
Considerations and Technical Pitfalls for Teaching Computational
Thinking with BBC micro:bit

Downloaded from: https://research.chalmers.se, 2024-03-13 07:59 UTC

Citation for the original published paper (version of record):
Tyrén, M., Carlborg, N., Heath, C. et al (2018). Considerations and Technical Pitfalls for Teaching
Computational Thinking with BBC micro:bit. ACM International Conference Proceeding Series:
81-86. http://dx.doi.org/10.1145/3213818.3213829

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology.
It covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004.
research.chalmers.se is administrated and maintained by Chalmers Library

(article starts on next page)

Considerations and Technical Pitfalls for Teaching
Computational Thinking with BBC micro:bit

Markus Tyrén
RISE Interactive

Gothenburg, Sweden
niklas.carlborg@ri.se

Niklas Carlborg
RISE Interactive

Gothenburg, Sweden
markus.tyren@ri.se

Carl Heath
RISE Interactive

Gothenburg, Sweden
carl.heath@ri.se

Eva Eriksson
Aarhus University &

Chalmers University of
Technology

evae@cc.au.dk

ABSTRACT
As many countries are about to make changes in the primary
school curriculum by introducing computational thinking,
new methods and support for teachers is needed in order help
them develop and adapt teaching materials. In this paper,
technical pitfalls and other considerations for designing
teaching materials with the microcontroller BBC micro:bit
are presented. The results are based on a series of 21
workshops in different parts of Sweden aiming to investigate
what is important to consider when designing teaching
materials with the BBC micro:bit for training Swedish
primary schools students computational thinking skills. The
contribution of the paper are a number of identified
considerations that can be helpful for teachers when
designing exercises and planning for teaching computational
thinking with the BBC micro:bit.

Author Keywords
BBC micro:bit; teaching; computational thinking;
programming; school.

CCS CONCEPTS
• Human-centered computing → Interaction design; •
Applied computing → Education.

INTRODUCTION
Many countries are faced with rapid changes in the primary
and secondary school curriculum in order to incorporate
computational thinking (CT) as part of the 21st century skills.
Sweden is no exception, where these changes are expected
to be implemented by the autumn of 2018 (see Table 1) –
leaving little room for further education of all teachers and
for development of teaching materials [4]. Primary school
teachers face a huge change when computational thinking is
introduced in the curriculum [1]. This is particularly difficult
since most primary school teachers are generalists, they
teach a whole class in most subjects having broad knowledge

rather than being specialists within a certain subject. There is
a massive shortage in teachers with experience and
knowledge within the computing area, the delivery of
programming in class is a big challenge and might be
hampered severely if teachers is not educated fast enough
[2]. As there is no or very limited resources and time to
educate teachers in CT, new methods have to be developed
to help teachers in an efficient manner.

Table 1: An English translation of the new curriculum
changes in Sweden

Programming Introduced in multiple subjects in primary
school, especially in technical and
mathematical subjects

Digital tools Digital texts, media and tools

Critical
thinking

Strengthening the critical thinking skills

Systems
thinking

Ability to use and understand digital systems
and services

Creativity Ability to solve problems and realize ideas
into action in a creative fashion using
technology

Impact Develop an understanding for the impact
digitalization has on the individual and society

In the UK the transition to more programming in school
started off in January 2012 when The Royal Society
published a highly-rated article with recommendations to
reintroduce computer science (CS) in schools [6]. Up until
then they had been teaching information and communication
technology (ICT) but with an increasingly declining
reputation over the last couple of years. ICT in contrast to CS
focused more on the usage and software rather than the
creative and underlying principles of computing. It was not
long before the department of education declared the ICT
curriculum to be re-written and in its stead officially
reintroduce CS teaching in schools again. With this change,
several issues were brought to surface. For instance how will
the primary schools handle the fast pace of these changes,
and how will they make sure that there are enough teachers
with the right knowledge? As part of the Make It Digital
initiative in 2015, BBC has together with Microsoft,
Samsung and other partners, developed the BBC micro:bit

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than the author(s) must be
honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from Permissions@acm.org.

