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Abstract: The efficient simulation of isotropic Gaussian random fields on the unit sphere is a task encoun-
tered frequently in numerical applications. A fast algorithm based on Markov properties and fast Fourier
transforms in 1d is presented that generates samples on an n × n grid in O(n2 log n). Furthermore, an effi-
cientmethod to set up the necessary conditional covariancematrices is derived and simulations demonstrate
the performance of the algorithm. An open source implementation of the code has been made available at
https://github.com/pec27/smerfs.

Keywords: Gaussian random fields, isotropic random fields, Gaussian Markov random fields, fast Fourier
transform, efficient simulation

MSC 2010: 60G60, 60G15, 35J08, 65T50

1 Introduction
Methods for modelling spatially distributed data with isotropic random fields occur in many areas, includ-
ing astrophysics [2, 7], geophysics [19], optics [11], image processing [4] and computer graphics [12]. The
building block for almost all of which is the Gaussian randomfield inℝd, althoughmany applications require
realisations in other geometries, the most important of which may be the unit sphere 𝕊2, especially for geo-
physics and astrophysics, which often use spherical data.

The computational complexity of realising an n × n lattice of points of a Gaussian random field in ℝd

depends considerably upon the structure of the covariance function. In the worst (non-isotropic) case, we
must calculate the covariance between each point and perform a Cholesky decomposition of the resulting
matrix, at a cost of O(n6) operations [19]. Fortunately, the majority of Gaussian random fields we are inter-
ested in are isotropic (i.e., the covariance depends only on the geodesic distance between points), allowing
us to perform a spectral decomposition into harmonic (Fourier) components. In the periodic case onℝ2 (i.e.,
a torus) with a regular lattice, this provides a dramatic computational improvement due to the existence of
the fast Fourier transform (FFT) algorithm, which allows the realisation to be computed in O(n2 log n2) oper-
ations.

On 𝕊2, similar results for isotropic Gaussian random fields also apply, i.e., we can perform a spectral
decomposition into the spherical harmonic functions. Unfortunately, the corresponding spherical transform
algorithmhas fewer symmetries to exploit, and for a general n × n grid on the sphere, O(n4) steps are required
for an isotropic covariance function. If one chooses an iso-latitude system such as the equidistant cylindrical

Peter E. Creasey, Department of Physics and Astronomy, University of California, Riverside, CA 92507, USA,
e-mail: peter.creasey@ucr.edu
*Corresponding author: Annika Lang, Department of Mathematical Sciences, Chalmers University of Technology & University of
Gothenburg, 412 96 Göteborg, Sweden, e-mail: annika.lang@chalmers.se. http://orcid.org/0000-0003-2661-533X

Open Access. ©2018 Peter E. Creasey and Annika Lang, published by De Gruyter.
This work is licensed under the Creative Commons Attribution 3.0 Public License.

https://github.com/pec27/smerfs


2 | P.E. Creasey and A. Lang, Fast generation of isotropic GRFs on the sphere

projection (i.e., a regular grid in θ and ϕ, the inclination and azimuthal angles) or the HEALPix discretisation
([6], as used for the cosmic microwave background data of WMAP), one can exploit the Fourier element of
the azimuthal angle to reduce this to O(n3 log n) (see, e.g., [5]).

As one moves to higher and higher resolutions however, it becomes even more attractive to find algo-
rithms with superior scaling. One such possibility is to consider Gaussian Markov random fields (hereafter
GMRFs) (e.g., [10, 13, 16, 21–23]) which extend the Markov property to higher dimensions and orders. The
essential property of these fields is that the probability measure for a conditional realisation of these fields
depends upon only the boundary of the constraining set (and its derivatives) rather than the full set. Such
a property allows one to construct a realisation recursively, i.e., to iteratively expand the realisation around
its boundary, a process sometimes described as a telescoping representation [22].

