KLIMATOPTIMERAT BYGGANDE AV BETONGBROAR
Råd och vägledning

SBUF-PROJEKT 13207
MAJ 2017
FÖRORD

Projektet Klimatoptimerat byggande av betongbroar har beviljats medel av Svenska Byggbranschens Utvecklingsfond (SBUF-projekt 13207) och är ett samarbetsprojekt mellan ett flertal aktörer i branschen:

- Trafikverket
- Skanska
- WSP
- NCC
- Celsa Nordic
- Cementa
- Thomas concrete group
- Strängbetong
- RISE CBI Betonginstitutet

Denna rapport med bilaga redovisar resultat och genomförda aktiviteter inom projektet under projektperioden februari 2016 till april 2017. Många personer och organisationer har medverkat i projektet och bidragit till att vi nått våra projektmål om en praktiskt användbar sammanställning av råd och vägledning för åtgärder som reducerar klimatgasutsläpp från byggande av vanligt förekommande brokonstruktioner för infrastruktur.

Huvudförfattare till denna slutrapport är Stefan Uppenberg, Daniel Ekström och Ulf Liljenroth, WSP tillsammans med Nadia Al-Ayish, RISE.

Vi vill tacka projektets styre- och arbetsgrupp som bidragit med viktig egen kunskap, erfarenhet och underlag för beräkningar.

STYR- OCH ARBETSGRUPP

- Peter Simonsson och Åsa Lindgren, Trafikverket
- Jan Olofsson, Skanska
- Stefan Uppenberg, Daniel Ekström och Ulf Liljenroth, WSP
- Jonas Magnusson, NCC
- Johan Söderqvist, Celsa Nordic
- Bodil Wilhelmsson, Cementa
- Ingemar Löfgren och Anders Lindvall, Thomas concrete group
- Jan Werdelin, Strängbetong
- Nadia Al-Ayish, RISE
INNEHÅLL

1 BAKGRUND .. 1
 1.1 Trafikverkets klimatkrav .. 2
 1.2 CEEQUAL och PAS 2080 .. 2

2 OM PROJEKTET .. 4
 2.1 Mål för projektet .. 4
 2.2 Metod .. 4
 2.3 Intressenter och spridning .. 5

3 TYPFALL OCH ANDRA FÖRUTSÄTTNINGAR 7
 3.1 Typfall för fallstudier ... 7
 3.2 Avgränsningar ... 10

4 ÅTGÄRDER FÖR MINSKADE KLIMATGASUTSLÄPP 12
 4.1 Översikt material och energi... 12
 4.2 Åtgärder hanterade i projektet .. 16

5 LCA-BERÄKNINGAR ... 28
 5.1 Utgångsläge .. 29
 5.2 Livscykelanalys .. 29

6 RESULTAT ... 31
 6.1 LCA-beräkningar ... 31
 6.2 Övriga beräkningar ... 33

7 RÅD OCH VÄGLEDNING ... 36
 7.1 Kombinationer av åtgärder ... 40
 7.2 Vad är en EPD?... 41
 7.3 Åtgärderna i relation till Trafikverkets klimatkrav 41
 7.4 Åtgärderna i relation till CEEQUAL och PAS 2080 41
 7.5 Åtgärderna i relation till “LCA-trappan” ... 42

8 DISKUSSION OCH FORTSÄTTNING .. 43

BILAGA A: KLIMATOPTIMERAT BYGGANDE AV BETONGBROAR - LCA .. 46
SAMMANFATTNING

Klimatpåverkan från infrastrukturen (byggande, drift och underhåll) är betydande. I Sverige står den för ca 5–10 procent av väg- och järnvägstransporternas totala klimatpåverkan ur ett livscykelperspektiv. En stor del av utsläppen från byggande av vägar och järnvägar kommer från tillverkningen av stål och betong som används i broar och andra byggnadsvärk.

Projektets syfte har varit att undersöka hur klimatsmart man kan bygga en vanligt förkommande betongbrokonstruktion som en plattrambro. Tanken är att på ett mycket konkret och handfast sätt analysera och beskriva möjligheter för reducering av klimatgasutsläpp som står till buds med dagens bästa tillgängliga teknik för utformning och dimensionering samt materialval. Projektet syftar inte till att utvärdera nya sätt att bygga broar, eller att jämföra betong med trä eller andra material, utan att ta fram en användbar vägledning till hur man utnyttjar de möjligheter som står till buds för att bygga klimatsmartare varianter av alla de standardbroar av betong som byggs för infrastruktur i Sverige idag. Ytterligare ett syfte är att förse branschen med praktiskt användbara råd och vägledning för att underlätta för anläggningsbranschen att möta de krav på reducering av klimatgaser som Trafikverket planerar att införa för byggande av infrastruktur.

I projektet har möjligheter att minska klimatgasutsläppen från byggande och underhåll av plattrambroar analyserats utifrån ett livscykelperspektiv för följande åtgärder:
• Produktval armering
• Produktval cement
• Tillsatsmaterial i betong
• Val av betongkvalitet och –typ
• Konstruktiv optimering av mängder
• Minimering av spill
• Optimization av transporter
• Estetiska val
• Optimization ur underhållsperspektiv
• Val av produktionsmetod

I rapportens avsnitt ”Råd och vägledning” presenteras resultaten översiktligt med angivande av effekt på klimatgasutsläpp för de olika åtgärderna som studerats, vilka aktörer i värdekedjan som i huvudsak har rådighet över respektive åtgärd och i vilket projektskede beslut om åtgärd kan fattas, samt de viktigaste medskicken projektet vill ge för att i praktiken åstadkomma minskade klimatgasutsläpp i broprojekt.

Resultaten från projektet visar på att det med ett aktivt och medvetet klimatarbete, och en kombination av materialrelaterade och utföranderelaterade åtgärder, ofta finns möjligheter att reducera klimatbelastningen från en vanlig plattrambro med i storleksordningen 50%. Tillsammans med framtida anpass-
ningar av regelverk (främst SS137003 och AMA Anläggning) för att tillåta högre inblandning av tillsatsmaterial i betong kan reduktionspotentialerna bli ännu något större. Om klimataspekten däremot inte beaktas vid utformning och val av produkter visar projektresultaten att det finns risk att klimatbelastningen ökar med samma storleksordning.

Det är värt att poängtera att de effekter av åtgärder som beskrivs här endast fokuserar på utsläpp av klimatgaser, en aspekt som idag ofta inte beaktas i broprojekt. I ett specifikt broprojekt förutsätts att en mängd andra aspekter och krav tas hänsyn till och vägs samman med klimataspekten. Det kan handla om ekonomi, andra miljöaspekter, tekniska och funktionella krav, produktionstekniska frågor, estetik, utbildningsbehov m.m.
KLIMATOPTIMERAT BYGGANDE AV BETONGBROAR

1 BAKGRUND

Klimatpåverkan från infrastrukturen (byggande, drift och underhåll) är betydande. I Sverige står den för ca 5-10 procent av väg- och järnvägstransporternas totala klimatpåverkan ur ett livscykelperspektiv.1 En stor del av utsläppen från byggande av vägar och järnvägar kommer från tillverkningen av stål och betong som används i broar och andra byggnadsverk.

Trafikverket har i sina planeringsstrategier konstaterat att klimatgasutsläppen från byggande, drift och underhåll av infrastrukturen måste reduceras om Sverige ska kunna vara ett föregångsland och bidra till att nationella och globala klimattäckningsnivånas. För att kunna nå de nationella miljöqualitetsmålen har Trafikverket sedan 2016 infört långsiktiga krav på minskning av utsläpp av klimatgaser från byggande, drift och underhåll av infrastruktur. En konsekvensanalys2 som genomfördes innan Trafikverket införde kraven visar på att det bör vara möjligt att nå utsläppsreduktioner på ca 15% fram till 2020 och ca 30% till 2025, jämfört med utgångsläge 2015. Speciellt för broar och andra byggnadsverk bedöms reduktionspotentialerna vara stora bara genom att tillämpa dagens bästa tillgängliga teknik.

Det finns redan idag olika verktyg utvecklade för att göra livscykelanalyser (LCA) och livscykelpsantsanalyser (LCC) för broar (t.ex. inom ramen för EU-projektet ETSI samt i forskning inom KTH), med syfte att de ska kunna användas för att optimera miljöpåverkan och kostnader. De tillgängliga verktygen är tyvärr dock ofta komplicerade och används sällan i praktiken i dagens infrastrukturprojekt. Detta projekt syftar inte till att utveckla något nytt verktyg för detta ändamål, utan till att sammanställa tillgänglig kunskap på ett användbart sätt.

1 http://www.trafikverket.se/contentassets/bd04374d86074cb0aa46a7540338747/presentation-informationstillfalle-klimatkrav-och-klimatkalkyl-161213.pdf
2 Konsekvensanalys av klimatkrav för byggande och underhåll av infrastruktur, WSP på uppdrag av Trafikverket, 2015
1.1 Trafikverkets klimatkrav

Trafikverket ställer sedan april 2015 krav på att klimatkalkyler ska upprättas för alla investeringsåtgärder ≥ 50 miljoner kronor. I den styrande riktlinjen TDOK 2015:0007³ beskrivs när och för vilka åtgärder klimatkalkyler ska upprättas med hjälp av modellen Klimatkalkyl.

Trafikverkets mål med kraven är att klimatgasutsläppen från byggande och underhåll av transportinfrastruktur, jämfört med ett utgångsåge 2015, ur ett livscykelperspektiv ska minska med 15% till 2020, med 30% till 2025 och att nettoutsläppen år 2050 ska vara noll. Reduktionspotentialen för olika delar av infrastrukturen är dock olika och i TDOK 2015:0480 anges att genomsnittliga reduktionspotentialer för detaljprojektering och byggande av byggnadsverk (bro, betongtunnel eller annat betongbyggnadsverk) bedöms vara:

- 17% för byggnadsverk som färdigställs senast 2020-2024
- 30% för byggnadsverk som färdigställs senast 2025-2029

Ett av syftena med projektet Klimatoptimerat byggande av betongbroar har varit att visa på vilka konkreta möjligheter som finns att uppfylla dessa krav vid projektering och byggande av vanligt förekommande betongbroar. Vid beräkning av effekter på klimatgasutsläpp för olika åtgärder har denna studie därför antagit samma utgångsläge som definierats för betongbroar i Trafikverkets modellverktyg Klimatkalkyl v.4, se avsnitt 5.1.

1.2 CEEQUAL OCH PAS 2080

CEEQUAL⁵ är ett certifieringssystem som bedömer hur hållbara projekt inom anläggningssektorn är genom att betygsätta projektten utifrån ett antal hållbarhetskriterier. Systemet kan användas i alla typer av anläggningsprojekt av beställare, projektörer och entreprenörer för att ge projektet ett strukturerat ar-

³ Klimatkalkyl - infrastrukturhållningens energianvändning och klimatpåverkan i ett livscykelperspektiv, Trafikverket 2015
⁴ Klimatkraft i planläggning, byggskede, underhåll och på tekniskt godkänt järnvägsmateriel, Trafikverket 2016
⁵ http://www.ceequal.com/
betssätt för att hantera hållbarhetsfrågor. En internationell version av systemet har funnits sedan 2011 och manualen finns idag översatt till svenska av SGBCs (Sweden Green Building Council) verksamhetsområde Hållbar infrastruktur och användandet av systemet i svenska projekt växer hela tiden.

Certifieringssystemet använder sig av en 4-gradig betygsskala: Pass, Good, Very Good och Excellent. Följande områden hanteras av CEEQUAL:
- Projektstrategi (Valfri)
- Projektleiding
- Människor och Samhälle
- Markanvändning och Landskapsutformning
- Kulturhistorisk miljö
- Ekologi och Biologisk mångfald
- Vattenmiljö
- Fysiska resurser

Utsläpp av klimatgaser ur ett livscykelperspektiv är en viktig del av CEEQUAL, och ett systematiskt arbetsssätt för att minska utsläppen genom LCA-beräkningar, identifiering av förbättringsåtgärder, implementering av åtgärder och uppföljning premieras och hanteras främst inom området Fysiska resurser.

PAS 2080, Carbon Management in Infrastructure, är en brittisk standard för hur man bör arbeta systematiskt med minskning av klimatgasutsläpp från infrastrukturprojekt ur ett livscykelperspektiv i hela värdekedjan. Standarden är ny sedan våren 2016 och är framtagen gemensamt av branschen i Storbritannien med målet att tillhandahålla ett gemensamt ramverk för alla sektorer och aktörer i infrastrukturbranschens värdekedja. Ramverket ger stöd för att:
- Sätta relevanta mål för reduktioner av klimatgasutsläpp
- Definiera utgångsläge att mäta reduktioner mot
- Definiera måttal och indikatorer för kvantifiering och rapportering
- Välja metoder för kvantifiering av klimatgasutsläpp
- Rapportera vid relevanta projektfaser för att synliggöra arbete och resultat
- Kontinuerligt förbättra det systematiska arbetssättet och resultaten av åtgärder

I dagsläget är inte någon användning av PAS 2080 i svenska projekt känd, men det är troligt att det kan bli aktuellt inom en snar framtid eftersom branschen blir allt mer internationell och brittiska standarder ofta föregå framtagande av internationella eller europeiska standarder för samma områden.

Ett av syftena med projektet Klimatoptimerat byggande av betongbroar har varit att visa på hur implementering av de åtgärder som studerats kopplar till vad som efterfrågas i CEEQUAL och PAS 2080, dels för att underlätta för projekt som använder systemen och dels för att uppmuntra till användning av dessa system eller liknande arbetsssätt för systematisk hållbarhetsstyrning av anläggningsprojekt. Detta redovisas översiktligt i avsnitt 7.

2 OM PROJEKTET

Projektets syfte har varit att undersöka hur klimatsmart man kan bygga en vanligt förkommande betongbrokonstruktion som en plattrambro. Tanken är att på ett mycket konkret och handfast sätt analysera och beskriva möjligheter för reducierung av klimatgasutsläpp som står till buds med dagens bästa tillgängliga teknik för utformning och dimensionering samt materialval. Projektet syftar inte till att utveckla nya sätt att bygga broar, eller att jämföra betong med trä eller andra material, utan att ta fram en användbar vägledning till hur man utnyttjar de möjligheter som står till buds för att bygga klimatsmartare varianter av alla de standardbroar av betong som byggs för infrastruktur i Sverige idag.

Syftet med denna studie är inte att försöka ge exakta siffror för vilka effekter val av specifika leverantörer eller metoder för design/konstruktion ger. Syftet är att visa på vilka reduktionspotentialer som finns för olika åtgärdskategorier och att det är viktigt att göra medvetna val och arbeta systematiskt med reduktion av klimatgasutsläpp.

Ytterligare ett syfte är att förse branschen med praktiskt användbara råd och vägledning för att underlätta för anläggningsbranschen att möta de krav på reducierung av klimatgaser som Trafikverket planerar att införa för byggande av infrastruktur.

Projektet täcker inte in alla varianter av betongbroar utan fokuserar på en vanligt förekommande ”byggsten” i infrastrukturbyggnande. Men resultaten är givetvis aplicerbare även på andra betongkonstruktioner.

2.1 MÅL FÖR PROJEKTET

• Att med samsyn i branschen identifiera ett antal handfasta åtgärder som reducerar klimatgasutsläpp från byggande av vanligt förekommande betongbrokonstruktioner för infrastruktur
• Att med trovärdighet och helhetssyn analysera hur åtgärder kan kombineras för att klimatoptimera betongbrokonstruktioner utifrån dagens bästa tillgängliga teknik
• Att sammanställa och sprida praktiskt användbara råd och vägledning för klimatoptimerat byggande av betongbroar, och hur inblandade aktörer kan klara Trafikverkets kommande krav på reducierung av klimatgasutsläpp.