FabLearn Europe'18, June 18, 2018, Trondheim, Norway
© 2018 Copyright is held by the owner/author(s). Publication rights
licensed to ACM.
ACM ISBN 978-1-4503-5371-7/18/06…$15.00
https://doi.org/10.1145/3213818.3213829

mailto:Permissions@acm.org
https://doi.org/10.1145/3213818.3213829

for use in computer education [3]. Every year seven child
(age 11-12) in the UK schools receive one of these small
computers, or microcontrollers, that can be programmed and
customized.

Inspired by the UK, a project was initiated in order to explore
how BBC micro:bit can be adapted to aid in the Swedish
curriculum transition. This paper reports from a study in a
collaboration between researchers at a university and a
national research institution aiming to investigate how
Swedish teachers can be supported in the transition to the
new programming curriculum. The main research question
is: What is important to consider when designing teaching
materials with the BBC micro:bit for training Swedish
primary school students computational thinking skills? The
contribution of this paper is a set of considerations and
technical pitfalls when introducing a new technological
platform, such as the BBC micro:bit, for training
computational thinking in Swedish primary schools. These
considerations are based on non exhaustive empirical design
research and be limited to the BBC micro:bit platform and
the Swedish school context.

BBC Micro:bit
The BBC micro:bit was developed as a part of BBC’s Make
it Digital Initiative in 2015. It aims to inspire young people
to get creative in the digital world, developing core skills in
STEM subjects and produce a new generation of inventors
and makers. The BBC micro:bit is a small computer, or
microcontroller, that can be programmed and customized in
order to bring ideas to life [3]. Displaying your name, or
making it blink can be coded in seconds even if the user is
totally new to programming. BBC micro:bit can also be
connected to other devices or sensors and can complement
other hardware like Arduino and Raspberry Pi, it works as a
great springboard to more complex learning [3]. Key features
include:

• 5x5 LED matrix display,
• Two programmable buttons,
• Accelerometer that can detect movement,
• A built-in compass to sense direction,
• The ability to sense temperature and light levels,
• Bluetooth Smart Technology to interact with other

micro:bits and mobile devices,
• Five Input and Output (I/O) rings to connect the

micro:bit to devices or sensors using e.g crocodile
clips.

For ensuring that the BBC micro:bit becomes successful, it
is considered important that all partners involved work
closely with both teachers, educators and schools to provide
resources and information supporting the curriculum.

There are multiple ways of programming the BBC micro:bit,
the scope of this project has however been limited to only
focus on the Microsoft MakeCode micro:bit editor, see
Figure 1. The Microsoft MakeCode micro:bit editor is a free
to use online JavaScript/Blocks editor for programming the

BBC micro:bit. This means that it runs in the web browser
and hence is cross platform compatible, both on different
web browsers but also across different operating systems,
such as OSX, Windows, iOS and Android. This also implies
that an internet connection is required for using the editor.
Technically the Microsoft MakeCode editor for BBC
micro:bit can be used offline as the application gets cached
locally but only if an online compilation has been made first.
Either way an internet connection is required at some point.

Figure 1: One of the editors in which programs can be created

for the micro:bit

The term block editor refers to the puzzle like interaction
where the user builds their programs by snapping different
function blocks together to create a programs behavior. The
editor allows the user to code both with blocks as well as
JavaScript code. It provides the possibility to switch back
and forth between these on the fly to translate from one to
the other.

The user interface of the editor as seen from left to right
consists of a simulator, a section of available blocks and an
area where the user is to drag blocks and build their
programs. At the top, controls are available for saving and
loading projects, switching back and forth between block or
JavaScript mode, and some more advanced settings. The
button for downloading the created program is located at the
bottom.

For creating a simple program, the user begins with finding
the desired blocks in the middle column folders and drags
them onto the block building area on the right. Blocks
snapped into the “on start” block will only run once, and
blocks snapped into the “forever” block will repeat
indefinitely. The functionality of the program can then be
evaluated with the simulator on the left. To download the
program the user clicks the download button on the bottom
left, and transfers the obtained file to the BBC micro:bit flash
drive via a USB cable.

