional complex manifold. The

dimensionality is reflected in the power of the denominator of eq. (2.4). If one considers a

complex spinor as a bifundamental λAa of SU(4)× SU(2), the pure spinor constraint takes

the form εabλ
AaλBb = 0. Obviously, any spinor of the form λ =

(
`A, 0

)
is pure,1 and all

solutions can be obtained from this solution by transformations in SU(4) × SU(2). This

tells us that the space of pure spinors is C4 × CP 1.

The conjugate variable to λα, ωα = ∂
∂λα is not well defined, since it does not preserve

the pure spinor constraint. However, the operators

N = (λω) , Nab = (λγabω) , N i = (λσiω) (2.7)

are well defined.

2.2 Non-minimal variables and integration

For several reasons, it is necessary to include non-minimal variables [16], a bosonic variable

λ̄α and the “fermionic” rα = dλ̄α. One reason is the construction of a non-degenerate

integration measure, another, as we will see, is the need for operators with negative ghost

number. The BRST operator is modified to

Q = q + ∂̄ = λαDα + dλ̄α
∂

∂λ̄α
. (2.8)

λ̄ can be considered as the complex conjugate of λ. It is pure, and differentiation gives

(λ̄γadλ̄) = 0.

If superfields are functions of the non-minimal variables xa, θα, λα, λ̄α and dλ̄α, they

are forms with antiholomorphic indices on complex pure spinor space. A tentative integra-

tion can then be taken as ∫
[dZ]φ ∼

∫
d6x d8θ

∫
Ω ∧ φ , (2.9)

if it is possible to find a holomorphic 5-form Ω.

1This amounts to the statement that any Spin(6) spinor is pure, in the sense of Cartan.

– 3 –
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From the description of pure spinor space as C4×CP 1, it is clear that there is not only

one, but three holomorphic 5-forms, which can be written as d4y zpdz, p = 0, 1, 2, where y

parametrises C4 and z CP 1. They transform as a triplet under R-symmetry. We will in

fact use the full triplet, and have a “triplet integration”. It will become clear, when actions

are formed in section 4, that this is necessary in order to maintain covariance, and absorb

transformations of diverse fields.

For our purposes, and a closer correspondence with the cohomology of section 3, we

will write down an expression for the holomorphic 5-forms Ωi in a fully covariant way.

They are

Ωi = (λλ̄)−1(λ̄σjdλ)(dλγaσjdλ)(dλγaσidλ) . (2.10)

Although λ̄ is used to form a covariant expression, it can be checked that ∂̄Ω = 0. In

addition, the forms satisfy

(σiλ)αΩi = 0 . (2.11)

Except for the presence of a triple of holomorphic top-forms instead of single one, this

mirrors closely the construction for D = 10 pure spinor superfields. As we will see in the

following section, the integration measure is directly connected to the highest cohomology

of a scalar pure spinor superfield, which is the present case will be the triplet of auxiliary

fields Hi in the super-Yang-Mills multiplet.

The geometry corresponding to the integration at hand, with a volume form Vol =

Ωi ∧ Ω̄i, is not the one inherited by embedding pure spinor space in flat spinor space. The

latter one would scale like dλ5dλ̄5, while the actual volume scales like Vol ∼ λ−1λ̄−1dλ5dλ̄5.

This is quite similar to the 10-dimensional situation [9]. As usual, integrals have to be

regularised by a factor exp{Q,χ}. A convenient choice is χ = −(λ̄θ), giving

e{Q,χ} = e−(λλ̄)−(dλ̄θ) , (2.12)

which both regulates the integral over pure spinor space at infinity and saturates the

fermionic integral.

Conider the behaviour of an integral at λ = 0. Define % =
√
λλ̄. The radial integration

contains
∫
d%%9. The holomorphic top form behaves as Ωi ∼ λ−1. Take an integrand Ai ∼

λ(λλ̄)p. Then, the radial integral behaves as
∫
d%%9+2p, and converges at % = 0 if p > −5.

This is minus the complex dimension of pure spinor space, which is a generic feature.

As always in pure spinor superfield theory, the fields must be regular enough at the

singular point λ = 0 of pure spinor space. Too non-singular behaviour corresponds to

non-normalisable modes. This is also desirable, since inclusion of too singular functions

destroys the cohomology in the non-minimal picture. This is a universal feature, which is

shared by the present model. We refer too ref. [16] for details. If e.g. gauge variations of

the fields, in the form of BRST variations or shift symmetries (to be discussed later) are

considered, they must obey the corresponding regularity condition.

