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In Europe, the final energy demand and greenhouse gas (GHG) emissions of residential and commercial
building stocks account for approximately 40% of energy and emissions. A building stock model (BSM) is
a method of assessing the energy demand and GHG emissions of building stocks and developing path-
ways for energy and GHG emission reduction. The most common approach to building stock modeling
is to construct archetypes that are taken to representing large segments of the stock. This paper intro-
duces a new method of building stock modeling based on the generation of synthetic building stocks. By
drawing on relevant research, the developed methodology uses aggregate national data and combines it
with various data sources to generate a disaggregated synthetic building stock. The methodology is im-
plemented and validated for the residential building stock of Switzerland. The results demonstrate that
the energy demand and GHG emissions can vary greatly across the stock. These and other indicators vary
significantly within common building stock segments that consider only few attributes such as building
type and construction period. Furthermore, the results indicate a separation of the stock in terms of GHG
emissions between old fossil fuel-heated buildings and new and refurbished buildings that are heated by
renewable energy. Generating a disaggregated synthetic building stock allows for a discrete representation
of various building states. This enables a more realistic representation of past building stock alterations,
such as refurbishment, compared with commonly used archetypes, and not relying on more extensive
data sources and being able to accommodate a wide variation of data types. The developed methodology
can be extended in numerous manners and lays groundwork for future studies.
© 2018 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY license. (http://creativecommons.org/licenses/by/4.0/)

1. Introduction

1.1. Background

such as building stock developments, building alterations, and sin-
gle technology measures.

Building stock models (BSMs) offer a method of assessing the
energy demand and environmental impact of building stocks, and

In Europe, final energy demand and greenhouse gas (GHG)
emissions of residential and commercial building stocks account
for approximately 40% of energy and emissions [1,2]. In addition,
the building stock has been identified as one of the largest and
mostly untapped potential targets for improving energy efficiency
and mitigating GHG emissions [1,2]. An overview of its potential
is required to develop targeted measures that make use of it; for
this, an accurate assessment of the distribution of energy and GHG
emissions across the stock is required. However, this assessment
can be challenging because of the poor availability and quality of
data as well as the complex system of interactions across the stock,
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can demonstrate pathways for reducing GHG emissions and en-
ergy demand by considering the conflicts and synergies between
various strategies and technological solutions at a stock level [3,4].
They have been used to evaluate policy scenarios [5-7], the po-
tential for renewable energy sources [8,9], and energy planning
on an urban scale [10-12]; assess life cycle performance [13]; and
study the heat island effect [14], refurbishment strategies [15], and
health impacts [16]. BSMs are differentiated according to two dis-
tinct modeling approaches: top-down and bottom-up [3,17].
Recent developments in the field have focused on bottom-up
methodologies as disaggregate data has become more readily avail-
able [3,4,10]. They have the advantage of being specific technolo-
gies, and therefore, can model building stock changes more eas-
ily, through unprecedented technological developments and policy
interventions. Bottom-up models typically estimate the energy de-
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mand of representative buildings in the stock and aggregate the
results to the stock level [3]. They can be applied at different
scales: from transnational to national [6,18-20], and from urban
[12,21,22] to district scale [23,24], using data from various levels
of disaggregation. Most BSMs assess the stock using representative
buildings in terms of archetype or sample buildings [17]. Archetype
buildings are artificially constructed buildings considered to repre-
sent a certain class of buildings in the stock (typically segmented
according to building type, age, and/or size) [24]. Sample build-
ings, however, are existing buildings taken to be representative of
a given section of the stock [18].

Both archetype and sample building modeling make it easy to
describe and analyze the building stock even with limited data
availability, and furthermore, to create new scenarios relatively
quickly [5,7,25]. However, they present restrictions in terms of the
complexity that can be modeled. They are especially limited in the
representation of heterogeneity in the building stock in terms of
size, building state, occupancy, and user influence [26,27]. These
modeling approaches are sensitive to assumptions from represen-
tative buildings, because any error in the description is extrapo-
lated in the aggregation process [25]. Thus, the uncertainty of re-
sults can be substantial, although this is not often reflected or as-
sessed in modeling practices [10].

There has been a rise in BSMs being developed for urban build-
ing stocks [10,28]. Typically, urban BSMs forego the use of repre-
sentative buildings and use individual building microdata such as
3D city models, building registries, and/or energy performance cer-
tificate data, which is combined using GIS. However, these models
rely on archetypical information to fill data gaps for many building
characteristics (e.g., U-values and heating system efficiency) [21].
More recent approaches use probabilistic data to define uncertain
parameters [29], based on which it is possible to calibrate and val-
idate models on a building level using energy consumption data
[26,30,31]. This is especially crucial to adequately represent previ-
ous energy efficiency measures in the stock, to not overestimate
future reduction potentials [10]. However, missing micro-level data
such as 3D building models makes it difficult to transfer advances
in building stock modeling from an urban to a national scale.

12. Aim

This paper presents he methodology of synthetic building
stock modeling to address shortcomings (of conventional BSM ap-
proaches) through generating a synthetic building stock as a mid-
point between individual building data and sample or archetyp-
ical buildings. We make use of methodologies developed for the
generation of disaggregated synthetic populations of individuals
and households based on aggregate data [32]. Synthetic popu-
lations are simplified representations of an actual population in
the form of artificially generated microdata from aggregate dis-
tributions or sample data. They are widely used in microsimula-
tions and agent-/individual-based models, where micro-level data
is required but often not available (e.g., because of privacy pro-
tection). Synthetic populations have been applied in fields such
as activity-based transportation models [32] and land-use models
[33], as well as in the study of epidemic diffusion or policy im-
pacts [34]; furthermore, they have been applied in models such
as ILUTE [35] or UrbanSim [33]. Similarly, in relation to buildings,
they have been proposed for modeling occupant behavior [36] or
housing location choices in land-use models [33,37]. In this paper,
we adapt the methodology for creating synthetic populations to
generate synthetic microdata on building stocks for use in build-
ing stock (energy) modeling. The methodology enables the cre-
ation of synthetic microdata on building stocks describing individ-
ual buildings and their usage as an alternative to aggregate average
archetype buildings. This will allow BSMs to more adequately de-

scribe the heterogeneity of building stocks in size, building state,
occupancy, and user influence, even in data-poor cases (e.g., in ap-
plications on a national scale) or in cases where data is available
only at an aggregate scale.