METHOD
In order to investigate fundamental theoretical and empirical
knowledge concerning BBC micro:bit and using technology
to aid education in Sweden, we applied a Human-Centred
Design approach. Initially, we gathered information about
how teachers and students perceive the introduction of

programming in school through secondary research.
Additionally we familiarized us with the BBC micro:bit
platform and the editor, and developed some initial exercises.
We used insights from evaluated data to create new content
iteratively throughout the project. The implementation of the
design work for the current objectives mainly comprised of
field tests, namely 21 workshops in various school
environments (grade 4-6) in Sweden on several occasions.
While field testing the teaching prototype, feedback from the
testers and the process was collected for later evaluation.
Evaluation and analysis of the implementation and gathered
data were carried out at the end of each prototyping cycle,
using an inductive approach. Based on this, insights were
extracted and fed into the planning of the next cycle. In the
final phase, all the data was analyzed with affinity clustering
in an attempt to reach a theoretical result. We found insights
and valuable information for teachers and made them into a
bundle of considerations and technical pitfalls when working
with BBC micro:bit.

RESULTS
The result of this study consists of a number of practical
considerations when designing teaching materials for
computational thinking in primary school with the BBC
micro:bit. These results are derived from empirical research
done in a Swedish primary school context with the aim to
train students computational thinking skills using the BBC
micro:bit.

BASIC TOOLBOX
The Basic toolbox relates to a set of fundamental
programming concepts that were found useful for students to
be introduced to, prior to working with programming
exercises. The basic toolbox contains the programming
concepts: algorithms, loops, randomness, logic, variables
and debugging, see Figure 2. It was found beneficial to
introduce and practice these concepts in parallel to each
other, rather than to work with each one of them separately,
in series. This due to the perceived difficulty to create
interesting exercises based on only single programming

concept. What was seen as interesting exercises, were
combinations of multiple programming concepts.

Algorithms - Algorithms refer to the sequencing of
instructions to reach a certain desired behavioral outcome. It
has been seen that students benefit from having been
introduced to this concepts prior to start working with
programming the BBC micro:bit. Algorithms are also
mentioned in the Swedish government’s policy changes
regarding the documents that control Swedish primary and
secondary school curriculum [4]. There are many possible
approaches to introducing algorithms to students. The way it
was introduced in this project was through having the
students control each other’s movements with instruction
notes through an analog game field. This game later came to
be called analog workshops.

Loops - Loops refer to the fundamental programming
concept that allows certain instructions to be repeated
multiple times. It has been seen that students benefit from
having been introduced to this concepts prior to start working
with programming the BBC micro:bit. Combining loops with
other tools from the basic toolbox was seen as necessary to
create stimulating and useful exercises with the BBC
micro:bit. It was found useful to teach loops in the context
rather than simply as an abstract concept.

Randomness - Randomness refers to the basic programming
function of a random generator, which is frequently used in
many types of programs. It has been seen that students
benefit from having been introduced to this concepts prior to
start working with programming the BBC micro:bit. Having
knowledge about how to use the random function when
working with BBC micro:bit proved beneficial when starting
to learn programming. Since many of the beginner projects
use elements of randomness as a function in their code, such
as roll a dice or rock-paper-scissors, being familiar with it
became important to complete those programs.

Figure 2: The basic toolbox

Logic - Logic refers to the fundamental programming
concepts of logical statements that are verified to be either
true or false by a program. This for instance is a central part
of if-statements. It has been seen that students benefit from
having been introduced to this concept prior to start working
with programming the BBC micro:bit. The way logic was
introduced to students in this project was through having the
students control each other with instructions through an
analog game field. Some of these games required the
students to create alternative instructions depending on the
outcome from a random event.

Variables - One truly fundamental concept of programming
is the one of variables, as without variables and other data
structures there is no way for a computer to store
information. This information can be of different types:
values, names, and might prove difficult to grasp at first for
students. Nevertheless it has been seen that students benefit
from having been introduced to this concept prior to start
working with programming the BBC micro:bit. Many of the
beginner projects involve the usage of variables, therefore it
has an obvious place in a basic toolbox for students. The way
variables were introduced to students in this project was
through the metaphor of having a high score counter. As
students moved through the game later known as analog
workshops, they got to add the value of the tile they were
standing on to their high score counter.

