Biomarkers of food intake and nutrient status are associated with glucose tolerance status and development of type 2 diabetes in older Swedish women

Downloaded from: https://research.chalmers.se, 2020-02-17 10:28 UTC

Citation for the original published paper (version of record):
Biomarkers of food intake and nutrient status are associated with glucose tolerance status and development of type 2 diabetes in older Swedish women
http://dx.doi.org/10.3945/ajcn.117.152850

N.B. When citing this work, cite the original published paper.
Biomarkers of food intake and nutrient status are associated with glucose tolerance status and development of type 2 diabetes in older Swedish women

Otto Savolainen,1 Mads Vendelbo Lind,1,2 Göran Bergström,3 Björn Fagerberg,3 Ann-Sofie Sandberg,1 and Alastair Ross1

1Division of Food and Nutrition Science, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden; 2Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark; and 3Wallenberg Laboratory for Cardiovascular Research at the Center for Cardiovascular and Metabolic Research, Institute of Medicine, Sahlgrenska Academy at Gothenburg University, Gothenburg, Sweden

INTRODUCTION

Type 2 diabetes (T2D) is one of the fastest-growing health care problems worldwide. Globally 422 million adults had diabetes in 2014, 314 million more than in 1980, and the incidence of T2D is expected to rise (1). Prevention of T2D is the most effective strategy to reduce the cost and burden of this disease and the only way to arrest the increase in T2D incidence. Lifestyle factors are strongly associated with the development of T2D, and lifestyle changes, such as a healthier diet, reducing smoking, and increasing exercise are among the most effective means of preventing T2D (2–5).

Diet rich in whole grains, fruits, vegetables, legumes, and nuts, moderate in alcohol consumption, and lower in refined grains, red or processed meats, and sugar-sweetened beverages have been linked to a reduced risk of diabetes (6). However, the tools for assessing diet have long relied on dietary recall methods, such as food-frequency questionnaires and 24-h recalls. Although these methods provide a standardized tool for measuring dietary and nutrient intake, they have several well-known limitations, including reliance on self-reporting as well as multiple assumptions about food composition and serving size (7–9). To aid in the assessment of diet, biomarkers of dietary intake and nutrient status could serve as complimentary tools for the more accurate estimation of food and nutrient intake by combining both subjective (e.g., questionnaires) and objective (e.g., biomarkers) measures that have unrelated measurement errors (10).

The work of the Diabetes and Impaired glucose tolerance in Women and Atherosclerosis development study (DIWA) cohort was supported by grants from the Swedish Heart and Lung Foundation and grants from the Västra Götaland region.

Address correspondence to AR (e-mail: alastair.ross@chalmers.se).

Abbreviations used: CMPF, 3-carboxy-4-methyl-5-propyl-2-furanpropanoic acid; CVD, cardiovascular disease; GC-MS/MS, gas chromatography–tandem mass spectrometry; GTS, glucose tolerance status; IFG, impaired fasting glucose; IGT, impaired glucose tolerance; MRM, multiple-reaction monitoring; NGT, normal glucose tolerance; T2D, type 2 diabetes.

Received January 13, 2017. Accepted for publication August 18, 2017.

First published online September 13, 2017; doi: https://doi.org/10.3945/ajcn.117.152850.
Biomarkers also allow the exploration of associations between diet and disease in cohorts where dietary intake data are missing or inadequate. Recent studies have shown the usefulness of a single class of dietary intake biomarkers to find associations between diet and glucose tolerance as well as T2D (11, 12). These highlight the utility of biomarkers in research aiming to uncover relations between diet and T2D. To our knowledge, no work has been done with the use of multiple dietary and nutrient status biomarkers to reflect dietary intake to examine the association with both glycemic control and future development of T2D. The use of several markers of diet intake and nutrient status could give a wider perspective on the associations between diet and disease.

The aim of the present study was to investigate associations between a panel of biomarkers of diet and nutrient status detected by using a semitargeted metabolomics method and glucose tolerance status (GTS) and future T2D development in a prospective cohort of 64-y-old Swedish women.