This study aims to contribute to the field’s development by:

+ Describing a methodology for generating a synthetic build-
ing stock that can be used in building stock modeling.

+ Showcasing application of the developed methodology based
on the residential building stock of Switzerland.

 Showing the distribution of energy demand and GHG emis-
sions of the residential building stock of Switzerland.

The following section outlines the methodology for generating
a synthetic building stock (Section 2.1), the building stock energy
and environmental impact assessment model used to evaluate the
generated stock (Section 2.2), and its adaptation to the residential
building stock of Switzerland (Section 2.3). The assessment results
of the generated stock are presented in Section 3 and discussed in
Section 4. Finally, Section 5 summarizes the findings with respect
to the stated aims and provides an outlook for future research.

2. Methodology

The proposed building stock modeling methodology is split into
two main parts (see Fig. 1): synthetic stock generation and build-
ing stock assessment by means of analyzing the synthetic stock in
terms of different indicators. The generation of a synthetic building
stock follows three steps:

1. The first step is building stock initialization, during which
the synthetic building stock is structured in terms of factors
such as type and age according to structural data of the real
building stock, typically available from national statistics or
registries (Section 2.1.1).

2. The second step is building characterization, during which
synthetic buildings are further characterized according to
the attributes required for building stock energy and envi-
ronmental modeling. These include building geometry and
energy relevant parameters (e.g., original U-values). This is
performed using distributions of archetypical data on build-
ing attributes and/or sample data (Section 2.1.2).

3. The third step is updating building characteristics, during
which various attributes of individual synthetic buildings are
updated with regards to past refurbishment, maintenance
measures and other alterations, to represent their current
state (e.g., in terms of current U-values or energy carrier;
Section 2.1.3). Aggregate sales data (e.g. of windows or heat-
ing systems) or sample data from surveys (such as [59]) are
used to validate this step.

Subsequently, the generated synthetic stock is assessed and cal-
ibrated using the building stock assessment model, which calcu-
lates the resulting energy demand of each generated building as
well as their environmental impact. The results of the individual
buildings are then aggregated to a stock level.

Synthetic stock generation in conjunction with the building
stock assessment model were implemented in Python, making use
of the libraries SciPy [38], Numpy [39], Pandas [40], ipfn [41], and
matplotlib to visualize the results [42].

2.1. Synthetic building stock generation

Multiple methodologies have been developed and applied to
creating synthetic populations. Literature mostly distinguishes be-
tween sample-based (also called reweighting) and sample-free
(or synthetic reconstruction) methodologies [43,44]. Sample-based
methods use a sample micro-dataset as a basis, which is adapted
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Fig. 1. Process for generating a synthetic building stock for use in building stock modeling.

to fit aggregate distributions of the whole stock; for example, by
applying iterative proportional fitting (IPF) [32]. IPF adapts the el-
ements of a data table in that the marginal totals along various
dimensions equal a defined distribution [37]. A sample-free ap-
proach is used where no micro-dataset is available. It builds a syn-
thetic population by iteratively assembling the population based
on known distributions of characteristics from aggregate datasets
through Monte Carlo random sampling [34]. Although both are vi-
able methods, this study applies a sample-free approach, because
often no suitable micro-dataset is available to apply a sample-
based approach.

A synthetic population is not simply a construction of records
of each individual person, but also their organization and struc-
turing into households. Similarly, the synthetic building stock can
be thought of as not just generating individual records of build-
ings in the stock but also of the various usages in the building.
These different usages can not only be various individual dwellings
in a building (as in the case study of this paper), but also non-
residential usages in mixed-use or non-residential buildings. This
allows modeling at both a building and sub-building level (e.g.,
differentiating occupancy attributes and appliance equipment rates
across various dwellings in one building).

The synthetic building stock can be sized flexibly in that the
number of buildings generated can be adapted. Therefore, it is
possible to recreate an individual record for each building in the
stock. However, this is only of limited use because national build-
ing stocks typically consist of several million buildings, even for
small countries. Therefore, the computational demand to run a
BSM would increase significantly for larger countries. To limit the
computational time in the assessment of a BSM, a synthetic build-
ing stock can be limited to a representative sample stock, thereby
creating representative building functions the same as representa-
tive samples in surveys as they each represent a portion of the
stock. All results of the building stock assessment can later be
scaled. The scaling factor is determined based on the number (or
another indicator such as gross floor area) of representative build-
ings chosen for each cluster of the stock.

Fig. 2 shows a representation of the synthetically created build-
ings that result from adapting this study’s methodology. The main
attributes of a building include building type and construction
year, and they are directly defined at the building scale; the tech-
nical systems of each building are then defined individually. Thus,
each building comprises several building envelope components, a
heating system, and ventilation concept (either natural or mechan-
ical). Each of these technical components is described by an instal-

lation or retrofit year as well as its technical characteristics. Each
building can have multiple use areas with a different usage type
or one to several dwellings (housing units) in case of residential
buildings (cf. Fig. 2).

2.1.1. Building stock initialization

First, the synthetic building stock is initialized based on struc-
tural data on the building stock (see Fig. 1). The structural data
describes the make-up of the building stock in terms of number
of buildings. Such data is typically available from national statis-
tical offices and describes the stock according to features such as
building type, construction period, and size. From that dataset, a
representative sample is drawn to initialize the synthetic stock and
create the individual representative buildings. In case the building
stock should be reconstructed in its entirety, the sampling can be
omitted, and instead, the individual records are created according
to the number of buildings of the aggregated structural dataset.
The result of step one is a structure of individual building records
that when aggregated represents the structural input data and can
be further characterized in step 2.