Debugging - Debugging refers to the mindset and activity of
expecting errors in your code and be willing to pursue and
fix them. Programming without ever encountering any
errors, or bugs, is highly unlikely. Fixing errors can be time
consuming but is an essential skill for programmers to learn.
As students have been seen able to enter states of
indifference or dejection when faced with errors, it is
considered useful for students to have been introduced to this
approach prior to start working with the BBC micro:bit.

Regarding block programming on the BBC micro:bit it rarely
becomes a syntax or coding error due to the nature of blocks.
The errors are more likely logical errors. Solving these errors
is considered to be an important part of deepening the
understanding for programming. There are some steps one
can practice when confronted with a bug. Firstly it is a good
idea to try and predict what the program should do, and step
by step execute the code manually out loud to try and see
where the error is. This way the problem often becomes
apparent rather quickly. It was verified that debugging was
practiced simply by working with the exercises. The role of
the facilitator or teacher simply was to encourage debugging
when the inevitable errors appeared.

TERMINOLOGY
Terminology is referring to the words used when teaching
programming. As there are many new words and concepts
that might be intimidating for students at first, it is useful to
initially avoid using words such as variables, but rather
attempt to convey these through words and concepts that
already are familiar to the student. For example the concept

of a variable can be described as a high score counter in a
game, something that the student might already be familiar
with. This does not say that variables are precisely high score
counters, but it is a way of conveying the intuitive concept
without introducing any new potentially scary words. It can
still be encouraged that the students learn the correct terms
for concepts, but it is a matter of easing them into it. From a
teacher’s perspective it can be hard to be aware of when one
uses programming terms, therefore it is advised to pay close
attention to the language one uses so that no new words are
introduced without proper introduction first, preferably
linked to previous knowledge. Some qualitative signs have
indicated that it might be easier for a student to do something
first and then afterwards learn the proper name for it, rather
than first being introduced to a new word before learning
what it is about.

TECHNICAL PITFALLS
Technical pitfalls refer to practical issues that have been
identified to risk obstruct or fail the execution of a workshop.
As it has been seen that students can enter states of
indifference or dejection if these issues take up too much
time, it is suggested to take measures and attempt to prevent
them from arising in the first place. Three specific issues that
have been observed are relating to: app-store passwords,
internet connection and pairing mode bugs.

App-Store Passwords - In the context of running a BBC
micro:bit workshop with iPads, the students are required to
download the BBC micro:bit app from the app-store. This
requires an app-store account, and some schools prefer to
control what apps are being installed on their iPads with
passwords. It is therefore recommended to obtain these
passwords well in advance and work out a good way for these
apps to be downloaded in class, or possibly even
downloading the BBC micro:bit app to each individual
device in advance.

Internet Connection - Unreliable internet connection was
seen as another frequent source of frustration. As the BBC
micro:bit editor is run through the web browser reliable
internet connection is required throughout the workshops.
Technically the Microsoft MakeCode editor for BBC
micro:bit can be used offline as the application gets cached
locally although an online compilation has to be made first.
In cases where internet is slow or the connection dropped
occasionally, students will get frustrated and precious
learning time will be spent troubleshooting internet
connections instead. In those cases where workshops rely on
online material, such as instruction videos, the internet
bandwidth plays an even more noticeable role, as video can
be rather bandwidth heavy.

Pairing Mode Bugs - There were some issues identified
regarding the pairing of BBC micro:bits to iPads. Firstly
there is a certain procedure that is required to initially pair a
BBC micro:bit to an iPad. This procedure can be rather tricky
at first, as it requires the student to press three buttons in a
certain order and remember a series of six numbers shown in

a rapid sequence. Students grasp the pairing process the
fastest by being shown the full procedure and then try it
themselves. Having students imitate this procedure in real
time is not recommended, as it can lead to disorder in the
class. Another issue one might encounter is a bug relating to
sending a program (flashing) from a mobile device to a
paired BBC micro:bit. This process requires the BBC
micro:bit to be in pairing mode again, despite that this is not
mentioned in the documentation. As this bug is not
documented, it can be hard to solve and can hinder an entire
workshop from progressing. Lastly there have been a few
rare occasions where BBC micro:bits were impossible to put
into pairing mode. This bug is resolved by simply having a
computer nearby and flash any type of program from the
computer to that BBC micro:bit via USB-cable. This way the
BBC micro:bit gets reset and can be paired with an iPad
again.