3 Cohomology and supermultiplets

In this section we will construct pure spinor superfields containing the off-shell SYM mul-

tiplet and its current multiplet, and the on-shell hypermultiplet.

– 4 –
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gh#= 1 0 -1 -2

dim = 0 (000)(0)
1
2 • •
1 • (100)(0) •
3
2 • (001)(1) • •
2 • (000)(2) • •
5
2 • • • •
3 • • • •

Table 1. The zero-mode cohomology of a scalar superfield.

3.1 The vector multiplet

The standard superspace treatment of supersymmetric gauge theory formulates SYM as

gauge theory on superspace. A connection 1-form A is decomposed as A = EaAa(x, θ) +

EαAα(x, θ). The dimension 1 part of the field strength Fαβ is set to zero. This contains

two parts: a vector (γa)αβFαβ and a triplet of selfdual 3-forms (γabcσi)
αβFαβ in (020)(2).

As usual, setting the vector to 0 is the conventional constraint, expressing the superfield

Aa, and thereby the entire field content, in terms of the superfield Aα.

One can now work with Aα alone. Consider a scalar pure spinor superfield Ψ(x, θ, λ)

of ghost number 1. Its expansion in λ contains the physical fields as λαAα. The (lin-

earised) constraint on F in (020)(2) now arises as the condition qΨ = 0. In addition, a

transformation δΨ = qΛ gives a gauge transformation, and physical fields, modulo gauge

transformations, arise as cohomology of q. It is well known that the relation Fαβ = 0 does

not imply the field equations, but leaves the SYM fields off-shell. Calculating the zero-mode

cohomology indeed gives the SYM multiplet, including the triplet Hi of auxiliary fields,

as shown in table 1. In this and the following tables, the representations and quantum

numbers (dimension, ghost number) of the component fields are listed.

Unlike the situation in D = 10, where the SYM multiplet is an on-shell multiplet,

there is no cohomology at negative ghost numbers, which also means that there is no room

for differential constraints (equations of motion) on the physical fields. The equations of

motion do not follow from QΨ = 0. Instead we will need some relation that effectively

implies the vanishing of the auxiliary fields. This will amount to finding an operator Ĥi of

ghost number −1 and dimension 2, the rôle of which is to map the auxiliary fields to the

“beginning” of the superfield, and postulate ĤiΨ = 0. Such an operator will be constructed

in section 4.

3.2 The current (antifield) multiplet

The scalar superfield of the previous subsection contains the ghost and the physical off-shell

SYM multiplet. In order to write a Batalin-Vilkovisky action (section 4), also the antifields

for the fields and ghost are needed. They will come in a field that is conjugate to Ψ in the

– 5 –
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gh#= -1 -2 -3 -4

dim=2 (000)(2)
5
2 (001)(1) •
3 (100)(1) • •
7
2 • • • •
4 • (000)(0) • •
9
2 • • • •
5 • • • •

Table 2. The zero-mode cohomology of the triplet antifield.

BV sense. This differs from the situation in maximally supersymmetric SYM, where the

scalar superfield is self-conjugate, and QΨ = 0 gives the equations of motion.

The antifield should have the auxiliary fields Hi as its lowest component, and must

therefore itself be a triplet Ψ∗i with ghost number −1 and dimension 2. In order for a non-

scalar superfield to carry a cohomology which is not a product of its representation and

the scalar cohomology, it has to be subject to some condition. This has been encountered

in a number of situations [2, 3, 5, 6, 8, 13], and was named “shift” symmetry in ref. [8].

The appropriate condition is to consider the equivalence class

Ψ∗i ≈ Ψ∗i + (λσiζ) (3.1)

for all possible spinor superfields ζ. This will have consequences for the cohomology. An

immediate one is that the zero-mode cohomology will contain (θσiχ
∗), where χ∗ is the

antifield for the physical spinor (acting with Q gives precisely a shift as in eq. (3.1)). A

complete calculation of the zero-mode cohomology yields table 2, and the correct structure

as the mirror of the fields in table 1 is reproduced.

It now becomes clear that the operator Ĥi, needed to put the vector multiplet on shell,

should be an operator that maps the scalar field Ψ to a triplet field of the type described

in the present subsection.

We also note that the shift symmetry can be implemented in some action, if the triplet

integration and the antifield are used together; an expression
∫

[dZ]iΨ
∗
i . . . will automati-

cally imply it, since, as noted in section 2.2 (eq. (2.11)), [dZ]i(σiλ)α . . . = 0.

