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Spatial analysis and modeling
of nerve fiber patterns

Claes Andersson

Department of Mathematical Sciences
Chalmers University of Technology and University of Gothenburg

Abstract

Diabetic neuropathy is a condition associated with diabetes affecting the epi-
dermal nerve fibers (ENFs). This thesis presents analysis methods and models
for ENF data, with two main puroposes: to find early signs of diabetic neuropa-
thy and to characterize how this condition changes the nerve fiber structure.
Early detection is of interest to be able to take measures to slow down the
progression of the condition, and a more detailed description of the changes
in the nerve fiber structure could improve the understanding of its underlying
mechanisms.

The ENF samples are mainly analyzed as point patterns, where the points
are the locations where nerve fibers enter the epidermis or terminate. The anal-
ysis is partly based on existing summary statistics for point patterns, but we
also propose a new summary statistic to quantify the proportion of the skin
covered by the nerve fibers. Two cluster processes are introduced as models
for the patterns consisting only of the locations where the nerve fibers enter
the epidermis. For one of the models, a Bayesian hierarchical method for pa-
rameter estimation is proposed. A model for the end points is also presented,
and non-spatial models for individual nerve fibers, which are used to perform
unsupervised classification of the subjects.

From the results we find that while all patterns are aggregated, the level of
aggregation tends to increase with increased severity of the neuropathy. The
results from the modeling indicate that the increased aggregation is caused by a
decrease in the number of clusters, while the structure within clusters appears
to be similar in all disease groups. The results from the non-spatial analysis
indicate that the nerve fibers from healthy subjects tend to extend further than
those from subjects with diabetic neuropathy.

The use of methods and models developed in this thesis is not limited to
ENF data, but can be applied to point pattern data in general. In particular,
the models for the base point patterns and the methods for estimating the
parameters of these models are contributions to the point process literature.

Keywords: Bayesian estimation, cluster processes, diabetic neuropathy, epi-
dermal nerve fibers, hierarchical models, spatial point processes.
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Chapter One

Introduction
Epidermal nerve fibers (ENFs) are thin sensory nerve fibers in the epidermis,
the outermost layer of the skin. The function of the ENFs is to transmit sig-
nals of heat and pain, among other things. The ENFs enter the epidermis as
single nerve fibers cross the junction between the epidermis and the dermis
(the layer below the epidermis), and extend into the epidermis, with or without
branching, before terminating. The existence of ENFs was theorized for over
130 years, before it was conclusively established by William Kennedy and Gwen
Wendelschafer-Crabb, using confocal microscopy (Kennedy and Wendelschafer-
Crabb, 1993). Figure 2.1 shows a side section of a skin blister with the nerve
fibers visible (left panel). In the work presented here, the data are mainly an-
alyzed as point patterns. The points are the locations where the nerves enter
the epidermis, branch or terminate. These are henceforth referred to as base,
branching and end points, respectively.

Once the methods for visualizing and identifying ENFs were established,
research moved towards quantification of such nerve fibers, in particular to as-
sess their potential use in diagnosing peripheral neuropathy, which is damage
or disease affecting the nerves. The symptoms include loss of sensation and
neuropathic pain, which can drastically reduce the life quality of an affected
subject. In this thesis, we analyze data from healthy subjects, and subjects suf-
fering from diabetic neuropathy, i.e. neuropathy caused by diabetes. Although
there is no treatment to cure diabetic neuropathy, measures can be taken to
slow down the progression. Therefore, it is of interest to be able to detect it as
early as possible.

It is well established that neuropathy causes the number of nerves to de-
crease, and the use of ENF data in current clinical practice is largely based on
ENF density, i.e. the observed number of nerves in the epidermis (Lauria et al.,
2010b). A large number of studies have been dedicated to establish a normative
reference range for the ENF density (see e.g. Lauria et al., 2010a). However,
it has also been noted that the nerve fibers in subjects with diabetic neuropa-
thy exhibit more clustered pattern than in healthy subjects (Kennedy et al.,
1999). This observation has been quantified in several studies, using methods
from spatial statistics. Using samples from the thigh of one healthy subject,
one subject diagnosed with mild, one with moderate and one with severe dia-
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betic neuropathy, Waller et al. (2011) found that the patterns from the subjects
with moderate and severe diabetic neuropathy were significantly more clustered
than the patterns from the healthy subject, in terms of second order summary
statistics. Two papers have investigated the effect of three non-spatial covariates
(age, gender and BMI) on the second order structure of the nerve fiber patterns.
(Myllymäki et al., 2012) used a linear mixed model approach to investigate the
effect on the second order summary statistic of the base point patterns from
a group of healthy subjects. The conclusion was that the covariates affected
the spatial structure in samples from the calf, but no significant effects of the
covariates were found for samples from the foot. Furthermore, Myllymäki et al.
(2014) included disease status (healthy or mild/moderate) as a covariate in a
Gaussian process regression to model the second order summary statistic for
samples from the calf. This study found no significant effect of any non-spatial
covariate (not even disease status) on the spatial structure of the base point
patterns, but found that the end point patterns were more clustered in the
group of subjects with mild or moderate diabetic neuropathy. Also, Olsbo et al.
(2013) proposed a point process model for the base and end point patterns of
healthy volunteers, the non orphan cluster (NOC) model.

The work behind this thesis had two main aims: to find methods to detect
diabetic neuropathy at an early stage and to describe the changes caused by
diabetic neuropathy to the structure of the nerve fiber patterns in more detail.
Early detection is of interest to be able to impede the development of the neu-
ropathy and thereby delaying the symptoms, while the diagnostic techniques
used today are often based on looking for such symptoms, e.g. by checking for
loss of sensation. An improved description of the changes in the nerve fiber
pattern, on the other hand, could give a better understanding of the underlying
mechanisms of developing diabetic neuropathy. To our knowledge, not much
is known about how diabetic neuropathy affects the nerve fiber growth, other
than that the ENF density decreases. While these two aims often overlap, the
papers in this thesis are often focused more towards one of them.