METHODS

Study participants

A population-based cohort was started in 2001 by inviting all women turning 64 y old who were living in the Gothenburg region of Sweden to participate in a screening examination for T2D (13). At baseline, WHO criteria were used for the definitions of diabetes mellitus and impaired glucose tolerance (IGT) (14). The screening examination included fasting capillary whole blood glucose measurements in women with overt diabetes and repeated oral glucose tolerance tests (13, 15) in women without overt diabetes. Of the screened cohort of 2595 women, 9.5% had diabetes mellitus and 14.4% had IGT. Women with diabetes, IGT, and normal glucose tolerance (NGT) were randomly selected and invited to participate in a nested case-control study, which included a baseline and a follow-up examination after 5.5 y (Figure 1). In total, 629 women participated in the first examination, and samples from 614 subjects were analyzed by gas chromatography–tandem mass spectrometry.
(GC-MS/MS)-based metabolomics (T2D: n = 202; IGT: n = 203; NGT: n = 188; type 1 diabetes: n = 21). A reexamination was performed after 5.5 y in 500 women with diabetes (n = 159), IGT (n = 174), or NGT (n = 167) according to the classification at baseline. The remaining 129 women from the original study did not participate in the reexamination because of death (n = 23) or severe disease (n = 3), they were no longer living in the area (n = 12), or they were unwilling to participate (n = 91) (15). Of those originally in the IGT and NGT groups, 69 were diagnosed as having T2D at follow-up. Dietary intake was not assessed in this cohort. Baseline characteristics for the women included in the analysis are shown in Table 1. The study was approved by the ethics committee at Sahlgrenska University Hospital in Gothenburg, Sweden.

Dietary biomarker measurement by using GC-MS/MS metabolomics

Dietary biomarkers were measured by using GC-MS/MS metabolomics as previously described (16). This method detects metabolites, including dietary biomarkers, by using both mass spectrometry–based scanning (untargeted) and more selective and sensitive single-ion monitoring and multiple-reaction monitoring (MRM) modes, which detect predefined metabolites. Plasma was extracted with methanol:water (9:1, vol:vol) derivatized by using methoxymation followed by silylation (16). Samples were injected onto a Shimadzu GCMS TQ-8030 GC-MS/MS (Shimadzu Europa GmbH), and both scan and MRM data were collected for further data analysis. Biomarkers previously associated with either dietary intake or nutrient status and that were detected in human plasma by this method are α- and δ-tocopherol (vitamin E), alkylresorcinols C17 and C19 (whole-grain wheat and rye), β-alanine (meat), 3-carboxy-4-methyl-5-propyl-2-furanpropanoic acid (CMPF) (fish), lauric acid (saturated fat), oleic acid (common dietary sources include olive and rapeseed oils, almonds, hazelnuts, and avocados), EPA (fish), and linoleic acid (common dietary sources include seeds, nuts, and vegetable oils) (Table 2).

Metabolomics data processing

A MATLAB (Mathworks) script and database developed at the Swedish Metabolomics Centre was used for targeted analysis of the full-scan data (23). The internal standard normalization of raw data was performed by using the method of Jonsson et al. (23). Internal standard variables from each sample were scaled to unit variance and modeled together by using principle component analysis (SIMCA+; Umetrics AB) to describe the overall variation in the multivariate space. Vectors from the first component were then used to correct for the analytic variation between samples. The MRM data were processed and normalized as described earlier (16). The 2 data sets, targeted measurements