2.1.2. Building characterization

The second step aims to further characterize the initialized
stock. It defines all further building attributes required for the gen-
erated synthetic building stock to be used in building stock mod-
eling (cf. Fig. 1). These attributes can be defined through selecting
single characteristics from a building typology or through Monte
Carlo sampling from a distribution. The underlying data for this
can vary depending on availability. It can either come from statis-
tical offices, building standards, and surveys on parts of the stock,
as well as other reports.

Ideally, available data provide a distribution of a certain at-
tribute across the entire stock or part of it, which allows for sam-
pling that attribute directly from the data. However, for most at-
tributes, available data sources do not have representative distribu-
tions for the building stock, but rather average values with a lower
and upper bound. In this case, the probability distribution can be
constructed based on these minimum and maximum values, sim-
ilar to in life cycle inventory databases, to be able to run Monte
Carlo simulations [45]. Normal or log-normal distributions can be
selected for most continuous variables (e.g., U-values). Log-normal
is suitable for skewed distributions as well as attributes that are
positive and cannot be smaller zero. Uniform distribution can be
chosen for selective attributes where no clustering occurs near a
mean value (e.g., building orientation). Lastly, discrete attributes
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Fig. 2. Example representation of a synthetically created building through the application of the described methodology in the case study of the Swiss residential building
stock with examples for the different elements (one per type; multiple opaque components exist, and there can be multiple dwellings per building) and characterizing

attributes.

(e.g., number of occupants) can be defined as a binominal distri-
bution or shares (e.g. shares of buildings with a basement).

In contrast to households, buildings have more correlated at-
tributes; the most notable is building geometry (i.e., wall, roof,
floor, and window areas), where surface areas cannot be individu-
ally randomly estimated because they relate to each other to make
a complete building. Therefore, rather than choosing these at-
tributes individually, a simple “shoebox” geometry of the building
is constructed to estimate the surface areas. The shoebox model
is estimated based on the total floor area within the building,
the number of floors, and the aspect ratio between the building’s
length and width, as well as a glazing ratio of the facade to esti-
mate the window areas. Subsequently, the total floor area is di-
vided by the number of floors to obtain the footprint area. The
length and width are then assumed based on the aspect ratio be-
tween the two (or vice versa, depending on data availability). From
this, the total facade area can be calculated based on the building
perimeter, number of floors, and floor height of the building. The
facade area is reduced if the building is determined to be attached
on one or two sides. The resulting facade area can be subdivided
between opaque wall area and window area using a glazed surface
area factor. The roof area is calculated based on the assigned roof
type of the building. In case the building was assigned a flat roof,
the roof area is equal to the footprint area, whereas for pitched
roofs, the area is calculated according to the roof slope. The floor
area is defined equal to the footprint area; however, depending on
whether the building has a basement or not, it is defined as being
toward the ground or unheated rooms.

2.1.3. Updating building characteristics
This step calibrates the current state of the building in terms
of past upgrades and refurbishment measures. It can be skipped

in case the available data sources are up to date and cover the
current state of the stock accurately. However, in most cases, es-
pecially the data on U-values and type of heating system installed
cover the state of the building as it was originally built and not its
current state. In that case, this step is necessary to consider these
upgrades.

This can be achieved in two stages:

1. The year of the last intervention is defined for each building
component whose state requires updating. For recent buildings,
this might be the same as the year of building construction.
However, older buildings have all undergone one or more alter-
ation in their lifetime.

2. If a measure has been implemented, how the building compo-
nent was altered is assessed. The resulting efficiency improve-
ment is related to the year in which the measure is estimated
to have been implemented.

Thus, the year of the last intervention is estimated endoge-
nously by the model. For each individual building component, the
last intervention year is estimated through an estimated lifetime
based on the Weibull distribution. The Weibull distribution was se-
lected because it is often used to estimate the lifetime of building
components [47,48]. However, other probability distributions such
as the Gompertz distribution, Gamma distribution, or a fixed life-
time could also be used [46]. The distributions can be fitted based
on real duration data or estimated based on average renovation in-
tervals. Based on the fitted distribution, the year of the first inter-
vention can be estimated starting from the year of construction.
This process is repeated until the year of the next intervention sur-
passes the base year for which the synthetic building stock should
be representative of.
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If a component is altered in a given year, how it is changed
is assessed. In case of building envelope components, this would
mean first assessing whether the intervention has an effect on
the energy efficiency (i.e., added insulation or exchanged windows)
compared with pure maintenance measures (i.e., repainted walls
or windows). This can be done through a random choice based on
data on the share of renovations with an energy efficiency effect,
compared with pure maintenance measures, or through evaluation
of a micro-economic discrete choice model [24]. The resulting effi-
ciency improvement of the component (be that an envelope com-
ponent or a HVAC system) can then be defined based on the effi-
ciency standard of that year (e.g., typical insulation thicknesses/U-
values or heating system efficiencies).

2.2. Building stock assessment

The generated synthetic stock is assessed according to its en-
ergy and GHG emissions using the building stock assessment
model described below. The model is split into two parts, an
energy demand model and an impact assessment model. The
energy model first calculates the buildings’ energy demand in
terms of useful energy for space heating and domestic hot wa-
ter (Section 2.2.1). Based on the heating demand and the installed
heating system in the buildings, the final energy demand is calcu-
lated according to the split of energy carriers and energy services
(i.e., space heating and domestic hot water) as well as the electric-
ity loads for lighting, appliances, and auxiliary electricity (i.e., ven-
tilation and pumps). This is fed into the impact assessment model,
which calculates the primary energy and GHG emissions of the
buildings’ use phase (using primary energy and emissions factors
from the literature; see Section 2.2.2).