This thesis is in part a continuation of the work above, as tools from spatial
analysis are a big part of the work, but to a large extent the work consists of
developing new methods and models. A new tool to quantify the proportion of
the skin covered by the nerve fibers is proposed. In addition, two new cluster
point process models for the base point patterns and one for the end point
patterns are introduced. Moreover, parameter estimation methods for these
models are developed and evaluated. Finally, one paper takes a non-spatial
approach, focusing on the characteristics of individual nerve fibers, which has
not been under much consideration before. Here, models for the segments of
the nerve fibers are developed, which are then used to perform unsupervised
classification of the subjects.

The rest of the thesis is organized as follows. Chapter 2 describes the ENF
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Introduction

data set that is analyzed, at least partly, in all the appended papers. Chapter
3 presents basic definitions for spatial point processes, summary statistics and
point process models. Thereafter, Chapter 4 describes the hierarchical structure
of the data as well as the hierarchical modeling framework used in Paper II. A
brief summary of the papers is found in Chapter 5. Conclusions and future
work are presented in Chapter 6, which is followed by the appended papers.
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Chapter Two

Data
The ENF data set is rich and has several rare features. The structure of the
data is in itself unique, with groups, subjects, body parts, blisters and samples
forming a hierarchy. Moreover, the end points form clustered patterns, where
both the locations of parent points and the connections between parents and
offspring are known, which is rarely seen. To be able to answer relevant neuro-
logical questions, these aspects of the data should ideally be taken into account,
which often calls for developing new methods. Much of the work in this thesis
is of that nature.

The data set consists of skin samples taken from 32 healthy volunteers and
20 diabetic subjects. The samples are obtained using suction induced skin
biopsies, where a portion of the epidermis is removed, mounted on a slide and
stained for imaging. The nerves are then traced using confocal microscopy, and
the locations of the points where the nerves enter the epidermis, branch and
terminate are recorded. The data are in 3D, and the samples are in boxes of size
330μm × 432μm × z, where z varies from 20 to 50 μm. While the boundaries
of the samples boxes are known in the x- and y-coordinates, there are no given
boundaries in the z-coordinate. Although the base points appear at the bottom
of the epidermis, i.e. the lower edge of the sample in the z-coordinate, the
skin layer is not completely flat, which reveals itself through the varying z-
coordinates of the base points. For the upper boundary the end points give a
lower bound, but the end points do not necessarily appear at the upper surface
of the epidermis. These difficulties, along with the fact that the main interest
is the coverage of the area of the skin, led us to mainly restrict our attention
to the 2D-projections in the x- and y-coordinates of the data. Illustrations of
the types of data used in this work can be seen in Figure 2.1. In the top right
panel ENF data are presented as a point pattern in 2D, where base points and
end points are shown, and in the bottom right panel, part of the same sample
with the branching points added can be found.

The data set consists of blister specimens taken from the right foot and
right calf of each subject. Since the effects of the neuropathy tend to appear
the earliest in the most distal parts of the body, we mainly focus on the samples
taken from the foot. From each subject, three to six images were taken, typically
two from each blister. Moreover, covariates such as age, gender and BMI were
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Figure 2.1: Left panel (source: Waller et al. (2011)): A side view of a suction
induced skin blister, with the ENFs visible. The nerve fibers are from bright
green to yellow, while blood vessels are red. Samples are collected as parts of
the blister roof seen in Figure A. Figure B shows a dermal papilla, i.e. a ridge in
the dermis, typically with an aggregation of nerve fibers. In Figure C the ENFs
are zoomed in, with the nerve fibers clearly visible. Top right panel: ENF data
illustrated as a point pattern. Large dots are base points and smaller dots are
end points. Bottom right panel: part of the same sample with the base points
as black dots, branching points as red dots and end points as gray dots.

recorded for each subject, as well as a neuropathy score (with higher score
indicating more severe neuropathy). Moreover, base point densities in skin
biopsies from six body locations were recorded for all diabetic subjects and part
of the healthy volunteers. Based on the neuropathy score and the base point
densities, the diabetic subjects were diagnosed as suffering from mild (little or
no sign of neuropathy), moderate or severe diabetic neuropathy.

In Paper I the 2D projections of the x- and y-coordinates are used, and the
data are treated as point patterns considering only the base points and end
points. In Paper II and Paper III only the 2D projections of the base points are
considered. Paper IV analyzes the 3D data using a non-spatial approach. Here,
the segments connecting the base, branching and end points in each nerve are
used as observations.
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Chapter Three

Methods and models for spatial point processes
As mentioned earlier, one way to analyze the ENF data is to treat the data as a
collection of point patterns, where only the information about the coordinates
where nerve fibers enter the epidermis and where they terminate is used. When
analyzing point patterns, a commonly occurring question is whether the points
can be considered completely spatially random or if the underlying mechanism
generating the patterns gives some structure to them. In Figure 3.1 three point
patterns are visualized. The middle pattern is a realization of the case when the
points are independently and uniformly scattered in the observation window,
commonly referred to as complete spatial randomness (CSR). This means that
the information that there is a point of the process at a certain location does
not effect the probability of finding a point of the process anywhere else (in the
observation window). Such a process is referred to as a homogeneous Poisson
process, which can be defined through two properties. Firstly, there is a constant
λ > 0 such that for any bounded set, B, the number of points in B follows a
Poisson distribution with parameter λ|B|, where |B| is the size of B, i.e. the
area in the 2D setting. Secondly, given that the number of points in B is n,
the n points are a random sample from the uniform distribution on B. The
leftmost pattern, on the other hand, exhibits regularity. This means that the
points of the pattern have a tendency to be further apart, compared to CSR.
In other words, given the location of a point in the pattern, the probability of
finding another point in its vicinity is lower than under CSR. The rightmost
pattern of Figure 3.1 is an example of the opposite, where the points tend to
appear in groups, which is called clustering.