The requirement for an isotropic GMRF to obey this property is that the covariance function is the Green’s
function of an operator that is a polynomial in the Laplacian (with appropriate coefficients to ensure strong
ellipticity; see, e.g., [13]). This turns out to describe rather a large class of covariance functions [21].

The contribution of this paper is an algorithm that generates samples on an n × n grid of the sphere in
O(n2 log n) once the conditional covariancematrices are computed. This is achieved by decomposing the field
into 1d Gaussian Markov random fields. These can be sampled together with the derivatives point by point
and then transformed to an isotropic Gaussian random field on the unit sphere by FFT.

The paper is structured as follows: In Section 2, we derive the decomposition of an isotropic Gaussian
randomfield into 1dGMRFs via Fourier transforms, and compute the conditional covariancematrices. A com-
putationally efficient method to set up the conditional covariance matrices is presented in Section 3. We
collect the results of the previous sections in Section 4, where we present the algorithms explicitly. Finally,
the performance and convergence of the introduced algorithm is demonstrated in a simulation example in
Section 5. Our implementation is available online at https://github.com/pec27/smerfs.

2 Decomposition of isotropic Gaussian random fields into 1d
Gaussian Markov random fields

Let us assume that T is a zero mean 2-weakly isotropic Gaussian random field (GRF for short) on the unit
sphere 𝕊2 inℝ3, i.e., on

𝕊2 := {x ∈ ℝ3 : ‖x‖ = 1},

where ‖ ⋅ ‖ denotes the Euclidean norm. Then T admits an expansionwith respect to the surface spherical har-
monic functions Y := (Yℓm , ℓ ∈ ℕ0,m = −ℓ, . . . , ℓ) as mappings Yℓm : [0, π] × [0, 2π) → ℂ, which are given
by

Yℓm(θ, ϕ) := √
2ℓ + 1
4π
(ℓ − m)!
(ℓ + m)!

Pℓm(cos θ)eimϕ

for ℓ ∈ ℕ0, m = 0, . . . , ℓ and (θ, ϕ) ∈ [0, π] × [0, 2π), and by

Yℓm := (−1)mYℓ−m

for ℓ ∈ ℕ and m = −ℓ, . . . , −1. Here (Pℓm , ℓ ∈ ℕ0,m = 0, . . . , ℓ) denote the associated Legendre polynomials
which are given by

Pℓm(μ) := (−1)m(1 − μ2)m/2
∂m

∂μm
Pℓ(μ)

for ℓ ∈ ℕ0,m = 0, . . . , ℓ and μ ∈ [−1, 1], where (Pℓ, ℓ ∈ ℕ0) are the Legendre polynomials given byRodrigues’
formula (see, e.g., [20])

Pℓ(μ) := 2−ℓ
1
ℓ!

∂ℓ

∂μℓ
(μ2 − 1)ℓ

for all ℓ ∈ ℕ0 and μ ∈ [−1, 1]. Associated Legendre polynomials with negative m = −ℓ, . . . , −1 satisfy

Pℓm = (−1)|m|
(ℓ − |m|)!
(ℓ + |m|)!

Pℓ−m .

https://github.com/pec27/smerfs
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This expansion of T is given by (see, e.g., [8, Corollary 2.5])

T =
∞
∑
ℓ=0

ℓ
∑

m=−ℓ
aℓmYℓm ,

where 𝔸 := (aℓm , ℓ ∈ ℕ0,m = −ℓ, . . . , ℓ) is a sequence of complex-valued, centred, Gaussian random vari-
ables with the following properties:
(i) 𝔸+ := (aℓm , ℓ ∈ ℕ0,m = 0, . . . , ℓ) is a sequence of independent, complex-valued Gaussian random vari-

ables.
(ii) The elements of𝔸+ with m > 0 satisfy Re aℓm and Im aℓm independent and areN(0, Cℓ/2) distributed.
(iii) The elements of𝔸+ with m = 0 are real-valued andN(0, Cℓ) distributed.
(iv) The elements of𝔸 with m < 0 are deduced from those of𝔸+ by the formulae

aℓm = (−1)maℓ−m .