2.2 METOD
Projektet har genomförts i stegen:
1. Identifiering av betongbrokonstruktion och förutsättningar
2. Identifiering av möjligheter att reduciera klimatgasutsläpp genom utformning och dimensionering
3. Identifiering av möjligheter att reduciera klimatgasutsläpp genom val av material och produkter
4. Identifiering av lämpliga arbetssätt för att realisera reduktionspotentialer
5. Sammanställning av råd och vägledning för klimatoptimerat byggande av betongbroar
6. Spridning av råd och vägledning

Arbetet med att analysera reduktionspotentialer för olika åtgärder har generellt genomförts enligt:
• Identifiering av effektiviseringsmöjligheter genom val av betongkvaliteter, cementklinkerersättning, armeringstyper etc.
• Identifiering av effektiviseringsmöjligheter genom optimering av betong- och armeringsmängder, anpassning till platsspecifika förutsättningar, produktionsmetoder etc.
• Analys av hur tekniska och funktionella krav uppfylls.
• Kartläggning av produkter och klimatprestandadeklarationer via t.ex. EPD:er eller liknande.
• LCA-beräkning av kvantifierbara reduktioner av klimatgasutsläpp.
• Kvalitativ bedömning av eventuella icke kvantifierbara reduktionspotentialer, t.ex. genom att ange om en åtgärd kan antas ha ingen, positiv eller negativ inverkan på utsläpp av klimatgaser om det inte går att definiera och beräkna utsläppsmängder.

LCA-beräkningar har utförts av RISE CBI Betonginstitutet i enlighet med LCA-standard ISO14040 och europeisk standard EN15804 för EPD:er för byggprodukter.

2.3 INTRESSENTER OCH SPRIDNING
Projektet syftar till att medvetandegöra såväl beställare, arkitekter/konstruktörer, entreprenörer och material-/produktleverantörer om de möjligheter som finns att minska klimatgasutsläpp från byggande av betongbroar. Projektet har därför haft representanter för alla dessa aktörer i styrgruppen. Styrgruppen och projektets referensgrupp har gett många värdefulla bidrag till projektet. Referensgruppen har bestått av:
• Peab, Ingela Söderlund
• Swerock, Staffan Carlström & Karin Bergkvist
• Veidekke, Terje Håkansson
• Trafikverket; Ebbe Rosell (AMA), Häkan Johansson & Susanna Toller (klimat), Josefina Lenning (landskapsarkitekt)
• Outokumpu, Sara Randström
• BIM Alliance, Johan Asplund, Sweco
• Svensk Betong, Kajsa Byfors
• Byggmateriadistriberna, repr i projektgruppen
• Byggvarudeklarationen BVD, repr i projektgruppen
• EPD International, Kristian Jelse
• &Rundquist, Peter Sundin

7 Environmental Product Declaration – tredjepartsgranskad deklaration av miljöprestanda baserad på livscykelanalys, i enlighet med ISO14025.
• VTI, Ellen Dolk
• Nordic Galvanizers, Annikki Hirn

Projektets mål och resultat har presenterats, och kommer att presenteras, i följande sammanhang:
• Betongdagen, sept 2016
• Referensgruppsmöte, okt 2016
• SBUF-seminarium hållbarhet, nov 2016
• BIM-Alliance intressentgrupp anläggning, jan 2017
• CIR-dagen, jan 2017
• Uppföljande referensgruppsmöte, mars 2017
• Hi-dagen SGBC, juni 2017
• IABSE-konferens Vancouver, sept 2017
3 TYPFALL OCH ANDRA FÖRUTSÄTTNINGAR

3.1 TYPFALL FÖR FALLSTUDIER

Projektet har haft som avsikt att specificera ett typfall av byggnadsverk för att tydligt kunna beskriva de förbättringspotentialer som finns för minskning av klimatgasutsläpp. Det har varit viktigt att hitta ett typfall som representerar majoriteten av dagens brobyggande för att identifierade åtgärder ska vara relevanta och möjliga att implementera i det dagliga arbetet. Baserat på erfarenheter från branschen fanns redan tidigt brotypen plattram med som ett potentiellt alternativ då denna är en vanligt förekommande brotyp i Sverige. Men hur vanlig är den egentligen och hur tydligt kan typfallet specificeras?

Trafikverket har inom ramen för sitt produktivitetsprogram PIA, identifierat produktkategorier som anses särskilt lämpade för industriellt och seriellt byggande, där broar och byggnadsverk är representerade inom två kategorier; komplexa byggnadsverk och broar med s.k. seriekaraktär. Uppdelningen baseras på byggnadsverkens storlek och komplexitet. Inom kategorin komplexa byggnadsverk ryms byggnadsverk av styckekarakter och något som Trafikverket bygger relativt få av per år och är mer eller mindre unika i sin konstruktion, exempelvis större broar eller betongtunnlar. Seriebroar karaktäriseras framförallt av att det är mindre broar med en låg komplexitet, varvid man kan se en serieeffekt. Var gränsen går för seriebroar och vad som inryms i definitionen är inte entydig men broar med en begränsad snedhet och som uppfyller nedanstående anses ingå:

- Spän nudd <20 m för vägbro
- Spän nudd <10 m för järnvägsbro
- Höjd <4 m för stödkonstruktioner

Av Trafikverkets broar utgör de broar med en konstruktionslängd på 20 m eller mindre nästan 75% av det totala brobeståndet. Den siffran återspeglar också fördelen för nyproducerade broar och är därmed en rimlig begränsning för identifiering av ett typfall och i linje med broar av seriekaraktär.

Sätt till antal byggda broar med spänvidd under 20 m domineras dessa av plattramen som utgör ca 46% av det totala beståndet, följt av rörbron på 28%, se Tabell 1.

Trenden är att det byggs fler och fler rörbroar på de kortare spänvidderna. Rörbron i stället är den brotyp som ökar mest och de senaste 10 åren har den i stort helt utkonkurrierat plattramen på spänvidder <6m (41% respektive 3% av samtliga byggda broar 2005–2015). Av återstående betongbroar är det endast

http://www.trafikverket.se/om-oss/var-verksamhet/ha-jobbar-vi-med/produktivitet_och_innovation/industriellt-och-seriellt-byggande/
Tabell 1. Fördelning av Trafikverkets broar med spännvidd 20 m eller kortare 9

<table>
<thead>
<tr>
<th>Antal broar <=20 m</th>
<th>Antal</th>
<th>Procent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plattrambro</td>
<td>5 681</td>
<td>46%</td>
</tr>
<tr>
<td>Rörbro</td>
<td>3 455</td>
<td>28%</td>
</tr>
<tr>
<td>Plattbro</td>
<td>1 752</td>
<td>14%</td>
</tr>
<tr>
<td>Valvbro</td>
<td>932</td>
<td>7%</td>
</tr>
<tr>
<td>Balkbro</td>
<td>376</td>
<td>3%</td>
</tr>
<tr>
<td>Balkrambro</td>
<td>247</td>
<td>2%</td>
</tr>
<tr>
<td>Bågbro</td>
<td>3</td>
<td>0%</td>
</tr>
<tr>
<td>Övriga</td>
<td>3</td>
<td>0%</td>
</tr>
<tr>
<td>Total</td>
<td>12 449</td>
<td>100%</td>
</tr>
</tbody>
</table>

Tabell 1. Fördelning av Trafikverkets broar med spännvidd 20 m eller kortare

plattbron som utgör en betydande del, 14%, även om den nu byggs i mindre utsträckning än tidigare, och då framförallt för kortare spännvidder.

En plattrambro utformas i princip enligt Figur 2 nedan. Det som skiljer den från plattbron är att brobaneplattan görs inspänd i frontmuren, också kallat ramben. Inspänningen försked med genomgående armering vilket skapar en kontinuitet och momentstyva ramhörn.

Vid kontroll av BaTMans registrerade data gällande grundläggning av de ca 5700 st plattramarna i Tabell 1 framgår att den vanligaste grundläggningsmetoden är platta på packad fyllning. Andelen plattrambroar som grundlagnats med pålar är strax under 10%.

Sammantaget visar genomgången ovan att följande definition av typfall är relevant med avseende på projektets mål att studera åtgärder som reducerar klimatgasutsläpp från byggande av vanligt förekommande betongbrokonstruktioner för infrastruktur.

Typfall: Plattrambro grundlagd på packad fyllning med spännvidder mellan 5-8 m och 15-18 m

9 Sammanställning hämtad från BaTMan mars 2016.
3.1.1 Tekniska regelverk för broar

För att kunna fastställa vilka åtgärder för minskning av klimatpåverkan som är möjliga behöver man ta hänsyn till gällande regelverk. Regelverken agerar som krav-, styr- och riktmedel i syfte att stödja ”användare” i processen att leverera produkter som uppfyller samtliga ställda krav gällande bärförmåga, stadga och beständighet etc. I Figur 3 nedan redovisas den regelpyramid som tillämpas inom Trafikverket idag. Regelverk innefattar i sin natur många begränsningar, men det finns också möjligheter till förändring och dispens.

Pyramiden är uppdelad i olika nivåer vilket också representerar en inbördes rangordning för de ingående dokumenten. Pyramiden toppas av myndighetsföreskrifter för att i botten bestå av godtagna lösningar och andra kunskaper. Här är det viktigt att förstå att kraven på lägre nivåer kan vara högre ställda än de på högre nivåer. Ett tydligt sådant exempel är kraven för betong som är mer restriktiva än vad som anges i den europeiska betongstandarden SS-EN 206 och den svenska tillämpningen SS 137003.

Sedan mitten av 1980-talet, har Trafikverket anammat en relativt strikt syn på användandet av tillsatsmaterial för betong, som exempelvis flygaska och slagg (GGBS). Under de senaste 15 åren har det resulterat i att det för byggnadsverk, som broar och tunnlar, ägda av Trafikverket ställts mer restriktiva krav än de som ställs i SS 137003. Baserat på en ökad kunskap gällande betongens beständighet, både från forskning och internationella erfarenheter, har det restriktiva synsättet förändrats och därmed också möjliga framtidiga tillämpningar.

Figur 3. Trafikverkets regelpyramid

10 Trafikverket 2012, ”Översyn av krav på cement och tillsatsmaterial i broar och liknande byggnadsverk.”
3.2 AVGRÄNSNINGAR
Grundförstärkning, t.ex. i form av betongpålning, är vanligt vid byggnad av broar och kan ge upphov till hög klimatbelastning. Den klimatbelastning som kan hänföras till grundförstärkning för grundläggning av en bro har dock exkluderats i denna studie i enlighet med definitionen av typfall för fallstudier ovan, dels för att renodla studien och dels för att det finns så många varianter och utföranden av grundförstärkning att det snarare är föremål för en egen liknande studie.

Några åtgärder för potentiell minskning av klimatbelastning har diskuterats under projektets gång, men har senare exkluderats på grund av antingen att reduktionspotentialen när det gäller klimatgasutsläpp bedömts som mycket liten eller att åtgärden inte gått att kvantifiera tillräckligt väl för byggnade av betongbro. Dessa exkluderade åtgärder är:

- Ökad karbonatisering av betong genom finfördelning av betong vid rivning av bro
- Återvunnen, krossad betong som ersättning för natursten eller krossat berg

![Concrete bridges – Global Warming](image)

Figur 4. Klimatbelastning per m² broyta för ett antal norska vägbroar 11.

11 Hammervold, J., LCA of selected road bridges in Norway, Presentation från ETSI Stage III Final Seminar Malmö May 2012, misa 2012.
Denna studie fokuserar endast på effekter på klimatgasutsläpp av studerade åtgärder. Andra effekter av åtgärder, eller förutsättningar för att de ska gå att genomföra, har inte studerats utan ses som förutsättningar som behöver beaktas i det specifika broprojektet. Exempel på sådana effekter och förutsättningar är andra miljöaspekter, tekniska och funktionella krav, produktionstekniska frågor, estetik, utbildningsbehov m.m.

Kostnadseffekter av olika åtgärder har inte behandlats i denna rapport eftersom nettoeffekter på kostnader beror på många komplexa samband och kräver en egen, mer omfattande studie för att kunna analyseras mer ingående. Exempelvis kan ökade kostnader för tid för optimering av konstruktioner i projektieringskredet ge lägre materialkostnader i utförandeskeden, och val av dyrare material för minskat framtida underhåll kan ge faktiska och samhällsekonomiska kostnads- och miljöbesparingar långt fram i tiden. Vinsten och nytta med olika åtgärder beror således mycket på hur man definierar kostnader - vilken typ av kostnader och för vem?

Som ett exempel på möjliga långsiktiga kostnadseffekter kan nämnas att forskning på Chalmers har visat att även om priset för koldioxidneutral cement och stål kan bli upp till 70% dyrare per enhet än idag, så behöver inte slutkostnaden för t.ex. en brokonstruktion öka med mer än 0,5%.

Innan Trafikverket införde klimatkrav genomfördes en konsekvensanalys där intervjuade entreprenörer var överens om att kostnadsbesparingar och minskade utsläpp av klimatgaser ofta går hand i hand. Initialt kan dock ofta förändringar innebära en ökad utvecklingskostnad, men denna ökning förvändades endast under en kortare övergående fas. De ansåg också att bara vetskapen om att Trafikverket ställer krav medför initiativ och ökar konkurrensen, vilket behövs för att sänka kostnaderna. De ansåg också att det kan vara svårt att få gehör för lösningar som är dyra i investeringsfasen men sparar kostnader i drift- och underhållsfasen så att det ur ett livscykelperspektiv är en billigare och klimatsmartare lösning, på grund av att inköpare endast ser till investeringsfasen och på grund av att den nuvärdesränta som används gör att det blir billigare att bygga två broar istället för att bygga en som har längre tidsmässig funktionalitet.

13 Konsekvensanalys av klimatkrav för byggande och underhåll av infrastruktur, WSP på uppdrag av Trafikverket, 2015
4 ÅTGÄRDER FÖR MINSKADE KLIMATGASUTSLÄPP

4.1 ÖVERSIKT MATERIAL OCH ENERGI

4.1.1 Stål- och järnframställning

Genom att fortsätta väga in koldioxidminskningar i det dagliga förbättrings-arbetet är det möjligt att på några års sikt, fram emot 2020, minska energian-vändningen och därmed utsläppen av koldioxid som härrör från fossila bränslen och reduktionsmedel med 2-5%. Större minskningar kräver däremot helt ny tillverknings teknik.

Stora insatser görs i branschen för att utveckla möjligheten att avskilja och lagra koldioxid, den s.k. CCS-tekniken (Carbon Capture and Storage). Detta räknar man med att kunna realisera framemot 2050.

Enligt uppgifter från stålbranschen är spannet för klimatgasutsläpp för till-verkning av masugnsbaserat stål (baserat till största delen på jungfruliga råvaror) ca 1,5 – 2,5 ton CO₂/ton stål. Utsläppen av koldioxid per ton stål som tillverkas i elektrostålugnar är i storleksordningen knappat hälften av vad som angivits för masugnstillverkat stål och är väldigt beroende av vilken el-mix man antar används för tillverkningsprocessen. D.v.s. utsläppen blir väldigt mycket lägre om man antar en svensk el-mix som är baserad på förnybara energikällor. Detta beror på att man antar en europeisk el-mix som har en stor andel fossil kolkraft. Av hela världens stålproduktion är ca 29 % helt skrot-baserad. Om man utgår från vad som angivits för masugnstillverkat stål ger det en teoretisk besparingspotential på 0,5-1,5 ton CO₂/ton stål.

4.1.2 Cement- och betongframställning

Inom cement- och betongbranschen pågår en mängd olika initiativ för att ändra produktionsprocesser och ta fram nya typer av material i syfte att minska energianvändning och utsläpp av klimatgaser sett över hela livscyklens. Det kan göras genom att använda alternativa bränslen i tillverkningsprocessen för cement, öka andelen återvunnet material, använda alternativ till cementklinker, öka karbonatiseringen (upptag av CO₂ i betong) m.m.
4.1.2.1 **Nollvision 2030, HeidelbergCement**

Cementa och HeidelbergCement Northern Europe har formulerat en vision om att nå klimatneutralitet 2030. En vision som innebär noll koldioxidutsläpp under cementproduktens livstid. Visionen kan illustreras med en graf där minskningen av koldioxidutsläppen per ton cement från 1990 fram till idag och vidare till 2030 kan följas, se Figur 5.