The concepts of CSR, regularity and clustering are often used to characterize
observed point patterns and the underlying process generating the patterns. In
the following a brief introduction to the theory of point processes is given,
leading up to a description of a few of the methods that can be used to analyze
point patterns.

3.1 First definitions

Point processes have been used to study a wide variety of phenomena, including
the locations of galaxies, trees in forest stands, ants’ nests – and nerve fibers.
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Figure 3.1: Realizations of three different point processes. The leftmost pattern
is a realization of a process that exhibits regularity, the pattern in the center is a
realization of a completely spatially random (CSR) process while the rightmost
pattern is from a cluster process.

The plots in Figure 3.1 show realizations of point processes, i.e. the patterns are
to the respective point process what a single number is to a random variable
describing the roll of a die or what ”heads” or ”tails” is to a coin flip. The
realizations of a point process are clearly more complex than those of the random
variables mentioned above, and so is the theory to define and characterize point
processes, as one might expect. Only a fraction of the theory will be brought
up here, and described with more focus on intuition than mathematical rigour.
More extensive and rigorous treatments of the subject can be found in e.g.
Illian et al. (2008); Møller and Waagepetersen (2003); Chiu et al. (2013); Diggle
(2014); Lieshout (2000); Gelfand et al. (2010), and Cressie (1993). The sections
below mainly follow Illian et al. (2008).

Each of the patterns in Figure 3.1 can mathematically be described as an
unordered set of points, x, i.e

x = {x1, . . . , xn}, (3.1)

where xi describes the location of an observed point. Such an observation, x, is
commonly referred to as a configuration. Thus, a point process is a stochastic

8



Methods and models for spatial point processes

mechanism, the realizations of which are random configurations of points in
some space. Point processes can be defined on more general topological spaces,
but here the attention will be restricted R

2. Thus, a point process, X, in this
setting may be defined as a random set of points

X = {X1, X2, . . .} (3.2)

where the number of points can be random or deterministic and where the
locations, Xi, are random points in R

2. Another way to define a point process
is to view it as a random counting measure, that is, for any set B ⊂ R

2 the point
process maps the set to the random number of points of X falling in B. Here,
this is used as a way to characterize the process, and NX(B) is the notation for
the random number of points falling in the set B. A point process is simple if
it places at most one point at any location and locally finite if for any bounded
set B, the random variable NX(B) is finite.

Through the random variables NX(B) the intensity measure of a point pro-
cess can be defined as Λ(B) = E(NX(B)), i.e. Λ(B) is the expected number of
points in B. Under some continuity conditions, which are usually satisfied in
practical applications, Λ admits a density with respect to the Lebesgue measure,
that is

Λ(B) =
∫

B

λ(x)dx, (3.3)

where λ(x) is the intensity function of the point process.
A point process is stationary if its distribution is translation invariant, and

isotropic if its distribution is invariant under rotations around the origin. Note
that for a point process to be stationary, it must be defined on the whole of R2.
In practice, however, the observations of a point process are confined to some
bounded region, which is only a part of the area on which the process operates.
This is the case, for example, when observing a tree stand that is part of a larger
forest or, as in the data used in this work, where the samples are very small
compared to the whole skin. Although the full area of the process is also most
commonly bounded, as is the case in the examples above, the point process is
usually defined on R

2. The underlying assumption is that the distance from the
boundary of the full area of the process to the observation region is large enough
for any boundary effects to be ignored in the observed region. One important
property of a stationary process is that its intensity function is constant, i.e.
λ(x) ≡ λ for all x, which implies that E(NX(B)) = λ|B|, where |B| is the area
of B.

So far point processes have been described as models for the locations of
points, but one could include more information by attaching marks to the points.
Using the tree stand example, the marks of the points could be the diameter of
the trees. For the nerve fiber data marks indicating whether a point is a base
point or an end point are used. The class of marked point process models is

9



rich, as is the literature on the topic. Some of the earlier work can be found in
Ogata and Tanemura (1985) and Takacs and Fiksel (1986), while Diggle (2014)
and Illian et al. (2008) provide more recent examples. Since the use of marked
point processes in this thesis is rather limited, the subject will not be treated
further here.

3.2 Summary statistics

When analyzing point patterns, the aim is typically to reach an understanding
of the process that generated the observed patterns. In this section some of the
functional summary statistics that can be used for this purpose are introduced.
They are all tools to describe the structure of the process, i.e. if the process
generates clustered, regular or CSR patterns, or a combination of these. It will
be assumed that the process considered is stationary and isotropic, although
there are versions of some of the summary statistics for non-stationary and
anisotropic processes as well. It should be noted, however, that unless some
information that can explain differences in the intensity is available, there is no
obvious way to differentiate between non-stationarity and clustering. The way
in which the summary statistics are used is typically that they are estimated
from data and compared to estimates from simulations under CSR or under
some other null model. Some aspects of estimating these summary statistics
from data are treated in Section 3.3.

One way to describe the structure of a point process is through the empty
space function, F (r), which gives the probability that the distance from an
arbitrary location, x, to the nearest point of the process is less than or equal
to r. As the process is assumed to be stationary, the random location can be
replaced by the origin. Thus, this can be formulated as

F (r) = 1 − P (NX(b(o, r)) = 0), (3.4)

where b(o, r) is a disc of radius r centered at the origin.
Replacing the location x in F (r) by a point of the process, another summary

statistic is obtained. This is called the nearest neighbour distance distribution
function, and denoted by G(r). The interpretation is that G(r) is the probability
that the distance from a randomly chosen point of the process to its nearest
neighbour is less than or equal to r. Again, from stationarity, one can condition
on having a point of the process at the origin, and express G(r) as

G(r) = 1 − Po(NX(b(o, r) \ {o}) = 0), (3.5)

where Po(·) is the conditional probability given that there is a point of the
process at the origin. Note that the probability of the process having a point
at the origin is zero, so the conditional probability cannot be defined in the

10



Methods and models for spatial point processes

classical way, by dividing by the probability of the event that is conditioned
on. To properly define these conditional probabilities, one needs the concept of
Palm distributions. A full introduction of this concept is outside the scope of
this thesis, and the interested reader is referred to e.g. Lieshout (2000).

