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Abstract
This paper deals with the computational homogenization and numerical model reduction of deformation driven pressure
diffusion in fractured porous rock. Exposed to seismic waves, the heterogeneity of the material leads to local fluid pressure
gradients which are equilibrated via pressure diffusion. However, a macroscopic observer is not able to measure the diffusion
process directly but senses the intrinsic attenuation of an apparently monophasic viscoelastic solid. The aim of this paper is to
establish a reliable, yet numerically efficient, computational homogenization method to identify the viscoelastic properties of
the macroscopic substitute model. Inspired by the Nonuniform Transformation Field Analysis, we incorporate a Numerical
Model Reduction procedure. The proposed method is validated for several scenarios ranging from pressure diffusion in an
unfractured poroelastic matrix, via localized pressure diffusion in interconnected fractures embedded in an impermeable
matrix, to the fully coupled pressure diffusion both in fractures and the embedding poroelastic matrix.

Keywords Poroelasticity with fractures · Computational homogenization · Numerical model reduction

1 Introduction

Fractures that are present in subsurface formations dominate
not only their mechanical properties but also their hydraulic
properties [2,31].When interconnected, they can increase the
hydraulic conductivity of a rock by several orders of magni-
tude [20,28]. Thismakes the detection and characterizationof
fracture networks of enormous interest for applications such
as the geological sequestration of CO2, production of deep
geothermal energy, nuclear waste storage, and the explo-
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ration and production of oil and gas. On the one hand, this
interest is associated to the necessity of extremely low per-
meabilities over time in nuclear waste storage sites as well
as in cap rocks on top of CO2 injection sites. On the other
hand, high permeability zones are the targets in geothermal
and in non-conventional hydrocarbon reservoirs.

1.1 Pressure diffusion in fluid-saturated fractured
rock

Squirt flow in interconnected micro-cracks causes dissipa-
tion of acoustic waves due to viscous friction [19]. This
dissipation mechanism is governed by fluid pressure dif-
fusion. An identical phenomenon occurs at a larger spatial
scale in hydraulically interconnected mesoscopic fractures
[26], here referred to as squirt-type flow. Two interconnected
fractures are differently deformed by the propagating wave
mainly as a consequence of their different orientation.Hydro-
mechanical coupling induces different fluid pressures in the
fractures and, thus, fluid pressure diffusion occurs from one
fracture into the other one, causing dissipation. The result-
ing dissipation is frequency dependent and associated with
dispersion of the elastic moduli. These effects of fracture
interconnectivity on seismicwaves represent a great potential
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Fig. 1 Fluid-saturated fractured
rock in a multiscale
representation
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for inferring hydraulic characteristics of subsurface forma-
tions through the interpretation of seismic data.

A few numerical upscaling approaches have been used in
the recent years to compute, at the level of a Representative
Volume Element (RVE), frequency-dependent attenuation
and the corresponding dispersion of the elasticmoduli caused
by squirt-type flow in interconnected fractures [22,23,26,30].
They describe the squirt-type flow within the fractures either
by using Biot’s quasi-static equations of poroelasticity or
quasi-static, linearized Navier–Stokes equations, whilst the
embedding rock matrix is described either as a poroelastic
medium or as a monophasic linear-elastic medium based on
Hooke’s law.

Numerical simulations of wave propagation can be used
to predict the effect of fracture interconnectivity on surface
seismic data, when the subsurface geometry and proper-
ties are known. However, in this case, model domains
much larger than the RVE considered for the previously
mentioned numerical upscaling approaches are necessary
which, if feasible at all, requires tremendous computational
efforts. A solution for this problem is to replace the het-
erogeneous medium at the macro-scale by an equivalent
homogeneous viscoelastic medium [4] exhibiting identi-
cal frequency-dependent attenuation and stiffness modulus
dispersion. This presumes that the fluid pressure diffusion
observed in the heterogeneous medium at the mesoscopic
scale is not observed at the macroscopic scale [13]. In
[15], the attenuation-dispersion behavior of a heterogeneous
poroelastic medium, consisting of a two-dimensional peri-
odic array of circular inclusions, was roughly approximated
with aMaxwell-Zener model containing one singleMaxwell
chain. This procedure matched the maxima of the corre-
sponding frequency-dependent P- and S-wave attenuation

curves but failed to predict the high-frequency limits of the
stiffness moduli. Hence, it is an open challenge to find a
more fundamental approach for the identification of a suit-
able viscoelastic model that is able to provide a precise
match of attenuation-dispersion behavior. Additionally, such
an approach should be able to handle more realistic descrip-
tion of heterogeneities and stochastic fracture networks on
the meso-level.

1.2 Computational homogenization and numerical
model reduction

In this paper we develop a Numerical Model Reduction
(NMR) technique based on the concepts of computational
homogenization. We, therefore, refer to the length scales
involved in the problem as shown in Fig. 1. We distin-
guish between, firstly, themacro-scale with the characteristic
length L where propagation and attenuation of seismicwaves
is observed, secondly, the meso-scale with the characteristic
length l � L where the squirt-type flow in fracture net-
works as well as pressure diffusion in the embedding porous
rock takes place and, thirdly, the micro-scale with the char-
acteristic length λ � l as the scale of discrete grains and
pores. In order to connect the micro- and the meso-scale we
employ theTheory of PorousMedia (TPM) [6,7] tomodel the
fluid-saturated porous rock as a biphasic poroelastic medium
with possibly heterogeneous material properties. In fact, the
resulting mesoscopic description of the rock matrix corre-
sponds toBiot’s equations of quasi-static linear consolidation
[3]. In addition, the mesoscopic model is enriched by a frac-
ture network, where we treat the fractures as fluid-filled
mechanically andhydraulically open sharp interfaces embed-
ded in the poroelastic matrix. Hence, fluid pressure diffusion
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occurs in the poroelasticmatrix as well as along the fractures.
We denote the resultingmodel that couples fluid pressure dif-
fusion on those two topology levels as “hybrid-dimensional
interface model” [30].

It is important to remark that quasi-static considerations
are admissible and reasonable on the SVE-level due to sep-
aration of scales. Hence, the macroscopic wavelength at
seismic frequencies is much larger than the SVE size. More-
over, the inertia forces at those low frequencies remain, at
the SVE-level, much smaller than the viscous drag forces in
the SVE, see [24].

The primal interest in this contribution, however, is the
scale transition from the heterogeneous meso-level towards
the homogenizedmacro-scale. Here, we promote the concept
of computational homogenization based on volume aver-
aging techniques. This concept, often referred to as FE2

approach as coined in [8], is well established in the litera-
ture for various applications. A comprehensive overview of
the concept can be found for example in [17,32]. Apply-
ing the FE2 approach to pressure diffusion in fractured rock
requires that we define a mesoscopic volume element con-
sidered to be representative for the entire meso-structure.
This Representative Volume Element (RVE) represents one
single material point on the macro-scale. It is important to
remark that, for practical applications, the volume element
that can be used for simulations with reasonable numerical
efforts is usually much smaller than a true RVE. We, there-
fore, introduce the concept of Statistical Volume Elements
(SVE) as proposed for example in [21]. In order to correlate
macroscopic and mesoscopic quantities we execute volume
averaging of selected mesoscopic quantities to compute their
macroscopic counterparts. However, we assume that squirt-
type flow and pressure diffusion in the embedding matrix
induced by seismic waves are local phenomena. In other
words, fluid pressure diffusion takes place inside the SVE,
but any macroscopic transport is neglected. In this case the
macroscopic substitute material behaves like a monophasic
viscoelastic solid. This phenomenon was discussed in detail
in [13] for heterogeneous poroelastic media. The influence
of the chosen SVE size for pressure diffusion in fractured
porous media was studied in [5] similarly to the classical
homogenization problem investigated in [14].