Cementa arbetar efter fem huvudområden för att minska utsläppen; energieffektivisering, utfasning av jungfruliga fossila bränslen, utveckling av nya cementsorter, kvantifiering av koldioxiduptag i betong och ökad förståelse för förhöjt koldioxiduptag i destruerad betong innan sekundär användning samt koldioxidavskiljning följt av lagring eller återanvändning.

4.1.2.2 **Cementklinkerersättning med tillsatsmaterial**

I den europeiska betongstandarden SS-EN 206 och den Svenska tillämpningsstandarden SS137003 finns nyheter som berör bland annat bindemedel
och ballast. En av nyheterna är att fler cementtyper och tillsatsmaterial får användas i betong. Redan idag användas nya cementtyper i Sverige, som exempelvis Cementa Bas cement (CEM II/A-V, med flygaska och en koldioxidbelastning som är cirka 8 procent lägre än motsvarande byggcement) eller Cemex Komposit cement (CEM II/A-M (S-LL), med GGBS). Det förekommer även användning av tillsatsmaterial i betongtillverkningen, främst GGBS, där materialen sätts till i samband med blandning av betong.

Ett alternativ till att använda GGBS som en ersättning till cementklinker

14 Information från Betongföreningen
i själva bindemedlet är att använda slagg som råmaterial vid tillverkning av cementklinker, för att delvis ersätta kalksten i cementungen. Vid Cementas samtliga tre fabriker har försökt gjorts med luftkylad masugnsslagg som råvara (OBS ej GGBS). Den luftkylad masugnsslaggen erhålls som en restprodukt från tillverkning av järn. Detta har gjorts för att minska koldioxidutsläppen och energiåtgången samt för att minska användningen av natursand. Försöken innebar att en del av råmaterialen ersattes med luftkylad masugnsslagg i tillverkningen vilket resulterade i lägre koldioxidutsläpp, lägre energiförbrukning och minskat behov av natursand och kalksten.

Cementa arbetar nu vidare med denna möjlighet att ersätta traditionella råvaror i ett utvecklingsprojekt tillsammans med SSAB och Tekniska högskolorna i Luleå och Umeå för att ännu bättre anpassa slaggprodukterna för att passa in i cementproduktionen15. Från och med mitten av april 2017 kommer Cementa att permanent använda slaggprodukter som råmaterial i en av sina ugnar.

4.1.2.3 Andra åtgärder för att minska klimatpåverkan från cementtillverkning

Vid cementtillverkning härrör ca 35% av alla CO₂-emissioner från bränsleanvändning. Om det var möjligt att driva en cementugn på bara klimatneutrala biobränslen så skulle minskningspotentialen således vara ca 35%16. Användning av biobränslen får dock marginell påverkan på energianvändning i processen.

All betong tar upp en viss mängd koldioxid över tid vid kontakt med luft, så kallad karbonatisering. Enligt HeidelbergCements vision räknar man med att detta upptag kan ökas i framtiden och bidra till minskad klimatbelastning från betong. I en svensk studie från 201317 anges att en förändrad hantering av betongavfall skulle kunna fördubbla koldioxidupptag via karbonatisering till 2050, se Figur 5.

4.1.2.3 Energianvändning

Det finns många åsikter om framtidiga energianvändning och den samlade klimatpåverkan som framtidens energimix ger upphov till. Energiyndigheten

18 www.wbcsdcement.org
redovisar i sin rapport ”Fyra framtider, Energisystemet efter 2020” (2016) olika scenarier för att belysa hur framtidens totala energisystem kan komma att se ut, beroende på vad samhället tycker är viktigt när det gäller energi.

![Figur 7. Globalt behov av primärenergi och därtill kopplad klimatpåverkan. INDC, Intended Nationally Determined Contributions, är uppskattad av respektive land. 450 scenariot har som mål att begränsa klimatpåverkan på nivån +2 grader C.](image)

4.2 ÅTGÄRDER HANTERADE I PROJEKTET

För de åtgärder som redovisas nedan har effekter på klimatpåverkan från byggnade och underhåll av plattanbroar analyserats utgående från identifierade typfall.

4.2.1 Materialval

4.2.1.1 Produktval armering

21 www.ecoinvent.org
Inverkan av att använda korrosionsskyddad armering i kantbalkar och överbyggnad har också undersömts och beskrivs i avsnitt 4.2.2.5.

4.2.1.2 Produktn cement
Klimatgasutsläpp som redovisas i EPDer för specifika produkter från olika tillverkare jämförs. En omfattande analys görs mellan olika EPDer där varje cementtyp jämförs. I broarna används den med högst respektive lägst klimatpåverkan för att identifiera spannet i klimatgasutsläpp för hela bron.

4.2.1.3 Tillsatsmaterial i betong
I dagens regelverk regleras användning av flygaska och GGBS i SS-EN 206:2013 och SS 137003:2015 samt AMA Anläggning 13. I tabell 8 i SS 137003 regleras halterna av cementklinker i bindemedel för betong så att dessa minst är 80% samt 65% (beroende på exponeringsklass), där resterande delar får vara flygaska eller GGBS. Detta betyder att tillsatser av ca 20% respektive 35% flygaska eller GGBS tillåts, beroende på vilka exponeringsklasser som föreskrivs för respektive bro. Utöver de mängder tillsatsmaterial som tillåts enligt gällande regelverk undersöks även effekten av en tillsats på 35 % GGBS för betong med vct 0,40 och exponeringsklass XF4, se Löfgren m.fl. 22. Redan i dagsläget finns det möjligheter att använda större mängder tillsatsmaterial än vad som anges i Tabell 8 om bilaga N i SS 137003 tillämpas.

Det bör påpekas att även om mängden tillsatsmaterial i en betong är inom tillåtna gränser i Tabell i SS 137003 finns olika åsikter i branschen om hur tillsatsmaterialen påverkar betongens egenskaper. Vissa anser att det ger delvis försämrade betongegenskaper medan andra anser att det tvärtom ger delvis förbättrade egenskaper. Åsiktsvariationen kan till viss del bero på att det ännu finns begränsat med erfarenhet av tillämpning i anläggningsprojekt i Sverige. Internationellt finns dock mångåriga erfarenheter av denna typ av betong. I detta projekt analyseras inte sådana effekter, utan det förutsätts att ändrade betongegenskaper (t.ex. med avseende på arbetsbarhet/gjutbarhet, beständighet, uttorkningstider) hanteras och att det säkerställs med hjälp av provningar och liknande att tekniska och funktionella krav uppfylls.

4.2.1.4 Val av betongkvalitet och -typ
Effekten av att byta ut den betongkvalitet som angetts för brofallen mot en lägre betongkvalitet (i första hand betongens vct – inom ramen för vad som tillåts enligt SS137003) och därmed högre vct har också undersömts i analysen. Hur högt vct får vara bestäms i SS 137003 (Tabell 8a).

Användning av självkompakterande betong med recept från SBUF-projekt 12645 23 analyseras också. Ingen klinkersättnings undersöks här.

22 Löfgren, I., Lindvall, A., Esping, O., Beständighet hos anläggningskonstruktioner- Etapp II- Funktionella materialkrav, Thomas Concrete Group, 2016
23 SBUF 12645, Utvärdering av formtrycksmodeller vid gjutning med SKB
4.2.2 Utförande

4.2.2.1 Konstruktiv optimering av mängder

Klimatgasutsläpp vid byggande av betongbroar är direkt relaterat till de mängder betong och armering som används. Således är också optimering med avseende på materialmängder en viktig åtgärd för att minimera klimatgasutsläppen. Som brokonstruktör har man alltid, mer eller mindre, avsikten att optimera. T.ex. genom avkortning av armering för maximalt utnyttjande av materialet, geometrisk optimering utifrån mängder, rationalitet och enkelhet i utförandet.

4.2.2.1.1 Parametrerisering

Ofta väljs dimensionerande konstruktionshöjder utifrån tillgänglig höjd, dvs att konstruktionshöjden ofta blir den maximalt möjliga. Med de geometriska förutsättningarna låsta så kvarstår att armeringsmängden i tvärsnittet anpassas till den valda höjden. Den optimeringen som sker då är oftast mot en minimerad mängd armering utan några särskilda utvärderingar av övriga möjligheter. Om möjligheten till att hitta ”alla” tänkbara lösningar istället utnyttjas kan ett grundligare beslutsunderlag för optimering skapas.

Figur 8. Resultatet från en parameterstudie påvisar 20-30% reduktionspotential för materialkostnad och CO2 ekvivalenter i förhållande till vald utformning av bro C.

till den valda höjden. Den optimeringen som sker då är oftast mot en minime-
rad mängd armering utan några särskilda utvärderingar av övriga möjligheter.
Om möjligheten till att hitta "alla" tänkbara lösningar istället utnyttjas kan ett
grundligare beslutsunderlag för optimering skapas. I Figur 8 nedan redovisas
resultatet från en parameterstudie för en plattrambro (bro C i fallstudierna) 24.
Beräkningen styrs utifrån givna kriterier och hittar då många alternativa möj-
liga lösningar. I studien har brons längd, bredd samt rambenens höjd varit låsta.
De fria parametrarna var plattans och rambenets tjocklek samt armeringens
dimension. Resultatet redovisar ett stort antal möjliga lösningar, och med re-
ferensfallet, bro C, inritat så ses att en ganska stor reduktionspotential finns,
både i materialkostnad samt koldioxidutsläpp. Ytterligare en studie innefattade
också en balkbro i betong samt en samverkansbro 25. Sammantaget ger studi-
erna ett entydigt resultat, att det finns en reduktionspotential mellan 20-60% i
materialkostnad och klimatgasutsläpp jämfört med den utformning som i verk-
ligheten har valts för respektive bro.

Som en delmängd av de möjligheter till optimering som studien ovan vi-
sar har ett scenario för skillnad mellan en tunnare konstruktion med mycket
armering och en tjockare konstruktion med mindre armering analyserats för
överbyggnaden hos bro F. Genom enkla beräkningar kan det påvisas att med
oförändrad tvärnittskapacitet, kan klimatpåverkan från bro F minskas med
åtminstone 15 % bara genom att anpassa tvärnittets utformning. Med kän-
nedom om delmaterialens inverkan på totalen, i detta fall klimatpåverkan och
kostnad, ges inblandade aktörer möjlighet att också ta hänsyn till detta i sina
val. Genom att utnyttja tillgänglig teknik ges en möjlighet att utvärdera ett
större antal parametrar som påverkar slutresultatet och därmed också ge ett mer
nyanserat och objektivt beslutsunderlag vid optimering.

25 D. Tarazona and S. Luis, "Applicability of Set-Based Design on Structural Engineering,"
Examensarbete Chalmers Tekniska Högskola, 2014
4.2.2.1.2 Digitalisering

Det har talats om införandet av Byggnadsinformationsmodellering (BIM) och digitalisering i anläggningsbranschen under många år nu, och hur det radikalt ska förändra vårt sätt att bygga och skapa en byggprocess där vi minimerar brister och fel och skapar en högre produktivitet och lönsamhet för alla parter. BIM används för att skapa en digital modell av en anläggningsbranschen. Denna implementering har tyvärr inte slagit igenom ännu och vi tar inte vara på alla de fördelar digitaliseringen kan ge.

4.2.2.2 Minimering av spill

Ett försök har gjorts att kvantifiera effekter på utsläpp av klimatgaser från ett aktivt arbete med att minimera spill av armering och betong vid byggande av en bro. Ett grundläggande antagande har varit att en minskning av spill från 10% till 5% ger upphov till motsvarande minskning av klimatgasutsläpp, d.v.s. en minskning med 5% för detta exempel. Den faktiska effekten beror dock på hur detta spill hanteras. Om allt spill kan återvändas utan energikrävande processer kan antas att spillet inte ger upphov till onödig klimatbelastning, och en minskning av spill ger då inte heller någon minskning av utsläpp. Baseras på detta resoneringsmang kan man anta att den faktiska utsläppsreduktionspotentialen för spillminimering ligger någonstans mellan 0% och 100% av den möjliga spillreduktionen.

Spill av armering antas återvinnas som skrot till i stort sett 100% p.g.a. de ekonomiska incitamenten för det. Betongspill antas däremot inte återvinnas.

26 Malmkvist, M (2012) Trafikverket tar en titt in i framtiden – byte av Röforsbron handlas upp på BIM underlag, Samhällsbyggaren nr 3 2012, s 19–21
27 Utredning gjord av kalkylator på WSP Management
som betong för gjutning i någon större utsträckning, utan antas gå till deponi eller användas som fyllnadsmaterial eller liknande.

Underlag för uppskattning av normala spillmängder har hämtats från:

- Erfarenhetsbaserade spillfaktorer i kostnadskalkyler för fem infrastrukturprojekt, gjorda i kalkylverktyget MAP27
- Uppgifter från Strängbetong för tillverkning av prefab-element
- Uppgifter från Celsa Steel Service för möjliga armeringslösningar för projektets typfall

4.2.2.3 Optimering av transporter

Plattrambroarna antas byggas i Stockholm och all transport antas ske dit. För platsgjuten betong sker transporten med en 6m³-betongbil. Transportavståndet antas vara 30 km. Prefabelementen transporteras 200 km med en lastbil som tar 40 ton last.

Åtgärden optimering av transporter beskriver teoretiska maximala effekter av såväl minskade transportavstånd som val av transportmedel eller drivmedel med minskad klimatbelastning. Det vill säga vilken nettoeffekt på klimatgasutsläppen det skulle ge om transporterna inte gav upphov till några klimatgasutsläpp alls. Det görs genom att transportavståndet till byggarbetsplatsen minskas från 700 km till 0 km för armering samt från 30 km till 0 km för betongen. Förutom transport till byggarbetsplats undersöks även påverkan av användande av entreprenadberg dvs ett avstånd på 0 km för ballast till betong.

4.2.2.4 Estetiska val

Estetiska val bör alltid inkluderas i den konstruktiva designen och inte ”läggas på” så att det ger upphov till ökad resursanvändning och ökade klimatgasutsläpp. Många av de estetiska parametrarna, som öppenhet, anpassning till omgivning, trygghetsaspekter etc., är dock ofta mjuka och inte nödvändiga för konstruk-

Figur 10. Matriser och ursparade spår i betongen behöver användas med eftertanke för att inte enbart generera extra betong och därmed extra klimatbelastning.

I aktuellt fallet togs ingen hänsyn till de klimatgasutsläpp som de olika fallen genererade, vilket också faller till bälklösningens fördel. Här vägde dock de estetiska argumenten tyngst, mycket baserat på antagande om trafikanternas upplevelse. Om även klimatiska effekter av klimatgasutsläpp som de olika fallen genererade, vilket också faller till bälklösningens fördel. Här vägde dock de estetiska argumenten tyngst, mycket baserat på antagande om trafikanternas upplevelse. Om även klimatgasutsläpp som de olika fallen genererade, vilket också faller till bälklösningens fördel.

Även om ett projekt ligger i sena skeden så finns fortsatt möjligheter att anpassa förfrågningsunderlag (FU) till att få fram mer kostnads- och klimat-effektiva lösningar utan att nämnvärt påverka estetiken. I Figur 13 och 14 redovisas ett projekt där en mängdesparning gjordes för totalt 3 st broar i förhållande till anbudsmängder på ca 25%. Omräknat i betong motsvarade detta ca 300 m³ varvid armeringens stärkningarna var i stort sett oförändrade. Ytterligare effekt genererades också på mängder i underbyggnad p.g.a. den lättare överbyggnaden.

4.2.2.5 Optimering ur underhållsperspektiv

En alternativ “underhållsfri” utformning av en plattrambro har studerats. Det har definierats som att armering i kantbalkar och ytarmering i överbyggnad utförs med korrosionsskyddad armering, se Figur 15. Dessutom undersöks även kombinationen av korrosionsskyddad armering och ett minskat täckande betongskikt av betong där 10 mm dras av från överbyggnadens tjocklek.

Figur 12. Omarbetat tvärsnitt till en mer effektiv lösning och med bibehålet estetiskt uttryck.