3.3 The hypermultiplet

Finally, we give the superfield corresponding to the hypermultiplet. There are no ghosts,

so the superfield should have as its lowest component the scalars of dimension 1 and ghost

number 0. The four scalars transform as (2, 2) under SU(2)L × SU(2)R, where the second

factor is an additional SU(2) R-symmetry leaving the vector multiplet inert. It is convenient

to collect them in a quaternion φ, where the “old” SU(2)L acts by left multiplication and

the new one by right multiplication by unit quaternions. We thus introduce a superfield

– 6 –
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gh#= 0 -1 -2 -3

dim = 1 (000)(1)(1)
3
2 (001)(0)(1) •
2 • • •
5
2 • (010)(0)(1) • •
3 • (000)(1)(1) • •
7
2 • • • •
4 • • • •

Table 3. The zero-mode cohomology of the hypermultiplet field.

Φ ∈ H with dimension 1 and ghost number 0. It enjoys a shift symmetry

Φ ≈ Φ + λ†ρ , (3.2)

where now λ is written in the quaternionic 2-component notation described in section 2.1.

The parameter ρ in the shift term is a spinor transforming under the new R-symmetry

from the right, but inert under the old one. It implies the occurrence of such a spinor in

the zero-mode cohomology. The complete zero-mode cohomology is displayed in table 3.

The field is self-conjugate, in that it contains both the fields of the hypermultiplet and

their antifields. The presence of zero-mode cohomology at ghost number −1 signals, as

usually, the presence of equations of motion. We see that the representations match the

ones of the equations of motion of the spinor and scalar components. The multiplet is an

on-shell multiplet in the traditional sense, and QΦ = 0 implies the component equations

of motion. This is in complete agreement with a traditional superspace formulation of the

hypermultiplet, where the scalar multiplet consists of the ghost number 0 part of Φ.

4 Batalin-Vilkovisky actions

With the description of the fields from section 3, we are now ready to write down BV

actions. We will begin with the linearised theory, and then give the full interacting theory

in section 4.4. A necessary ingredient will be certain operators, which are first given in

section 4.1.

The BV action will of course be a scalar. The consistency condition is the BV master

equation (S, S) = 0. Some care has to be taken to define the antibracket (·, ·), especially

since the “Lagrangian” carries an SU(2) index. With the field Ψ and its antifield Ψ∗i , the

antibracket between A =
∫

[dZ]iai and B =
∫

[dZ]ibi is

(A,B)vector =

∫ (
ai
←−
∂
∂Ψ

[dZ]j
−→
∂
∂Ψ∗j

bi − ai
←−
∂
∂Ψ∗j

[dZ]j
−→
∂
∂Ψ

bi

)
. (4.1)

For the self-conjugate matter field Φ,

(A,B)matter =

∫
ai
←−
∂
∂Φ

ej [dZ]j
−→
∂
∂Φ†

bi . (4.2)

– 7 –
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4.1 Some useful operators

It was already observed that, in order to write the equations of motion for the physical

fields (in the cohomology of Q), a triplet operator Ĥi with dimension 2 and ghost number

−1 is needed. The rôle of the operator is essentially to create a new (triplet) pure spinor

superfield which in the minimal picture would have the auxiliary field Hi as its λ- and

θ-independent component. In ref. [8], similar operators were formed (in the context of

maximally supersymmetric SYM) corresponding to various physical fields).

The first observation is that there are other nilpotent operators than Q. Also the

expressions qi = (λσiD) are nilpotent modulo the pure spinor constraint. They can be

extended to

Qi = (λσiD) +

(
dλ̄σi

∂

∂λ̄

)
(4.3)

in order to act non-trivially in the non-minimal sector. Then, {Q,Qi} = 0, {Qi, Qj} = 0.

A commonly used type of operator in pure spinor field (and string) theory is the

b-operator. It has the property

{Q, b} = −� , (4.4)

and clearly has ghost number −1 and dimension 2. An explicit form of b is

b =
1

2
(λλ̄)−1(λ̄γaD)∂a

− 1

4
(λλ̄)−2(λ̄γaσidλ̄)

(
Ni∂a −

1

8
(DγaσiD)

)
− 1

16
(λλ̄)−2(λ̄γabcdλ̄)

(
Nab∂c −

1

24
(DγabcD)

)
− 1

32
(λλ̄)−3((λ̄dλ̄2)aγbD)Nab −

1

16
(λλ̄)−3((λ̄dλ̄2)iD)Ni

− 1

64
(λλ̄)−4(λ̄dλ̄3)abiNabNi −

1

64
(λλ̄)−4(λ̄dλ̄3)ijNiNj

(4.5)

(see appendix A for notation for antisymmetric products of spinors).