Table 1

Baseline characteristics of the 64-y-old women included in the study

<table>
<thead>
<tr>
<th></th>
<th>NGT (n = 188)</th>
<th>IGT (n = 203)</th>
<th>T2D (n = 202)</th>
<th>P2</th>
<th>Subjects with new T2D at follow-up (n = 69)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Waist circumference, cm</td>
<td>88.4 ± 9.0</td>
<td>92.4 ± 12.0</td>
<td>96.5 ± 11.1</td>
<td><0.001</td>
<td>95.3 ± 12.6</td>
</tr>
<tr>
<td>BMI, kg/m²</td>
<td>26.2 ± 3.4</td>
<td>27.8 ± 5.0</td>
<td>28.8 ± 4.3</td>
<td><0.001</td>
<td>28.6 ± 5.3</td>
</tr>
<tr>
<td>Total cholesterol, mmol/L</td>
<td>6.1 ± 0.9</td>
<td>5.9 ± 1.0</td>
<td>5.7 ± 1.1</td>
<td>0.002</td>
<td>5.9 ± 1.0</td>
</tr>
<tr>
<td>HDL, mmol/L</td>
<td>1.8 ± 0.4</td>
<td>1.6 ± 0.4</td>
<td>1.6 ± 0.4</td>
<td><0.001</td>
<td>1.5 ± 0.4</td>
</tr>
<tr>
<td>LDL, mmol/L</td>
<td>3.8 ± 0.9</td>
<td>3.7 ± 0.9</td>
<td>3.4 ± 1.0</td>
<td>0.004</td>
<td>3.7 ± 0.9</td>
</tr>
<tr>
<td>Free fatty acids, mmol/L</td>
<td>0.67 ± 0.26</td>
<td>0.80 ± 0.27</td>
<td>0.81 ± 0.29</td>
<td><0.001</td>
<td>0.80 ± 0.26</td>
</tr>
<tr>
<td>Systolic blood pressure, mm Hg</td>
<td>136 ± 16</td>
<td>149 ± 17</td>
<td>151 ± 18</td>
<td><0.001</td>
<td>148 ± 17</td>
</tr>
<tr>
<td>Serum triglycerides, mmol/L</td>
<td>1.3 ± 0.6</td>
<td>1.5 ± 0.7</td>
<td>1.5 ± 0.7</td>
<td><0.001</td>
<td>1.7 ± 0.8</td>
</tr>
</tbody>
</table>

1 Values are means ± SDs. IG5, impaired glucose tolerance; NGT, normal glucose tolerance; T2D, type 2 diabetes.
2 ANCOVA P value for indicating the significance between NGT, IGT, and T2D.
3 The 69 new cases of T2D are included twice in the table: once in their original glucose tolerance group and once in the group with new T2D at follow-up.

Table 2

Dietary sources of the proposed biomarkers, based on a Swedish diet

<table>
<thead>
<tr>
<th>Biomarker</th>
<th>Main nutritional sources in Sweden</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>β-Alanine</td>
<td>Circulating concentrations linked to the consumption of beef</td>
<td>17</td>
</tr>
<tr>
<td>Alkylresorcinol C17</td>
<td>Whole-grain wheat and rye</td>
<td>18, 19</td>
</tr>
<tr>
<td>Alkylresorcinol C19</td>
<td>Whole-grain wheat and rye</td>
<td>18, 19</td>
</tr>
<tr>
<td>CMPF¹</td>
<td>Fish</td>
<td>20</td>
</tr>
<tr>
<td>EPA</td>
<td>Fish</td>
<td>21</td>
</tr>
<tr>
<td>Lauric acid</td>
<td>Saturated fat</td>
<td>21</td>
</tr>
<tr>
<td>Linoleic acid</td>
<td>Seeds, nuts, and vegetable oils</td>
<td>21</td>
</tr>
<tr>
<td>Oleic acid</td>
<td>Olive and rapeseed oils, almonds, hazelnuts, and avocados</td>
<td>22</td>
</tr>
<tr>
<td>α-Tocopherol</td>
<td>Pastry, margarine, eggs, bread, vegetables, and fruits</td>
<td>21</td>
</tr>
<tr>
<td>γ-Tocopherol</td>
<td>Corn and soybean oils and margarine</td>
<td>21</td>
</tr>
</tbody>
</table>

1 CMPF, 3-carboxy-4-methyl-5-propyl-2-furanpropanoic acid.
from full-scan data and MRM, were then merged for statistical analyses.

Biochemical analysis

Blood glucose, insulin, adiponectin, total cholesterol, HDL, LDL, free fatty acid, and triglyceride measurements were performed by using standard clinical chemistry techniques as previously described at the clinical chemistry laboratory of the Sahlgrenska University Hospital, Gothenburg (15).