Here (Cℓ, ℓ ∈ ℕ0) is called the angular power spectrum.
In what follows, let us consider the case that there exist κi ∈ ℂ such that

Cℓ :=
M
∏
i=1
(κi + ℓ(ℓ + 1))−1 (2.1)

for all ℓ ∈ ℕ0, i.e., C−1ℓ is an eigenvalue of

L :=
M
∏
i=1
(κi − ∆𝕊2 )

with corresponding eigenfunctions (Yℓm ,m = −ℓ, . . . , ℓ), where ∆𝕊2 denotes the spherical Laplacian (also
known as the Laplace–Beltrami operator). In the spirit of [9], T is the solution of the stochastic partial differ-
ential equation

L1/2T = W,

whereW is white noise which admits the formal Karhunen–Loève expansion

W =
∞
∑
ℓ=0

ℓ
∑

m=−ℓ
ηℓmYℓm .

Here (ηℓm , ℓ ∈ ℕ,m = 1, . . . , ℓ) is a set of independent, complex-valued standard normally distributed ran-
dom variables independent of the real-valued standard normally distributed random variables (ηℓ0, ℓ ∈ ℕ0).
For m < 0, the same relations as in condition (iv) hold. For fixed m ∈ ℤ, define the random field

gm : Ω × [−1, 1] → ℝ

by

gm(z) :=
1
2π

2π

∫
0

T(θ, ϕ)e−imϕ dϕ

for z := cos θ ∈ [−1, 1]. We observe that

T =
∞
∑
ℓ=0

ℓ
∑

m=−ℓ
aℓmYℓm =

∞
∑

m=−∞
∑
ℓ≥|m|

aℓmYℓm ,

and obtain for any m0 ∈ ℤ,

gm0 (z) =
∞
∑

m=−∞
∑
ℓ≥|m|

aℓmLℓm(z)
1
2π

2π

∫
0

eimϕe−im0ϕ dϕ = ∑
ℓ≥|m0|

aℓm0Lℓm0 (z),
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where we set

Lℓm(z) := √
2ℓ + 1
4π
(ℓ − m)!
(ℓ + m)!

Pℓm(z).

Moreover, we obtain for m0 < 0 the relation

gm0 = ∑
ℓ≥|m0|

aℓm0Lℓm0

= ∑
ℓ≥|m0|
(−1)m0aℓ−m0

√ 2ℓ + 1
4π
(ℓ − m0)!
(ℓ + m0)!

(−1)|m0| (ℓ + m0)!
(ℓ − m0)!

Pℓ−m0

= ∑
ℓ≥|−m0|

aℓ−m0Lℓ−m0 = g−m0 .

Since gm0 is generated by a sumof centred Gaussian randomvariables, it is clear that gm0 is centred Gaussian.
In the following lemma, we show that they are independent for positive m and compute the covariance.

Lemma 2.1. The sequence (gm ,m ∈ ℕ0) consists of pairwise independent centred Gaussian random fields
on [−1, 1] with covariance given by

Cgm (z1, z2) := 𝔼(gm(z1)gm(z2)) = ∑
ℓ≥|m|

CℓLℓm(z1)Lℓm(z2),

while the functions (gm ,m < 0) with negative index are determined by the relation

gm = g−m .