2.2.1. Energy demand model

First, the energy demand model calculates the useful energy de-
mand for space heating using a monthly steady-state energy bal-
ance based on the norm ISO EN 52016-1 [49] (or the equivalent
Swiss norm SIA 380/1:2016 [50]) based on the building physics
parameters and usage data defined during the building character-
ization step. The internal electrical loads and hot water demand
are calculated at an individual building use area scale as specified
during the building characterization step, and then aggregated to
the building scale. Based on the calculated useful energy demand
for space heating and hot water, final energy demand is estimated
depending on the heating system efficiencies. Different conversion
efficiencies are applied for space heating and hot water generation
to account for the different temperature levels and losses in dis-
tribution within the building. Solar thermal collectors are assessed
separately based on a monthly energy balance of the possible pro-
duction and demand from domestic hot water and/or space heat-
ing. In case that monthly production exceeds actual demand, the
production is limited to cover this demand. Thus, no seasonal stor-
age is assumed. A detailed description of the model can be found
in Appendix B.

The energy demand model is set up to account for not only
the stock variability in terms of physical characteristics, but also
in terms of occupant related attributes such as demanded indoor
temperature or varying hot water use. The average indoor temper-
ature of the building is defined based on the average of the set
temperature of each building usage (e.g., for each dwelling) in the
building.

However, as research of the performance gap has revealed, the
realized indoor temperature is notably lower for inefficient build-
ings compared with newer energy efficient buildings [51,52]. This
is considered through the use of adjustment factors for indoor
temperature depending on the energy efficiency standard of the

building according to [52] (see Appendix B for a mathematical de-
scription of the implementation of the approach). The approach of
Loga et al. [52] considers three reduction factors: (1) a reduction
of the internal temperature during the night, (2) a reduction of
the average internal temperature caused by limited (or unheated)
spaces within the heated floor area, and (3) the user influence
through reduced heating to save costs. Each of these factors de-
pends on the energy efficiency of the building and results in a re-
duction of the average indoor temperature from the set tempera-
ture the more inefficient the building is.

2.2.2. Impact assessment

In this last step, the model calculates the direct and indirect
GHG emissions and primary energy demand of the building’s use
phase’s final energy demand. The GHG emissions as well as total
and non-renewable primary energy are then calculated using emis-
sion and primary energy factors of various energy carriers. For the
case study of the residential building stock of Switzerland, these
were based on [53] and are listed in Appendix D. In case of elec-
tricity, the emission and primary energy factors for the consump-
tion mix was used. The resulting emissions and primary energy
demand are split depending on different energy services. Consider-
ing the GHG emissions and primary energy demand of the build-
ing, indicators such as GHG emissions and energy use per m2, per
building, or per occupant, are generated.

2.3. Case study: residential building stock of Switzerland

The methodology was applied to the residential building stock
of Switzerland in 2015. Aggregate structural data comes from the
building and dwelling register (BDR), which holds data on all resi-
dential buildings and dwellings in Switzerland. The buildings are
described based on building type, construction period, number
of floors, number of dwellings, and heating and hot water sys-
tems. The BDR is not up to date regarding the installed heating
and hot water systems, and has been shown to be outdated in
many instances [54|; these shares were therefore adapted during
the calibration procedure (see Appendix C). Dwellings are simi-
larly described according to the building type, construction period,
dwelling size, and number of rooms. The structuring of the reg-
istry in separate records on buildings and dwellings allows for a
joint generation of a building and dwelling stock. Fig. 2 presents
a flowchart of the implemented process of synthetic stock genera-
tion, which is further described in the following subsections.

2.3.1. Building stock initialization

Based on aggregate data of the BDR on the building and
dwelling stock, an initial sample for both stocks is generated sep-
arately and then combined to initialize the stock (see Fig. 3). The
building stock sample is generated first. To limit the computational
time in the BSM assessment, the building stock size is limited to
a representative sample stock of 10,000 synthetic buildings. Once
the initial building stock sample is generated, the interval class at-
tributes from the BDR for number of floors (e.g., 10 + floors), num-
ber of dwellings (e.g., 6-9 dwellings) and the construction period
(e.g., 1920-1944) are interpolated for each individual building in
the generated sample to obtain a numerical value. For open-ended
class intervals (e.g., 10+ dwellings), which are not delimited on
both sides, an exponential distribution is assumed and calibrated
using aggregate data. For example, the number of dwellings in
buildings with 10 or more is calibrated so that the total number
generated matches the distribution of the dwelling stock.

Next, the dwelling sample is generated based on the size of the
building stock sample by summing up the number of dwellings of
each building in the building stock. The generation of both build-
ing and dwelling stocks before they are merged guarantees that
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Fig. 3. Flow chart describing the process for generating a synthetic building and
dwelling stock.

both stocks match the overarching structure of the input data. In
a similar manner to the buildings, the dwelling characteristics are
assigned by interpolating between the various class boundaries, or
extrapolated using an exponential function in case of open-ended
classes, to assign a numerical value to each attribute.

In the last step of stock initialization, the building and dwelling
stocks are combined. This step is performed iteratively by picking a
building at random from the generated building stock sample and
assigning the defined number of dwellings to the building based
on the building type or construction period. However, some restric-
tions are placed on the selection of dwellings to limit inconsistent
combinations. These restrictions attempt to limit the generation of
buildings with an unrealistically small floor area compared with
the number of floors. Therefore, restrictions are set so that if there
are between 1 and 0.5 dwellings per floor, no dwellings smaller
than 70m? are picked. If there were even less than 0.5 dwellings
per floor, then only dwellings larger than 150m?2 are picked. In all
other cases, no restrictions related to the sampling of dwellings are
set.

2.3.2. Building characterization

Next, the generated building stock is further characterized
through Monte Carlo sampling as described in Section 2.1.2, based
on distributions generated from various data sources, statistical of-
fices [55], building standards [50,56,57], and other reports [22,58—
62]. A complete overview of the data sources and chosen distribu-
tion types for all input parameters can be found in Appendix A.