Data analysis strategy

Baseline samples used for exploring the associations between the 10 biomarkers and GTS groups were defined as NGT, IGT, and T2D and new T2D cases at follow-up irrespective of common risk factors of T2D and cardiovascular disease (CVD). ANCOVA and Tukey’s post hoc t test were used for comparing the GTS groups and logistic regression for testing if baseline biomarker values were associated with new T2D at follow-up (Figure 1). All data were checked for normal distribution, and skewed variables were log transformed. For logistic regression analysis, each biomarker was scaled to have a mean of 0 and an SD of 1 to have comparable units for all biomarkers. Because the results are not quantitative and are relative responses of mass spectrometer peak areas, differences between groups are reported as fold changes. As the focus of this work was the relation between dietary biomarkers and the development of T2D, subjects with previously diagnosed T2D or type 1 diabetes were excluded from the analyses. Waist circumference, total cholesterol, HDL, LDL, free fatty acids, systolic blood pressure, triglycerides, and medication for nondiabetic conditions were considered potential confounders and were first individually tested for each biomarker-outcome combination (stage 1). After this a step-wise model reduction was performed starting from the model including all potential confounders, followed by removal of the least significant variables one by one, and ending with a model including only significant (\(P < 0.05 \)) confounders (stage 2) (Table 3). One type of diuretic medication (bendroflumethiazide) was found to confound the association of baseline values of the biomarkers with the development of diabetes at follow-up but was used by only 4 subjects. Removing these 4 subjects from the population did not change the results, which are reported based on all subjects. Results for the logistic regression are reported as ORs and 95% CIs for one SD change in concentration of a biomarker for significant biomarkers. Results from ANCOVA models comparing GTS were reported as fold differences compared with NGT and with IGT in the case of T2D. In line with the explorative nature of the work that does not allow for power calculations, we report both raw and Benjamini-Hochberg false discovery rate–corrected \(P \) values. We treated results with a raw \(P \) value of <0.05 as being of interest.

Predictive models were used to test if the baseline values of the biomarkers can predict the subjects who developed T2D during the 5.5-y follow-up and how the prediction with biomarkers compares with other prediction models for the development of T2D. Four different prediction models based on the biomarkers in this study and earlier established predictors in this cohort (15)

Table 3

Identification of confounders for biomarker-outcome associations

<table>
<thead>
<tr>
<th>Outcome and biomarker</th>
<th>Stage 1</th>
<th>Stage 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>GTS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\beta)-Alanine</td>
<td>HDL</td>
<td>HDL</td>
</tr>
<tr>
<td>Alkylresorcinol C17</td>
<td>FFA</td>
<td>FFA</td>
</tr>
<tr>
<td>Alkylresorcinol C19</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>CMPF</td>
<td>LDL</td>
<td>LDL</td>
</tr>
<tr>
<td>EPA</td>
<td>CHOL, HDL, LDL</td>
<td>CHOL, LDL</td>
</tr>
<tr>
<td>Lauric acid</td>
<td>FFA, HDL</td>
<td>FFA, HDL</td>
</tr>
<tr>
<td>Linoleic acid</td>
<td>FFA, HDL</td>
<td>FFA, HDL</td>
</tr>
<tr>
<td>Oleic acid</td>
<td>FFA, CHOL, HDL</td>
<td>FFA, CHOL, HDL</td>
</tr>
<tr>
<td>(\alpha)-Tocopherol</td>
<td>CHOL, HDL, LDL, TG</td>
<td>CHOL, LDL</td>
</tr>
<tr>
<td>(\gamma)-Tocopherol</td>
<td>FFA, CHOL, HDL, LDL, TG, W</td>
<td>CHOL, HDL, LDL</td>
</tr>
<tr>
<td>New T2D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\beta)-Alanine</td>
<td>W, HDL, TG, SBP</td>
<td>W, TG</td>
</tr>
<tr>
<td>Alkylresorcinol C17</td>
<td>W, HDL, TG</td>
<td>W</td>
</tr>
<tr>
<td>Alkylresorcinol C19</td>
<td>W, HDL, TG</td>
<td>W, TG</td>
</tr>
<tr>
<td>CMPF</td>
<td>W, HDL, TG, SBP</td>
<td>W, TG</td>
</tr>
<tr>
<td>EPA</td>
<td>W, HDL, TG</td>
<td>W, TG</td>
</tr>
<tr>
<td>Lauric acid</td>
<td>W, HDL, TG</td>
<td>TG, HDL</td>
</tr>
<tr>
<td>Linoleic acid</td>
<td>W, HDL, TG</td>
<td>TG</td>
</tr>
<tr>
<td>Oleic acid</td>
<td>FFA, W, HDL, TG, SBP</td>
<td>W, TG</td>
</tr>
<tr>
<td>(\alpha)-Tocopherol</td>
<td>TG, HDL, W</td>
<td>TG</td>
</tr>
<tr>
<td>(\gamma)-Tocopherol</td>
<td>W, HDL, TG</td>
<td>W, TG</td>
</tr>
</tbody>
</table>