Under CSR, the points of the process are iid, which implies that F (r) = G(r).
For a clustered process, the distances between points of the process tend to be
smaller than distances from an arbitrary location to a point of the process,
which implies that G(r) > F (r), while under regularity F (r) > G(r). These
relations indicate that it might be interesting to combine G(r) and F (r) in one
summary statistic. The J-function (Lieshout and Baddeley, 1996) is such a
combination, defined by

J(r) =
1 − G(r)
1 − F (r)

. (3.6)

Under CSR, J(r) = 1, while J(r) < 1 indicates clustering and J(r) > 1 indicates
regularity.

Another important summary statistic is Ripley’s K-function, denoted by
K(r). The intuitive definition is that if X is a stationary and isotropic point
process, with intensity λ, then λK(r) gives the expected number of further
points within distance r from a typical point of the process. A strength of this
summary statistic is that it contains information about the structure of the
point pattern over a wide range of distances, while the previously mentioned
G(r) and F (r) are more ”short sighted”. The mathematical definition of K(r)
is given by

λK(r) = Eo[NX(b(o, r) \ {o})], (3.7)

where the expectation is with respect to the Palm distribution mentioned above.
It is also worth noting that the K-function is scaled by the intensity of the
process. For example, if X is a CSR process, then K(r) = πr2, which does not
depend on λ. A related summary statistic is the pair correlation function, g(r),
which is given by

g(r) =
K ′(r)
2πr

. (3.8)

It can be noted that the relation to the K-function is very similar to that of a
probability density function to the corresponding cumulative density function.

3.3 Edge corrections

The summary statistics mentioned above are defined in terms of a point process
and when working with point pattern data one aim is typically to characterize
the process that generated the data in terms of one or more of the summary
statistics. Thus, estimators of the summary statistics are needed, but the naive
estimators one would first think of are typically biased, due to edge effects.
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Here, estimation of K(r) will serve to illustrate some of the techniques available
to compensate for edge effects.

As mentioned, λK(r) is the expected number of further points within dis-
tance r from a typical point of the process, and the common procedure to
estimate an expectation from data is to replace it with the corresponding mean.
An estimate of K(r) can then be obtained as K̂(r) = λ̂−1n̄(r), where n̄(r) is
the estimate of the expectation λK(r) and λ̂ is an estimate of the intensity of
the process. Typically, λ̂ = (n−1)/|W | is used, where n is the number of points
in W and |W | is the area of W , rather than the obvious choice λ̂ = n/|W |, for
technical reasons. The mean, n̄(r), in this setting can be written as

n̄(r) =
1
n

n∑
i=1

∑
j �=i

1{||xi − xj || ≤ r}, (3.9)

i.e. for each observed point the number of r-close neighbours is counted and the
total count is divided by n. Unfortunately, this is a biased estimator of λK(r),
and the reason for this is that the observed pattern is restricted to the window,
W . It might be that a point, xi, has neighbours that are within distance r but
outside the observation window, and therefore not included in the sum (3.9).
This introduces bias to n̄(r) in (3.9) as an estimator λK(r). If no information
about the pattern outside W is available, as with the data used in this thesis,
a common way to obtain an unbiased estimator is to introduce weights for the
terms in the double sum, i.e. letting

n̄(r) =
1
n

n∑
i=1

∑
j �=i

w(xi, xj)1{||xi − xj || ≤ r}. (3.10)

Depending on the nature of the underlying process, different choices of w can
be used. If the underlying process is (assumed to be) stationary, the translation
edge correction can be employed, where

w(xi, xj) =
1

|Wxi ∩ Wxj | , (3.11)

where Wxi
is the observation window translated by xi. In other words, the

weight is inversely proportional to the area of the intersection of the observation
window translated by xi and xj . If the process is also isotropic the isotropic edge
correction can be used, where 1/w(xi, xj) is the proportion of the circumference
of the circle centered at xi and having radius ||xi − xj || contained in W . This
can be expressed as

w(xi, xj) =
2π||xi − xj ||

l(∂b(xi, ||xi − xj ||) ∩ W )
. (3.12)
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where l is the length of a curve and ∂ denotes the boundary of a set.
A third example of an edge correction method is the border correction. With

this method, for a given r, only points that are further away from the boundary
than r are considered as reference points, while all points are considered when
counting the number of neighbours for a reference point. Specifically, let nr

denote the number of points in X ∩ W that are at least at distance r from the
boundary of W , and denote these points by {x′

i}nr
i=1. Furthermore, let ni(r)

denote the number of r-close neighbours of x′
i among all the points in W . The

mean can then be expressed as

n̄(r) =
1
nr

nr∑
i=1

ni(r), (3.13)

and n̄(r) can be used to estimate K(r), as above, by using K̂(r) = λ̂−1n̄(r).

3.4 Models

In the literature on point process models, there are several different classes of
models. One very broad distinction can be made between models where the
structure is a result from direct interaction between the observed points, and
models where the structure arises from a latent random object. Examples of the
former are found in the class of Gibbs processes. These were first developed in
physics as models for particles, and the interaction between the points describes
the forces the particles exert on each other. Gibbs processes are particularly
useful for regular patterns, in which case an energy function depending on the
pairwise distances between points is used. However, there are examples of
Gibbs processes with more complicated energy functions as well as for clustered
patterns.