Proof. Wehave already seen that gm is centredGaussian and that gm = g−m. It remains to show independence
as well as to compute the covariance. Therefore, let us fix m0,m1 ∈ ℤ and z1, z2 ∈ [−1, 1]. By the previous
computations it holds that

𝔼(gm0 (z1)gm1 (z2)) = ∑
ℓ0≥|m0|

∑
ℓ1≥|m1|
𝔼(aℓ0m0aℓ1m1 )Lℓ0m0 (z1)Lℓ1m1 (z2)

= ∑
ℓ≥max{|m0|,|m1|}

𝔼(aℓm0aℓm1 )Lℓm0 (z1)Lℓm1 (z2)

= δm0m1 ∑
ℓ≥|m0|

CℓLℓm0 (z1)Lℓm1 (z2),

using the properties of the random variables in 𝔸, where δm0m1 = 1 for m0 = m1 and 0 else. Similarly, we
obtain

𝔼(gm0 (z1)gm1 (z2)) = δm0(−m1) ∑
ℓ≥|m0|

CℓLℓm0 (z1)Lℓm1 (z2),

which finishes the proof since uncorrelated Gaussian random variables are independent.

We define the operators

Lm :=
d
dz
(1 − z2) d

dz
−

m2

1 − z2
and

Dm :=
M
∏
i=1
(κi − Lm).

Let us recall the associated Legendre differential equations for ℓ ∈ ℕ0 and m = −ℓ, . . . , ℓ (see, e.g., [1]):

d
dz (
(1 − z2) d

dz
u(z)) + (ℓ(ℓ + 1) − m2

1 − z2
)u(z) = 0,

which is solved by the associated Legendre polynomials. Therefore, we obtain that

DmLℓm =
M
∏
i=1
(κi + ℓ(ℓ + 1))Lℓm = C−1ℓ Lℓm ,
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i.e., gm solves the stochastic differential equation

D
1/2
m gm = Wm ,

where Wm is white noise on [−1, 1] and D
1/2
m is a well-defined operator of order M since Dm is of order 2M

with positive spectrum.
For τ ∈ (−1, 1), let us first consider the open sets Aτ = (τ, 1)with complements Ac

τ = (−1, τ]. Since white
noise satisfies the strong Markov property, we obtain for all z ∈ Aτ that

P(D1/2
m gm(z) | D1/2

m gm(s), s ∈ Ac
τ) = P(D

1/2
m gm(z) | D1/2

m gm(τ)),

and gm is generated by a stochastic differential equation as in [18, (2.1.21)]. However, gm does not satisfy it
but it follows from [18] that the M-dimensional vector of derivatives up to order M − 1,

g(0⋅⋅⋅M−1)m = (g(0)m , g(1)M , . . . , g(M−1)m )T ,

has the property. In other words, we obtain for all z ∈ Aτ,

P(g(0⋅⋅⋅M−1)m (z) | g(0⋅⋅⋅M−1)m (s), s ∈ Ac
τ) = P(g

(0⋅⋅⋅M−1)
m | g(0⋅⋅⋅M−1)m (τ)).

Therefore, it is sufficient to know g(p)m (τ) for p = 0, . . . ,M − 1 when generating a sample value for any z > τ
where the random field is already constructed for all z < τ. Since we are considering Gaussian fields which
have Gaussian derivatives, it is sufficient to know the mean and the covariance between any two points and
derivatives up to order M − 1.

Since all derivatives are well-defined, we obtain the covariance functions, which we will refer to as cross
covariances,

Cgm ,p,q(z1, z2) := 𝔼(g
(p)
m (z1)g

(q)
m (z2)) =

∂p+q

∂zp1∂z
q
2
Cgm (z1, z2).