However, the FE2 approach requires the nested solution of
one macroscopic and numerous mesoscopic initial boundary
value problems, which leads to tremendous computational
costs thus restricting practical applicability to rather coarse
meso-scale problems. In this paper, we therefore propose a
NMR strategy that significantly reduces the numerical efforts
in solving the SVE problems. Our approach is inspired by the
Nonuniform Transformation Field Analysis (NTFA), which
was initially established for elasto-viscoplastic materials
[18,25] and recently extended towards solids with cohesive
interfaces [10], generalized standard media [9,27], poroelas-

tic composites [12] and transient heat flow [1], to name only
a few application fields. The advancement presented in this
paper is that we significantly extend the NMR-methodology
that was initially proposed for undamaged poroelastic media
in [12] towards pressure diffusion in a hybrid-dimensional
formulation.

The key ingredient of our scheme is that we approxi-
mate the fluid pressure in the hybrid-dimensional domain
as a linear combination of so-called pressure modes which
we identify via a Proper Orthogonal Decomposition (POD)
from training computations on the SVE level. The pressure
modes span a reduced basis for the spatial approximation
of the mesoscopic pressure diffusion problem and, as a
consequence, allow for the identification of the viscoelas-
tic evolution equations of the macroscopic substitute model.
Hence, the reduced FE2 scheme is split into two stages: The
numerically expensive training computations on SVE level
define the first stage. They need to be executed only once in
advance to derive the homogenized substitute model. There-
fore, the first stage is often referred to as “offline” phase.
The macroscopic substitute model is used in the second
stage, called “online” phase, to solve the macroscopic ini-
tial boundary value problems. This allows us to access the
full sub-scale information during the “online” phase without
explicitly solving the underlying SVE problems and, thus,
we succeed to reduce the computational costs tremendously.

The paper is organized as follows: In Sect. 2 we describe
the hybrid-dimensional modeling approach on the SVE-
level.We, therefore, employ a sharp interfacemodel for pres-
sure diffusion along fractures embedded in a poroelastic rock
matrix. Section 3 is devoted to the computational homog-
enization framework and the definition of the mesoscopic
initial boundary value problem for the hybrid-dimensional
description in a FE2 sense. In Sect. 4 we develop the novel
NMR technique which allows us to derive viscoelastic sub-
stitute models for arbitrary diffusion problems. Finally, we
validate our methodology in several numerical experiments
presented in Sect. 5.

Throughout the manuscript, vector and tensor quantities
are written as bold types. Taking into account Einstein’s sum
convention we write out simple and double contractions as
a · b = ai bi and A : B = Ai j Bi j . In Voigt notation, vector
and matrix quantities are written as underlined italic types,
for example a and A.

2 Hybrid-dimensional interfacemodel for
fractured poroelastic media

We introduce a cubic SVE in the mesoscopic domain Ω�
with the volume V� := |Ω�| = l3, where l is the edge
length l of the SVE. The SVE contains n fluid-filled thin frac-
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Fig. 2 a Periodic SVE including a fracture of thickness τ in the full 3D representation. b Periodic SVE with the sharp interface ∂Fk . c Positive
and negative fracture surfaces

tures in the domain ΩF ⊂ Ω� with VF := |ΩF |. They are
considered to be mechanically and hydraulically open. Thus,
we assume that the fracture surfaces are not in contact and
fluid transport along the fractures is possible. Moreover, we
assume that the fractures are penny-shaped and that each frac-
ture can be represented by a symmetry plane.1 The fractures
are surrounded by a poroelasticmatrix occupyingΩM ⊂ Ω�
with VM := |ΩM | as shown in Fig. 2a. Hence, we can state
that Ω� = ΩM ∪ ΩF whilst ΩM ∩ ΩF = ∅. The internal
surface separating thematrixmaterial from the fracture space
is denoted ∂Ω i

M . We define the surface normal vector n such
that it points from ∂Ω i

M into ΩF .
For seismic attenuation and pressure diffusion in frac-

ture networks the case of very thin fractures is of major
interest. In fact this means that we consider the case that
VF � VM . Since it would be numerically extremely costly
to discretize the volume of such thin fractures we aim to sim-
plify the geometrical description of the fracture space. We,
therefore, condense the fracture volume towards a set of n
possibly intersecting planar interfaces ∂Fk , k = 1, 2, . . . , n,
see Fig. 2b, whilst ∂F := ∪n

k=1∂Fk . In the fracture space, we
assume all quantities to be homogeneous in thickness direc-
tion. In other words, we neglect any gradients perpendicular
to ∂Fk . This hybrid-dimensional interfacemodel is discussed
in detail in [29].

Hence, we can state that a volume element dv in the frac-
tureΩF,k computes as dv = τ da. Here, we use the interface
element da of ∂Fk and introduce the (current) fracture open-

1 Note that this assumption is invoked here for the sake of simplicity.
Existence of a symmetry plane is not ultimately necessary to set up the
interface model.

ing τ(x, t) of ∂Fk . The now one-dimensional intersection of
∂Fk with the external surface ∂Ω� is denoted ∂∂F�,k .

In order to distinguish between positive and negative frac-
ture surfaces ∂Ω

i,±
M we assign the fracture normal vector nF

perpendicular to the interface ∂Fk . By convention, nF shows
in the direction of the positive fracture surface ∂Ω

i,+
M,k and,

therefore, n+ := −nF and n− := nF .
The fracture opening is defined as the apparent normal

distance of the fracture surfaces and can be computed, for all
k = 1, 2, . . . , n, as

τ = τ0 + [[u]]F · nF on ∂Fk . (1)

Here, we evaluate the solid displacement u of the poroelas-
tic matrix material at the fracture surfaces and connect the
displacements via the fracture jump operator

[[�]]F (x) = �(x+) − �(x−) ∀ x± ∈ ∂Ω
i,±
M,k . (2)

We denote the quantity τ0(x) = τ(x, t = 0) the initial frac-
ture opening and treat it as a geometry parameter that is
constant in time. However, it is important to remark that we
do not resolve τ0 geometrically. In the following, we address
the material models used for the sub-scale description.

2.1 Poroelastic rockmatrix

The fluid-saturated porous rockmatrix is treated as a biphasic
mixture consisting of the solid skeleton and the saturating
fluid phase.We follow thenotationproposed in [7] anddenote
quantities referring to solid and fluid phase respectively with
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Table 1 Poroelastic material parameters

ks Intrinsic permeability of the solid skeleton

φ Porosity (φ := φ(t > 0) = φ(t = 0))

G, K Elastic moduli of the dry skeleton

Ks , K f Bulk moduli of solid grains and pore fluid

η f R Effective dynamic viscosity

α Biot–Willis parameter

M Storativity

α = 1 − K/Ks

1/M = φ/K f + (α − φ)/Ks

index s or f . We adopt the concept of effective stress and
use Biot’s quasi-static theory of linear consolidation [3] in
a displacement–pressure formulation. This leads us to the
strong form of the coupled equation system

σ · ∇ = 0 in ΩM , (3)

∇ · qM + Φ̇M = 0 in ΩM , (4)

with the boundary conditions

u = u∗ on ∂uDΩM , σ · n = t∗ on ∂uNΩM , (5)

pM = p∗ on∂ p
DΩM , qM · n = q∗ on ∂

p
NΩM . (6)

The subscripts ∂D and ∂N refer to Dirichlet and Neumann
boundary conditions, respectively, pertaining to the solid dis-
placement u and the pore pressure pM . Quantities with index
∗ are given boundary values on the boundary ∂ΩM . In (3),
σ is the total stress in the mixture, and it is defined via the
constitutive relation

σ := 2G εdev + 3 K εvol
︸ ︷︷ ︸

=:σ eff (ε(u))

−α pM I
︸ ︷︷ ︸

=:σ p,M (pM )

(7)

with the shear and the bulk moduli G and K of the try
solid rock skeleton, the Biot–Willis parameter α and the
pore pressure pM . We assume small deformations and define
the linear solid strain tensor ε = (u ⊗ ∇)sym. We execute
the volumetric-deviatoric decomposition and define the vol-
umetric strain tensor εvol = e I/3 with e = tr ε and the
deviatoric strain tensor εdev = ε − εvol.