First, the building geometry (wall, roof, floor, and window
areas) is generated through a shoebox model as described in
Section 2.1.2. For this, the total heated floor area of the building
is estimated by multiplying the sum of the dwellings’ floor area
by a factor of +15% and +20% for single and multi-family houses,
respectively, to account for factors such as circulation area and
construction area, as proposed in [63]. After the surface areas of
the individual components are estimated, the physical properties
of the different building components are defined, such as U-value,
g-value (or SHGC), and frame-to-glazing ratio for windows, as well
as angle, orientation, and shading factor. Each of these parameters
is defined as well through Monte Carlo sampling based on differ-

ent distributions depending mainly on building type, construction
period, and building component type. The orientation of the whole
building is assigned randomly based on a uniform distribution. The
orientation of the individual building components is then defined
accordingly.

The space heating and hot water system, as well as whether
a solar collector is installed, is already contained in the structural
data of the BDR. The efficiencies of the system are then defined
based on the step to update building characteristics described in
the next section. Most residential buildings in Switzerland are nat-
urally ventilated; however, especially in newer buildings, venti-
lation systems with heat recovery are increasingly common. The
share of residential buildings equipped with ventilation systems
with heat recovery is estimated based on data from [22]. The ven-
tilation rate is defined based on the building type, age, and the
ventilation system installed, and divided between infiltration and
natural/mechanical ventilation depending on the system type.

For the individual dwellings, the number of occupants is based
on binominal distributions generated from household size data
from [55]. The average occupancy time per day and person is then
defined based on average values for residential use from the build-
ing standard [56]. Similarly, the hot water consumption as well
as electricity use for lighting and appliances are defined based on
building standards [50,57] individually for every dwelling. Lastly,
the set temperature is defined on the dwelling scale to consider
the individual heating behavior of building occupants.

2.3.3. Updating building characteristics

The lifetime distributions for this step are estimated based on
average renovation rates for each building component for various
building types and construction periods from an empirical study
[59] and standard building lifetimes [64,65]. Furthermore, [59] pro-
vides the share of renovations with an effect on the energy ef-
ficiency (i.e., added insulation or exchanged windows) compared
with pure maintenance measures (i.e., repainted wall or windows)
for building envelope components. In the second step, this data
is used to assess whether the building component was renovated
with an energy efficiency retrofit or only maintained. In the case
of energy efficiency retrofit, the U-value of the building component
(and the SGHC in case of windows) is updated based on data from
[58,60] on the commonly applied insulation thicknesses and win-
dow standards in a given renovation period. Similarly, the heating
and hot water system efficiency is defined depending on the up-
dated installation date of that system based on the lifetime distri-
bution, according to Section 2.1.3. The efficiency of the systems is
then determined based on the installation year, according to data
from [22]. Similarly, the heat recovery efficiency and the specific
fan power of the ventilation systems are determined based on data
from [60].

3. Results for the Swiss building stock

In this section, the results of the synthetic building stock gen-
erated for Switzerland and its analysis with a BSM are described.
First, the structure of the synthetic building stock is described.
Subsequently, the results of the stock assessment model are pre-
sented according to various levels of aggregation.

3.1. Structure of the stock

Fig. 4 shows the structure of the generated synthetic building
and dwelling stock, comparing the results to the distribution of
the input data used. As seen in both figures, this approach can
reproduce the distribution of the input data. However, some de-
viations occur because the synthetic stock is generated based on a
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Table 1

Summary of indicators across the modeled synthetic building stock, which is compared with the indicators based on the national statistics on household energy

consumption [66].

Indicator Statistics 2015 Total Per heated floor area  Per building Per citizen

Final energy 64.4 TWh 67.2 TWh 135.4kWh | m? 41,230 kWh / building 8,111 kWh | capita
Total primary energy 106.4 TWh 110.0 TWh 221.6kWh | m? 67,502 kWh | building 13,280kWh | capita
Non-renewable Primary energy 911 TWh 82.2 TWh 165.5 kWh | m? 50,417 kWh | building 9,919 kWh | capita

GHG emissions 12.3 mil. tCO;-eq. 12.8 mil. tCOy-eq.

25.7 kgC0O,-eq | m? 77,837 kgCO,-eq [ building  1.54 tCO,-eq [ capita

random sample of 10,000 buildings instead of the 1.6 million resi-
dential buildings that exist in Switzerland. Moreover, Fig. 6 shows
that the deviation from the input distribution is more significant
for dwellings than buildings. This is because the synthetic dwelling
stock is generated from a stratified sample based on the number of
dwellings required to populate the synthetic buildings. This stratifi-
cation leads to a slightly increased distortion in the dwelling stock
as the deviations in the building stock are passed on to the syn-
thetic dwelling stock. This distortion is, however, kept minimal by
calibrating the number of dwellings assigned per building depend-
ing on the construction period (see Appendix C for details).

3.2. Impact assessment of the stock

The aggregated results of the modeled synthetic building pop-
ulation are summarized in Table 1 and compared with data based
on national energy statistics from [66]. Reference values for pri-
mary energy and GHG emissions can also be calculated based on
the energy statistics and the primary energy and emission factors
listed in Table 3 in Appendix D. The stock is analyzed based on its
total useful energy demand for heating (space heating and hot wa-
ter), final energy demand (for space heating, hot water, appliance
use, lighting, and auxiliary energy), primary energy (both total pri-
mary energy and non-renewable) alongside its GHG emissions. Re-
sults are shown both as a total as well as averages per heated floor
area, building, and citizen. The total final energy demand is overes-
timated by 4% from the national statistics, which is also mirrored
in the other indicators. The exception is non-renewable primary
energy, where the modeled results are lower than the statistics. A
more detailed comparison between modeled results and statistics
can be found in Appendix C.