OTHER CONSIDERATIONS
Furthermore there were eight single insights from workshop
interventions that were found useful, namely: tinkering, self
instructing materials, stupid computers, end on a positive
note, text based instructions, video bubble, editor navigation
and awareness of dependencies, see Table 2.

Table 2: An overview of other insights and considerations

Tinkering Allowing to freely familiarize with new
content before exercise

Stupid computers Clarify that computers are stupid and
only do what they are told

Text based
instructions

Instructions by other means are
preferred

Editor navigation An initial walkthrough of the editor
might help students navigate

Self instructing
materials

Alternative to providing individual help
to large groups

End on a positive
note

Ending a session sruggeling with a hard
exercise can be demotivating, try to
leave the session with a good feeling

Video bubble Videos can decrease the social aspects
in class, isolating students in a bubble

Aware of
dependencies

When teaching is dependent on
software, be aware of changes in
software updates

Tinkering - Tinkering is allowing students to freely
familiarize with new content before starting to work with
exercises. This explorative approach without any goals or
objectives was seen as a way for students to get outlet for any
curiosity that might arise as they are introduced to new
technology, platforms or concepts. To prevent frustration or
confusion to arise, it is recommended to keep this initial
tinkering short in time.

Stupid Computers - Stupid computers refers to making it
clear to students that computers are simply following
instructions and should not be considered as intelligent per
se. In some cases we have seen students who expect that

computers are smart just because they are computers.
Clarifying this initially can potentially prevent some of these
misconceptions.

Text Based Instructions - Purely text based instructions
might not be the optimal way for conveying exercises.
Giving instructions through other means can potentially be
more successful. Students mostly ignore printed papers with
instructions that have been handed out. Conversations wit
students showed that they found written instructions
incomprehensible, and prefer facilitators to answer their
questions. Other means of giving instructions could also be
through video.

Editor Navigation - Editor navigation refers to the need to
understand how a certain programming editor works and
how to navigate it in order to use it. It is easily overseen and
can be considered trivial by someone familiar with it,
nevertheless is it important for a first time user.

Self-Instructing Materials - Self-instructing materials such
as instruction videos, have been seen as potentially useful in
cases where student group sizes exceed the number of
students that the facilitators are able to provide help to. Even
if the class size is manageable self-instructing material
allows students to work at their own pace and given that the
students are ready for the exercises it can work as an offload
for the teacher, which can focus their help where most
needed.

End on a Positive Note - End on a positive note refers to
concluding workshop sessions with an exercise that leaves
the students in a positive state of mind, rather than leaving
them confused or frustrated. Struggling with exercises might
be important for the development of grit, the harder exercises
should be placed in the middle of a session and allocate the
end for easier ones that allow students to feel successful.
From a facilitator point of view this means planning the
timing of the session well, and never try to cram any exercise
in the very last minute, just because you want to convey
something that might not really have gotten across. Energy
levels of the class is usually rather low in the end, and trying
to force last minute teachings in here, seems to possibly make
more harm than good.

Video Bubble - When using instruction videos as teaching
material for an entire class, one ought to be aware of the
potentially negative effects this might have on social aspects
of the group. A classroom full of students watching different
videos on their computers will get rather noisy, headphones
are recommended. This however also has the effect of
isolating students into their own video bubble. This might be
positive for some, in terms of concentration, but it also
removes many of the interpersonal social interaction that can
be positive in a group. This way of providing video material
is probably better suited for homework.

Awareness of Dependencies - When creating teaching
materials dependent on software, one needs to be aware that
it can be changed in future software updates. For instance if

one creates a set of instructions on how to navigate an editor
that in detail refers to certain buttons, the names of these
buttons may well be changed in future software updates. To
avoid the risk of confusing students, it is therefore suggested
to continuously verify that the teaching material with
dependencies is up to date with the current state of the
software. This was discovered as teaching materials, that
intentionally had been color coded to match the BBC
micro:bit editor, turned out to no longer match the colors of
the editor at a workshop.