In (4), we identify qM as the seepage velocity, whereas
ΦM is the amount of fluid stored in the saturated pore space.
The corresponding constitutive relations are chosen as

qM = − ks

η f R
∇pM and ΦM = φ + α e + pM

M
. (8)

Defining the initial value ofΦM completes the initial bound-
ary value problem. The material parameters used for the
poroelastic model are summarized in Table 1.

2.2 Pressure diffusion along fractures

The fluid pressure diffusion along the fractures ∂Fk , k =
1, 2, . . . , n, is described in terms of the continuity equation

∇F · qF + Φ̇F = − 1

τ0

(

qL − q̂k
)

(9)

with ΦF = 1 + eF + pF

K f
. (10)

The operator ∇F evaluates the gradient in the plane that is
tangential to ∂Fk . The strong form (9) is completed with the
initial value of the fluid storage ΦF and Dirichlet and Neu-
mann boundary conditions pertaining to the fluid pressure
pF

pF = p∗ on ∂∂DFk, qF · n = q∗ on ∂∂N Fk, (11)

where ∂∂Fk = ∂∂DFk ∪ ∂∂N Fk is the boundary of fracture
∂Fk . Here, we introduce the fluid velocity qF along ∂Fk and
the fluid storageΦF associated with ∂Fk with the volumetric
fracture strain eF . K f is the fluid bulk modulus. Moreover,
we introduce the leak-off qL or, in other words, the outflux
of fluid from ∂Fk into the surrounding porous matrix, and
we define the mass supply q̂k from one fracture to another,
in the case they intersect, as

q̂k :=
n
∑

l=1

q̂kl δkl(x), (12)

where q̂kl = −q̂lk is the influx from fracture l to fracture k
along their intersection ∂Fk ∩ ∂Fl . Here, we use the Dirac-
function2 δkl at the intersection of fractures k and l. The
volumetric fracture strain is defined as

eF = τ

τ0
− 1, (13)

whereby the volume change of the fracture due to elongation
in tangential direction is ignored. For the fluid velocity qF

along the fracture we suppose that the velocity profile has
a quadratic shape across the thickness of the fracture. The
Poiseuille flow assumption allows for computation of the
effective seepage velocity qF in ∂Fk in form of Darcy’s law
as

qF = − τ 20

12 η f R
∇F pF (14)

with the apparent fracture permeability
τ 20

12
.

2 We define the Dirac-function as the distribution satisfying
∫

∂Fk

f (x)δkl (x) da = ∫

∂Fk∩∂Fl

f (x) ds.
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2.3 Hydro-mechanical coupling betweenmatrix and
fracture space

Finally, we specify the interaction between the poroelastic
matrix and the fluid-filled fractures. We, therefore, compute
the volumetric fracture strain rate ėF with (1) and (13) and
define the leak-off qL as the outflux of fluid from the fracture
space into the poroelastic matrix. Hence, we write

ėF := [[u̇]]F · nF

τ0
and qL := −[[qM ]]F · nF on ∂Fk,(15)

k = 1, 2, . . . , n. Vice versa, the fluid pressure in the frac-
ture acts on the internal surface ∂Ω

i,k
M . The assumption of a

continuous fluid pressure leads to the interface conditions

pM = pF on ∂Ω
i,k
M , (16)

σ · n = −pF n on ∂Ω
i,k
M , (17)

k = 1, 2, . . . , n. Henceforth, we simplify notation and write
p instead of pM and pF .

3 Computational homogenization

3.1 Scale transition

In the subsequent section,we aim to embedpressure diffusion
in fluid-saturated fractured rock in the multiscale framework
of computational homogenization and derive a macroscopic
substitute model for the hydro-mechanically coupled prob-
lem on the meso-level. To this end, we define a SVE for the
mesoscopic pressure diffusion problem and impose separa-
tion of scales in space and time. This means that macroscopic
gradients have a wavelength that is much larger than the SVE
size (L � l). Similarly, due to the scaling of spatial gradients,
processeswithin the SVEwill occur atmuch higher rates than
those occurring on the macroscopic level. We conclude that,
under these conditions, transient pressure diffusion, brought
on by macroscopic waves, occurs on the meso-scale only.
In standard fashion, we assume the SVE to be periodic and
apply periodic boundary conditions. Thereby, we a priori
ensure that the amount of fluid stored within the SVE is con-
served. It remains to discuss pressure diffusion through the
SVE: Firstly, due to separation of time scales and negligible
macroscopic time rates, pressure diffusion through the SVE
will be stationary. Secondly, due to the linearity of the prob-
lem, it does not interfere with the transient processes and is,
therefore, ignored. See [13] for a more thorough discussion.

Altogether, the macroscopic substitute medium can be
described as a monophasic material. In fact, the attenuation
properties of the macro-model represent viscoelastic damp-
ing of the Maxwell-Zener type.

We tackle the scale transition between meso- and macro-
scale with the aid of the volume averaging operator

�̄ = 〈�〉� := 〈�〉M + 〈�〉F
= 1

V�

∫

ΩM

� dv + 1

V�

∫

ΩF

� dv. (18)

Here �̄ represents the macroscopic counterpart of an appro-
priate subscale quantity �. Taking into account the dimen-
sional reductionΩF → ∂F ,weobtain thehybrid-dimensional
form of the volume averaging operator as

�̄ = 〈�〉� := 〈�〉M +
n
∑

k=1

〈� τ0〉∂Fk

= 1

V�

∫

ΩM

� dv + 1

V�

n
∑

k=1

∫

∂Fk

� τ0 da. (19)

Periodic boundary conditions on the SVE surface are
imposed as

[[u]]�(x, t) = ε̄(t) · [[x]]�, t(x+, t) + t(x−, t) = 0

∀ x ∈ ∂Ω+
M , (20)

[[p]]�(x, t) = 0, qM (x+) + qM (x−, t) = 0

∀ x ∈ ∂Ω+
M , (21)

[[p]]�(x, t) = 0, qF (x+, t) + qF (x−, t) = 0

∀ x ∈ ∂∂F+
�,k, (22)

k = 1, 2, . . . , n. We use here the SVE jump operator
[[�]]�(x+) = �(x+) − �(x−) to connect points on opposite
parts of the SVE surface ∂Ω� = ∂ΩM ∪n

k=1 ∂∂F�,k [16].
The surface tractions and the fluid outflux across ∂ΩM and
∂∂F�,k are defined as t = σ ·n, qM = qM ·n and qF = qF ·n
with the outer surface normal vector n. With this choice, it
is obvious that

∫

∂ΩM
qM da + ∑n

k=1

∫

∂∂F�,k
qF τ0 ds = 0.

Thus, the fluid mass in the SVE is conserved. Moreover,
we observe that the macroscopic strain ε̄ is the only load-
ing applied on the SVE. This corresponds to the modeling
assumption of a monophasic solid overall material model.