1 CHOL, total cholesterol; CMPF, 3-carboxy-4-methyl-5-propyl-2-furanpropanoic acid; FFA, free fatty acid; GTS, glucose tolerance status; SBP, systolic blood pressure; TG, triglyceride; T2D, type 2 diabetes; W, waist circumference.

2 Stage 1 confounders tested individually for each biomarker-outcome combination.

3 Stage 2 confounders after a step-wise model reduction by always removing the least significant confounder.

4 Glucose tolerance class defined as normal glucose tolerance, impaired glucose tolerance, and T2D.

5 New T2D at the follow-up examination of the study.
were tested: 1) diet and nutrition biomarkers model based on the biomarkers measured in this study, 2) anthropometry model based on smoking, alcohol consumption, waist circumference, systolic blood pressure, and family history, 3) adiponectin model based on serum adiponectin concentration, HOMA-IR, smoking, and IGT and impaired fasting glucose (IFG) at baseline, and 4) combination model based on a combined model from predictors in models 1 and 3. All dietary biomarkers were used for prediction in models 1 and 4. The area under the receiver operating characteristics curve was used to assess the discriminating power of the prediction models and was calculated with the trapezoidal rule by using the R-package pROC (version 1.8). All statistical analyses were performed by using the R statistical environment (version 3.0.2).

RESULTS

Of the subjects with blood plasma samples available from the baseline measurement, 188 subjects had NGT, 203 had IGT, and 202 had T2D. As expected, subjects with NGT had lower waist circumference, systolic blood pressure, and family history, based on smoking, alcohol consumption, waist circumference, systolic blood pressure, and free fatty acid and triglyceride concentrations compared with subjects with IGT and T2D and had slightly higher or similar HDL, LDL, and total cholesterol concentrations compared with subjects with IGT and T2D (Table 1).

Associations between dietary biomarkers and glucose tolerance

Of the 10 diet and nutrient biomarkers measured by using the GC-MS/MS metabolomics method, at baseline β-alanine, alkylresorcinols C17 and C19, EPA, lauric, linoleic and oleic acids, and α-tocopherol differed between the NGT and IGT groups, and β-alanine, CMPF, linoleic acid, and α-tocopherol differed between the NGT and T2D groups (Table 4). CMPF and linoleic acid differed between the IGT and T2D groups. γ-Tocopherol did not differ between any of the GTSs. Among the significant biomarkers, β-alanine and CMPF were lower in subjects with NGT compared with IGT and T2D. The 2 alkylresorcinols were higher in subjects with NGT compared with IGT, α-tocopherol was higher in subjects with NGT compared with IGT and T2D, oleic acid and EPA were higher in subjects with NGT compared with IGT, linoleic acid was higher in subjects with NGT compared with IGT and higher in subjects with T2D compared with NGT and IGT (see Table 4 for fold changes).