The operators Qi and b will not be used further in the present paper, but will be of

use when gauge fixing is considered. We turn to the construction of the operator Ĥi. The

precise criterion on Ĥi is that {Q, Ĥi} = 0 modulo the shift transformations of eq. (3.1).

This is satisfied by the operators

Ĥi = (λλ̄)−2(λ̄γaσidλ̄)∂a −
1

2
(λλ̄)−3(λ̄dλ̄2)αi Dα

+ (λλ̄)−4

[
1

4
(λ̄dλ̄3)ijN

j +
1

8
(λ̄dλ̄3)abiN

ab

]
.

(4.6)

Note that the minimal representative for the auxiliary field cohomology is at Ψ ∼ λθ3, a

component yielding a non-vanishing regularised integral
∫

Ωi∧Ψ ∼ Hi. It would seem that

Ĥi should contain three spinorial derivatives.2 Instead it contains terms with Ddλ̄2 and

2In ref. [26] such an operator was constructed using minimal pure spinor variables. It had the drawback

of not being well-defined outside cohomology.
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dλ̄3, which in the integral with regularisation according to eq. (2.12) can be converted into

fermionic derivatives. The expression (4.6), being linear in derivatives, follows the pattern

of similar operators constructed in ref. [8].

The linearised equations of motion for Ψ, already subject to QΨ = 0, can now be

written as ĤiΨ = 0.

4.2 SYM action

We are now ready to write down the BV action for the SYM multiplet in Ψ and its antifield

Ψ∗i . The linearised action is

S0,vector =

∫
[dZ]iTr

(
Ψ∗iQΨ +

1

2
ΨĤiΨ

)
. (4.7)

As mentioned earlier, the use of the triplet integration is consistent with the shift

symmetry of the antifield, and necessary to implement it. It is somewhat easier to check

the master equation by repeated variations on the field and antifield than directly in the

form (S, S) = 0. The equations of motion following from the action are

QΨ = 0 ,

QΨ∗i + ĤiΨ = 0 .
(4.8)

These equations follow from variation of the action (in the case of Ψ∗i one also needs to

interpret the equation as modulo shifts). The two equations are also directly obtained as

(S,Ψ) = 0 and (S,Ψ∗) = 0, respectively. If the second equation is seen as a condition on Ψ

(effectively, the vanishing of the auxiliary fields), the first term is trivial in the cohomology.

The consistency, i.e., the master equation, amounts to the nilpotency of the operator

Q =

(
Q 0

Ĥi Q

)
, (4.9)

acting on the vector (Ψ,Ψ∗i )
t, again modulo shift symmetry in the second entry.

4.3 Matter action

The matter field is self-conjugate, QΦ = 0 puts the component fields on shell, and it is

straightforward to write down an action. Suppressing indices for the representation of Φ

under the gauge group,

S0,matter =
1

2

∫
[dZ]iΦ

†eiQΦ . (4.10)

Here, we use the quaternionic formalism, with ei being the imaginary quaternionic units,

as explained in section 2.1. Note that the shift transformation δρΦ = λ†ρ leads to a change

in the action

δρS0,matter =
1

2

∫
[dZ]i(Φ

†eiλ
†Qρ+ ρ†λeiQΦ) = 0 , (4.11)

where both terms vanish due to the property (2.11) of the integration measure.

– 9 –
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4.4 Interactions

Interactions are introduced by “covariantisation” of the linearised action, so that the “field

strength” QΨ is replaced by QΨ + Ψ2. At the same time, QΦ → (Q + Ψ·)Φ (the dot

denoting action of the gauge algebra in the representation of Φ). This gives the complete

action for SYM coupled to matter:

S =

∫
[dZi]Tr

(
Ψ∗i (QΨ + Ψ2) +

1

2
ΨĤiΨ

)
+

1

2

∫
[dZ]iΦ

†ei(Q+ Ψ·)Φ . (4.12)

Note that although the component interactions, both between gauge fields and between

scalars in the matter multiplets, include quartic terms, the present formalism only gives 3-

point couplings. The quartic terms will arise when the superfield identities are solved, i.e.,

when non-physical components are eliminated. This is a typical feature of the pure spinor

superfield formalism, and the present behaviour mirrors that of maximally supersymmetric

SYM. Even more drastic reduction of the order of the interactions are seen in the actions for

BLG and ABJM models [2–4], in the Born-Infeld deformation of D = 10 SYM [8, 11, 12],

and in D = 11 supergravity [5, 6].