3.2 Weak form andmacro-homogeneity condition

In the next step, we establish the weak representation of the
balance equations (3), (4) and (9) using the notation for the
generalized variational format presented in [16]. Hence, we
seek solutions in the trial spaces UM and P� = PM ×PF of
admissible displacements and fluid pressure fields3 that are
sufficiently regular in ΩM and ∂F . Furthermore, we intro-
duce the corresponding trial spaces of self-equilibrated fluxes

3
P� contains functions that satisfy the continuity constraint (16).
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TM , QM and QF that are sufficiently regular on ∂Ω+
M and

∂∂F+.Wewrite the equations for findingu, p, t, qM , qF ∈
UM × P� × TM × QM × QF as

auM (u, δu) + buM (p, δu) − cuM (t, δu) − duM (p, δu) = 0,

(23)

− a
p
M (p, δ p) + b

p
M (u̇, δ p) + m

p
M ( ṗ, δ p)

+ c
p
M (qM , δ p) + d

p
M (p, δ p) = 0, (24)

− a
p
F (p, δ p) + b

p
F (u̇, δ p) + m

p
F ( ṗ, δ p)

+ c
p
F (qF , δ p) + d

p
F (p, δ p) +

n
∑

k=1

e
p
F,k(q̂k, δ p) = 0, (25)

for k = 1, 2, . . . , n, under

− cuM (δt,u) = −cuM (δt, ε̄ · x), (26)

c
p
M (δqM , p) = 0, (27)

c
p
F (δqF , p) = 0, (28)

which hold for any admissible test functions δu, δ p, δt, δqM ,
δqF ∈ UM × P� × TM × QM × QF . Here, we use the
abbreviations

auM (u, δu) =
〈

σ eff(ε(u)) : (δu ⊗ ∇)
〉

M
, (29)

buM (p, δu) = 〈

σ p(p) : (δu ⊗ ∇)
〉

M , (30)

cuM (t,u) = 1

V�

∫

∂Ω+
M

t · [[u]]� da, (31)

cuM (t, ε̄ · x) = 1

V�

∫

∂Ω+
M

t ⊗ [[x]]� da : ε̄, (32)

duM (p, δu) = −
n
∑

k=1

1

V�

∫

∂Ω
i,k
M

p δu · n da, (33)

and

a
p
M (p, δ p) = 〈qM (∇p) · ∇δ p〉M , (34)

b
p
M (u̇, δ p) = 〈α ė δ p〉M , (35)

m
p
M ( ṗ, δ p) =

〈

ṗ

M
δ p

〉

M
, (36)

c
p
M (qM , p) = 1

V�

∫

∂Ω+
M

qM [[p]]� da, (37)

d
p
M (p, δ p) = −

n
∑

k=1

1

V�

∫

∂Ω
i,k
M

qM δ p da, (38)

and

a
p
F (p, δ p) =

n
∑

k=1

〈

qF (∇F p) · ∇Fδ p τ0

〉

∂Fk
, (39)

b
p
F (u̇, δ p) =

n
∑

k=1

〈

ėF,k δ p τ0
〉

∂Fk
, (40)

m
p
F ( ṗ, δ p) =

n
∑

k=1

〈

ṗ

K f
δ p τ0

〉

∂Fk

(41)

c
p
F (qF , p) =

n
∑

k=1

1

V�

∫

∂∂F+
k

qF [[p]]� τ0 ds, (42)

d
p
F (p, δ p) =

n
∑

k=1

〈qL(p) δ p〉∂Fk , (43)

e
p
F,k(q̂k, δ p) = − 〈

q̂k δ p
〉

∂Fk
. (44)

Using (12) and the constraint q̂kl = −q̂lk , we see that
∑n

k=1 e
p
F,k(q̂k, δ p) = 0.Moreover, using (15)2, we conclude

that dpM (p, δ p)+d
p
F (p, δ p) = 0. In order to abbreviate nota-

tion we introduce q = (qM , qF ) and the corresponding set
Q� = QM ×QF . For a unified description of the fully cou-
pled pressure diffusion process on SVE level we add (24)
and (25), and we write the SVE continuity equation solving
for p, q ∈ P� × Q� as

−a
p
�(p, δ p) + b

p
�(u̇, δ p) + m

p
�( ṗ, δ p)

+ c
p
�(q, δ p) = 0, (45)

c
p
�(δq, p) = 0, (46)

which holds for any admissible test functions δ p, δq ∈
P� × Q�. In (45) we introduce the SVE forms

a
p
�(p, δ p) = a

p
M (p, δ p) + a

p
F (p, δ p), (47)

b
p
�(u̇, δ p) = b

p
M (u̇, δ p) + b

p
F (u̇, δ p), (48)

m
p
�( ṗ, δ p) = m

p
M ( ṗ, δ p) + m

p
F ( ṗ, δ p), (49)

c
p
�(q, p) = c

p
M (qM , p) + c

p
F (qF , p). (50)

For the sake of completeness, we derive Hill’s principle
of macro-homogeneity for the given problem. We, therefore,
choose δu → u̇ and δ p → p. We add (23) and (45) and
write in expanded form

〈σ : ε̇〉M − 〈(∇ · qM ) p〉M −
〈

qM · ∇M p
〉

M

−
n
∑

k=1

[

〈p ėF τ0〉∂Fk +
〈

(∇F · qF ) p τ0

〉

∂Fk

+
〈

qF · ∇F p τ0

〉

∂Fk

]
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= 1

V�

∫

∂Ω+
M

(t ⊗ [[x]]�)sym da

︸ ︷︷ ︸

=:σ̄

: ˙̄ε. (51)

Hereby, we employ the periodic boundary conditions in the
form of (20), (21) and (22). On the right-hand side of the
macro-homogeneity condition (51) we can see that, under
the chosen periodic boundary conditions, the macroscopic
substitute medium is represented by a monophasic Cauchy
continuummodel.Weuse the divergence theoremand rewrite
the macroscopic stress tensor σ̄ as

σ̄ := 1

V�

∫

∂Ω+
M

(t ⊗ [[x]]�)sym da

= 〈σ 〉M −
n
∑

k=1

1

V�

∫

∂Ω
i,k
M

(t ⊗ x)sym da

= 〈σ 〉M −
n
∑

k=1

〈p τ0〉∂Fk I. (52)

4 Numerical model reduction for the RVE
problem

In this section we aim to enhance the computational homog-
enization concept in a way that enables us to explicitly
derive the macroscopic viscoelastic material properties of
the pressure diffusion problem on the sub-scale. We, there-
fore, extend the NMR technique introduced in [12] towards
the deformation-driven hybrid-dimensional pressure diffu-
sion problem.

4.1 Decomposition of the sub-scale field quantities

The key ingredient to our NMR approach is the series expan-
sion of the pressure field p(x, t) in terms of

p(x, t) ≈
N
∑

a=1

ξ̄a(t) pa(x) in ΩM

n
⋃

k=1

∂Fk . (53)

The pressure modes pa , a = 1, 2, . . . , N , form a linearly
independent reduced basis of the space P�. We show in
the sequel that even rather small numbers N result in very
good approximations of the pressure field and the depend-
ing quantities. The pressure modes satisfy the condition
∑N

a=1 ξ̄a pa = 0 only by the trivial choice ξ̄a = 0, a =
1, 2, . . . , N . The quantities ξ̄a are called mode activity coef-
ficients. They represent internal variables of the macroscopic
substitutemedium.Altogether, the current state of the hybrid-
dimensional medium on the meso-level at time t is defined

by the overall strain ε̄(t) and by the internal variables ξ̄a(t),
a = 1, 2, . . . , N .