Examples of models where the structure arises from a latent random ob-
ject are Cox processes, where the observed process is a Poisson process with
a random, spatially varying, intensity. Another example are cluster processes,
where the observed points are clusters formed around an unobserved pattern
of cluster centers, or parent points. Both of these examples are models for ag-
gregated patterns. There is also an overlap between the two types, since under
some assumptions a cluster process is also a Cox process. Both the base and
end point patterns in the ENF data are aggregated, and we have mainly used
cluster processes as models for them. Therefore, remainder of this section will
treat the class of cluster processes and its relation to Cox processes.
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Cluster processes

We shall refer to a cluster process, X, as a process which is a superposition of
processes, as X = ∪c∈CXc, where C is a point process on R

2, referred to as the
parent process, and Xc, c ∈ C are conditionally independent given C. Thus,
we can construct a particular cluster process by specifying the following three
components:

1. A point process model for C.

2. The distribution for the number of offspring, Nc, for each c ∈ C.

3. The distribution of the locations of the offspring relative to their parent.

A widely used subclass of cluster processes is the class of Neyman-Scott pro-
cesses, which owes its name to the authors of two papers where cluster processes
were proposed as models for the locations of galaxies (Neyman and Scott, 1952,
1958). This class is most often taken to be the subclass of cluster processes
for which C is a homogeneous Poisson process (although the definitions in the
original papers also allows for an inhomogeneous Poisson process for C) and the
Nc’s and offspring locations relative to their parents are iid. This definition is
also adopted here. First and second order properties of a Neyman-Scott process
can be expressed analytically. Letting κ be the intensity of C, α = E[Nc] and
pk = P (Nc = k), the intensity, λ, is given by

λ = κα

and the K-function is given by

K(r) = πr2 +
1

κα2

∞∑
k=2

pkk(k − 1)H(r), r ≥ 0,

where H(r) is the distribution function of the distance between two points of
the same cluster. The forms of G(r) and F (r) can also be derived, but explicit
expressions for these are often difficult to obtain (see e.g. Chiu et al., 2013),
and a formula for the J-function of Neyman-Scott processes has been derived
(Lieshout and Baddeley, 1996).

It can be shown that a Neyman-Scott process with Poisson distributed off-
spring counts, Nc, is also a Cox process. This means that conditional on C, X
is an inhomogeneous Poisson process, more specifically with intensity function

λ(x|C) =
∑
c∈C

αf(x − c), (3.14)

where f is a the bivariate pdf for the offspring locations relative to their parents.
Generalizing this, by letting the mean parameter of the Poisson distribution for

14



Methods and models for spatial point processes

the offspring count of each parent be a random variable, yields the class of shot-
noise Cox processes (see e.g. Møller and Waagepetersen, 2003, Chapter 5.4).
Generalizing further, by relaxing the Poisson restriction on the parent process
and allowing for the offspring location distribution to vary randomly between
clusters one obtains the class of generalized shot-noise Cox processes (Møller
and Torrisi, 2005).

Neyman-Scott processes and SNCPs have been used as a model for a wide
range of data, such as the locations of trees in forests (Tanaka et al., 2008),
galaxies (Neyman and Scott, 1958) and whales Waagepetersen and Schweder
(2006). However, the offspring counts have with very few exceptions been as-
sumed to follow a Poisson distribution, or a mixture Poisson distribution as
for the SNCPs. Although this is quite flexible, it is limited to distributions
for which the variance is greater than or equal to the mean. In Paper III we
introduce a new cluster process for which the variance of the offspring count
distribution can be smaller than, equal to and greater than the mean, with the
Poisson distribution as a special case. This extra flexibility comes at the price of
more challenging parameter estimation, but allows us to investigate the cluster
size distribution in more detail. When the model is fitted to base point patterns
from the ENF data, the results indicate that the variance in the cluster sizes is
clearly lower than the expected value.
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Chapter Four

Hierarchical models
The data we study come with a natural hierarchy to it since we have observations
on different levels of the data, with levels ranging from groups of subjects to
nerve fiber segments. Thus we can summarize the data at these different levels.
This structure of the data, and how it is used in the modeling, is explained in
the sections below.

4.1 Hierarchy in the data

The top level of the hierarchy is the groups of subjects, at which we can mainly
use averages as observations. The next level is the subject level, where from
each subject we have data from two body parts, foot and calf, and from each
body part several blisters are collected. At the subject level we have, for ex-
ample, covariates, such as age and BMI as observations. The blister level is
not considered in the modeling for reasons explained below. From each blister
we have several samples, which for the spatial analysis form the lowest level in
the hierarchy with the point patterns as the observations. When we analyze
individual nerve fibers with a non-spatial approach, as in Paper IV, the number
of nerve fibers in each sample is observed and the next level is the individual
nerve fibers. For each nerve fiber, we use the sum of the segment lengths and
maximum order of segments as observations, with the order of a segment being
the number of times the fiber has branched before this segment. The lowest
level in this analysis is the segment level, where we consider the lengths and
orders as observations.

When modeling the data, it is possible to disregard some of the levels in
the structure. For example, in our analyses so far, we have found very little
indication that samples from the same blister of one subject are more similar
than samples from different blisters of the same subject. Therefore, the blister
level is not considered, but all sample-level observations from one subject are
assumed to have the same distribution. This observation is important in itself,
since it suggests that the nerve fiber pattern of a subject is quite constant on this
spatial scale, leading us to consider all samples from one subject as replicated
observations of the same process.

When analyzing the individual nerve fibers, we also impose a type of hier-
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archy within a level specifying the models by giving conditional distributions
where some of the responses depend on others. For example, the length of a
nerve fiber segment is modelled to depend on, among other things, the order
of that segment. This is expressed as a conditional distribution of the length,
given the explanatory variables for that response, one of which is the order.