These derivatives can analytically be calculated with the identities of the associated Legendre polynomials.
We will discuss a computational efficient method in Section 3. Let us set

Jmpq(z1, z2) := Cgm ,p,q(z1, z2)

such that Jm(z1, z2) is the matrix consisting of all covariances between different derivatives at z1 and z2. The
conditional distribution of g(0⋅⋅⋅M−1)m (z2) given g(0⋅⋅⋅M−1)m (z1) is known to be Gaussian with conditional mean

𝔼(g(0⋅⋅⋅M−1)m (z2)|g(0⋅⋅⋅M−1)m (z1)) = Jm(z1, z2)(Jm)−1(z1, z1)g(0⋅⋅⋅M−1)m (z1)

=: Am(z1, z2)g(0⋅⋅⋅M−1)m (z1) (2.2)

and conditional covariance matrix

Cov(g(0⋅⋅⋅M−1)m (z2)|g(0⋅⋅⋅M−1)m (z1)) = Jm(z2, z2) − Jm(z1, z2)(Jm)−1(z1, z1)(Jm)T(z1, z2)
= Jm(z2, z2) − Jm(z1, z2)(Am)T(z1, z2)
=: Bm(Bm)T(z1, z2). (2.3)

By using the values g(0⋅⋅⋅M−1)m (z1) at z1 for non-negative m, it is straightforward to sample the vector
g(0⋅⋅⋅M−1)m (z2) from the conditional distribution by

g(p)m (z2) =
M−1
∑
q=0

Am
pq(z1, z2)g

(q)
m (z1) +

M−1
∑
q=0

Bm
pq(z1, z2)wm

q , (2.4)

where the random variables (wm
q , q = 0, . . . ,M − 1) are independent complex-valued standard normally dis-

tributed form > 0, and independent standard normally distributed form = 0. This construction is sometimes
referred to as a state-space model [3].

Note that we will also need an initial sampling, and for this we choose the equator (z = 0), i.e.,

g(p)m (0) =
M−1
∑
q=0

Bm
eq pqwm

q , (2.5)

where
Bm
eq(Bm

eq)
T := Jm(0, 0).
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3 Efficient covariance computation
We have shown in Lemma 2.1 that

Cgm (z1, z2) = 𝔼(gm(z1)gm(z2)) = ∑
ℓ≥|m|

CℓLℓm(z1)Lℓm(z2), (3.1)

i.e., we obtained a representation in term of the associated Legendre polynomials. This allows us to compute
it but from an algorithmic perspective; the computation is expensive for large m and ℓ as the recurrence
relations are unsuitable for numerical computation with limited precision. As such we find an alternative
formulation in terms of Legendre functions that is numerically superior at even moderate-m values.

Let us assume that the κi are distinct in equation (2.1) and have the representation κi = −λi(λi + 1) with
λi ∈ ℂ \ ℤ to avoid singularities. More specifically, for λi ∈ ℤ, either ℓ = λi or ℓ = −λ − 1 is inℕ0, and therefore
Cℓ is not well-defined. A typical example isM = 2 and Cℓ = (a2 + ℓ2(ℓ + 1)2)−1 with a ∈ ℝ, which satisfies the
desired partial fraction decomposition with κ1 = ia and κ2 = −ia. Then the coefficients Cℓ in equation (2.1)
can be decomposed (via partial fractions) into

Cℓ =
M
∑
i=1

bi
ℓ(ℓ + 1) − λi(λi + 1)

(3.2)

for some finite constants bi ∈ ℂ, provided the κi are distinct.
We note that the partial sums in equation (3.1) can be written in the form

Cgm (z1, z2) =
1
2π

M
∑
i=1

biGm
λi (z1, z2),

where
Gm
λi (z1, z2) = 2π ∑

ℓ≥|m|

Lℓm(z1)Lℓm(z2)
ℓ(ℓ + 1) − λi(λi + 1)

,

which is nothing more than the bilinear expansion for the Green’s function [17, (17.72)] for the operator
Dm = κi − Lm. This operator can be alternatively formulated as the solution to the differential equation

DmGm
λ (x, y) = δ(x − y). (3.3)

One eigenfunction of this operator with eigenvalue zero is the associated Legendre function Pmλi , where P
m
λi

denotes the generalisation of Pℓm to non-integers λi.
Associated Legendre polynomials can be generalised to complex degree λ and order μ as

Pμλ (z) =
1

Γ(1 − μ)(
1 + z
1 − z )