The distributions of the energy demand and GHG emissions
across the synthetic building stock is shown in Figs. 5 and 6, and
are differentiated according to the construction period and heat-
ing system of the building. The distributions are weighted based
on the representative heated floor area of a given building in the
stock. The results show that the distribution of all indicators varies
greatly, both within the stock as a whole, and within each con-
struction period or heating system. The useful energy demand fol-
lows a long-tailed distribution across the stock. However, the re-
maining indicators (i.e., final energy, total and non-renewable pri-
mary energy, and GHG emissions) do not follow such a clear dis-
tribution and show two peaks. The specific final energy demand
has a clear secondary peak, which is made up mostly by build-
ings with a heat pump (cf. Fig. 6), which have a significantly lower
final energy demand for heating and hot water compared with
buildings with other heating systems. The separation of the two
peaks is amplified by the fact that most buildings with a heat
pump have been built since 2000, as seen in the data from the
BDR [55]. These buildings already have a lower than average space
heating demand because of the higher efficiency standard of the
building envelope. This peak can also be seen for the distributions
of the primary energy demand (both total and non-renewable),
albeit less pronounced because of the different primary energy
factors of the various energy carriers, where the efficiency gain
from the heat pump in terms of final energy is partially lost be-

cause of the higher primary energy factor. Even so, in terms of
non-renewable primary energy, the buildings with the lowest de-
mand are shown to be buildings with a wood-based heating sys-
tem (cf. Fig. 6). In terms of GHG emissions, the highest share is
buildings emitting 5-10 kgCO,-eq per m? and year. The more pro-
nounced peak compared with the other indicators comes from the
fact that Switzerland has a relatively GHG-non-intensive electricity
consumption mix (the production is mostly from hydro and nu-
clear power, complemented by somewhat more carbon-intensive
imports; see [53,67]). This favors buildings with heat pumps com-
pared with non-electricity based heating systems in addition to the
already lower final energy demand. Furthermore, a notable share
of single-family houses that are heated with wood can be seen,
as well as multi-family houses in cities connected to the district
heating grid, which decreases the GHG emissions of these build-
ings compared with buildings with fossil heating systems. The sec-
ond peak and long tail of the distribution comprises the buildings
that have an oil or gas boiler, which still account for 34% and 20%
of the stock, respectively (cf. Fig. 4).

The distribution of the various results according to both build-
ing type and construction period are visualized in Fig. 7. For all in-
dicators, a trend towards lower energy demand and GHG emissions
can be seen for both building types for the more recent construc-
tion periods. Nevertheless, the variation of the various indicators
for each construction period is very large, especially for the earlier
construction periods. This is also highlighted by the rather large
number of outliers.

When comparing the two building types, both the median as
well as the variation of the different indicators seems to be lower
for multi-family houses compared with single-family houses. The
average lower median of multi-family houses is caused by the gen-
erally more compact building geometry, which leads to a lower
specific heat demand compared with single-family houses. An ex-
ception to this trend is the category of single-family houses from
the construction period until 1920. Here, the median GHG emis-
sions and non-renewable primary energy are lower for single-
family houses compared with multi-family houses of the same
period. This originates from this period’s higher share of wood-
heated single-family houses. The lower variation of the different
indicators for multi-family houses may stem from the fact that
building attributes defined on the dwelling scale are averaged
across multiple dwellings in a multi-family house. This leads to a
lower variation of the resulting energy demand, and therefore, a
lower variation of the other indicators.

4. Discussion

The discussion’s structure is in two sections. First, general
methodological findings are discussed, and then additional insights
are derived from the case study.

4.1. Discussion of the methodology

4.1.1. Advantages of synthetic building stocks
The methodology described in this paper improves on the gen-
erally used archetype approach of building energy models in nu-
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Fig. 5. Distribution of specific useful energy demand (only for space heating and DHW), final energy, primary energy (total and non-renewable), and GHG emissions across

the synthetic building stock according to construction period. The shares are weighted based on the representative floor area in the stock.
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Fig. 6. Distribution of specific useful energy demand (only for space heating and DHW), final energy, primary energy (total and non-renewable), and GHG emissions across

the synthetic building stock according to main heating system type. The shares are weighted based on the representative floor area in the stock.
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merous manners. It has the following advantages: (1) Generating
numerous representative buildings and using input distributions
makes it possible to consider the heterogeneity in the stock as well
as the uncertainty and variation in the input data. (2) The method
considers nonlinearities of interactions in the stock, such as the ef-
ficiency standard of the building envelope and the heating system.
(3) The data need is not significantly higher than for the common
archetype approach. (4) The possibility exists to consider various
data types, including sample studies and surveys to calibrate dis-
tributions and reflect heterogeneity.

Generating numerous discrete representative buildings repro-
duces the heterogeneity in the building stock. The representative
buildings represent a share of the stock just as building archetypes
do, but they also reflect the heterogeneity in the stock in terms
of past building stock alterations such as refurbishments, as well
as variations of the occupancy and user influence across the stock.
Past renovation measures are not considered an average improve-
ment of the energy efficiency of a given archetype, but as a dis-
crete event for a selection of the representative buildings. Varia-
tion in number of occupants, user influence, and other uncertain
parameters are considered using probabilistic distributions of dif-
ferent parameters across the stock. Therefore, the synthetic stock
can reproduce the variability and uncertainty of characteristics in
the stock model and show how output variables at the building
level vary across the stock.

The heterogeneity of the stock can have large implications
when investigating energy conservation and GHG mitigation mea-
sures for the building stock as the effectiveness of energy efficiency
measures differs between non-retrofitted, fully retrofitted, and par-
tially (average) retrofitted buildings. Because of nonlinearities, the
average of the individual results may not be equal to the results of
an average situation. Thus, the synthetic stock model can provide
a more detailed understanding of the distribution energy demand
and GHG emissions in the existing stock, thereby providing a more
robust basis for assessing future stock developments as well as in-
vestigate refurbishment strategies and policy interventions.