Det finns idag inget stöd i SS-EN 1992 för hur mycket täckskiktet kan reduceras vid användandet av korrosionsskyddad armering. Vid minskningen av täckskiktet i beräkningen har armeringens vidhäftning använts som dimensionerande värde för täckskiktets tjocklek. Detta ligger också i linje med framtidiga rekommendationer till förändring i Eurokoderna. Minskningen av täckskiktet kan synas ganska liten trots rostfri armering, men det finns rapporter som pekar på att de rekommendationer på täckskiktets tjocklek som ges i normer idag är för låga, särskilt vid användandet av anläggningss cement i väg- och marina miljöer på västkusten. För byggnadsverk i särskilt utsatta miljöer kan därmed framtidiga effekten av att använda korrosionsskyddad armering istället för traditionell bli mycket större.

Med ovan givna förutsättningar antas att kantbalkar inte behöver underhållas eller bytas under brons livslängd, samt att tätšikt inte behövs, vilket får följder som anges i punkter nedan.

- Avstängning av bro för utbyte av tätšikt och impregnering av kantbalkar behöver inte göras. Det sker annars efter 30 och 90 år från brons färdigställande.
- Avstängning av bro för utbyte av tätšikt samt utbyte av kantbalkar behöver inte göras. Det sker annars efter 60 år från brons färdigställande.

För att analysera vilka klimatteffekter en underhållsfri bro ger sett över brons hela livslängd har följande två störningsscenarier definierats:

2. Mycket störningskänslig miljö. T.ex. en vägbro i storstadsmiljö där trafikbelastningen är mycket hög. Detta scenario utgår från att brounderhåll orsakar stora störningar i samband med avstängning och omledning av trafik och att detta ger upphov till en ökad klimatbelastning. Antaganden som använts för att beräkna klimatförändringar är följande:
 a. Kantbalk, räcke, tätšikt hanteras i samma entreprenad. All trafik avstängd på bro i samband med underhållsarbete. Entreprenad tid ca 15 dagar för byte av tätšikt, och ca 60 dagar för byte av kantbalk.
 b. Normal trafikbelastning 40 000 ÅDT, 10 % tunga fordon.
 c. Förbiledning av trafik ger längre körsträcka i storleksordningen 100 m till 1 km.

29 Maxstadh, P., WSP, pers. komm. 2017

4.2.2.6 Val av produktionsmetod

Prefabricerat alternativ har definierats enligt följande:
- Platsgjuten underbyggnad
- Prefabricerad spännarmerad överbyggnad enligt Strängbetongs spec

Till detta läggs de två störningarsscenarierna enligt föregående avsnitt och klimateffekter genom att begränsa avstångningstider vid byggande i mycket störda miljöer analyseras.

30 Rosell, E., Trafikverket, pers. komm. december 2016
5 LCA-BERÄKNINGAR

För detta projekt har det tagits fram underlag för LCA-beräkningar för 6 olika befintliga platsgjutna plattrambroar i enlighet med de typfall som definierats i projektet. De har en spännvidd mellan 5,88 och 17,46 m och är exponerade för olika miljöer. Tabell 2 visar dimensionerande exponeringsklasser för varje bro per brodel, se Figur 15. Bro A har de strängaste exponeringsklasserna och bindemedlet i betongen måste enligt tabell 8b i SS 137003 innehålla minst 80% cementklinker, där resterande delar får vara flygaska eller GGBS. Broarna har olika utformningar och vissa delar som stagbalkar och länkplattor används inte för 5 av 6 broar. Kantbalken hos bro A antas vara inräknad i en annan brodel.

Tabell 2. Dimensionerande exponeringsklasser för utvalda broar och brodelar.

<table>
<thead>
<tr>
<th>Brodel/Bro nr.</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vingar(4 st)</td>
<td>XD3/XF4</td>
<td>XD1/XF4</td>
<td>XD1/XF4</td>
<td>XD1/XF4</td>
<td>XD1/XF4</td>
<td>XD1/XF4</td>
</tr>
<tr>
<td>Stagbalkar</td>
<td>XD3/XF4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overbyggnad</td>
<td>XD3/XF4</td>
<td>XD3/XF4</td>
<td>XD1/XF4</td>
<td>XD1/XF4</td>
<td>XD1/XF4</td>
<td>XD3/XF4</td>
</tr>
<tr>
<td>Länkplattor</td>
<td>XD3/XF4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figur 15. Illustration av plattrambrons brodelar.

<table>
<thead>
<tr>
<th>Bro nr.</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Livslängd</td>
<td>L50</td>
<td>L50</td>
<td>L100</td>
<td>L100</td>
<td>L50</td>
<td>L100</td>
</tr>
<tr>
<td>Spännvidd [m]</td>
<td>17,35</td>
<td>8</td>
<td>10,5</td>
<td>14,04</td>
<td>10,5</td>
<td>5,88</td>
</tr>
<tr>
<td>Yta [m²]</td>
<td>470</td>
<td>60</td>
<td>210</td>
<td>120</td>
<td>50,3</td>
<td>43</td>
</tr>
<tr>
<td>Mängd betong [m³]</td>
<td>1064</td>
<td>95</td>
<td>264</td>
<td>266</td>
<td>111</td>
<td>69</td>
</tr>
<tr>
<td>Mängd armering [ton]</td>
<td>119,7</td>
<td>23,9</td>
<td>30,2</td>
<td>59,2</td>
<td>12,1</td>
<td>8,6</td>
</tr>
<tr>
<td>Armeringsmängd [vikt-%]</td>
<td>5</td>
<td>11</td>
<td>5</td>
<td>10</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>
Hos alla broar och i alla brodelar har betongklass C 35/45 använts, förutom för bro F där bottenplattan är av C 30/37. I analyser har C 32/40 använts istället för C 30/37.

Tabell 3 visar vilken norm som användes vid tid för byggande samt dimensioner och mängder. Förutom att bro A är utsatt för hårdare miljö är den även den största bron.

Exempel på mängdfördelning per brodel:

Tabell 4. Platsgjuten överbyggnad

<table>
<thead>
<tr>
<th>Material</th>
<th>mängd</th>
<th>enhet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Form</td>
<td>270</td>
<td>m²</td>
</tr>
<tr>
<td>Bärande formställning</td>
<td>1350</td>
<td>luft m³</td>
</tr>
<tr>
<td>Betong C35/45, vctekv <0.45</td>
<td>162</td>
<td>m³</td>
</tr>
<tr>
<td>Armering K500C-T</td>
<td>24</td>
<td>ton</td>
</tr>
</tbody>
</table>

Tabell 5. Prefabricerad överbyggnad

<table>
<thead>
<tr>
<th>Material</th>
<th>mängd</th>
<th>enhet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Form</td>
<td>8</td>
<td>m²</td>
</tr>
<tr>
<td>Betong platsgjuten C30/37 vc-tekv<0.45</td>
<td>81</td>
<td>m³</td>
</tr>
<tr>
<td>Armering diameter</td>
<td>7.6</td>
<td>ton</td>
</tr>
<tr>
<td>Slakarmering K500C-T platsgjuten</td>
<td>4,4</td>
<td>ton</td>
</tr>
<tr>
<td>Spännlina Y1860S7</td>
<td>5319,6</td>
<td>m</td>
</tr>
<tr>
<td>d=12.9mm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mekaniska skarvhylsor</td>
<td>604</td>
<td>st</td>
</tr>
</tbody>
</table>

Figur 16. Fördelning av betong och armering i ton per brodel.

Vid jämförelse mellan platsgjutet och prefabricerat används två likvärdiga överbyggnader. Mängderna redovisas i Tabell 4 och 5 och har tillhandahållits av Strängbetong. Av dessa material är det endast betong och armering som tas hänsyn till. Formar och skarvhylsor antas ha en liten påverkan och är därför exkluderade. Den prefabricerade överbyggnaden har en pågjutning av platsgjuten betong.

5.1 UNGÅNGSLÄGE

Som referenser scenario för livscykelanalysen används emissionsfaktorer för betong och armering enligt Trafikverkets modell för klimatkalkyl v.4, vilket innebär betong utan tillsatsmaterial med anläggningscement från Cementa (CEM I 42,5 N-SR 3/MH/LA) och armering tillverkad med genomsnittlig europeisk teknik (datakälla: European reference Life-Cycle Database (ELCD)).

5.2 LIVSCYKELANALYS

31 http://www.trafikverket.se/tjanster/system-och-verktyg/Prognos--och-analysverktyg/Klimatkalkyl/
hamnar istället transport av hela konstruktionen från fabrik till byggarbetsplats.

För underhållet jämförs tre scenarier för bro C med följande underhållsin-
tervall (se resonemang i avsnitt 4.2.2.5 ovan):
1. Ubyte av kantbalk var 60e år, reparation av ca 20% av kantbalken var 20e år 32
2. Underhållsfritt i 120 år. Rostfri armering i kantbalk och delar av överbygg-
nad används.
3. Impregnering av kantbalkar och andra delar av bron. Impregneringen görs
vart 15:e år.

Analysen av underhållet ger en grov uppskattning av växthusgasutsläppet då
exakta mängder inte har verifierats. Dock är andelen som är kantbalk hos en
bro väldigt liten och därför bör en grov uppskattning vara tillräcklig.

Den deklarerade enheten för broarna är en platsgjuten plattrambro. För över-
byggnaden är det istället en överbyggnad för en specifik plattrambro. Vid unders-
sökning av underhållsscenarier är livslängden 120 år, vilket benämns L100.

5.2.1 Indata
Vid beräkningarna används miljövarudeklarationer, EPD, som följer EN
15804. Övriga källor till råmaterial och energi är ecoinvent version 3 samt tra-
fikverkets data för armering (från ELCD). Undantag är impregneringsmedlet
där data är hämtad från en rapport av the Global Silicones Council (GSC).
Transporter beräknas med NTMs33 data och är samma som hos Svensk Be-
tongs EPD-verktyg. Information om sammansättning hos platsgjuten betong
har tillhandahållits av Thomas Concrete Group. Plattrambroarna antas byggas
i Stockholm och all transport sker dit. För platsgjuten betong sker transporten
med en 6 m³ betongbil med utsläppsdata från Scania. Transportavståndet antas
vara 30 km. Prefabelement antas transporterats 200 km med en lastbil som tar
40t last.

Vid betongfabriken antas det gå åt 13 kWh el och 10 kWh fjärrvärme för
platsgjuten betong och för prefabfabriken är det 70 kWh el och 70 kWh värme.
Siffrorna är hämtade från byggvarudeklarationer.

Förutom en övergripande analys av plattrambroarna och överbyggnaden
görs även en jämförande analys av olika cement-, armerings- och betongsorter.
Indata har hämtats från olika EPDer och för armeringen även från Trafikverket
och ecoinvents databases. Analysen har som nämnts innan utförts av CBI en-
ligt europeisk standard EN15804. Detaljer kring indata och resultat redovisas i
CBIs LCA-rapport, se Bilaga A.

32 Enligt Mattsson, H-Å., Sundquist, H., Silfwerbrand, J., The Real Service Life and Repair
Costs for Bridge Edge Beams Restoration of Buildings and Monuments, Vol13, N. 4, pp
33 Nätverket för Transporter och Miljön, https://www.transportmeasures.org/sv/
6 RESULTAT

6.1 LCA-BERÄKNINGAR

Här redovisas en sammanfattning av resultat från CBIs LCA-beräkningar. Resultaten presenteras i sin helhet i Bilaga A.

Tabell 8 visar den procentuella skillnaden vid varje åtgärd gentemot utgångsläget ("ingen åtgärd" i tabellen). Störst påverkan har armeringens ursprung och kombinationsåtgärden med minsta möjliga cement, betongklass och maximala mängder tillsatsmaterial enligt standard. De broar som har en högre armeringsmängd visar en större känslighet för armeringens ursprung. I tabellen framgår det att den största möjliga reduktion av klimatgasutsläpp som kan fås, om de regleringar rörande tillsättning av flygaska eller GGBS, som finns i tabell 8 i SS 137003, följs, är mellan -33% och -48%. Om avsteg från SS 137003 görs (se också avsnitt 4.2.1.3) kan klimatgasutsläppen minskas med ytterligare 3 – 10% beroende på bro. Resultaten visar också att vissa åtgärder, främst produktval armering, kan göra att klimatgasutsläppen ökar med upp till +40% till +57%. Skillnaden mellan största och minsta möjliga klimatgasutsläpp för en specifik bro kan vara upp till 103 procentenheter (bro B).

6.1.1 Underhåll av broar

Figur 17 visar att de studerade underhållsscenarierna för kantbalkar på bro C ger minimal skillnad i klimatbelastning. Det skiljer endast ca 1 % i total klimatbelastning mellan de olika alternativen. Det betyder att utbyte och reparation av kantbalk bör ses som likvärdigt med en konstruktion med rostfri armering eller med impregnering.

6.1.2 Val av produktionsmetod – överbyggnad

Figur 18 visar jämförelsen mellan en platsbyggd överbyggnad och en prefabricerad överbyggnad. Skillnaderna är små och resultaten beror mycket på vad...

<table>
<thead>
<tr>
<th>ÅTGÄRD</th>
<th>Skillnad i klimatgasutsläpp för bro A - F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ingen åtgärd</td>
<td>A</td>
</tr>
<tr>
<td>Produktval cement</td>
<td></td>
</tr>
<tr>
<td>Lägsta CO₂e</td>
<td>-8%</td>
</tr>
<tr>
<td>Högsta CO₂e</td>
<td>+14%</td>
</tr>
<tr>
<td>Tillsättning av tillsatsmaterial</td>
<td></td>
</tr>
<tr>
<td>GGBS 20%</td>
<td>-10%</td>
</tr>
<tr>
<td>flygaska 35% (helt eller delvis, beroende på exponeringsklass)</td>
<td>-11%</td>
</tr>
<tr>
<td>GGBS 35% (helt eller delvis)</td>
<td>-</td>
</tr>
<tr>
<td>flygaska 35% (helt eller delvis)</td>
<td>-</td>
</tr>
<tr>
<td>GGBS 35% (helt, enligt studie av Löfgren m.fl.)</td>
<td>-21%</td>
</tr>
<tr>
<td>Betongkvalitet och -typ</td>
<td></td>
</tr>
<tr>
<td>SKB</td>
<td>+2%</td>
</tr>
<tr>
<td>lägsta möjliga btg kvalitet</td>
<td>-</td>
</tr>
<tr>
<td>Korrosionsskydd</td>
<td></td>
</tr>
<tr>
<td>rostfri</td>
<td>-</td>
</tr>
<tr>
<td>rostfri+slimmad (-10 mm)</td>
<td>-</td>
</tr>
<tr>
<td>Produktval armering</td>
<td></td>
</tr>
<tr>
<td>Låg CO₂e</td>
<td>-15%</td>
</tr>
<tr>
<td>europeisk</td>
<td>-5%</td>
</tr>
<tr>
<td>okänt ursprung</td>
<td>+26%</td>
</tr>
<tr>
<td>Transporter</td>
<td></td>
</tr>
<tr>
<td>armering, 0 km (700 km)</td>
<td>-1%</td>
</tr>
<tr>
<td>betong, 0 km (30 km)</td>
<td>-2%</td>
</tr>
<tr>
<td>ballast, 0 km (40 km)</td>
<td>-0%</td>
</tr>
<tr>
<td>Kombinationsåtgärd - betong</td>
<td></td>
</tr>
<tr>
<td>min cement, max tillsats, min btg klass</td>
<td>-17%</td>
</tr>
<tr>
<td>min btg klass, max tillsats</td>
<td>-11%</td>
</tr>
<tr>
<td>min cement, max tillsats</td>
<td>-17%</td>
</tr>
<tr>
<td>Optimering av konstruktion</td>
<td></td>
</tr>
<tr>
<td>Ökad armering-minskad betong, endast överbyggnad</td>
<td>-15%</td>
</tr>
<tr>
<td>Estetiska val</td>
<td></td>
</tr>
<tr>
<td>Vitcement</td>
<td></td>
</tr>
<tr>
<td>Åtgärd - lägsta möjliga (enligt standard)</td>
<td>-33%</td>
</tr>
<tr>
<td>Åtgärd - högsta möjliga (enligt standard)</td>
<td>+41%</td>
</tr>
</tbody>
</table>

*røstfri armering endast i kantbalkar
för typ av armering som används och kan visa en fördel för båda alternativen. Prefabalternativet innehåller mindre material men har en högre betonghållfasthet vilket ger högre klimatbelastning. Dessutom har spännarmering en högre klimatpåverkan än slakarmering per ton.