Baseline concentrations of biomarkers and future development of T2D

α-Tocopherol and CMPF were inversely associated with new T2D at the follow-up examination (P = 0.01; OR: 0.72; 95% CI: 0.56, 0.93 and P = 0.04; OR: 0.71; 95% CI: 0.51, 0.98, respectively) (Table 5). The P values were no longer <0.05 after correction for multiple comparisons. None of the other biomarkers measured was associated with future T2D risk. Prediction of new T2D at the follow-up examination based on a model that included all the diet and nutrient biomarkers had nominally higher sensitivity and selectivity (AUC: 0.724; 0.762).
95% CI: 0.662, 0.786) than prediction based on anthropometry (AUC: 0.638; 95% CI: 0.565, 0.711). Inclusion of diet and nutrient status biomarkers improved prediction based on serum adiponectin, smoking, IGT, IFG alone from an AUC of 0.794 (95% CI: 0.738, 0.849) to an AUC of 0.853 (95% CI: 0.806, 0.899) (Figure 2).

DISCUSSION

We have explored the associations between multiple dietary biomarkers and glucose tolerance accounting for common risk factors of T2D and CVD and have prospectively assessed whether these were associated with new cases of T2D at a 5-y follow-up. In addition, we tested if these biomarkers could be used for the prediction of T2D and compared how the prediction based on dietary biomarkers compares with established predictive markers of T2D. We found that 8 of the 10 diet-related biomarkers detected were associated with GTS, supporting the notion that diet is an important factor for preventing T2D. The results based on the dietary biomarkers suggest that an overall higher consumption of whole-grain products, fatty fish, and vegetable oils is associated with better GTS, whereas a higher consumption of meat was associated with a greater risk of IGT. This pattern is in line with many healthy diet recommendations, including the American Diabetes Association (24) and the Nordic Nutrition Recommendations (25). Furthermore, by using the combined dietary biomarkers it was possible to predict new cases of T2D during the 5.5-y follow up with specificity and sensitivity similar to using serum adiponectin concentration, HOMA-IR, smoking, and IGT and IFG at baseline, which were the best predictors of T2D in this cohort (15).

Diet is commonly associated with many risk factors for T2D (4), and positive dietary changes are among the recommendations for people at risk of developing T2D. On finding the association between dietary biomarkers and GTS and T2D development, we hypothesized that correcting for common risk factors of T2D and CVD, including systolic blood pressure, total cholesterol, LDL, HDL, triglycerides, free fatty acids, and obesity, would attenuate...
the effects of the biomarkers, based on a healthy diet leading to an overall healthier lifestyle. Surprisingly, the associations of the dietary biomarkers with GTS remained, irrespective of the risk factors, suggesting that whole grains, fish, saturated fat, margarine and vegetable oil, vitamin E, and meat may be related to and mediate T2D development beyond their known or suggested effects on obesity and metabolism (26–28).

Of the biomarkers used, several may have a direct link to the development of T2D. Plasma alkylresorcinols are well-established markers of whole-grain wheat and rye intake (18, 29, 30) and were found to improve insulin sensitivity in rats (31). Although they have not been directly studied for effects on glucose metabolism in humans, this is the first study to our knowledge to find a relation between alkylresorcinol concentrations and GTS and it supports earlier work that has found a relation between the ratios of specific alkylresorcinol homologs and T2D incidence (12). CMPF has been suggested to be a biomarker for fish intake (20), although increased circulating concentrations have been found to lead to a loss of glucose control via β cell dysfunction (32). Furthermore, CMPF was associated with T2D development in a prospective study (33). Our results show divergent associations, with CMPF being associated with both IGT and a reduced risk of developing T2D, suggesting that plasma CMPF concentrations may reflect 2 different outcomes: as a modulator of β cell dysfunction leading to T2D, and in populations without T2D and as a possible biomarker of fish intake, suggesting healthier dietary choices. α-Tocopherol reflects vitamin E status, and its relations with complications of T2D are not yet fully elucidated (34–36), although a recent study described vitamin E metabolism as associated with glucose control in both lean and obese subjects (37). Tocopherol metabolism can also be influenced by other dietary components (38), further confounding the direct relation between α-tocopherol and disease. EPA is one of the n−3 fatty acids commonly associated with marine foods (39) and recommended for improved cardiovascular health (40). Also, EPA supplementation has been shown to improve glycemic control (41, 42). Recently we found that β-alanine was increased after beef intake compared with fish because of a high amount of β-alanine in beef mince compared with fish (17), suggesting that β-alanine may reflect beef intake. Other studies have linked β-alanine and carnosine (β-alanine conjugated with the amino acid histidine) with T2D, which may also explain this result (43–45).