4.2 Bayesian hierarchical models

One aim with the modeling of the data is to obtain a more detailed character-
ization of the differences in the nerve fiber structure between disease groups.
One way to approach this would be to fit a model to all the samples from each
group, and compare the estimated parameters. However, the nerve regeneration
process is not expected to be identical for all subjects within a group, which
in terms of the model means that the parameter values vary between subjects.
To get a more accurate description of the data, both at the subject and group
levels, this variation should be taken into account.

One way to achieve this is to formulate the model in a Bayesian hierarchical
framework. We consider here the model for one group of subjects, and focus
specifically on the case where we assume a cluster process for the point patterns.
We let Xij denote sample j from subject i, Xi all the samples from subject i
and X all the samples from the group. In this setting, Xij is assumed to be a
realization from the process with parameters θi = (θi1, θi2, . . . , θip). Moreover,
for each observed pattern there is an unobserved parent pattern, Cij , which is a
realization from the parent point process. The parameters of the parent point
process are assumed to be included in θi. The θi’s are in turn assumed to come
from a distribution with some parameters ψ, which are specific for the group.
For ψ, we specify a prior distribution with parameters that are common for all
groups, formulated as ψ ∼ p(ψ). This can be succinctly formulated as

Xij |θi, Cij ∼ pX(Xij |θi, Cij)
Cij |θi ∼ pC(Cij |θi)

θi|ψ ∼ pθ(θi|ψ)
ψ ∼ pψ(ψ)

The unknowns of the model are the group level parameters, ψ, the subject
level parameters θ = (θ1, θ2, . . . , θS) and the latent parent patterns C, using
the same index notation for the parent patterns as for the observed patterns,
and were S is the number of subjects in the group at hand. In the Bayesian
setting, estimates of these are based on the posterior distribution conditional
on data. Letting X denote all the data from one group, the joint posterior can
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be expressed as

p(ψ, θ, C|X) ∝ p(ψ)
∏

i

⎡
⎣p(θi|ψ)

∏
j

p(Cij |θi)p(Xij |θi, Cij)

⎤
⎦ , (4.1)

where the normalizing constant is p(X). To compare the groups in terms of the
model parameters, we are interested in the marginal posterior for ψ, which is
given by

p(ψ|X) =
∫

p(ψ, θ, C|X)dθdC, (4.2)

and for individual subjects we are interested in the marginal posteriors for θi’s,
given by

p(θi|X) =
∫

p(θi, ψ, Ci|Xi)dψdCi (4.3)

The integrals in (4.2) and (4.3) are typically intractable, since the integral
with respect to C is over the space of locally finite configurations. Thus, other
techniques must be employed to estimate the posterior distributions. We have
used MCMC sampling to obtain samples from the posterior distributions of ψ, θ
and C.

4.3 Mixture models

The diabetic subjects in our data are diagnosed as suffering from mild, moderate
or severe diabetic neuropathy based on nerve counts at six body locations and a
neuropathy score, and in the Bayesian hierarchical framework we use this group-
ing to compare the spatial structure in different groups. However, using some
other observations might lead to a different grouping of the subjects, revealing
other aspects of the neuropathy. Part of the work in this thesis is dedicated to
finding a grouping of the subjects reflecting the severity of the disorder, based
on the observed nerve fiber structures, and the nerve fiber density. For this,
mixture models are used, in the framework of the hierarchical models described
above. A mixture model is based on the assumption that the observations in the
data come from different classes, for which the distributions of the observations
may differ. A general mixture model can be described as follows: let y denote
the response variable, Z the class membership and n the number of classes in
the model. The density of y can then be expressed as

p(y) =
n∑

z=1
P (Z = z)p(y|Z = z), (4.4)

where p(y|Z = z) is the density of y for a sample from class z and P (Z = z) is
the probability that a sample is from class z.
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One way to use this class of models is to do unsupervised classification,
meaning that the class memberships are modelled as unobserved random vari-
ables, with Zi being the class membership of observation i. Fitting the model
provides estimates of the parameters, θ̂, but also estimates of the probabilities
of the class memberships given the parameter estimates, ŵiz = P (Zi = z|yi, θ̂).
The latter estimates can be used to group the data into n classes, by classify-
ing the observation yi into z∗ = arg maxz(P (Zi = z|yi, θ̂)). Perhaps the most
popular method for fitting this type of models is the expectation maximization
(EM) algorithm (Dempster et al., 1977). First, initial values of the parameters
and the probabilities of class memberships, wiz, are given. The algorithm then
proceeds iteratively by updating the parameter values given the wiz’s, and then
updates the wiz’s given the current parameter values.

As a simple example of this, consider the simulated data from a multivariate
normal mixture distribution with two components, given in Figure 4.1, having
means and covariance matrices

μ1 =
[−1
−1

]
Σ1 =

[
1 0
0 0.75

]

μ2 =
[
2
0

]
Σ2 =

[
0.5 −0.25

−0.25 0.5

]
,

and proportions P (Z = 1) = 0.4 and P (Z = 2) = 0.6. This model is fitted
to the data, and in Figure 4.2 is an illustration of the results showing the true
class and fitted class of each data point. The model captures the two clusters
well, and only a few data points are misclassified. However, this is an ideal
case when the correct model with the correct number of classes is fitted to the
data, while in practical applications, the appropriate distributions and number
of classes to use are typically not known.
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Figure 4.1: Simulated data from a multivariate normal mixture distribution.
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Figure 4.2: Illustration of the classification. The true classes are shown in
different colors, and the fitted classes in different shapes. The black data points
are from the class 1 and the gray data points from class 2, while the dots are
classified as 1 and the triangles are classified as 2. Thus any gray circle or black
triangle is a misclassification.
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Chapter Five