μ/2
2F1(−λ, λ + 1; 1 − μ;

1 − z
2
)

via the (Gauss) hypergeometric function

2F1(a, b; c; x) =
∞
∑
n=0

(a)n(b)n
(c)n

xn

n!
,

where (x)n denotes the rising Pochhammer symbol. The relevant case of μ being an integer (i.e., μ = m) is
only defined in the limit, which we find by (see [1, 15.3.3])

2F1(a, b; c; x) = (1 − x)c−a−b2F1(c − a, c − b; c; x)

and (see [1, 15.1.2])

lim
c→−m

1
Γ(c)2

F1(a, b; c; x) =
(a)m+1(b)m+1
(m + 1)!

xm+12F1(a + m + 1, b + m + 1;m + 2; x)

to give

Pmλ (z) = limμ→m
Pμλ (z) =

(−λ)m(1 + λ)m
m! (

1 − z
1 + z )

m/2
2F1(−λ, λ + 1; 1 + m;

1 − z
2
). (3.4)

This function is well-defined at z = 1 with Pmλ (1) = δm0, and singular at z = −1 for all m ∈ ℕ0 if λ ∉ ℤ.
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For a second linearly independent solution to (3.3) we use Pmλi (−z), which is not linearly dependent since
λ + m is not an integer; see, e.g., [1, 8.2.3].We can then construct theGreen’s function byusing theWronskian
(e.g., [15, 14.2.3])

W{Pmλ (z), P
m
λ (−z)} =

2(1 − z2)−1

Γ(λ + 1 − m)Γ(−λ − m)
as

Gm
λ (x, y) =

1
2
Γ(1 + λ − m)Γ(−λ − m) ×

{
{
{

Pmλ (−x)P
m
λ (y), x ≤ y,

Pmλ (x)P
m
λ (−y), x ≥ y,

which satisfies continuity, regularity at x = −1 and x = 1, and by substitution,

(−λ(λ + 1) − Lm)Gm
λ (x, y) = δ(x − y).

In conclusion, we obtain that

Jmpq(z1, z2) = Cgm ,p,q(z1, z2)

=
1
2π

M
∑
i=1

biGm
λi (z1, z2)

=
1
4π

M
∑
i=1

biΓ(1 + λi − m)Γ(−λi − m) ×
{
{
{

(−1)pPm+pλi (−z1)P
m+q
λi (z2), z1 ≤ z2,

(−1)qPm+pλi (z1)P
m+q
λi (−z2), z1 ≥ z2.

(3.5)

Substituting the associated Legendre functions by the hypergeometric functions as in (3.4), i.e., setting

Pm+pλi (z1) =
(−λi)m+p(1 + λi)m+p
(m + p)! (

1 − z1
1 + z1
)
(m+p)/2

2F1(−λi , λi + 1; 1 + (m + p);
1 − z1
2
),

and similarly for q and z2, we derive our efficient computation method for the cross-covariance matrices Jm.
We observe that the above formula requires many re-computations of associated Legendre functions. To

be more efficient, we transform the vector g(0⋅⋅⋅M−1)m of derivatives up to order M − 1 to a vector of linear com-
binations of derivatives of increasing order. This does not change anything since we are in the end only inter-
ested in the random field itself but not in its derivatives. Therefore, define for m ∈ ℕ the family of operators
(Uq

m , q = 0, . . . ,M − 1) by

U
q
m f := (−1)q(1 − x2)(m+q)/2

∂q

∂xq [
(1 − x2)−m/2f ],

which satisfies Uq
mPmλ = P

m+q
λ . Thus setting

Jmpq(x, y) := U
p
mU

q
mCgm (x, y) (3.6)

is much easier to compute while the properties of the random field itself are not changed. Let us keep the
notation g(0⋅⋅⋅M−1)m even if we use the modified matrices Jm.