6.2 ÖVRIGA BERÄKNINGAR

Här redovisas övriga resultat utöver CBIs LCA-beräkningar.

6.2.1 Konstruktiv optimering
Studerade exempel visar att parametrarisering, digitalisering och arbetssätt för samverkan och en effektiv design- och konstruktionsprocess kan ge klimatsparningar på 20 – 60%.

En möjlig åtgärd inom ramen för ett sådant optimeringsarbete är att se över vilket förhållande mellan mängd armering och mängd betong som ger lägst klimatbelastning. LCA-beräkningarna visar att det studerade fallet där armeringsmängden ökades och betongmängden minskades för en broöverbyggnad gav en klimatsparning på ca 15% för överbyggnaden. Det är rimligt att anta att samma ändring av förhållandet armering/betong kan göras även för övriga brodelar, vilket skulle ge en besparingspotential på ca 15% för hela bron.

Genom att i konstruktionsprocessen inkludera reflektion över den påverkan på klimatgasutsläpp som materialanvändning ger, finns med andra ord en möjlighet att hitta vägar för att optimera även med avseende på klimatbelastning.

6.2.2 Minimering av spill
Uppgifterna om erfarenhetsbaserade spillfaktorer i kostnadskalkyler för infrastrukturprojekt visar på att man räknar med ca 10-12% spill för platsgjuten betong för olika delar av brokonstruktionen, medan man räknar med ca 15-20% spill för ospänd armering i brokonstruktioner.

Strängbetong anger ca 3% spill av betong vid sin industriella produktion av prefab-element, samt ca 20-25% spill för spännarmering och ca 3-5% spill för ospänd armering.

Celsa Steel Services uppgifter visar på att prefabricerade inläggningsfårdiga armeringslösningar för platsgjutna konstruktioner kan ge upphov till ca 5% ökade ställmängder för montage, medan spillet på byggnadsplatsen däremot bör minska med denna typ av lösning. Sammantaget bedöms en prefabricerad armeringslösning minska spillet av armering jämfört med armering som kapas och bokas på plats, främst på grund av en ökad produktions- och kvalitetskontroll i fabrik.

Exemplet som anges ovan visar på att en prefabricerad brolösning kan ha ca 7-9% lägre spill av betong än en platsgjuten konstruktion, vilket bör vara att betrakta som en maximal reduktionspotential för en platsgjuten konstruktion. Sett till hur stor del av brons klimatbelastning som kommer från betongen motsvarar den reduktionspotentialen en möjlig minskning av klimatbelastningen med i storleksordningen ca 5%.

Spillfaktorerna för armering ligger högre än för betonen, men det faktum att armeringen antas återvinnas till 100% gör att spillet inte bidrar till ökad klimatbelastning. En ökad effektivitet i resursanvändning är dock alltid eftersträvansvärt varför det bör vara motiverat att arbeta för minksat spill även för armering.
6.2.3 Estetiska val
I avsnitt 4.2.2.4 redovisas exempel på estetiska krav som kan ha gett ge upp till ca 25% högre klimatbelastning än nödvändigt.

LCA-beräkningarna visar att användande av vitcement kan ge ca 33% högre klimatbelastning.

6.2.4 Optimering ur underhållsperspektiv
För störningsscenario 1 enligt avsnitt 4.2.2.5, dvs ej störningskänslig miljö, antas inte någon ökning av klimatgasutsläpp från trafikstörningar uppkomma vid underhållsarbeten. Det finns därmed inga klimatgasutsläpp från trafikstörningar som kan undvikas med en underhållsfri bro. Nettoeffekten blir att i miljöer med låg störningskänslighet ger en korrosionsskyddad utformning en något högre klimatbelastning än utgångslaget, ca 4% högre enligt resultat från LCA-beräkningar i avsnitt 6.

För störningsscenario 2, dvs mycket störningskänslig miljö, kan däremot en underhållsfri broutformning, genom korrosionsskyddad armering i kantbalkar och ytarmering, ge stor klimatbesparing på grund av att framtida avstängningar för underhållsarbeten undviks och därmed trafikomledningar och -störningar. Med de antaganden som anges i avsnitt 4.2.2.5 samt med emissionsfaktorer för fordon hämtade från Handbok för vägtrafikens luftföroreningar visar beräkningar att den möjliga reduktionen av klimatgasutsläpp på grund av minskade trafikstörningar kan vara i storleksordningen 30% - 300% av brons klimatgasutsläpp från byggandet. Spannet beror på hur lång trafikomledning vid underhållsarbeten man antar. 30% motsvarar en trafikomledning på 100 m medan 300% motsvarar 1 km omledning.

Dessa exempel syftar till att åskådliggöra vilka möjliga effekter som kan uppstå och det finns många osäkerheter kring hur stora faktiska störningar blir. Ofta är de inledande störningarna störst, och beror mycket på vilken information som gått ut innan underhållsarbeten och omledningar påbörjas. Det är därför viktigt att hänsyn till specifika förutsättningar vid kvantifiering av sådana effekter för ett specifikt broprojekt.

Det finns också stora osäkerheter kring hur stora klimatgasutsläppen från både trafik och materialanvändning kommer vara vid tiden för underhållsåtgärder som ligger 30 år, 60 år eller ännu längre fram i tiden. Om svenska och internationella klimatmål nås antas klimatga suutsläppen vara mycket låga, eller till och med netto noll, för dessa tidshorisonter. Dessa osäkerheter har beskrivits mer i avsnitt 4.1. Resultaten och diskussionen här bör ses som att det med en underhållsfri broutformning i mycket störningskänsliga miljöer finns möjlighet att undvika besvär, kostnader och energianvändning även om det är osäkert hur stor klimatiskt effekten blir.

6.2.5 Val av produktionsmetod

För störningsscenario 1 enligt avsnitt 4.2.2.5, dvs ej störningskänslig miljö, antas inte någon ökning av klimatgasutsläpp från trafikstörningar uppkomma vid byggnation. Det finns därmed inga klimatgasutsläpp från trafikstörningar som kan undvikas med en produktionsmetod som förkortar eller undviker. I ett sådant scenario ger produktionsmetoderna prefabricerad och platsgjutet likvärdiga klimatgasutsläpp vid nyproduktion enligt resultat från LCA-beräkningar i avsnitt 6.

För störningsscenario 2, dvs vid byggande i högt belastade trafikmiljöer, kan däremot en produktionsmetod med prefabricerad, spännarmerad konstruktion ge stor klimatbesparing om tiden för trafikomledningar och -störningar kan minskas avsevärt jämfört med produktionsmetod med platsgjuten konstruktion. Med samma förutsättningar som anges i avsnitt 6.2.4 visar beräkningar att den möjliga reduktionen av klimatgasutsläpp på grund av minskade trafikstörningar kan vara i storleksordningen 20% - 200% av brons klimatgasutsläpp från byggandet. Spannet beror på hur lång sträcka och tid för trafikomledning vid byggnaget man antar. 20% motsvarar en trafikomledning på 100 m medan 200% motsvarar 1 km omledning.
7 RÅD OCH VÄGLEDNING

I Tabell 7 och Tabell 8 nedan redovisas översiktligt effekten på klimatgasutsläpp för de olika åtgärder som studerats. För varje åtgärd anges potentiell effekt i ett spann "Från – Till", där "Från" ska ses som särskilt utfall ur klimathänseende och "Till" som bästa utfall, utifrån de LCA-beräkningar som gjorts för de sex olika broar som använts som fallstudier. Alla effekter anges som procentuell ökning eller minskning av klimatbelastning i förhållande till utgångslaget, som är slakarmerade plattrambro platsbyggda enligt de ritningar som tillhandahållits, och utförda med Cementas anläggningscement, CEM I, och med klimatbelastning för armering i enlighet med Trafikverkets modell Klimatkalkyl v.4.

För varje åtgärd anges under "Råd och vägledning" de viktigaste medskicken projektet vill ge för att i praktiken åstadkomma minskad klimatbelastning i broprojekt. För mer detaljer kring de olika åtgärderna och utfall för de studerade broarna hänvisas till tidigare avsnitt i rapporten.

I kolumnen "Rådighet/Skede" anges den eller de aktörer i värdekedjan som i huvudsak har rådighet över respektive åtgärd, samt i vilket projektskede beslut om åtgärd kan fattas.

Syftet med denna studie är inte att försöka ge exakta siffror för vilka effekter val av specifika leverantörer eller metoder för design/konstruktion ger. Syftet är att visa på vilka reduktionspotentialer som finns för olika åtgärdskategorierna och att det är viktigt att göra medvetna val och arbeta systematiskt med reduktion av klimatgasutsläpp.

Resultaten bör ses som att det med ett aktivt och medvetet klimatarbete, och en kombination av materialrelaterade och utföranderelaterade åtgärder, ofta finns möjligheter att reducera klimatbelastningen från en vanlig plattrambrö med i storleksordningen 50%. Med framtida anpassningar av regelverk (främst SS137003 och AMA Anläggnings) för att tillåta högre inblandning av tillitsmaterial i betong kan reduktionspotentialerna bli ännu något större. Och vice versa, om man inte beaktar klimataspekten vid utforming och val av produkter finns det risk att klimatbelastningen ökar med samma storleksordning.

Det är viktigt att poängtera att de effekter av åtgärder som beskrivs här endast fokuserar på utsläpp av klimatgaser, en aspekt som idag ofta inte beaktas i broprojekt. I ett specifikt broprojekt förutsätts att en mängd andra aspekter och krav tas hänsyn till och vägs samman med klimataspekten. Det kan handla om ekonomi, andra miljöaspekter, tekniska och funktionella krav, produktionstekniska frågor, estetik, utbildningsbehov m.m.
Tabell 7. Materialrelaterade åtgärder för reduktion av klimatgasutsläpp vid byggande av plattrambroar.

<table>
<thead>
<tr>
<th>Åtgärd</th>
<th>Styrande aktör/skede</th>
<th>Effekt på klimatpåverkan</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Från</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Till</td>
</tr>
<tr>
<td>Produktval armering 35</td>
<td>Entreprenör/Byggskede</td>
<td>+46%</td>
</tr>
<tr>
<td></td>
<td>Evbeställare (krav eller incitament)/Förfrågningsunderlag (FU)</td>
<td>-27%</td>
</tr>
</tbody>
</table>

Råd och vägledning

Det finns stora skillnader i klimatgasutsläpp mellan olika specifika produkter, så val av produkt spelar mycket stor roll.

Kräv information om produktens klimatprestanda ur ett livscykelperspektiv, helst tredjepartsgranskad EPD enligt EN15804, och jämför vid val av produkt. Ju större andel armering brokonstruktionen har i förhållande till betongmängd, desto större genomslag har valet.

Ett andrahandsalternativ till produktspecifik klimatinformation kan vara att beaka följande vid produktval:

- Europeisk armering framför utomeuropeisk
- Så hög andel återvunnet stål som möjligt i tillverkningsprocessen
- Så hög andel förnybar energi som möjligt i tillverkningsprocessen

<table>
<thead>
<tr>
<th>Produktval cement</th>
<th>Entreprenör och Betongleverantör/Byggskede</th>
<th>+14%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Evbeställare (krav eller incitament)/Förfrågningsunderlag (FU)</td>
<td>-8%</td>
</tr>
</tbody>
</table>

Råd och vägledning

Det finns tydliga skillnader i klimatgasutsläpp mellan olika specifika produkter, så val av produkt spelar stor roll.

Kräv information om produktens klimatprestanda ur ett livscykelperspektiv, helst tredjepartsgranskad EPD enligt EN15804, och jämför vid val av produkt. Ju större andel betong brokonstruktionen har i förhållande till armeringsmängd, desto större genomslag har valet.

Ett andrahandsalternativ till produktspecifik klimatinformation kan vara att välja cement tillverkad med torr cementtillverkningsprocess före cement tillverkad med våt process för minskad klimatbelastning.

<table>
<thead>
<tr>
<th>Tillsatsmaterial i betong, enligt standard</th>
<th>Konstruktör/Bygghandling</th>
<th>-8%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Betongleverantör och Entreprenör/Byggskede</td>
<td>Evbeställare (krav eller incitament)/Förfrågningsunderlag (FU)</td>
<td>-15%</td>
</tr>
</tbody>
</table>

Råd och vägledning

Eftersträva så låg andel cementklinker som möjligt och utnyttja de möjligheter till inblandning av tillsatsmaterial, som flygaska och slagg (GGBS) ger. Hur stora mängder tillsatsmaterial som får tillsättas regleras i SS137003 och AMA Anläggn, beroende på vilka exponeringsklasser som föreskrivs. I AMA Anläggn 17 kommer regleringar rörande tillsatsmaterial troligen att vara harmoniserade med SS137003.

Undvik att välja högre betongkvalitet än vad som krävs för aktuell exponeringsklass (vilket kan vara lockande av rationalitets- och produktions-tekniska skäl om olika brodelar har olika exponeringsklasser).

35 Avser normal slakarmering, kolstål
<table>
<thead>
<tr>
<th>Åtgärd</th>
<th>Styrande aktör/skede</th>
<th>Effekt på klimatpåverkan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tillsatsmaterial i betong, avsteg från standard</td>
<td>Konstruktör/bygghandelning Betongleverantör och Entreprenör/ Byggskede Ev.Beställare (krav eller incitament)/Förfärgningsunderlag (FU) och/eller Godkännande av avsteg</td>
<td>Från Till</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-16% -21%</td>
</tr>
<tr>
<td>Råd och vägledning</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nya forskningsrön visar att andelen cementklinker kan minskas mer än vad som definieras i tabell 8 i SS 137003, speciellt vid tillsättning av GGBS i exponeringsklass XF4. Detta betyder att större inblandning av GGBS kan vara möjligt i XF4 (upp till 35%). Detta kräver dock i dagsläget beställarens godkännande.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Val av betongkvalitet och -typ</td>
<td>Konstruktör/Bygghandelning Betongleverantör och Entreprenör/ Byggskede</td>
<td>Från Till</td>
</tr>
<tr>
<td></td>
<td></td>
<td>+2% -9%</td>
</tr>
<tr>
<td>Råd och vägledning</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Välj så låg betongkvalitet som möjligt, och därmed så högt vct som möjligt, enligt vad som tillåts i SS137003. Undvik att välja högre betongkvalitet än vad som krävs för aktuell exponeringsklass (vilket kan vara lockande av rationalitets- och produktions-tekniska skäl om olika brodelar har olika exponeringsklasser). Självkompackerande betong (SKB) ger en liten ökning av klimatbelastningen på grund av att den innehåller kalkfiller. Klimatbelastningen kan dock minskas genom ersättning av cementklinker med tillsatsmaterial.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kombination betongåtgärder 36</td>
<td>Betongleverantör och Entreprenör/ Byggskede</td>
<td>Från Till</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-17% -27%</td>
</tr>
<tr>
<td>Råd och vägledning</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Se över möjligheterna att kombinera produktval cement, val av betongkvalitet och -typ samt att minimera mängden cementklinker genom inblandning av tillsatsmaterial så att klimatbelastningen minimeras.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Totalt materialåtgärder 37</td>
<td></td>
<td>Från Till</td>
</tr>
<tr>
<td></td>
<td></td>
<td>+57% -48%</td>
</tr>
<tr>
<td>Råd och vägledning</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Se över möjligheterna att kombinera betongåtgärder och val av armeringsstålsleverantör så att klimatbelastningen minimeras.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