Summary of papers

5.1 Paper I

In this paper a point process approach is used to compare samples from the
right foot of 32 healthy volunteers to similar samples from 8 subjects diagnosed
with mild diabetic neuropathy. The base point and end point patterns are
treated as realizations of point processes and several summary statistics for
point patterns are used to compare the groups. As part of the analysis we
compare the pooled centered L-functions with bootstrap envelopes for the base
point patterns from the two groups. The conclusion is that while the base point
patterns are aggregated in both groups, they are more aggregated in the mild
group than in the healthy group. Specifically, there is a range of distances for
which the mean centered L-function takes larger values for the mild group than
for the healthy group. The interpretation is that a larger proportion of the pairs
of points are within these distances in the samples from the mild group than
in the samples from the healthy group. The distances for which the centered
L-function takes its largest value, which can be interpreted as a cluster radius,
seems to be approximately the same in the two groups.
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Figure 5.1: Illustration of the reactive territories in a sample. The dots are the
base and end points, and the shaded areas are the reactive territories.
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In the analysis we also use the information of which base point each end point
is connected to, for example, to compare the distances between the base points
and end points in the two groups. Moreover, a tool for quantifying the area of
the skin covered by a nerve fiber is introduced, called the reactive territory. The
reactive territory of a nerve fiber is defined as the convex hull of a base point
and all its end points, as illustrated in Figure 5.1, and the coverage in a sample
is the proportion of the observation window covered by reactive territories. In
the comparison between the groups, it is found both that individual reactive
territories are smaller and coverage is lower in the mild group than in the healthy
group.

Finally, a point process model for the end points conditional on a base point
pattern is introduced. The new model is compared to the non orphan cluster
(NOC) model introduced by Olsbo et al. (2013). The modeling reveals that
there are dependencies between the different nerve fibers of a more complex
nature than what either model can capture. For the end points connected to
the same base point, however, the new model seems to fit the data better than
the NOC model.

5.2 Paper II

Here, a hierarchical model for the base point patterns is introduced. The model
for the point patterns is the Thomas process, which is a cluster process. The
interpretation is that the parent points are nerve trunks from deeper skin layers,
and that base points from the same cluster are branches from the same nerve
trunk. The model is constructed in a Bayesian hierarchical framework, meaning
that there are subject specific parameters describing the patterns from each in-
dividual subject, while these parameters are assumed to be realizations of a dis-
tribution which depends on the disease group a subject belongs to. To estimate
the parameters of the model we construct an MCMC algorithm. The algorithm
samples from the joint posterior of the parameters and the unobserved parent
patterns. The parent patterns are updated using a birth-death-move algorithm,
while the subject-level parameters are updated using Metropolis-within-Gibbs
sampling and the group parameters are updated using Gibbs sampling. The
performance of the estimation method is evaluated in a simulation study, the
results of which indicate that group level mean parameters are estimated quite
well, but that the variation within a group is more challenging to estimate
accurately. The model is fitted to the group of healthy subjects, the group di-
agnosed with mild diabetic neuropathy and a group of subjects diagnosed with
moderate or severe diabetic neuropathy. By inspecting subject specific poste-
rior pair-correlation functions we find that the model fits the data quite well,
although there is a lot of variation between samples from the same subject.
We also use integrated mean errors to get an overview of the model fit to all
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subjects. From the posterior densities for the group level parameters, there is
no indication of differences between the groups in the structure within the clus-
ters. However, the posteriors for the parent point intensity indicate that there
are fewer clusters per sample in the moderate/severe group than in the healthy
group. The same posterior for the mild is located halfway between the posterior
for the moderate/severe group and that of the healthy group, possibly indicat-
ing an early change in the structure of the base point patterns compared to the
healthy group. However, there is substantial overlap between the parent point
intensity posterior for the mild group and the same posterior for both other
groups. Since a lower parent point intensity increases the clustering in terms
of the L-function, this result gives a possible explanation for the differences
found when comparing the groupwise L-functions in Paper I. The model fit also
indicates that the number of points in each cluster is low, with an average well
below 1, for all groups. This particular result led us into the work to further
investigate the cluster size distribution.

5.3 Paper III

The results in Paper II motivated us to look for a model with a more flexible
cluster size distribution, and in Paper III we introduce a new Neyman-Scott
process that we call the Thomas process with generalized cluster sizes (TGCS).
For a vast majority of cluster processes studied, including the Thomas process,
the numbers of offspring per parent are Poisson distributed. For the TGCS, we
instead let the cluster sizes follow a Generalized Poisson distribution (GPD).
The Poisson distribution is a special case of the GPD, but the GPD has an
extra parameter allowing the variance to be greater than or less than the ex-
pected value. The fact that the cluster sizes are not Poisson distributed means
that many of the existing methods for parameter estimation for Neyman-Scott
processes are insufficient for the TGCS.

As for many Neyman-Scott processes, the K-function and the pair-correlation
function have closed form expressions for the TGCS. However, both of these
functions are second-order properties, and they do not uniquely identify the
TGCS. This means that two instances of the TGCS with different parameter
values can have the same second-order properties. Thus, the minimum contrast
method based on the K-function or pair correlation function is not enough to
estimate the parameters of the TGCS. Instead, we introduce minimum contrast
methods that use the K-function in a first step, and in a second step minimize
the contrast for another summary statistic subject to constraints based on the
results from the first step. As one option for the summary statistic to use in the
second step, we introduce the so-called K2-function, which is the expectation
of the square of the further number of points within distance r from a point of
the process.
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We also construct a Bayesian MCMC algorithm for estimating the parame-
ters of the TGCS. Since the TGCS is not a Cox process, this needs to take the
parent-daughter connections into account in the sampling. This makes the up-
dates of the parent pattern more intricate than in existing MCMC algorithms for
Neyman-Scott processes. We also include a step where only the connections are
updated. To evaluate the estimation methods we conduct a simulation study.
We find that the MCMC algorithm works well, and in particular we correctly
identify when the variance of the cluster sizes is less than, equal to or greater
than the expected value in most of the cases considered. The results for the
minimum contrast methods show that they are less accurate, especially using
the K2-function.