The increased level of detail of the method does not signifi-
cantly increase the amount of data required compared with a con-
ventional archetype approach. The data sources used are also the
ones commonly applied in archetype modeling, but the data is
processed to give a more detailed overview over the stock. Com-
pared with an individual building approach (requiring data from
each building), the synthetic building stock uses fewer, and more
crucially, less sensitive data. All data sources that were used to
generate the stock for Switzerland are publicly available. This, in
theory, makes the method as broadly applicable as the archetype
approach.

The method can accommodate a wider variation of data types
compared with archetype approaches, particularly distributional
information derived from surveys. Including such data sources
strengthens the generated synthetic building stock because it helps
to reproduce the heterogeneity in the stock. Being able to accom-
modate such different data sources and not relying on a single
source (e.g., a complete building registry as an individual building-
based approach would) makes the methodology easier to adapt to
different situations of data availability, and therefore, more trans-
ferable to other cases.

4.1.2. Critical review of the methodology

The current implementation of the methodology shown in
this paper has some limitations. In particular, the following as-
pects should be considered: (1) The combination of building and
dwelling types may lead to unrealistic combinations in some cases.
(2) The different input distributions are assumed to be indepen-
dent from each other; however, in reality, these may often be cor-
related with one another.

At this stage of implementation, the relationship between
dwelling and building characteristics beyond the attributes of
building type and construction period is often not explicitly con-
sidered. This may lead to unrealistic composition of dwelling types
within a building because they are assigned randomly based on
building type and construction period, which might also explain
the large number of outliers in Fig. 7. This aspect was partially
addressed by introducing restrictions on the size of the dwellings
to be chosen from, yet no link was considered between dwellings
in the same building when assigning dwellings. For instance,
dwellings within the same multi-family building are more likely
to belong to the same size group, which was not considered. How-
ever, with the methodology proposed, this could easily be consid-
ered if the underlying micro-level data or a sample thereof could
be used as a basis for generating the synthetic stock.

In addition, the data quality could be improved when it comes
to building characterization and updating, where representative
data for the stock are often lacking altogether, and data must be
used from many diverse sources. Hence, most attributes in these
steps are defined independently from each other. This leads to un-
realistic combinations of attributes in some of the synthetic build-
ings, because in reality, many attributes (e.g., the refurbishment
status of various building components) are interconnected. This is
shown in the results by the large number of outliers in Fig. 7. At a
stock level, not enough data is available upon which and to what
degree different building characteristics are linked to each other.
Here, a remedy could be common sense assumptions, and more
epidemiological studies on building energy use could help fill in
the gaps in the long-term [68]. Such interdependencies could be
implemented by introducing structured correlations between the
various probabilistic distributions.

4.1.3. Calibration

The calibration of the generated synthetic stock is an issue just
as in all BSMs. The stock generated in this study was calibrated
and validated at various scales in terms of structure, past refur-
bishment activities, and aggregate energy consumption. Be that as
it may, a more detailed calibration could be performed by calibrat-
ing input distributions for the building characterization step based
on energy consumption data, through using Bayesian methods as
proposed by Sokol et al. [26]. However, this would require more
detailed data on a representative sample of buildings across the
stock to calibrate the input distributions. Furthermore, the avail-
ability of such a sample would mean that other methodologies for
the generation of synthetic stocks such as the sample-based ap-
proach mentioned in Section 2 could be investigated. Calibrating
the step for updating the building characteristics based on the cur-
rent state of the building stock (e.g., gathered through surveys) is
a valid approach; however, a more detailed longitudinal dataset
tracking building stock developments over time (e.g., studies un-
derlying the report by Jakob et al. [59]) might help to improve the
underlying building component lifetime distributions [46], as well
as the combination of different measures commonly applied in a
building.

4.2. Discussion of case study results

Applying the synthetic stock methodology to the residential
building stock of Switzerland demonstrates that the developed
method can accurately reproduce aggregate results (cf. Table 1 and
Fig. 9 in the appendix), and also provide information on the distri-
bution of energy demand and GHG emissions within the stock (cf.
Figs. 4-7). This is a clear value added compared with traditional
approaches using building archetypes that are mostly based on av-
erages.
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The results for the Swiss residential building stock show that
energy demand as well as GHG emissions can vary greatly across
the building stock. This variation mainly arises from the energy
standard of the construction period, building size, past retrofit
measures that are unequally implemented, and most importantly,
from the heating system’s energy carrier. Moreover, varying factors
under the user’s influence (e.g., demanded indoor temperature, do-
mestic hot water consumption, or ventilation rate) affect the dis-
tribution of energy demand and GHG emissions in the stock.

The results show that the variation within common classifi-
cations of building type and construction period can be much
larger than the average differences between construction periods
or building types (cf. Figs. 5 and 7). This highlights the limita-
tions of an archetype approach because they are typically defined
across these two dimensions. Therefore, the effectiveness of ren-
ovation measures are only to a certain extent explained by typ-
ical archetype variables such as construction period, but more
so by the current state of the building (which varies widely as
shown by the results). Considering these variations would there-
fore strengthen the usefulness of the results from BSMs to investi-
gate refurbishment strategies and policy interventions.

The impact assessment of the generated stock shows that espe-
cially for final energy and GHG emissions, a division of the stock
into two main clusters occurs: one cluster represents older, non-
retrofitted and mostly fossil fuel-heated buildings, and the other
represents newer buildings with a renewable energy-based heat-
ing system such as a heat pump. Although decarbonization of the
heating supply could significantly reduce direct GHG emissions in
all buildings, in Switzerland, these systems to date are mainly in-
stalled in newer buildings (and to a lesser extent in retrofitted
buildings) that are already rather energy efficient. A large share of
older, fossil fuel-heated buildings remains to be addressed.