36 Enligt standard SS137003
37 Enligt standard SS137003
<table>
<thead>
<tr>
<th>Åtgärd</th>
<th>Styrande aktör/skede</th>
<th>Effekt på klimatpåverkan Från</th>
<th>Effekt på klimatpåverkan Till</th>
</tr>
</thead>
<tbody>
<tr>
<td>Konstruktiv optimering av mängder</td>
<td>Arkitekt och Konstruktör/Plan och Bygghandling Materialleverantör och Entreprenör/Byggskede</td>
<td>N/A</td>
<td>-20 – -60%</td>
</tr>
<tr>
<td>Råd och vägledning</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tänk på att använda möjligheter till optimering genom parametrisering, digitalisering och arbetssätt för samverkan och en effektiv, iterativ design- och konstruktionsprocess. Exemplet visar att det finns stora möjligheter till minskad klimatbelastning genom att inkludera materialens klimatbelastning som ytterligare en parameter (utöver kostnad, byggbarhet etc.) i optimeringsarbetet. I optimeringsarbetet bör möjligheter till flexibla och skalbara lösningar vägas in, samt möjligheter att bygga vidare på konstruktioner. Analysen visar exempelvis att ökad armeringsmängd och minskad betongmängd kan ge en klimatbesparing på ca 15%.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimering av spill</td>
<td>Konstruktör och Entreprenör/Bygghandling och Byggskele Materialleverantör och Entreprenör/Byggskele</td>
<td>N/A</td>
<td>-5%</td>
</tr>
<tr>
<td>Råd och vägledning</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resurseffektivitet samt planering och projektering, i samarbete med materialleverantör, för minskat spill bör alltid eftersträvas. En prefabricerad brolösning kan ge ca 5% lägre klimatbelastning än en normal platsgjuten på grund av minskat spill av betong. Det bör också kunna betraktas som en maximal reduktionspotential för en platsgjuten konstruktion vid noggrann planering för effektiva processer och minskat spill.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optimering av transporter</td>
<td>Entreprenör och Materialleverantör/Byggskele</td>
<td>N/A</td>
<td>-3%</td>
</tr>
<tr>
<td>Råd och vägledning</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transporter kan optimeras genom att minska transportavstånd för ingående material/komponenter, välja/kräva mindre klimatbelastande transportsätt eller välja/kräva mindre klimatbelastande drivmedel för transporter.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estetiska val</td>
<td>Arkitekt och Konstruktör/Plan och Bygghandling</td>
<td>N/A</td>
<td>+25% – +33%</td>
</tr>
<tr>
<td>Råd och vägledning</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tänk på att estetiska val alltid bör inkluderas i den konstruktiva designen och inte "läggs på" så att det ger upphov till ökad resursanvändning och klimatbelastning. Studerade exempel visar på upp till ca 25% högre klimatbelastning för brutformningar styrda av estetiska krav jämfört med möjliga alternativa utformningar. LCA-beräkningarna visar att användande av vitcement kan ge ca 33% högre klimatbelastning.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Åtgärd

Styrande aktör/skede

Effekt på klimatpåverkan

Från

Till

Optimering ur underhållsperspektiv

Konstruktör och Entreprenör/Bygghandling och Byggskede

+4%

-30 – 300%

Råd och vägledning

I högt belastade trafikmiljöer kan en brokonstruktion med korrosionsskyddad armering i kantbalkar och ytarmering, eller annan konstruktion som säkerställer att tätskikt och kantbalkar inte behöver bytas under livstiden, ge stor klimatbesparing på grund av att framtida avstängningar för underhållsarbeten undviks och därmed trafikomledningar och -störningar. Det finns dock stora osäkerheter kring hur stora klimatgasutsläppen blir från underhållsåtgärder som ligger 30 år, 60 år eller ännu längre fram i tiden.

I miljöer med låg störningskänslighet ger en korrosionsskyddad utformning däremot en något högre klimatbelastning.

Vid användning av rostskyddad armering bör möjligheterna att minska täckande betongskikt tillvaratas för minskad klimatbelastning.

Val av produktionsmetod

Konstruktör och Entreprenör/Bygghandling och Byggskede

Materialleverantör och Entreprenör/Byggskede

0%

-20% – 200%

Råd och vägledning

Vid byggande i högt belastade trafikmiljöer kan en produktionsmetod med prefabricerad, spännarmerad konstruktion ge stor klimatbesparing om tiden för trafikomledningar och -störningar kan minska avsevärt jämfört med produktionsmetod med platsgjuten konstruktion.

I miljöer med låg störningskänslighet ger produktionsmetoderna likvärdig klimatbelastning vid nyproduktion.

Om en befintlig prefab-bro kan nedmonteras och återanvändas i delar eller i sin helhet ger det alltid mycket stora minskningar i klimatbelastning jämfört med nyproduktion, även om det medför resurskrävande arbeten för nedmontering och uppbyggnad.

7.1 KOMBINATIONER AV ÅTGÄRDER

Effekterna av vissa av åtgärderna i Tabell 7 och Tabell 8 kan direkt adderas. T.ex. kan reduktionspotentialen för maximala effekter av materialrelaterade åtgärder (-48%) tillsammans med maximala effekter av optimering av transporter (-3%) adderas till -51%. Andra åtgärder beror dock av varandra på ett sätt som gör att de inte kan adderas direkt. T.ex. blir reduktionspotentialen för maximala effekter av materialrelaterade åtgärder (-48%) tillsammans med effekter av konstruktiv optimering av mängder (-20%) -58% eftersom reduktionspotentialen för de materialrelaterade åtgärderna ska appliceras på 20% lägre mängder av betong och armering jämfört med referensfallet.
7.2 VAD ÄR EN EPD?
En EPD (Environmental Product Declaration; miljövarudeklaration) är ett obberoende verifierat (tredjepartsgranskat) och registrerat dokument som ger transparent och jämförbar information om produkters miljöpåverkan i ett livscykelperspektiv. Att det finns en EPD för en produkt betyder inte att den deklarerade produkten är miljömässigt fördelaktigt jämfört med alternativen - det är bara en transparent deklaration av produktens miljöprestanda.

Den relevanta standarden för EPD är ISO 14025, där de kallas "typ III miljödeklarationer". En EPD ska vara baserad på livscykelanalys (LCA) genomförd enligt standarden ISO 14040. För byggprodukter och -processer anger den europeiska standarden EN 15804 grundläggande produktkategorieregler (PCR) för EPD:er för byggprodukter och harmoniserar beräkningen och resultaten av livscykelanalysen på europeisk nivå.

7.3 ÅTGÄRDERNA I RELATION TILL TRAFIKVERKETS KLIMATKRAV
I Trafikverkets styrande riktlinje TDOK 2015:0480 för klimatkrav anges, som vägledning för att utforma projektspecifika krav på reducerationer av klimatgusutsläpp, att genomsnittliga reduceringspotentialer för detaljprojektering och byggande av byggnadsvärk (bro, betongtunnel eller annat betongbyggnadsvärk) bedöms vara
- 17% för byggnadsvärk som färdigställs senast 2020-2024
- 30% för byggnadsvärk som färdigställs senast 2025-2029

De maximala reduceringspotentialer som anges i denna studie bör ses som en angivelse av hur långt man kan nå med dagens bästa teknik och med fortsatt utveckling av teknik och arbetssätt på kort sikt. För att uppnå ännu större reducerationer, och på sikt koldioxidneutrala betongbroar, behövs transformativa åtgärder när det gäller teknikutveckling för cement- och stålproduktion.

7.4 ÅTGÄRDERNA I RELATION TILL CEEQUAL OCH PAS 2080
I både CEEQUAL och PAS 2080 premiers ett systematiskt arbetssätt för minskning av klimatgusutsläpp från infrastrukturprojekt ur ett livscykelperspektiv i hela värdekedjan. CEEQUAL omfattar även många andra hållbarhetsaspekter medan PAS 2080 är helt inriktad på utsläpp av klimatgaser och standarden anger hur de olika aktörerna i värdekedjan (beställare, designer/ konstruktörer, entreprenörer och materialleverantörer) bör arbeta systematiskt med frågan. I Tabell 9 anges ett urval av frågor och områden i CEEQUAL och PAS 2080 som har kopplningar till de åtgärder för minskad klimatbelastning som studerats. Listan ska ses som ett exempel och inte en heltäckande förteckning.
Tabell 9. Utval av frågor/områden i CEEQUAL och PAS 2080 som kopplar till studerade åtgärder.

CEEQUAL

<table>
<thead>
<tr>
<th>Frågor/områden</th>
<th>CEEQUAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.3.4</td>
<td>Skapa resurseffektivitet</td>
</tr>
<tr>
<td>2.4.1</td>
<td>Förhållning till livscyklens relevanta områden och materializering</td>
</tr>
<tr>
<td>2.4.3</td>
<td>Livscykel: byggningsmaterial och livscykelanalyser</td>
</tr>
<tr>
<td>8.1.1</td>
<td>Riktlinjer och mål för resurseffektivitet</td>
</tr>
<tr>
<td>8.2.1</td>
<td>Livscykelanalyser</td>
</tr>
<tr>
<td>8.2.2</td>
<td>Implementering av identifierade möjligheter till förbättringar i livscykelanalysen</td>
</tr>
<tr>
<td>8.3.1-8.3.2</td>
<td>Resurseffektiv materialanvändning</td>
</tr>
<tr>
<td>8.3.4</td>
<td>Beständighet och livet underhållsbehov</td>
</tr>
<tr>
<td>8.3.8</td>
<td>Framtida demontering/division</td>
</tr>
<tr>
<td>8.7.1</td>
<td>Ansvarsfulla inköp av material</td>
</tr>
<tr>
<td>8.7.4</td>
<td>Bevarande av befintliga konstruktioner och material</td>
</tr>
<tr>
<td>8.7.5</td>
<td>Återanvänd eller återvunnet material</td>
</tr>
</tbody>
</table>

PAS 2080

<table>
<thead>
<tr>
<th>Frågor/områden</th>
<th>PAS 2080</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.2.b</td>
<td>Asset owner/manager requirements: encourage value chain members to challenge the status quo to drive low carbon solutions</td>
</tr>
<tr>
<td>5.3.a</td>
<td>Designer requirement: collaborate to examine the feasibility of low carbon solutions, b) put systems in place to ensure they challenge the asset owners/managers’ asset standards, or equivalent to drive low carbon solutions</td>
</tr>
<tr>
<td>5.4.b</td>
<td>Constructor requirement: challenge product/material suppliers to provide low carbon solutions</td>
</tr>
<tr>
<td>5.5</td>
<td>Product material suppliers: promote low carbon solutions to all value chain members during early infrastructure work stages</td>
</tr>
<tr>
<td>6.1.2</td>
<td>Meeting carbon reduction targets</td>
</tr>
<tr>
<td>6.1.4</td>
<td>Carbon emissions reduction hierarchy</td>
</tr>
<tr>
<td>6.2.1.d</td>
<td>Carbon management process: Develop a collaborative environment for all value chain members involved in the carbon management process</td>
</tr>
</tbody>
</table>

7.5 **ÅTGÄRDERNA I RELATION TILL “LCA-TRAPPAN”**

Cementa har i samarbete med CBI, IVL och Tyréns beskrivit hur livscykelanalys kan användas stegvis (se Figur 19) för att beräkna miljöprestanda och prioritera vilka åtgärder som är mest effektiva och som ger möjlighet att mäta förbättringar och fullt ut jämföra olika konstruktionslösningar miljöprestan-

det. För att nå dit måste byggnadsverkets egenskaper, funktion och livslängd sammankopplas med dess miljöprestanda. De åtgärder, råd och vägledning som presenteras i denna studie ansluter väl till tanken att man kan uppnå stora förbättringar genom att jämföra sig själv (trappsteg 2 och 3).

Figur 19. LCA kan användas i olika syften och avgör kravet på datakvalitet och omfattning i form av livscykelskeden och byggdeltabeller.

Nyttan med deklarerad klimatpåverkan, artikel i Samhällsbyggaren #4/2016
8 DISKUSSION OCH FORTSÄTTNING

Den viktigaste slutsatsen från detta projekt är att det redan i dagsläget, med dagens bästa tillgängliga teknik, finns stora potentialer för att minska klimatgasutsläppen från byggande av en så vanlig komponent i infrastrukturen som en plattrambro. Om dessa potentialer tas tillvara för denna mängdprodukt ger det stort genomslag sett till helheten i infrastrukturbyggnadet. De åtgärder och potentialer som redovisas i rapporten är naturligtvis även till stora delar relevant och kan tillämpas även för andra byggnadsverk som andra betongbrotyper, betongtunnlar, stödmurkonstruktioner och liknande, och på det sättet ge ännu större reduktioner.

En minst lika viktig slutsats från genomförandet av projektet är att det krävs samverkan mellan alla aktörer i värdekedjan beställare-konsult-entreprenör-materialleverantör för att identifiera och skapa förutsättningar för att realisera dessa reduktionspotentialer. Ingen av de aktörer som samverkat i projektet hade på egen hand kunnat bena ut de komplicerade samband mellan krav från Trafikverket, eurokoder, betongstandarder, konstruktionsförutsättningar, estetiska krav, Produktionsförutsättningar, produktval m.m. som analyserats här. Det finns med andra ord en stor potential till förbättring av hur branschen arbetar gemensamt och systematiskt med att inkludera även klimataspekten i det normala arbetet med att optimera brobyggande.

Projektet visar också att det finns ett behov av fortsatt utveckling och harmonisering av tekniska regelverk som sätter gränser för hur stora reduktioner av klimatgasutsläpp som kan uppnås för vissa åtgärder. Ett exempel är regelverken SS 137003 samt AMA Anläggning som reglerar bland annat hur stora mäng-

Det finns många dimensioner av de frågeställningar och åtgärder som belysts i detta projekt som skulle vara lämpliga för fortsatt forskning och branschgemensam utveckling. Några av de förslag till fortsättning som framförts inom projektet är:

- Ytterligare liknande breddstudier som tar fram råd och vägledning för klimatoptimering av andra infrastrukturdelar, som grundförstärkning, tunnelbyggnande m.m.
- Projekt för att kartlägga och ge förslag till hur förutsättningar för klimatoptimering utvecklas inom delområden som harmonisering och utveckling av tekniska regelverk, konstruktiv optimering etc.
- Analyser av kostnadseffekter av klimatoptimering
- Test av implementering av projektresultat i digitala modeller, BIM, genom fallstudier.
- Test av tillämpning av råd och riktlinjer i skarpa broprojekt, samt framtagande av EPD:er för färdiga broar.

39 Se t.ex. Lindvall & Löfgren (2016), "Sammanfattande slutrapport från projektet Effektiva betongkonstruktioner – Funktionella materialkrav", finansierat av Trafikverket.
BILAGA A:
KLIMATOPTIMERAT BYGGANDE AV BETONGBROAR - LCA
Klimatoptimerat byggnande av betongbroar - LCA

Bakgrund till uppdraget
RISE CBI Betonginstitutet har på uppdrag av WSP analyserat den potentiella minskningen eller ökningen av klimatgasutsläpp för olika åtgärder vid byggnade av plattrambror. Uppdraget är en del av SBUF projektet (13207) ”Klimatoptimerat byggnande av betongbroar”.

Förutsättningar/regelverk
Som underlag till denna analys har SS 137003 ” Betong – Användning av SS-EN 206 i Sverige” använts. Denna standard är ett komplement till SS-EN 206 och visar de nationella valen i det egna landet. Tabell F.1 i SS-EN 206 anger rekommenderade gränsvärden för betongsammansättning och egenskaner för betong medan tabell 8a och 8b i SS 137003 anger krav på vct-ekv (ekvivalenta vattencementtalet), C-ekv (ekvivalenta cementhalten), frostresistens och accepterade bindemedelssammansättningar för olika exponeringsklasser. Tabell 1 visar de dimensionerande exponeringsklasserna i studien och dess krav på vct, lägsta klinkerhalt samt maximala tillsatsmaterial. I detta projekt används konceptet likvärdig prestanda hos bindemedelskombinationer (EPCC) vid ersättning av klinker med tillsatsmaterial. Det betyder att k-värdet räknas som om det vore lika med 1 och att alla tillsatsmaterial därmed har samma prestanda som cement. Med andra ord behandlas tillsatsmaterialen som om de vore cement vilket ger ett oförändrat vattencementtal vid cementersättning.