We fit the TGCS to four base point patterns from the ENF data. For
comparison, we fit the Thomas process to the same patterns. We find that
the cluster sizes seem to have a smaller variance than the expected value. The
model fit indicates that the clusters are of size 0, 1 or 2. For all patterns, the
probability of cluster size 0 is lower for the TGCS than for the Thomas process.

5.4 Paper IV

In this non-spatial analysis, the individual nerve fibers are in focus and are
studied in terms of their tree structure which is composed of the segments
between the points where the nerve starts, branches and ends. Summaries
of the data both for the nerve fibers as a whole and for the individual line
segments are introduced, and some initial exploratory analysis of the data from
32 healthy volunteers and 20 subjects diagnosed with mild, moderate or severe
diabetic neuropathy indicate that there are some differences between the disease
groups. The main question, however, is whether the subjects diagnosed with
diabetic neuropathy can be separated from the healthy subjects based on such
nerve tree data alone. For this, three models for the data are constructed, one
for summarized information about each nerve fiber, one for information about
individual segments and one for both types of information. All three models
also use the number of nerve fibers in each segment. The models are formulated
as mixture models, and fitted using the EM-algorithm. The mixture model
approach allows us to use the models to perform unsupervised classification, and
are evaluated using from 2 to 6 classes. Using the adjusted Rand index, which
is a similarity measure of two partitions of a set, to compare the classification
obtained by the model and the one based on the diagnosis, we conclude that
the combined model with 4 classes is the best of those evaluated. It should
be noted, however, that these 4 classes need not correspond to the 4 disease
groups. The three models are compared to a baseline model that uses only
the nerve counts from each subject, and the results indicate that the additional
information on the tree structures clearly improves the classification.
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Studying the grouping obtained from the fitted combined model with four
classes, one class contains 11 out of 12 subjects diagnosed with moderate or
severe diabetic neuropathy, 3 out of 8 of the subjects with mild diabetic neu-
ropathy and 1 out of 32 of the healthy subjects. The remaining subjects are
distributed over the other three classes. Looking into the properties of these
classes, it seems that the class with the majority of the diabetic subjects is char-
acterized by a low point count, short segments and few branching point before
the nerve fibers terminate. In the remaining three classes, at least one of these
features tends to be larger. One possible interpretation is that in subjects that
are free of neuropathy, or where it has not developed very far, a decrease in
one of these factors can be compensated by an increase in another. With this
interpretation, this compensation does not occur in subjects with more severe
diabetic neuropathy.
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Chapter Six

Conclusions and future work
The work behind this thesis had two main aims: to explore methods for ear-
lier detection of diabetic neuropathy and to improve the understanding of the
changes in the nerve fiber structures caused by diabetic neuropathy. To achieve
this, statistical analysis and modeling of ENF data were performed, mainly us-
ing and developing methods and models from spatial statistics. The use of this
type of data in current clinical practice is focused on the base point density,
but the results in this thesis indicate that also other types of information in
these data could be useful for early detection. For example, in Paper I it was
concluded that the distances between base and end points tend to be shorter
in the subjects with mild diabetic neuropathy than in healthy subjects, and
the results in Paper IV indicate that there are changes in the structure of in-
dividual nerve fibers in subjects suffering from diabetic neuropathy compared
to healthy subjects. The work towards a diagnostic method using the type of
data considered here is at an early stage, but the mixture model approach taken
in Paper IV is a promising framework to build on. The models we considered
could be expanded to include other types of information as well, such as scores
from nerve conductivity tests.

As for the changes in the spatial structure in the nerve fiber patterns, the
main focus has been on the base point patterns. The results in Paper II indicated
that the base points appear in clustered patterns in all groups, but that the
number of clusters decrease with the severity of the neuropathy. This result
indicates that the base point density and the level of aggregation in the base
point patterns are connected, and that these two changes could be explained by
a change in a single aspect of the nerve fiber regeneration.

The methods developed here for the spatial analysis of the ENF data are
not limited to this data alone, but can be applied to point pattern data in
general. There are two main contributions to the spatial statistical methods.
The first one is the modeling of data with a hierarchical structure, as in Paper
II. While some methods have been developed for replicated data, i.e. where
several point patterns are produced by an identical mechanism, there are few
studies treating data with the nested structure that is analyzed in this thesis.
Although the MCMC algorithm developed is specific for the Thomas process,
it can easily be adapted to other cluster processes.
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The second main contribution is the construction of a cluster process with a
flexible cluster size distribution, and methods for estimating the parameters of
such a model, as in Paper III. Again, although the estimation methods developed
intended for estimating the parameters of the model introduced in the paper,
they can be adapted to other cluster processes. To the best of our knowledge, a
cluster process with this degree of flexibility in the cluster size distribution has
not been studied before, and could be useful also in other applications.

Concerning possible future work, perhaps the most interesting path from a
statistical point of view is the development of a joint 3D-model for the base
and end points. In preliminary results, not included in this thesis, patterns
consisting of the centroids of the end point clusters are less aggregated than the
base point patterns. This indicates that end points tend to avoid end points
connected to other base points. A very natural model for the end point patterns
would be a cluster process where the parents are the base points, but such a
model should also be able to capture interaction between the end point clusters.
Currently, it seems that the cluster processes studied in the literature all build
on the assumption of independent clusters. However, there are examples of
spatio-temporal processes for earthquake occurrences that allow for this type of
interaction. To adapt these to the ENF data, a way to incorporate the temporal
aspect is needed.
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