4 Algorithms
Below we outline an algorithm for the construction of the isotropic GRF on 𝕊2. Since the sampling of the GRF
is merely filtered white noise, in our tests the time is dominated by the computation of the (inhomogeneous)
filter coefficients, and as such we have described the pre-computation in Algorithm 1, which just has to be
done once, and the generation of samples in Algorithm 2.

For n ∈ ℕ, let us fix a grid z = (z−n , . . . , z0, . . . , zn) on [−1, 1] and ϕ = (ϕ0, . . . , ϕ2mmax ) for some
mmax ∈ ℕ. One possible symmetric example is to set zj = sin( 2πj2n+1 ) such that

z−n = sin(−
2nπ
2n + 1)

, z0 = 0, zn = sin(
2nπ
2n + 1)

,

and ϕ = πm−1max(0, 1, 2, . . . , 2mmax − 1) in [0, 2π). Furthermore, define the covariance operator L by setting
λ = (λ1, . . . , λM) and b = (b1, . . . , bM) in (3.2).
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Algorithm 1. Pre-computation of covariance matrices.
procedure Covariance matrices(mmax, z, b, λ)

for m = 0, . . . ,mmax +M − 1 do
Set up the hypergeometric functions 2F1 of order m using z and λ.
for p = 0, . . . ,M − 1 do

Set up the Pochhammer symbols for m and p using λ.
end for

end for
for m = 0, . . . ,mmax do

Compute Jm(z0, z0) using (3.5) and the computed functions.
Compute Bm

eq from Jm(z0, z0) (e.g., via Cholesky decomposition).
for i = −n + 1, . . . , n do

Compute Jm(zi , zi) using (3.5) or (3.6) and the computed functions.
Compute Jm(zi−1, zi) using (3.5) or (3.6) and the computed functions.
Compute Am(zi−1, zi) using Jm and (2.2).
Compute Bm(zi−1, zi) using Jm, Am, (2.3) and, e.g., Cholesky decomposition.

end for
end for
Return A = (Am ,m = 0, . . . ,mmax), B = (Bm ,m = 0, . . . ,mmax) and Beq = (Bm

eq,m = 0, . . . ,mmax).
end procedure

Algorithm 1 is devoted to the pre-computations that set up the covariance matrices that just have to be
computed once and can be reused for sampling on the same grid. We remark that the algorithm can be opti-
mised if the discrete grid z is symmetric around zero, i.e., if it satisfies z−i = −zi. Then Am and Bm just have to
be computed for all zi ≥ 0 and the negative values follow by symmetry. This is the case for the example grid z
above.

Samples of the GRF on the sphere are generated with Algorithm 2 based on the pre-computed families of
matrices A, B and Beq. Since the computational cost to generate white noise is negligible, the complexity of
the algorithm reduces to (2n + 1) FFT in 1d, which makes it computationally fast. Therefore, the algorithm
is attractive if many samples have to be computed. An example are ice crystals, which can be modelled by
lognormal randomfields [14]. Formore information on the relation of lognormal andGaussian randomfields,
the reader is referred to [8].

5 Simulation
To illustrate the algorithm and show the performance of the presented algorithm, we show simulation results
in this section which include the generation of a sample and the convergence of the covariance function with
respect to the discretisation.

Let us first show random field samples that the algorithm generates. Therefore, we fix the angular power
spectrum given by

Cℓ = (10 + ℓ2(ℓ + 1)2)−1. (5.1)

The algorithm in Section 4 generates the one-dimensional randomfields (gm ,m = 0, . . . ,mmax) on a discrete
grid first, which are then transformed to random fields on the sphere by FFT. To give the reader an idea of gm,
we show in Figure 1 samples of g0(cos θ) and the real part of g5(cos θ) along with its standard deviation or
RMS expectation 𝔼(Re(gm(cos θ))2)1/2.