Tabell 1 Utdrag ur SS 137003 med krav på vct, cementklinker och bindemedel för dimensionerande exponeringsklasser.

<table>
<thead>
<tr>
<th>Krav</th>
<th>XC4</th>
<th>XD3</th>
<th>XF3</th>
<th>XF4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Högsta vct</td>
<td>0,55</td>
<td>0,40</td>
<td>0,55</td>
<td>0,45</td>
</tr>
<tr>
<td>Andel PC-klinker av bindemedel [%]</td>
<td>≥ 65</td>
<td>≥ 65</td>
<td>≥ 65</td>
<td>≥ 80</td>
</tr>
</tbody>
</table>
Högsta tillåtna andel av bindemedel

<table>
<thead>
<tr>
<th></th>
<th>35</th>
<th>35</th>
<th>35</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flygaska [%]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slagg [%]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

I Trafikverkets tekniska krav, TRVK bro 11 hänvisas materialutförande och kontroll till AMA anläggning 10. Där anges att SS 137003 används för bindemedel av betong med undantag för flygaska där högst 6 % får inblandas i exponeringsklass XF4 och 11 % för övriga exponeringsklasser. Sedan sommaren 2014 ska nya projekt följa revisionen till AMA anläggning 10, AMA anläggning 13. Där gäller en maximal inblandning av 20 % flygaska och 5 % slagg för XF4. För XF2 och XF3 är den maximala inblandningen av slagg och flygaska 10 % respektive 35 %. I övrigt anger TRVR bro 11 (Trafikverkets råd bro) det maxima vattencementtalet till 0,50 för XF3.

Senastestudier

I en studie av Thomas Concrete Group (TCG) visades det att det skulle kunna gå att använda 35% slagg för betong i exponeringsklass XF4 [1]. Speciellt för ett lägre vct på 0,40. Motståndet mot kloridinträngning kunde förbättras med tillsats av flygaska och slagg vilket skulle leda till en förändrad dimensionering av konstruktionen med exempelvis armeringsmängd och täckande betongskikt. I studien föreslås att AMA anläggnings- och TRVAMA revideras så att de harmoniserar med SS137003 vad gäller inblandning av slagg och flygaska. Vidare föreslås det även att andelen slagg i SS 137003 ska ses över för att öka inblandningen från högst 20 % till högst 35 % men att frysprovning (XF4) genomförs med accelererad karbonatisering efter en förlängd härdningstid.

Enligt studier av Luping och Löfgren samt TCG har en inblandning av flygaska och slagg olika påverkan på livslängden beroende på i vilken miljö betongen appliceras[2,3]. För miljöer med klorider visade Luping och Löfgren att en tjockare täckande betongskikt krävs för CEM I än vad som anges i EKS 10 (boverkets konstruktionsregler) och att vid en inblandning av flygaska och slagg kan detta täckskikt minskas då tillsatsmaterialen ger ett ökat motstånd mot kloridinträngning. Vid en miljö där armeringen endast är utsatt för karbonatisering visade TCG att EKS 10 stämmer mer eller mindre för CEM I vid olika vbt (vattenbindemedelstal). Dock gäller att ju mer inblandning desto tjockare bör täckskiktet vara. Detta innebär att den verkliga livslängden inte stämmer överens med den livslängd som anges för de täckande betongskikt som finns i Tabell D-1 i EKS 10.

Fallstudier

Broar

För detta projekt har det tagits fram underlag för LCA-beräkningar för 6 olika befintliga platsgjutna platttrambroar i enlighet med de typfall som definierats i projektet. De har en spännvidd mellan 5,88 och 17,46 m och är exponerade för olika miljöer. Tabell 2 visar dimensionerande exponeringsklasser för varje bro, per brodel. Bro nr 16-1070-1 har de strängaste exponeringsklasserna och kan enligt regelverken endast komma upp till 20 % cementlinerersättning i form av flygaska och slagg. Broarna har olika utformningar och vissa delar som stagbalkar saknas för 5 av 6 broar. Kantbalken hos 16-1070-1 är troligtvis inräknad i en annan brodel.
Tabell 2 Dimensionerande exponeringsklasser för utvalda broar och brodelar.

<table>
<thead>
<tr>
<th>Brodel/Bro nr.</th>
<th>16-1070-1</th>
<th>100-144-1</th>
<th>542</th>
<th>5-1259-1</th>
<th>40-4233-1</th>
<th>100-147-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ramben</td>
<td>XD3/XF4</td>
<td>X C4/XF3</td>
<td>X D1/XF4</td>
<td>X C4/XF3</td>
<td>X C4/XF3</td>
<td>X D1/XF4</td>
</tr>
<tr>
<td>Vingar(4 st)</td>
<td>XD3/XF4</td>
<td>X D1/XF4</td>
<td>X D1/XF4</td>
<td>X D1/XF4</td>
<td>X D1/XF4</td>
<td>X D1/XF4</td>
</tr>
<tr>
<td>Stålbalkar</td>
<td>X D3/XF4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Länkplattor</td>
<td>X D3/XF4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Hos alla broar med respektive brodelar har betonglass C 35/45 använts, förutom för 100-147-1 där bottenplattan är av C 30/37. I analysen har C 32/40 använts istället för C 30/37.

Tabell 3 visar vilken norm som användes vid tid för byggande samt dimensioner och mängder. Förutom att bro 16-1070-1 är utsatt för hårdare miljö är den även den största bron.

Tabell 3 Specifikationer och normer för utvalda broar.

<table>
<thead>
<tr>
<th>Bro nr.</th>
<th>16-1070-1</th>
<th>100-144-1</th>
<th>542</th>
<th>5-1259-1</th>
<th>40-4233-1</th>
<th>100-147-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Norm</td>
<td>TK Bro (Publ2009:27)</td>
<td>TRVK Bro 11 +Supplement1</td>
<td>TRVK Bro 11</td>
<td>TRVK Bro 11 +Supplement1</td>
<td>TK Bro</td>
<td>TRVK Bro 11 +Supplement1</td>
</tr>
<tr>
<td>Livslängd</td>
<td>L50</td>
<td>L50</td>
<td>L100</td>
<td>L100</td>
<td>L50</td>
<td>L100</td>
</tr>
<tr>
<td>Spännvidd [m]</td>
<td>17,35</td>
<td>8</td>
<td>10,5</td>
<td>14,04</td>
<td>10,5</td>
<td>5,88</td>
</tr>
<tr>
<td>Yta [m2]</td>
<td>470</td>
<td>60</td>
<td>210</td>
<td>120</td>
<td>50,3</td>
<td>43</td>
</tr>
<tr>
<td>Mängd betong [m3]</td>
<td>1064</td>
<td>95</td>
<td>264</td>
<td>266</td>
<td>111</td>
<td>69</td>
</tr>
<tr>
<td>Mängd armering [ton]</td>
<td>119,7</td>
<td>23,9</td>
<td>30,2</td>
<td>59,2</td>
<td>12,1</td>
<td>8,6</td>
</tr>
<tr>
<td>Armeringsmängd [vikt-%]</td>
<td>5</td>
<td>11</td>
<td>5</td>
<td>10</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>
I figur 1 visas ett exempel på mängdfördelning per brodel.

![Diagram](image)

Figur 1 Fördelning av betong och armering per brodel.

Överbyggnad (produktionsmetod)

Vid jämförelse mellan platsgjutet och prefabricerat används två likvärdiga överbyggnader. Mängderna, som kommer från strängbetong, redovisas i Tabell 4 och 5. Av dessa material är det endast betong och armering som tas hänsyn till. Formar och skarvhylsor antas ha en liten påverkan och är därför exkluderade.

Den prefabricerade överbyggnaden har en pågjutning av platsgjuten betong.

Tabell 4 Platsgjuten överbyggnad.

<table>
<thead>
<tr>
<th>Material</th>
<th>mängd</th>
<th>enhet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Form</td>
<td>270</td>
<td>m2</td>
</tr>
<tr>
<td>Bärande formställning</td>
<td>1350</td>
<td>luft m3</td>
</tr>
<tr>
<td>Betong C35/45, vct-ekv <0.45</td>
<td>162</td>
<td>m3</td>
</tr>
<tr>
<td>Armering K500C-T</td>
<td>24</td>
<td>ton</td>
</tr>
</tbody>
</table>
Tabell 5 Prefabricerad överbyggnad.

<table>
<thead>
<tr>
<th>Material</th>
<th>mängd</th>
<th>enhet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Form</td>
<td>8</td>
<td>m2</td>
</tr>
<tr>
<td>Betong platsgjuten C30/37 vct-ekv<0.45</td>
<td>81</td>
<td>m3</td>
</tr>
<tr>
<td>Armering diameter K500C-T platsgjuten</td>
<td>7,6</td>
<td>ton</td>
</tr>
<tr>
<td>Betong C55/67</td>
<td>60,17</td>
<td>m3</td>
</tr>
<tr>
<td>Slakarmering K500C-T</td>
<td>4,4</td>
<td>ton</td>
</tr>
<tr>
<td>Spännlina Y1860S7 d=12.9mm</td>
<td>5319,6</td>
<td>m</td>
</tr>
<tr>
<td>Mekaniska skarvhylsor</td>
<td>604</td>
<td>st</td>
</tr>
</tbody>
</table>

Utgångspunkt

Som referensscenario för livscykelanalysen används emissionsfaktorer för betong och armering enligt Trafikverkets modell för klimatkalkyl [4], vilket innebär betong utan tillsatsmaterial med anläggningscement från Cementa och armering tillverkad med genomsnittlig europeisk teknik.

Åtgärder

De åtgärder som har studerats i detta arbete är:

- **Val av cement**
 EPDer från olika cementtillverkare jämförs i en omfattande analys. I huvudanalysen med broarna används den anläggningscement med högst respektive lägst klimatpåverkan.

- **Tillsatsmaterial i betong**
 Cementklinker ersätts med flygaska och slagg till en nivå som motsvarar 80 % och 65 % klinker (se tabell 1). Enligt SS 137003 får maximalt 20 % respektive 35 % flygaska och slagg användas i bindemedlet vid klinkernivåerna 80 % respektive 65 %. I verkligheten blir det lägre än 20 % och 35 % tillsatsmaterial på grund av att cement ofta innehåller upp till 5 % kalkstensfiller. Med hänsyn till detta har den maximala mängden tillsatsmaterial beräknats till 16 % tillsatsmaterial vid 80 % klinker och 32 % tillsatsmaterial vid 65 % klinker. Hur stor mängd som ersätts görs enligt SS 137003 och de rådande exponeringsklasserna för respektive bro. I denna analys kallas fortfarande andelarna för 20 % och 35 % och anger då gränsvärdet i enlighet med SS 137003. Utöver standarden undersöks även en tillsats på 35 % flygaska för betong med vct 0,40 och exponeringsklass XF4 enligt studie av TCG.

- **Val av betongklass**
 Utbyte av den befintlig betongen mot en med lägre betongklass och därmed högre vct. Hur högt vct får vara bestäms i SS 137003.

- **Val av betongtyp**
 Självkompakterande betong (SKB) med recept från SBUF-projekt 12645 jämförs med referensbetongen. Ingen klinkерersättning undersöks här.
- **Val av rostskydd**
 Inverkan av att använda rostskyddad armering i kantbalkar respektive överbyggnad undersöks. Alternativ för jämförelse är rostfri samt varmförzinkad armering. Dessutom undersöks även kombinationen av rostfri armering och ett minskat täckskikt av betong där 10 mm dras av från överbyggnadens tjocklek.

- **Val av armeringsstål**
 Klimatpåverkan från armeringen varierar en hel del beroende på tillverkningsprocess samt ursprungsland. Här jämförs skrotbaserad armering från Sverige och Italien som tillverkas med ljusbågsugn samt okänt stål där köparen har liten kontroll över var stålet kommer ifrån och hur det är tillverkat. Det okända stålet är ett globalt medelvärde på ståltillverkningen.

- **Optimering av transporter**
 Denna åtgärd beskriver den sammansatta effekten av minskade transportavstånd, val av klimatvänligare transportmedel samt användning av förnybara drivmedel. Det görs genom att transportavståndet till byggarbetsplatsen minskas från 700 km till 0 km för armering samt 40 km till 0 km för betongen. Förutom transport till byggarbetsplats undersöks även påverkan av entreprenadberg dvs ett avstånd på 0 km.

- **Kombinationsåtgärder-betong**
 - lägst cement, max tillsatsmaterial, lägst betongklass
 - lägst betongklass, max tillsatsmaterial
 - lägst cement, max tillsatsmaterial

- **Val av produktionsmetod**
 En prefabricerad överbyggnad jämförs med en platsgjuten. Jämförelsen innefattar material och transport till byggarbetsplats. Ingen hänsyn tas till klinkerersättning eller armeringstyp utan endast skillnaden mellan en standardlösning i prefab och platsgjuten betong.

- **Optimering av konstruktion**
 Ett scenario för skillnad mellan en tunn konstruktion med mycket armering och en tjock konstruktion med mindre armering testat för överbyggnaden hos bro 100-147-1. Inga kombinationsåtgärder utförs.

- **Estetiska val**
 Designparametern i detta fall är vitcement från Aalborg. Denna jämförs med cementas anläggningcemment. Aalborgs vitcement är lågalkaliskt, sulfatresistent (SR5) och har en ordinar värmeutveckling vilket gör den tillämplig i detta fall. Vitcementet tillämpas endast på bro 542.

- **Optimering ur underhållsperspektiv**
 Tre olika underhållsalternativ undersöks: 1. Reparation och utbyte av kantbalk. 2. Rostfritt stål i kantbalk och delar av överbyggnad. 3. Impregnering av kantbalk.

Den maximala mängd tillsatsmaterial och högst vct som kan användas för respektive brodel visas i Tabell 4. I tabellen framgår det att bro 5-1259-1 har de lägsta kraven medan bro 16-
1070-1 har de högsta kraven. Vid tillämpning av TCGs studie ökas tillsatsmaterialen från 20 till 35 % för betong med vct 0,40. Det innebär att broarna kommer ha en total mängd tillsatsmaterial på 35 %. Dock görs ingen kombinationsåtgärd för TCGs studie.

Tabell 6 Maximal tillsatsmaterial och högst vct för varje bro.

<table>
<thead>
<tr>
<th>Brodel/Bro nr.</th>
<th>16-1070-1</th>
<th>100-144-1</th>
<th>542</th>
<th>5-1259-1</th>
<th>40-4233-1</th>
<th>100-147-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bottenplattor</td>
<td>20% tillsats/ vct 0,40</td>
<td>35% tillsats/ vct 0,55</td>
</tr>
<tr>
<td>Ramben</td>
<td>20% tillsats/ vct 0,40</td>
<td>35% tillsats/ vct 0,55</td>
</tr>
<tr>
<td>Vingar(4 st)</td>
<td>20% tillsats/ vct 0,40</td>
<td>20% tillstats/ vct 0,45</td>
</tr>
<tr>
<td>Stagbalkar</td>
<td>20% tillsats/ vct 0,40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Överbyggnad</td>
<td>20% tillsats/ vct 0,40</td>
<td>20% tillstats/ vct 0,45</td>
</tr>
<tr>
<td>Länkplattor</td>
<td>20% tillsats/ vct 0,40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kantbalk</td>
<td>20% tillsats/ vct 0,40</td>
<td>20% tillstats/ vct 0,45</td>
</tr>
</tbody>
</table>

Livscykelanalys

För underhållet jämförs de 3 ovannämnda scenarion på bro 542 med följande underhållsintervall.

1. Utbyte av kantbalk var 60e år, reparation av ca 20 % av kantbalken var 20e år enligt studier av Mattsson & Sundquist och Muñoz [5,6]
2. Underhållsfritt i 120 år. Rostfri armering i kantbalk och delar av överbyggnad används.
3. Impregnering av kantbalkar och andra delar av bron. Impregneringen görs var 15e år.
Analysen av underhållet ger en grov uppskattning av växthusgasutsläppet då exakta mängder inte har verifierats. Dock är andelen som är kantbalk hos en bro väldigt liten och därför bör en grov uppskattning vara tillräcklig.