The pressuremodes pa are generated via a Proper Orthog-
onal Decomposition (POD) of a set of S snapshots p̂s ,
s = 1, 2, . . . , S, of the pressure distribution obtained from
training computations.As described in [11,25], training com-
putations take place on the SVE level and are driven by a
macroscopic loading

ε̄(t) =
6
∑

i=1

γi (t)Bi . (54)

Hereby, the tensors Bi , i = 1, 2, . . . , 6, represent the irre-
ducible orthonormal basis of the symmetric strain tensor
ε̄. The training function γi (t) may, for example, prescribe
stress-relaxation tests or a frequency sweep. The pressure
snapshots are used to compute the system correlation matrix

gst = 〈

p̂s(x) p̂t (x)
〉

� , s, t = 1, 2, . . . , S. (55)

We solve the eigenvalue problem (gst − λ δst ) vt = 0 and
arrange the resulting eigenvalues in the order of decreasing
absolute values |λs |. We reduce the set of eigenvalues to the
N � S persisting eigenvalues λa , a = 1, 2, . . . , N , for
which holds |λa | > 1e-6 |λ1|. Finally, we compute the N
pressure modes as

pa(x) =
S
∑

s=1

vas p̂s(x), a = 1, 2, . . . , N . (56)

Due to the orthonormality of the eigenvectors vas , the pressure
modes are orthogonal such that

〈pa pb〉� =
{

λa, if a = b,
0, otherwise.

(57)

In the hybrid-dimensional case we have to take into account
that, usually, |ΩF | � |ΩM |. In other words, the matrix con-
tribution to the volume integral in (55) exceeds the fracture
contribution by far. By consequence, the diffusion processes
in the fracture space might be underrepresented in the POD
procedure. One way to avoid this problem is to introduce
scalar and dimensionless weights wM , wF > 0 to compute
the correlation matrix as

gst = wM
〈

p̂s(x) p̂t (x)
〉

M + wF

n
∑

k=1

〈

p̂s(x) p̂t (x) τ0
〉

∂Fk

(58)

with wM � wF . A self-evident choice would, for example,
be based on the volume fractions such that wM = |ΩF |

|Ω�| and
wF = |ΩM |

|Ω�| . In this manuscript, however, we choose another

123



Computational Mechanics (2019) 63:49–67 57

yet comparably simple concept and execute the POD for the
different topologies ΩM and ∂F separately. We, therefore,
use SM snapshots covering the pressure diffusion processes
in the matrix material and SF snapshots covering the pres-
sure diffusion in the fracture space. We define the correlation
matrices accordingly as

gM,st = 〈

p̂s(x) p̂t (x)
〉

M , s t = 1, 2, . . . , SM , (59)

gF,st =
n
∑

k=1

〈

p̂s(x) p̂t (x) τ0
〉

∂Fk
, s, t = 1, 2, . . . , SF . (60)

Thus, the N = NM + NF members of the reduced set of
basis modes consist of NM modes that are derived from (59)
and NF modes that are derived from (60). It is important
to remark that this procedure might, in general, lead to a
non-orthogonal reduced basis and therewith to a basis that
is larger than necessary. However, the detailed investigation
of optimal identification procedure of the reduced basis is
outside the scope of the present investigation.

After having computed the reduced modal basis accord-
ing to (56), we now decompose further mesoscopic fields
according to (53) and write

ε(x, ε̄(t), ξ̄ (t)) ≈ E0(x) : ε̄(t) +
N
∑

a=1

ξ̄a(t) εa(x), (61)

u(x, ε̄(t), ξ̄ (t)) ≈ U0(x) : ε̄(t) +
N
∑

a=1

ξ̄a(t)ua(x), (62)

σ (x, ε̄(t), ξ̄ (t)) ≈ C(x) : E0(x) : ε̄(t)

+
N
∑

a=1

ξ̄a(t) σ a(x), (63)

which hold for x ∈ ΩM . We have introduced the 4th rank
strain and the 3rd rank displacement localization tensors

E0(x) =
6
∑

i=1

εi (x) ⊗ Bi , U0(x) =
6
∑

i=1

ui (x) ⊗ Bi , (64)

whereas C(x) is the elastic stiffness tensor for the dry solid
skeleton. Moreover, we use the mode-dependent strain, dis-
placement and stress tensors εa , ua and σ a . All resulting
fields on the meso-level depend linearly on the prescribed
overall strain ε̄ and the mode activity coefficients ξ̄a , a =
1, 2, . . . , N .

The contributions associated with the strain localization
tensor E0 or, in other words, depending on the macroscopic
strain tensor ε̄ represent the instantaneous response of the
dry linear-elastic solid skeleton under kinematic loading and
zero mode activity, that is ξ̄a = 0, a = 1, 2, . . . , N . We,
therefore, solve for ui and ti , i = 1, 2, . . . , 6, from

auM (ui , δu) − cuM (ti , δu) = 0, (65)

−cuM (δt,ui ) = −cuM (δt,Bi · x), (66)

for all admissible test functions δu, δt ∈ UM × TM .
The unknown fields εa , ua and σ a are driven by the

activity coefficients ξ̄a . They are computed by solving b =
1, 2, . . . , N linear-elastic eigenstress problems correspond-
ing to the unit loading cases

ξ̄a =
{

1, if a = b,
0, if a �= b

(67)

whilst ε̄ = 0. Since, pa is known, we solve for ua and ta
from the system

auM (ua, δu)

− cuM (ta, δu) = − buM (pa, δu) + duM (pa, δu), (68)

cuM (δt,ua) = 0 (69)

for test functions δu, δt ∈ UM × TM .
Finally, we compute the total macroscopic stress σ̄ as

σ̄ =
〈

C : E0
〉

M
: ε̄

︸ ︷︷ ︸

=:σ̄ eff

+
N
∑

a=1

[

〈σ a〉M −
n
∑

k=1

〈pa τ0〉∂Fk I

]

ξ̄a

︸ ︷︷ ︸

=:σ̄ p

. (70)

Equation (70) allows us to identify the macroscopic effective
stress σ̄ eff and the macroscopic pressure-dependent stress
σ̄ p. It is particularly remarkable that σ̄ p is not necessarily
a spherical tensor. This is in sharp contrast to the pressure-
dependent stress σ p in the meso-scale formulation (7). This
is a consequence of the heterogeneity of the SVE: Any fluid
pressure distribution on the sub-scale causes eigenstresses in
the SVE which are, in general, anisotropic.

Finally, it remains to identify a relation for the temporal
evolution of the activity parameters ξ̄a which we interpret in
the following as internal variables of the macroscopic sub-
stitute medium.