DISCUSSION
The research process was intended to be an iterative design
process with a few well defined iteration cycles. The way it
turned out however was that the sharp boundaries between
these well defined iteration cycles got rather blurred. Out of
21 workshops 10 can be considered to be small but complete
iteration cycles. The initial idea was to only gather insights
about users, before starting to create workshop materials. But
it turned out that we needed to create a workshop in order to
observe the users in it. Hence it became somewhat of a
chicken or the egg dilemma, and we ended up doing a bit of
both in parallel. Still the first workshop interventions were
more of introductory nature and mostly focused on gather
qualitative data about the users. Some tweaking of the
content and execution of workshops still occurred but the
focus was not on improving the workshop design but rather
to observe the behavior, needs and progress of the students
in their first encounters with the BBC micro:bit, and in some
cases even programming.

Many different technologies and development platforms are
available and new ones are constantly being developed.
Choosing what technological platform to invest in might be
a very relevant question to educators, however this is not
within the scope of this paper. This project uses the BBC
micro:bit, as a given educational platform as the client
stakeholders considered it to be affordable, already well
spread in the UK, and having a lot of potential with its many
onboard sensors. Furthermore there are multiple different
editors available for working with the BBC micro:bit, thus in
this project we only consider the Microsoft MakeCode BBC
micro:bit editor, and specifically the block editor part of it.

Throughout the project we have related to the basic concepts
of programming in our design process. These concepts
permeate through all programming teaching activity and
promote computational thinking and problem solving. Even
though our results are for BBC micro:bit specifically there
are many similarities that makes it versatile. Most of the
platforms used to teach programming for primary school
uses a block type editor, just like BBC micro:bit, why we
believe that the results can be claimed to have a wider
applicability even though quantitative data to support the
long term effects of using such the results are so far non-
existent.

CONCLUSION
Through an iterative design process, a total of 21 workshop
interventions in class 4-6 were conducted in Sweden to
collect qualitative data and gain insights about pupils and
teachers interactions with BBC micro:bit teaching materials.
The results is a set of considerations and identified technical
pitfalls to give concrete answers to the research question:
What is important to consider when designing teaching
materials with the BBC micro:bit for training Swedish
primary school students computational thinking skills? It is
the hope of the authors that these results can be helpful for
teachers developing teaching materials for computational
thinking in the new Swedish curriculum.

ACKNOWLEDGMENTS
We thank all the students, teachers, and school leaders
involved in this research. The research is funded by Vinnova
grant nr 2015-02319.

REFERENCES
1. Rachel Charlotte Smith, Ole Sejer Iversen, and Rune

Veerasawmy. Impediments to digital fabrication in
education: A study of teachers’ role in digital
fabrication. International Journal of Digital Literacy
and Digital Competence (IJDLDC), 7(1):33–49, 2016.

2. Neil CC Brown, Sue Sentance, Tom Crick, and Simon
Humphreys. Restart: The resurgence of computer
science in uk schools. ACM Transactions on
Computing Education (TOCE), 14(2):9, 2014.

3. About the BBC Blog Head of BBC Learning, Sinead
Rocks. BBC micro:bit, groundbreaking initiative to
inspire digital creativity and develop a new generation
of tech pioneers.
http://www.bbc.co.uk/mediacentre/mediapacks/microbi
t/, 2016. [Online; accessed 2 March-2018].

4. Regeringskansliet. Stärkt digital kompetens i läroplaner
och kursplaner - regeringen.se.
http://www.regeringen.se/pressmeddelanden/2017/03/s
tarkt-digital-kompetens-i-laroplaner-och-kursplaner/,
May 2017. [Online; accessed 2-March-2018].

5. Jeannette M Wing. Computational thinking. In
VL/HCC, page 3, 2011.

6. Steve Furber et al. Shut down or restart? the way
forward for computing in uk schools. The Royal
Society, London, 2012.

	Considerations and Technical Pitfalls for Teaching Computational Thinking with BBC micro:bit
	ABSTRACT
	Author Keywords
	CCS CONCEPTS

	INTRODUCTION
	BBC Micro:bit

	METHOD
	RESULTS
	Basic toolbox
	Terminology
	Technical Pitfalls
	Other Considerations
	Discussion
	Conclusion
	ACKNOWLEDGMENTS
	REFERENCES