The standard deviation is dependent on θ since the random field is of zero mean but not translation
invariant.
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Algorithm 2. Gaussian random field generation.
procedure Gaussian Random Field(mmax, z, ϕ, A, B, Beq)

for m = 0, . . . ,mmax do
Generate g(0⋅⋅⋅M−1)m (z0) using Bm

eq, random samples and equation (2.5).
end for
for i = 1, . . . , n and i = −1, . . . , −n do

for m = 0, . . . ,mmax do
Generate g(0⋅⋅⋅M−1)m (zi) using equation (2.4), random samples, Am and Bm.
if m > 0 then

Set g(0)−m(zi) ← g(0)m (zi).
end if

end for
end for
Compute T(z, ϕ) via discrete Fourier transform (e.g., via FFT for equi-spaced ϕ) using

T(zi , ϕj) ←
1

2mmax√2π

mmax

∑
m=1−mmax

gm(zi)eiϕjm .

Return T.
end procedure

Figure 1: Random walks g0 and (the real part of) g5 in the upper and lower panels, respectively, for the angular power
spectrum given in equation (5.1). The black line indicates the walks, whilst the grey shaded region indicates the ± standard
deviation 𝔼(Re(gm)2)1/2.

Note that g5 tends to zero at θ = 0∘, 180∘. Since T has a continuous first derivative (i.e., M > 1, as it is in
this case), then for allm ̸= 0 the standard deviation is zero for cos θ = ±1, i.e., the nonzero iso-latitude Fourier
transforms must tend to zero near the poles to meet the smoothness criterion.

The process of generating a sample is illustrated in Figure 2. We start with generating the random fields
gm(0), which become after FFT the discrete sample of the random field at the equator. Conditionally, gm(z−1)
and gm(z1) are sampled and added to the picture after FFT. This process is continued until all of the sphere
is covered with random numbers and the random field on the sphere is complete.

Amethod to validate that a method for sampling a GRF is appropriate and that it converges is to compute
the covariance function via the examination of many samples and compare it to the analytic one inferred
from the angular power spectrum. We have used the GRF with angular power spectrum from equation (5.1)
and corresponding covariance function

CT(x, y) =
∞
∑
ℓ=0

2ℓ + 1
4π

CℓPℓ(⟨x, y⟩ℝ3 ),
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Figure 2: Left to right, visualisation of the process of building the random field starting from the equator, i.e., at each
iso-latitude line (constant z) we conditionally sample the gm(z) based on the previous line (including derivatives) and
gradually work our way north and south.

Figure 3: Error analysis for an example GMRF. The left andmiddle panels estimate the covariance along equatorial and
meridional lines, respectively, and the analytic covariance in blue. The right panel indicates the convergence of the error as
a function of nθ.

which is plotted in the left two panels of Figure 3 as solid blue line.
In order to analyse the errors of our method, we have constructed filters at multiple resolutions of

nθ ∈ {4, 8, 16, 32}, keeping mmax = nθ and nϕ = 2nθ (i.e., so the maximum angular separation between
adjacent grid points is π/nθ). We generated N := 320, 000 samples (Tnθj , j = 1, . . . , N) on all resolutions to
estimate the covariance by

Cov(x, y) := N−1
N
∑
j=1

Tnθj (x) ⋅ T
nθ
j (y)

and to compare it to the theoretical one. Thedotted anddashed lines in the left twopanels of Figure 3 show the
results for the different nθ. The left figure is based on equatorial evaluations, while the middle one estimates
the covariance along meridional lines.

The error was computed by taking on each grid the maximum over all grid points in a set S, which was
once the equator and once the meridian, of the difference of the theoretical and statistical covariance, i.e.,
the error enθ was computed by

enθ := max
x,y∈S
|Cov(x, y) − CT(x, y)|.

The results are shown in the right panel of Figure 3. The maximum error on the covariance function falls as
m−3/2max (where nθ = mmax) as can be seen in the error plot.
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