4.2 Evolution of the internal variables

We now insert the decompositions (53) and (61)–(63) into
the weak form of the continuity equation (45) and find

− a
p
�

(

N
∑

b=1

ξ̄b pb,
N
∑

a=1

δξ̄a pa

)

+ b
p
�

(

U0 : ˙̄ε +
N
∑

b=1

ub ˙̄ξb,
N
∑

a=1

δξ̄a pa

)
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+m
p
�

(

N
∑

b=1

˙̄ξb pb,
N
∑

a=1

δξ̄a pa

)

= 0. (71)

Here, we take into account the periodicity of the SVE such
that [[pa]]� = 0 and q+

b + q−
b = 0 on ∂Ω+

M and ∂∂F+,
a, b = 1, 2, . . . , N . Thus, we can state that

c
p
�

(

N
∑

b=1

ξ̄b qb,
N
∑

a=1

δξ̄a pa

)

= 0. (72)

Since themode activity coefficients ξ̄a representmacroscopic
variables we can rewrite (71) as

N
∑

a,b=1

δξ̄a
[−a

p
� (pb, pa) ξ̄b

+ [

b
p
� (ub, pa) + m

p
� (pb, pa)

] ˙̄ξb
]

= −
N
∑

a=1

δξ̄a b
p
�
(

U0 : ˙̄ε, pa
)

. (73)

For amore compact notation,we introduce the N -dimensional

vector ξ̄
T = [ξ̄1, ξ̄2, . . . , ξ̄N ]T and the vector representation

for the macroscopic strain ε̄T = [ε̄11, ε̄22, ε̄33, 2 ε̄12, 2 ε̄13,
2 ε̄23]T . We write

δξ̄
T
[

Ā ξ̄ + M̄ ˙̄ξ
]

= δξ̄
T B̄ ˙̄ε. (74)

Here, the matrix components for a, b = 1, 2, . . . , N and for
i = 1, 2, . . . , 6 read

Āab := −a
p
�(pb, pa), (75)

B̄ai := −b
p
�(ui , pa), (76)

M̄ab := b
p
�(ub, pa) + m

p
�(pb, pa). (77)

Now, we use (30) and (35) to identify

b
p
M (ub, pa) = −buM (pa,ub). (78)

From (68) together with the periodicity conditions [[ub]]M =
0 and t+a +t−a = 0 on ∂Ω+

M , a, b = 1, 2, . . . , N , and inserting
(33) and (40) into (78) we can derive

− buM (pa,ub) = auM (ua,ub) − duM (pa,ub) (79)

⇔ b
p
M (ub, pa) + b

p
F (ub, pa)

= auM (ua,ub)−duM (pa,ub) + b
p
F (ub, pa)

︸ ︷︷ ︸

=0

. (80)

Thus, it holds that

b
p
�(ub, pa) = auM (ub, ua), (81)

and we write for the matrix components, for a, b =
1, 2, . . . , N , and, for i = 1, 2, . . . , 6,

Āab := ĀM,ab + ĀF,ab

=
〈

ks

η f R
∇pa · ∇pb

〉

M

+
n
∑

k=1

〈

τ 30

12 η f R
∇F pa · ∇F pb

〉

∂Fk

, (82)

B̄ai := B̄M,ai + B̄F,ai

= −
〈

α E0
i pa

〉

M
−

n
∑

k=1

〈

T 0
i pa

〉

∂Fk
, (83)

M̄ab := M̄M,ab + M̄F,ab

= 〈εb : C : εa〉M +
〈

1

M
pa pb

〉

M

+
n
∑

k=1

〈 τ0

K f
pa pb

〉

∂Fk
. (84)

Hereby, E0 is the vector representation of the trace I : E0 of
the strain localization tensor. Similarly, T 0 is the vector repre-
sentation of the second rank tensor nF ·[[U0]]F and, therefore,
describes the opening opening of fracture ∂Fk under the
external loading cases ε̄ = Bi , i = 1, 2, . . . , 6. Since the test
functions δξ̄ can be chosen arbitrarily, the evolution equation
for the mode activity coefficients can be derived from (74)
as

M̄ ˙̄ξ + Ā ξ̄ = B̄ ˙̄ε, ξ̄ (t = 0) = 0. (85)

This form of the evolution represents a coupled system of
Ordinary Differential Equations (ODE). The evolution of
the variable ξ̄a depends on the values of possibly all other
variables ξ̄b, a, b = 1, 2, . . . , N . Hence, we make use of
the symmetry of Ā and M̄ and execute the basis shift

{ξ̄} → {χ̄ = R̄−1
ξ̄}, whereby R represents the matrix of

eigenvectors of the generalized eigenvalue problem for Ā
and M̄ with their spectral counterparts Ā∗ = R̄T Ā R̄ and

M̄∗ = R̄T M̄ R̄. This leads to the decoupled ODE system
of evolution equations for the macroscopic viscoelastic sub-
stitute medium written as

˙̄χ + C̄ χ̄ = D̄ ˙̄ε, χ̄(t = 0) = 0. (86)

The spectral matrix C̄ := (M̄∗
)−1 Ā∗

contains the char-
acteristic frequencies (or inverse relaxation times) of the

particular viscous variable. The matrix D̄ := (M̄∗
)−1 R̄T B̄

represents the sensitivity of a particular viscous mode for
the macroscopic loading ˙̄ε. It is particularly remarkable that
(86) corresponds to the system of evolution equations of the

123



Computational Mechanics (2019) 63:49–67 59

l

l

r

Fig. 3 Example 1—2D SVE with a patchy saturated porous matrix

generalized Maxwell-Zener model with N Maxwell chains.
It is important to remark that the structure of the evolution
equation solely results from the unified SVE continuity equa-
tion (45) under the assumption of conservation of fluid mass
(21)– (22) and employing the additive decomposition (53).

5 Numerical experiments

We now aim to demonstrate the capability of our approach to
predict the viscoelastic properties of the macroscopic substi-
tutemodel in a reliableway.Wehave, therefore, implemented
the hybrid-dimensional SVE problem in the Finite Element
Software COMSOL Multiphysics and investigate three dif-
ferent cases. In example 1, we study pressure diffusion in the
case of a so-called patchy saturation. In this case, pressure
diffusion occurs only in the poroelastic matrix material in
the absence of fractures. In example 2, we choose a SVE
consisting of a simple fracture network embedded in an
impermeable matrix. In this case, on the other hand, pressure
diffusion only occurs in the fractures. Finally, we investi-
gate the full hybrid-dimensional diffusion problem including
pressure diffusion in both thematrix and the fracture network.

5.1 Example 1: patchy saturation

We start our considerations with the 2D SVE shown in Fig. 3,
where we use the plain-strain assumption. The SVE consists
of a homogeneous poroelastic material which is saturated
with two different fluids:Water and gas. Thematerial param-
eters are given in Table 2.

Because the SVE contains no fractures, the volume aver-
aging operator is simplified as �̄ = 〈�〉� := 〈�〉M .
Consequently, the weak form of the diffusion equation (25)
vanishes, and it follows in (82) – (84) that ĀF,ab = 0,
B̄F,ai = 0, M̄F,ab = 0. The macroscopic stress response
computes as σ̄ = 〈σ 〉� = 〈σ 〉M . We execute training com-

Table 2 Example 1—poroelastic material parameters for water and
gas saturation (1mD≈ 1e−15m2) in the 2D patchy saturated SVE, see
Fig. 3

Rock matrix Water-saturated Gas-saturated

ks (mD) 600 600

φ (–) 0.2 0.2

G (GPa) 4.2 4.2

K (GPa) 7.0 7.0

Ks (GPa) 36.0 36.0

K f (GPa) 2.3 0.02

η f R (mPas) 1 0.01

l (m) 10 –

r (m) – 4.5

putations in terms of stress relaxation tests on the SVE level.
In view of (54), we choose a maximum strain ε̄max = −0.01,
a ramp time t ramp = 1e-5s and prescribe the three loading
cases in two dimensions as

γi (t) =
⎧

⎨

⎩

t

t ramp ε̄max, t ≤ t ramp,

ε̄max, t > t ramp.

, i = 1, 2, 3. (87)

In Fig. 4 we show examples of snapshots of the pore pressure
distribution during the stress relaxation computation for the
case ε̄11(t) = γ1(t) whilst all other macroscopic strain com-
ponents equal zero. We observe an instantaneous pressure
gradient between the water-saturated patch (high pressure)
and the gas-saturatedmatrix (low pressure). This is due to the
given bulk moduli K f of the involved fluid constituents. As
time passes, the heterogeneous pressure causes local redistri-
bution of pore fluid, and the pressure gradient is equilibrated
via pressure diffusion.

