3D Multi-Scale Convolutional Networks for Glioma Grading Using MR Images
Paper i proceeding, 2018

This paper addresses issues of grading brain tumor, glioma, from Magnetic Resonance Images (MRIs). Although feature pyramid is shown to be useful to extract multi-scale features for object recognition, it is rarely explored in MRI images for glioma classification/grading. For glioma grading, existing deep learning methods often use convolutional neural networks (CNNs) to extract single-scale features without considering that the scales of brain tumor features vary depending on structure/shape, size, tissue smoothness, and locations. In this paper, we propose to incorporate the multi-scale feature learning into a deep convolutional network architecture, which extracts multi-scale semantic as well as fine features for glioma tumor grading. The main contributions of the paper are: (a) propose a novel 3D multi-scale convolutional network architecture for the dedicated task of glioma grading; (b) propose a novel feature fusion scheme that further refines multi-scale features generated from multi-scale convolutional layers; (c) propose a saliency-aware strategy to enhance tumor regions of MRIs. Experiments were conducted on an open dataset for classifying high/low grade gliomas. Performance on the test set using the proposed scheme has shown good results (with accuracy of 89.47%).

high/low grade glioma

MRIs

3D CNN

Deep learning

brain tumor classification

Multi-scale features

Författare

Chenjie Ge

Chalmers, Elektroteknik, Signalbehandling och medicinsk teknik, Signalbehandling

Qixun Qu

Chalmers, Elektroteknik, Signalbehandling och medicinsk teknik, Signalbehandling

Irene Yu-Hua Gu

Chalmers, Elektroteknik, Signalbehandling och medicinsk teknik, Signalbehandling

Asgeir Jakola

Sahlgrenska universitetssjukhuset

2018 IEEE International Conference on Image Processing: Proceedings

2381-8549 (eISSN)

141-145

2018 IEEE International Conference on Image Processing (ICIP'18)
Athens, Greece,

Ämneskategorier

Datorteknik

Medicinteknik

Neurologi

Datavetenskap (datalogi)

Datorseende och robotik (autonoma system)

Cancer och onkologi

Medicinsk bildbehandling

Drivkrafter

Hållbar utveckling

Styrkeområden

Livsvetenskaper och teknik

DOI

10.1109/ICIP.2018.8451682

Mer information

Senast uppdaterat

2018-09-12