Den deklarerade enheten för broarna är en platsgjuten plattrambro. För överbyggnaden är det istället en överbyggnad för en specifik plattrambro. Vid undersökning av underhållsscenarier är livslängden 120 år motsvarande L100.

Vid ersättning av CEM I med flygaska eller slagg sker det en viss förändring i den totala betongvolymen på grund av att de har olika densiteter. Detta åtgärdas med en justering av ballasten och kommer inte ha en påverkan på koldioxidutsläppet.

Indata

Indata består till störst del av miljövarudeklarationer, EPD, vilka följer EN 15804. Övriga källor till råmaterial och energi är ecoinvent version 3 samt Trafikverkets data för armering (från ELCD). Undantag är impregneringsmedlet där data är hämtad från en rapport av the Global Silcones Council (GSC) [7]. Transporter beräknas med NTMs data och är samma som hos Svensk Betongs EPD-verktyg. Tabell 7 visar de råmaterial som har använts i broberäkningarna. All platsgjuten betong är baserad på recept från TCG. Plattambroarna antas byggas i Stockholm och all transport sker därför dit. För platsgjuten betong sker transporten med en 6 m³-betongbil med data för bränsleförbrukning från Scania. Transportavståndet antas vara 30 km. Prefabelement antas transporteras 200 km med en lastbil som tar 40t last.

I betongfabriken antas det gå åt 13 kWh el och 10 kWh värme för platsgjuten betong och för prefabfabriken är det 70 kWh el och 70 kWh värme. Sifforna är hämtade från byggaradeklarationer.

Tabell 7 Indatan som använts i huvudanalysen.

<table>
<thead>
<tr>
<th>Material</th>
<th>Benämning</th>
<th>Grind</th>
<th>Referens</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anläggningscement, cementa</td>
<td>Referens</td>
<td>Slite</td>
<td>EPD-HCG-20140186-CAD1-EN</td>
</tr>
<tr>
<td>Anlegsegement, Norcem</td>
<td>Låg</td>
<td>Brevik, Norge</td>
<td>NEPD 00023N rev1</td>
</tr>
<tr>
<td>Lavalkali sulfatbeständig cement, Aalborg</td>
<td>Hög</td>
<td>Aalborg</td>
<td>NEPD-00164E</td>
</tr>
<tr>
<td>Aalborg white, Aalborg</td>
<td>Vitement</td>
<td>Aalborg</td>
<td>NEPD-00162E</td>
</tr>
<tr>
<td>Slakarmering, Celsa</td>
<td>Låg</td>
<td>Västerås</td>
<td>EPD: S-P-00305</td>
</tr>
<tr>
<td>Slakarmering, I.R.O. S.p.A</td>
<td>Europeisk</td>
<td>Odolo BS, Italien</td>
<td>EPD: S-P 00257</td>
</tr>
<tr>
<td>Material (Språngmering)</td>
<td>Referens</td>
<td>Transportavstånd</td>
<td>Trafikverket/ELCD</td>
</tr>
<tr>
<td>-------------------------</td>
<td>-----------</td>
<td>------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Slakarmering, trafikverket</td>
<td>Referens</td>
<td>700 km transportavstånd</td>
<td>Trafikverket/ELCD</td>
</tr>
<tr>
<td>Slakarmering, global</td>
<td>Okänd ursprung</td>
<td>20000 km (ex Kina)</td>
<td>Ecoinvent 3</td>
</tr>
<tr>
<td>Spänningar, FNsteel</td>
<td>Spänningar</td>
<td>Linköping</td>
<td>EPD: S-P-00810</td>
</tr>
<tr>
<td>Rostfritt stål, Outokumpu</td>
<td>Rostfritt</td>
<td>Sheffield, UK</td>
<td>ECO EPD Ref. No.: 000432</td>
</tr>
<tr>
<td>Varmförzinkad stål, Trafikverket+EGGA</td>
<td>Varmförzinkad</td>
<td>Samma som trafikverkets stål</td>
<td>Trafikverket +EPD S-P-00915</td>
</tr>
<tr>
<td>Platsgjuten betong, C 35/45, TCG</td>
<td>C 35/45 (referens)</td>
<td>30 km</td>
<td>CBIs LCA verktyg</td>
</tr>
<tr>
<td>Platsgjuten betong, C 32/40, TCG</td>
<td>Lägsta möjliga btg klass</td>
<td>30 km</td>
<td>CBIs LCA verktyg</td>
</tr>
<tr>
<td>Platsgjuten betong, C 28/35, TCG</td>
<td>Lägsta möjliga btg klass</td>
<td>30 km</td>
<td>CBIs LCA verktyg</td>
</tr>
<tr>
<td>SKB, SBUF-projekt 12645</td>
<td>SKB</td>
<td>30 km</td>
<td>CBIs LCA verktyg</td>
</tr>
<tr>
<td>Prefab betong, C50/60, CBI</td>
<td>prefab</td>
<td>200 km</td>
<td>CBIs LCA verktyg</td>
</tr>
<tr>
<td>Impregneringsmedel/silane</td>
<td>Impregnering</td>
<td>-</td>
<td>[6]</td>
</tr>
</tbody>
</table>

Resultat

Analys av råmaterial

Cement

Figur 2 klimatpåverkan av cement exklusive och inklusive transport.

Armering

Resultatet visar att skrotbaserad slakarmering från Celsa har den lägsta klimatpåverkan i jämförelsen (Figur 3). Den är 49 % lägre än den italienska armeringen från IRO. Trafikverket använder sig av en armering som är baserad på ELCD med viss modifiering. Denna antas vara ett europeiskt medelvärde och utgörs av en viss procent skrot och resten jungfruligt stål. Ecoinvents armering är ett globalt medelvärde med ett skrotinnehåll på ca 30 % och har som förväntat den högsta klimatpåverkan på 2043 kg CO2/ton. Vidare har förspänd armering en generellt högre klimatpåverkan än slakarmering. Rostfri slakarmering har högst klimatpåverkan per ton. Varmförzinkat stål har betydligt lägre klimatpåverkan än rostfritt stål.
Figur 3 Klimatpåverkan av armering exklusive transport.

Betong

Figur 4 Klimatpåverkan av betong med olika hållfastheter och inblandningar av flygaska och slagg.

Broarna

Figur 5-10 illustrerar klimatpåverkan fördelad mellan olika konstruktionsdelar för alla 6 platttrambroarna i referensscenariot. Överlag ger överbyggnaden och rambenen störst bidrag till klimatpåverkan. I vissa fall ger även bottenplattorna och vingarna ett betydande bidrag. Kantbalken har den lägsta påverkan. För bro 100-144-1 och 5-1259-1 där armeringsmängden är högre än övriga broar ses en klar påverkan från armeringen där den i vissa fall utgör över 50 % av konstruktionsdelen. Materialtransporter har generellt en väldigt liten påverkan på klimatet.
Figur 5

16-1070-1

![Bar chart 16-1070-1](image)

Figur 6

100-144-1

![Bar chart 100-144-1](image)
Figur 7

Figur 8
Figur 9

Figur 10
Sammanställning
Tabell 8 visar den procentuella skillnaden vid varje åtgärd gentemot standardlösningen ("ingen åtgärd" i tabellen). Störst påverkan har armeringens ursprung och kombinationsåtgärden med minsta möjliga cement, betongklass och maximala tillsatsmaterial enligt standard. De broar som har en högre armeringsmängd visar en större känslighet för armeringens ursprung. I tabellen framgår det att den lägsta möjliga klimatpåverkan som kan fås, om standarden följs, är mellan -33 % och -48 %. Om avsteg från standard enligt TCG:s utredning tillåts kan klimatbelastningen minskas med ytterligare 3 – 10 % beroende på bro. Den högsta möjliga är +40 % till +57 %. Variationen mellan högsta och lägsta klimatpåverkan kan bli upp till 103 procentenheter (bro 100-144-1).

Tabell 8 Sammanställning av åtgärder.

<table>
<thead>
<tr>
<th>ÅTGÄRD</th>
<th>16-1070-1</th>
<th>100-144-1</th>
<th>542</th>
<th>5-1259-1</th>
<th>40-4233-1</th>
<th>100-147-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ingen åtgärd</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Cement – anläggning (CEM I)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lågsta</td>
<td>-8%</td>
<td>-6%</td>
<td>-8%</td>
<td>-6%</td>
<td>-8%</td>
<td>-8%</td>
</tr>
<tr>
<td>Högsta</td>
<td>+14%</td>
<td>+11%</td>
<td>+14%</td>
<td>+12%</td>
<td>+14%</td>
<td>+14%</td>
</tr>
<tr>
<td>Cement - andel tillsatsmaterial</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slagg 20%</td>
<td>-10%</td>
<td>-8%</td>
<td>-10%</td>
<td>-8%</td>
<td>-10%</td>
<td>-10%</td>
</tr>
<tr>
<td>Flygaska 20%</td>
<td>-11%</td>
<td>-8%</td>
<td>-11%</td>
<td>-9%</td>
<td>-11%</td>
<td>-11%</td>
</tr>
<tr>
<td>Slagg 35% (helt eller delvis)</td>
<td>-</td>
<td>-12%</td>
<td>-12%</td>
<td>-13%</td>
<td>-15%</td>
<td>-12%</td>
</tr>
<tr>
<td>Flygaska 35% (helt eller delvis)</td>
<td></td>
<td>-13%</td>
<td>-13%</td>
<td>-13%</td>
<td>-15%</td>
<td>-13%</td>
</tr>
<tr>
<td>Slagg 35% (helt, enligt studie av TCG)</td>
<td>-21%</td>
<td>-16%</td>
<td>-21%</td>
<td>-17%</td>
<td>-21%</td>
<td>-20%</td>
</tr>
<tr>
<td>Betong</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SKB</td>
<td>+1,7%</td>
<td>+1,3%</td>
<td>+1,7%</td>
<td>+1,4%</td>
<td>+1,7%</td>
<td>+2,1%</td>
</tr>
<tr>
<td>Lägsta möjliga btg klass</td>
<td>-</td>
<td>-4%</td>
<td>-5%</td>
<td>-8%</td>
<td>-9%</td>
<td>-4%</td>
</tr>
<tr>
<td>Rostskydd</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rostfri</td>
<td>-</td>
<td>+1,2%²</td>
<td>+4,1%</td>
<td>+0,8%²</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Varmförzinkad</td>
<td>-</td>
<td>+0,3%</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Rostfri/slimmad (-10 mm)</td>
<td>+3%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slakarmering</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Låg</td>
<td>-15%</td>
<td>-27%</td>
<td>-15%</td>
<td>-25%</td>
<td>-15%</td>
<td>-17%</td>
</tr>
<tr>
<td>Europeisk</td>
<td>-5%</td>
<td>-9%</td>
<td>-5%</td>
<td>-8%</td>
<td>-5%</td>
<td>-5%</td>
</tr>
<tr>
<td>Okänt ursprung</td>
<td>+26%</td>
<td>+46%</td>
<td>+27%</td>
<td>+42%</td>
<td>+26%</td>
<td>+29%</td>
</tr>
<tr>
<td>Transporter</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Armering, 0 km(700 km)</td>
<td>-0,9%</td>
<td>-1,5%</td>
<td>-0,9%</td>
<td>-1,4%</td>
<td>-0,8%</td>
<td>-0,9%</td>
</tr>
<tr>
<td>Betong, 0 km (30 km)</td>
<td>-1,6%</td>
<td>-1,2%</td>
<td>-1,6%</td>
<td>-1,3%</td>
<td>-1,6%</td>
<td>-1,6%</td>
</tr>
<tr>
<td>Ballast, 0 km (40 km)</td>
<td>-0,4%</td>
<td>-0,3%</td>
<td>-0,4%</td>
<td>-0,4%</td>
<td>-0,5%</td>
<td>-0,4%</td>
</tr>
<tr>
<td>Kombinationsåtgärd - betong</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CBI Betonginstitutet AB
Min cement, max tillsats, min btg klass
-17% -20% -23% -24% -27% -21%
Min btg klass, max tillsats
-11% -15% -17% -16% -18% -15%
Min cement, max tillsats
-17% -17% -19% -18% -22% -19%

Optimering av konstruktion
Ökad armering-minskad betong
-4%

Estetiska val
Vitcement +33%

Åtgärd - lägsta möjliga (enligt standard)
-33% -46% -38% -48% -42% -38%
Åtgärd - högsta möjliga (enligt standard)
+41% +57% +59% +54% +40% +42%

Optimering av konstruktion
Ökad armering-minskad betong
-4%

Estetiska val
Vitcement +33%

Åtgärd - lägsta möjliga (enligt standard)
-33% -46% -38% -48% -42% -38%
Åtgärd - högsta möjliga (enligt standard)
+41% +57% +59% +54% +40% +42%

1En 35% halt av tillsatsmaterial eftersträvas men i vissa konstruktionsdelar går det inte att tillsätta den mängden pga styrrande exponeringsklass. Därför blir vissa delar 35% och andra 20% dvs delvis.
2Rostfri armering endast i kantbalkar.

Underhåll av broar
Figur 11 visar att de studerade underhållsscenarierna för kantbalkar på bro 542 ger minimal skillnad i klimatbelastning. Det skiljer endast ca 1 % i total klimatbelastning mellan de olika alternativen. Det betyder att utbyte och reparation av kantbalk bör ses som likvärdigt med en konstruktion av rostfritt stål eller med impregnering.

Figur 11 Klimatpåverkan av olika underhållsscenarierna inklusive materialproduktion och transport till byggarbetsplats. Observera y-axels skala.
Val av produktionsmetod - överbyggnad

Figur 12 visar jämförelsen mellan en platsbyggd överbyggnad och en prefabricerad överbyggnad. Skillnaderna är små och resultatet beror mycket på vad för typ av armering som används och kan visa en fördel för båda alternativen. Prefabalternativet innehåller mindre material men har en högre betongklass vilket ger högre klimatbelastning. Dessutom har spänarmering en högre klimatpåverkan än slakarmering per ton.

Diskussion och slutsats

Vid tillämpning av olika åtgärder för minskning av klimatbelastning för plattrambroarna visar resultatet att klinkerersättning och val av slakarmering har störst betydelse. Beroende på bro kan en potentiell minskning på 33 % till 48% uppnås. Samtidigt kan det även bli en ökning på mellan 40 % och 59 %. Det innebär att om inte något aktivt val görs för att sänka klimatpåverkan finns risken att det istället går uppåt. Dessa siffror är baserade på specifika data för just denna studie och ska ses som en vägledning för potentiell minskning av klimatpåverkan.

Då klimatpåverkan visade sig vara känslig för armeringen kommer det spela en stor roll vilken armeringsmängd bron har i relation till betongmängden. Vid optimeringsåtgärden där mängden armering ökades och mängden betong minskades sjönk klimatbelastningen med 4%. Större minskning kan erhållas om armering av återvunnet stål och hög andel förnybar energi används, och tvärt om kan minskningen uteblir och klimatbelastningen totalt sett t.o.m. öka om en armering av jungfruligt stål används.

Vid en minskning av klinkermängden till enbart 80%, dvs med en maximal tillsats av flygaska eller slagg på 20%, erhålls en total minskning av klimatpåverkan på runt 10 %.

Jämförelsen mellan olika underhållsscenerier för kantbalkar visade ingen tydlig skillnad i klimatpåverkan.
Ingen tydlig skillnad i klimatbelastning kunde ses mellan en prefabricerad och en platsgjuten överbyggnad. Dock ingår inte formar och skarvhylsor.

För fortsatta studier vore det intressant att inkludera klimatbelastning från formar, spill och energianvändning på arbetsplats. Även livslängden är en viktig del att ha med i fortsatta studier.

Referenser

[3] Ur projektet: Effektiva Betongkonstruktioner, funktionella materialkrav – LCA för Anläggningskonstruktioner, Thomas Concrete Group

CBI Betonginstitutet AB
Hållbara byggnadsverk

Utfört av

Nadia Al-Ayish