We execute the POD as described in Sect. 4 and iden-
tify a reduced basis with 9 members. After having computed
the system matrices constituting the viscoelastic evolution
Eq. (86) we can identify the characteristic frequencies of the
involved Maxwell chains as

C̄aa = [0, 1.15e+ 0, 5.91e+ 0, 1.61e+ 1, 4.58e+ 1,

1.30e+ 2, 4.0e+ 2, 1.75e+ 3, 4.66e+ 3]T 1/s.

The first mode a = 1 with C̄aa = 0 controls the equilib-
rium pressure. The remaining 8 modes are spread about 3
decades in frequency domain. The strain sensitivity matrix
D̄ computes as

D̄ =
⎡

⎣

1.11e+0 −2.26e+2 −3.22e+2
1.11e+0 −2.26e+2 −3.22e+2

0 0 0
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t = 1e-3s t = 1e-2s t = 1e-1s t = 1e-0s

p

Fig. 4 Example 1—snapshots of the evolving pressure field in the patchy saturated porous medium during stress relaxation experiment with
ε̄11(t) = γ1(t)

a =

ξ̄ a

t

a =

χ̄
a

t

(a) (b)

Fig. 5 Example 1—evolution of the internal variables (a) ξ̄a(t) and (b) χ̄a(t) during the stress relaxation ε̄11(t) = γ1(t)

− 4.10e+2 4.93e+2 3.98e+2
− 4.10e+2 4.93e+2 3.98e+2

0 0 0

− 3.52e+2 −1.74e+2 3.51e+1
− 3.52e+2 −1.74e+2 3.51e+1

0 0 0

⎤

⎦ . (88)

Hereby, we use the plain-strain vector representation of the
macroscopic strain defined as ε̄ = [ε̄11, ε̄22, 2 ε̄12]T . Obvi-
ously, the macroscopic shear deformation does not cause any
pressure diffusion. This can be explained by the fact that the
solid phase material properties are those of a homogeneous
porous rock with isotropic properties. Hence, the macro-
scopic shear strain causes a purely deviatoric deformation
state in the entire SVE which does not interact with the fluid
pressure according to (8).

In the next step, we use the reduced viscoelastic substi-
tute model to recompute the macroscopic stress relaxation
experiment ε̄11(t) = γ1(t). In Fig. 5 we show the tempo-
ral evolution of (a) the internal variables ξ̄ = R̄ χ̄ and (b)
χ̄ . We observe that, as expected, the evolution of the vis-
coelastic variables ξ̄ is strongly coupled whilst the variables
χ̄ show the typical relaxation behavior of uncoupled vis-
coelastic variables in a generalized Maxwell-Zener model.
In order to validate the reduced viscoelastic substitutemodel,
we consider the stress response computed for the SVE prob-
lem with full resolution to represent a reference solution.
In Fig. 6 we plot the pressure dependent stress contribution
σ̄
p
i j as defined in (70) for the reference solution and for the

reduced viscoelastic model. We find an excellent agreement
with the reference solution in the case of the stress relax-
ation experiment. Finally, we modify function γ1(t) and use
awavelet-type loadingwith twodifferent central frequencies.
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−σ̄p
11

−σ̄p
12

−σ̄
p ij

t

Fig. 6 Example 1—validation of the reduced viscoelastic substitute
model in a uniaxial stress relaxation test under the macroscopic loading
ε̄11(t) = γ1(t)

The total macroscopic stress response of the SVE is success-
fully validated in Fig. 7 against the reference computation.

5.2 Example 2: fractures in impermeable matrix

In example 2, we investigate a simple 3D network of two
intersecting perpendicular fractures saturated with water and
embedded in a linear-elastic and impermeable matrix mate-
rial, see Fig. 8. The used material parameters are given in
Table 3. Similar to the previous example, this second example
represents a special case of themodeling concept. Here, pres-
sure diffusion occurs in the fractures only. Hence, the weak
form of the diffusion equation (24) in ΩM can be neglected,
several coupling terms in the remaining weak forms vanish.

l

l

l
a1

a1

x1
x2

x3

Ω

Fig. 8 Example 2 – SVE with two perpendicular fractures in the x1-
x2-plane (fracture 1) and in the x2-x3-plane (fracture 2), l = 10m,
a1 = 8m, τ0 =1e−5m

Table 3 Example 2—material parameters of the meso-scale problem

Rock Fractures

G (GPa) 16.0 –

K (GPa) 16.0 –

K f (GPa) – 2.4

η f R (mPas) – 3.0

l (m) 10 –

a1 (m) – 8

τ0 (m) – 1e- 5

In particular, it holds buM (p, δu) = 0 and d
p
F (p, δ p) = 0.

Moreover, we need to condense the systemmatrices that con-

 0

 0

σ̄11
σ̄22
σ̄eff
11

σ̄eff
22

σ̄
ij

t

σ̄11
σ̄22
σ̄eff
11

σ̄eff
22

σ̄
ij

t

(a) (b)

Fig. 7 Example 1—validation of the reduced viscoelastic substitute under a wavelet-type loading with different central frequencies. Hereby, the
volume average of the macroscopic effective stress σ̄ eff corresponds to the linear-elastic instantaneous stress response of the dry skeleton
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stitute the viscoelastic evolution equation as

Āab :=
n
∑

k=1

〈

τ 30

12 η f R
∇F pa · ∇F pb

〉

∂Fk

, (89)

B̄ai := −
n
∑

k=1

〈

T 0
i pa

〉

∂Fk
, (90)

M̄ab := 〈εb : C : εa〉M +
n
∑

k=1

〈 τ0

K f
pa pb

〉

∂Fk
. (91)

In analogy to the previous example and (87) we compute
6 stress relaxation experiments as training cases. Hereby, we
choose t ramp = 1e-1s and ε̄max = −1e-6. We show snap-
shots of the pressure field at selected time instances during
the relaxation experiment under ε̄11(t) = γ1(t) in Fig. 9.
We observe an instantaneous pressure increase in fracture 2
which is oriented perpendicular to the macroscopic perpen-
dicular loading whilst fracture 1 remains nearly unaffected.
As time passes by, fracture 2 and 1 exchangefluidmasswhich
allows for a diffusive equilibration of the pressure gradients.

In accordancewith our numericalmodel reduction scheme,
we now use snapshots obtained from all training computa-
tions, execute a POD and identify a reduced basis with 6
members. The characteristic frequencies are spread over 2
decades and read

C̄aa = [0, 4.71e-3, 4.26e-2, 1.58e-1, 3.14e-1, 4.35e-1]T 1/s

(92)

Again, the first mode a = 1 represents the equilibrium state
of a homogeneous pressure distribution. The strain sensitivity
matrix D̄ computes as

D̄ai =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

2.13e + 2 5.32e + 1 2.13e + 2
3.40e + 5 5.00e + 0 − 3.40e + 5
1.03e + 6 − 6.02e + 1 − 1.03e + 6
2.90e + 6 − 3.84e + 2 − 2.91e + 6
2.65e + 6 − 5.04e + 3 − 2.69e + 6
4.39e + 6 − 5.23e + 3 − 4.43e + 6

3.72e-2 2.63e-2 2.11e-3
7.62e + 1 − 1.48e + 2 − 1.89e + 1

− 4.94e + 2 5.65e + 2 7.71e + 2
1.58e + 3 7.25e + 2 − 6.13e + 4
7.81e + 4 − 1.96e + 5 5.54e + 5

− 1.90e + 4 2.10e + 4 − 5.13e + 4

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(93)