The equations of motion following from the action (4.12) are

(S,Ψ) = QΨ + Ψ2 = 0 ,

(S,Ψ∗i ) = QΨ∗i + [Ψ,Ψ∗i ] + ĤiΨ−
1

2
Φ† ◦ eiΦ = 0 ,

(S,Φ) = (Q+ Ψ·)Φ = 0 ,

(4.13)

where “◦” is shorthand for formation of the adjoint of the gauge algebra, and [·, ·] denotes

adjoint action. Note that gauge field interactions are introduced by deformation (covari-

antisation) of the cohomology, while the matter current back-reacts on the SYM fields

through a deformation of the condition on the auxiliary fields (the current multiplet).

When checking that the master equation (S, S) = 0 is satisfied, one finds that it relies

on {Q, Ĥi} = 0, but also on the distributivity of Ĥi, Ĥi(Ψ
2) = ĤiΨΨ−ΨĤiΨ. This holds

thanks to the linearity of Ĥi in derivatives.

Concerning other modifications, it should be straightforward to apply the method of

ref. [8] in order to write possible higher-derivative interaction terms. Then there is no need

to deform the gauge transformations, which should mean that the first equation in (4.13)

can be left unchanged, i.e., additional terms do not contain the antifield. All new interaction

then comes through modification of the on-shell condition ĤiΨ ∼ trivial + Ji.

5 Conclusions

We have presented a classical Batalin-Vilkovisky action for chiral D = 6 SYM theory.

The gauge multiplet is not maximally supersymmetric, and consequently its equations of

motion are not implied by the cohomology of the pure spinor superspace BRST operator.

The hypermultiplet, on the other hand, is maximally supersymmetric, and supersymmetric

action requires this kind of action. The construction may stand model for superspace

formulations of other half-maximal models, like e.g. D = 10, N = 1 supergravity.

– 10 –
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Figure 2. Irreducible representations in antisymmetric products of spinors.

The quantum theory has not been addressed. It seems likely that models of the present

type could serve as an arena for the investigation of a complete and systematic gauge

fixing procedure for theories formulated on pure spinor superspace. At the present level of

understanding, the constraint “bΨ = 0” reproduces Lorentz gauge and other appropriate

conditions on antifields, but how it is to be incorporated in a systematic way in the BV

formalism, using a gauge fixing fermion, remains to be investigated. Simplifications may

occur when fields and antifields are separated. This will be the subject of future work.

A Some spinor relations

When constructing the operators of negative ghost number, completely antisymmetric

products of spinors are needed. All terms in b and Ĥi contain λ̄[α1
dλ̄α2 . . . dλ̄αp]. The

complete list of antisymmetrised spinors up to fourth order is given in figure 2.

The general antisymmetric bilinear Fierz identity, conveniently expressed with the help

of a fermionic spinor sα, is

sαsβ =
1

8
(γaσi)αβ(sγaσis) +

1

96
(γabc)αβ(sγabcs) . (A.1)

expressing ∧2(010)(1) = (100)(2) ⊕ (020)(0). At third order, ∧3(010)(1) = (110)(1) ⊕
(001)(3), represented by

(s3)aα = (σis)α(sγaσis) ,

(s3)iα = (γas)
α(sγaσis) .

(A.2)

One also has the identity

(γbcs)α(sγabcs) = −4(σis)α(sγaσis) . (A.3)

– 11 –
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At fourth order, ∧4(010)(1) = (200)(0) ⊕ (011)(2) ⊕ (000)(4). They can be constructed

from the cubic or quadratic expressions as

(s4)ab = (sγa(s3)b) = (sγaσis)(sγ
bσis) ,

(s4)abi = (sγaσi(s3)b) = −εijk(sγaσjs)(sγbσks) ,
(s4)ij = (sσi(s3)j) = (sγaσ

is)(sγaσjs) .

(A.4)

A dependent expression for (011)(2) is

(sγab(s3)i) = (sγabcs)(sγcσ
is) = −2(s4)abi . (A.5)

Since the dimension of the spinor module is 8, higher antisymmetric products follow. The

construction of the measure relies on

Ωi = (λλ̄)−1(λ̄(dλ5)i) (A.6)

with (dλ5)αi = (σjdλ)α(dλγaσjdλ)(dλγaσidλ) in (001)(3).
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