Although these biomarkers are by no means comprehensive in their coverage of diet, they do reflect several food groups that are of interest for T2D development. These biomarker results support previous findings on whole grains (12, 46–48), α-tocopherol (49, 50), fish (51), and a reduction of T2D risk, although the literature in relation to fish intake and T2D is not conclusive (52). Also, the present potential association of meat intake supports earlier findings of meat intake and increased T2D risk (53–55). There were slightly higher linoleic acid concentrations in subjects with T2D than in subjects with NGT, supporting the earlier work suggesting that excess circulating linoleic acid could have adverse health effects (56).

One of the strengths of the current study is the application of a multiple-nutritional biomarker approach in a free-living population, which gives a holistic picture of normal within population dietary variation and its association with GTS and the development of T2D. Biomarkers give an unbiased view of food intake but do have their own set of limitations based on variations in food composition, bioavailability, and metabolism (39, 57, 58). In this context, the results should be interpreted with some caution. α-Tocopherol and EPA are used in several biological processes, and although they are of dietary origin (although EPA can be synthesized from α-linolenic acid), plasma concentrations are influenced by several factors other than diet. For example, EPA is metabolized during elevated inflammation (59), which can confound its relation with fish intake and further genetic factors might also affect synthesis (60). Additionally, there may be some bias introduced by the use of a broad extraction-and-analysis method that covers a wide range of compound classes. A general extraction method was used that has been optimized to reproducibly extract many different compounds for metabolomics analysis by GC-MS (61) and may not be optimal for all compounds, especially those that are highly lipophilic, including the alkylresorcinols and tocopherols. An advantage of this approach is that the method could be expanded to cover a wider range of biomarkers as they continue to be discovered, thus improving our ability to cover a wide range of foods and nutrients. Furthermore, there are many gaps in our knowledge about how well a broad range of dietary biomarkers perform in observational settings, in part because of a lack of validation studies for many biomarkers. In the present study, the relatively large, well-defined, and homogeneous cohort provides a good starting point for testing the use of a broad panel of dietary biomarkers, and the results suggest that the use of dietary and nutrient status biomarkers could be a useful way to study the relation between diet and disease. Further studies with the use of this methodology in cohorts with diet intake information should be carried out to confirm that this approach of using one method to cover multiple biomarkers is valid.

Despite the known limitations, the wider application of dietary biomarkers to improve dietary intake estimates in research is encouraged, and several studies have demonstrated the potential of using several markers in the context of intervention studies (29, 30, 62). The biomarker panel measured in the current study covers some of the important food groups and represents the first multi-dietary biomarker analysis in the study of T2D. More work is needed to improve biomarker coverage for future studies, and further study in cohorts with existing dietary recall data are needed to further validate the approach.

In conclusion, our results suggest that a diet high in whole grains, vegetable oil, and fish, as well as α-tocopherol as measured by a multiple-biomarker approach can be a factor in controlling GTS and T2D development in free-living, 64- y-old Swedish women irrespective of common T2D and CVD risk factors. The multiple dietary and nutrient-status biomarker approach can capture different dietary components with one method and represents a step toward a universal methodology for the unbiased assessment of diet for use alone or in conjunction with self-reported dietary assessment.

We thank Nils-Gunnar Carlsson for technical advice, Pipsa Pajarinen and Annette Almgren for their assistance with the sample analysis, and Marie Louise Ekholm, Birgitta Jannemark, and Josefín Kjeldahl for collection and sample delivery.

The authors’ responsibilities were as follows—OS: conducted the metabolomics analyses, performed statistical analyses, interpreted the data, and wrote the manuscript; MVL: interpreted the data and provided intellectual input; AR: conceived and designed the metabolomics study, interpreted the
REFERENCES

60. Minihane AM. Impact of genotype on EPA and DHA status and responsiveness to increased intakes. Nutrients 2016;8:123.