Hereby, the matrix representation is based on the full 3D
strain vector ε̄ = [ε̄11, ε̄22, ε̄33, 2 ε̄12, 2 ε̄13, 2 ε̄23]T . We
observe that the viscoelastic variables are mainly stimulated
by the axial strains, but also shear deformations may cause a
small viscoelastic reaction, see in particular mode a = 5.

fr
ac

tu
re

 1

t = 2e-1 s t = 2e-0 s t = 2e+1 s t = 2e+2 s

fr
ac

tu
re

 2

p

Fig. 9 Example 2—snapshots of the evolving pressure field in the fractures during stress relaxation experiment with ε̄11(t) = γ1(t)
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Fig. 10 Example 2—validation of the reduced viscoelastic substitute model with a successively enriched basis in a uniaxial relaxation test with
ε̄11(t) = γ1(t): σ̄11 and σ̄12
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N = 3
N = 6

t

−
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N = 2
N = 3
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−
σ̄
3
3
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Fig. 11 Example 2—validation of the reduced viscoelastic substitute model with a successively enriched basis in a uniaxial relaxation test with
ε̄11(t) = γ1(t): σ̄22 and σ̄33

We validate the reduced viscoelastic substitute model
against a reference computation of a uniaxial stress relax-
ation experiment on the SVE level with full resolution. The
resulting macroscopic total stresses are shown in In Figs. 10
and 11. Hereby, we increase successively the number N of
pressure modes that span the reduced basis until we reach
an excellent agreement with the reference computation for
N = 6.

5.3 Example 3: fractures in permeable matrix

Finally, we investigate the full hybrid-dimensional diffusion
problem, whereby we utilize the same SVE geometry as in

example 2, see Fig. 8. However, the matrix is defined as
a poroelastic material. Both, poroelastic matrix and frac-
tures, are saturated with water. The material parameters
are specified in Table 4. As in the previous examples we
compute six stress relaxation experiments where we choose
t ramp = 1e-4s and ε̄max = −1e-6. In Fig. 12 we show
snapshots in time of the evolving pressure field during the
uniaxial stress relaxation experiment ε̄11(t) = γ1(t). We see
that fracture 2 is compressed instantaneously whilst fracture
1 as well as the matrix material remain nearly unaffected. In
other words, we observe a strong pressure gradient between
fracture 2 and fracture 1 as well as between fracture 2 and
the surrounding porous matrix. With increasing time the
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Table 4 Example 3—material parameters of the meso-scale problem
(1mD ≈ 1e- 15m2)

Rock Fractures

G (GPa) 31 –

K (GPa) 37 –

Ks (GPa) 40 –

ks (mD) 1 –

φ (–) 0.05 –

K f (GPa) 2.4 2.4

η f R (mPas) 1 1

l (m) 10 –

a1 (m) – 8

τ0 (m) – 6e- 4

pressure gradient in the fracture space is equilibrated first.
Afterwards, pressure diffusion occurs between fractures and
matrix.

We use snapshots from all training computations for a
POD and identify a reduced basis with 18 members. The
characteristic frequencies are spread over 3 decades and read

C̄aa = [0, 1.87e − 2, 3.95e − 2, 5.19e − 2, 9.43e − 2,

1.77e − 1, 1.79e − 1, 3.32e − 1, 6.52e − 1, 7.43e − 1,

1.59e − 0, 1.83e − 0, 3.77e − 0, 4.96e − 0,

1.14e + 1, 1.16e + 1, 3.05e + 1, 3.71e + 1]T 1/s (94)

Again, mode a = 1 represents the equilibrium state of a
homogeneous pressure distribution. It is important to remark
that the basis in example 3 (18 modes) is significantly larger
than the basis in example 2 (6 modes). The reason for this
increase is that the pressure diffusion process in example 3,
compared to example 2, is far more complex as it involves
pressure diffusion in the fractures, in the embedding poroe-

lastic matrix as well as the exchange of fluid mass between
fractures and matrix. This complexity increase is mirrored in
the number of basis modes.

In Fig. 13 we show example pressure modes. Whilst the
modes a = 4, 6 are related to processes in the fracture space,
modes a = 13, 15 describe processes in the matrix.

Finally, we validate the reduced viscoelastic basis against
a reference computation of a uniaxial stress relaxation test on
the basis of a fully resolved SVE. The resulting macroscopic
total stresses are shown in Figs. 14 and 15, where we observe
a very high accuracy of the reduced viscoelastic model.

6 Discussion

We establish a NMR procedure that enables us to identify
macroscopic viscoelastic substitute models for strain-driven
pressure diffusion problems in fractured porous rock in a
reliable and numerically highly efficientway. The overall vis-
coelastic response is caused by squirt-type fluid flow which
causes fluid pressure diffusion in interconnected fractures
and in the embedding porous rock within a mesoscopic SVE.
The fluid mass stored in the SVE is conserved through-
out the entire process. This allows us to treat fluid pressure
diffusion as a local process which is, on the macro-scale,
only observable indirectly via overall frequency-dependent
properties such as dispersion of the stiffness moduli and
attenuation. Hence, the macroscopic substitute medium rep-
resents a monophasic viscoelastic solid. For the mesoscopic
model we employ a hybrid-dimensional interface model
treating fractures as fluid-filled open conduits embedded in a
poroelastic matrix material. Pressure diffusion occurs along
the fractures as well as in the poroelastic matrix. Moreover,
exchange of fluidmass between fractures andmatrix is incor-
porated.

t = 1e-2 s t = 1e-1 s t = 1e+0 s t = 1e+1 s

p

Fig. 12 Example 3—snapshots of the evolving pressure field during stress relaxation experiment with ε̄11(t) = γ1(t)
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a = 4 a = 6 a = 13 a = 15

Fig. 13 Example 3—example pressure modes χ̄a , a = 4, 6, 13, 15
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Fig. 14 Example 3—validation of the reduced viscoelastic substitute model in a uniaxial relaxation test with ε̄11(t) = γ1(t): σ̄11 and σ̄12
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3
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Fig. 15 Example 3—validation of the reduced viscoelastic substitute model in a uniaxial relaxation test with ε̄11(t) = γ1(t): σ̄22 and σ̄33

We employ volume averaging techniques to derive a
computational homogenization scheme that links the het-

erogeneous meso-scale to the viscoelastic macro-model. We
propose a NMR technique that is based on the approxi-
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mation of the space-time dependent fluid pressure in the
SVE by a linear combination of pressure modes. Hereby,
the pressure modes span a finite-dimensional reduced basis.
They are identified via a POD from a set of training com-
putations. Evaluation of the mesoscopic continuity equation
together with the pressure decomposition and accordingly
decomposed further quantities allows us to derive the evo-
lution equation of the desired viscoelastic substitute model
which turns out to be of the Maxwell-Zener type. Finally,
we investigate the performance of the proposed method in
three different numerical examples. Throughout the exam-
ples, we observe a convincing agreement between NMR and
reference solutions.

The main achievement of the present contribution is that
we establish a general, yet reliable, method that enables us
to compute seismic wave propagation on the macro-level
with full access to the mesoscopic pressure diffusion effects
but without the numerical drawbacks of the FE2 concept.
The numerically expensive solution of mesoscopic boundary
value problems is restricted to 6 transient training compu-
tations, to 6 computations of the linear-elastic response of
the dry solid skeleton and to the solution of N linear-elastic
eigenstress problems related to the identified pressuremodes.
Allmesoscopic computations are “off-line” precomputations
and, therefore, do not burden the “online” computation of the
macroscopic wave propagation.

In our ongoing research we will use the proposed method
to execute forward simulations of propagation of seismic
waves in a cross-hole tomography setting. The goal is to gain
a better understanding for the correlation between seismic
attenuation and the interconnectivity of stochastic fracture
networks.
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