5. Conclusion and outlook

This paper describes a new methodology for the generation of
synthetic building stocks to be used in bottom-up building stock
modeling. The method for generating the initial building stock per
se comprises three steps: (1) building stock initialization, (2) build-
ing characterization, and (3) updating building characteristics. In a
subsequent step, the generated synthetic building stock is assessed
in terms of its energy demand and GHG emissions. The method
was implemented for the residential building stock of Switzerland
and calibrated based on the overall structure of the stock, the
past renovation activities, and the aggregate energy demand of the
building stock. This paper focused on the methodology develop-
ment to generate synthetic building stocks for building stock mod-
eling and helps set the scope for future work.

The methodology was applied and tailored to the building stock
of Switzerland; nonetheless, the approach is transferable to other
countries and other scales (e.g., a regional scale). However, such
an application will depend on the size of the stock, model pur-
pose, and data availability. Although the methodology can theoret-
ically be applied to a stock of any size, it does not make practical
sense to go below a stock size of several thousand buildings be-
cause at that scale, the stochasticity of the approach might lead to
unrealistic results. One approach to remedy that would be over-
sampling (i.e., generating a synthetic stock that is larger than the
actual stock, where each building has several representative build-
ings) or through a Monte Carlo simulation approach. Moreover, an
application on a city scale may be feasible; for example, to inform
a policy assessment. However, at that scale, building stock model-
ing results are often also used for energy planning purposes [69].
In that case, a synthetic stock is not enough, but rather data on
the individual building are required. However, a building charac-

terization approach can still be used to fill data gaps at a building
level.

The developed methodology can be extended in numerous
manners, which lay the groundwork for future work. A possible
development would be to make the synthetic population spatially
differentiated by distributing the population based on regions (e.g.
cantons in Switzerland or NUTS regions), the municipality, or even
down to a hectare raster level. Methodologies on how to spa-
tially distribute a synthetic population exist and have been proven
useful in transportation and land-use models [37,70]. Another fur-
ther development is the extension of the approach to include non-
residential buildings to encompass the complete building stock of
a country. This would allow an improved representation of mixed-
use buildings, which are typical for an urban environment. Data
availability on the non-residential building stock is generally even
poorer than for residential buildings, which limits this approach.
One way to address this would be to use synthetic businesses as a
proxy to estimate the non-residential floor space [37]. Another ex-
tension of the approach would be to combine the synthetic build-
ing stock with a synthetic population. This would make it possible
to model occupant behavior in greater detail [36] or estimate the
impact of changes in the building stock on the population, includ-
ing social sustainability indicators (e.g., [71]).

The results of Switzerland demonstrate how the discrete repre-
sentation of different building states in the synthetic building stock
allows for a more realistic representation of past building stock al-
terations such as refurbishment. It also lays the groundwork for
the development of a dynamic BSM based on a synthetic build-
ing stock using methodologies such as agent-based modeling. This
can be applied both in terms of modeling decisions at the building
scale, such as renovation and heating system substitution choices
[24,72,73], or to model macro development through the integra-
tion of location choice and land-use models [33]. Such a dynamic
model could be extended to include material attributes (such as
wall constructions instead of U-values) as in the database devel-
oped by Ostermeyer et al. [74], to model the material intensity of
the stock and its related embodied emissions and how it develops
over time [75,76].

The combination of datasets to generate a synthetic building
stock for stock modeling comes with many challenges, which were
outlined in this paper. Although we demonstrated the feasibility
of the use of synthetic building stocks from the available data
sources, room exists for improvement with regards to data qual-
ity. In particular, in terms of the distribution of the combination
of building attributes or previous building stock alterations, data is
severely lacking. Here, more cross-sectional and longitudinal stud-
ies on the state and development of the building stock could in-
crease understanding of these aspects at a stock level, while simul-
taneously improving the data basis for the generation of synthetic
stocks and building stock modeling.
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Table 2
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Description of input data and data sources. The table is structured according to the different steps in the method and the building stock assessment. Reading example:
The attribute “Number of Buildings” has the unit #, the data table has values ranging from 1 to 53,997 and it is differentiated in according to building type, construction
period, number of floors class, number of dwellings class, heating system type, hot water system type and solar system installed, it is not represented by a distribution

and the source is [55].

Range of
Section Attribute Unit data Differentiated according to Distribution Source
1. Building Building Number of buildings # 1-53,997 Building type, construction - [55]
stock stock period, number of floors
initialization class, number of dwellings
class, heating system type,
Hot water system type,
solar system installed
Dwelling Number of dwellings # 1-183,003 Building type, construction - [55]
stock period, dwelling size class,
number of rooms class
2. Building Building Share roof type pitched % 19-100 building type, construction - [22]
characterization geometry period
Share buildings with % 70-90 building type, construction - [22]
basement period
height floor m 2.7-3 Building type, construction Lognormal [22]
period
Share one side attached % 0-20 Building type, construction - [22]
period
Share two sides % 5-50 Building type, construction - [22]
attached period
Aspect ratio - 25-100 Building type, construction Lognormal [22]
(length/width) period
Share glazing short side % 10-55 Building type, construction Lognormal [22]
period
Share glazing long side % 10-55 Building type, construction Lognormal [22]
period
Building orientation ° 0-180 - Uniform -
Building U-value W/m? K 0.16-2.4 Building type, construction Lognormal
envelope period, Building component [22,58,60,61]
type
g-value window - 0.45-0.78 Building type, construction Lognormal
period [22,58,60,61]
Window shading factor % 60-90 - Lognormal [22,50]
Window frame ratio % 10-30 - Lognormal [22,50]
Internal heat capacity J/K m?2 80,000 - - Lognormal [77]
building 370,000
Occupancy Number of occupants # 1-7 Dwelling size class Binominal [55]
Occupancy time h/persons day 10-18 - Lognormal [50,56]
Indoor temperature °C 18-22 - Lognormal [50,56]
Consumption hot water 1/persons day 30-50 - Lognormal [50,56]
HVAC Share mechanical % 0-25 - - [22]
systems ventilation with heat
recovery
Ventilation rate m3/m?h 0.2-04 Building type, construction Lognormal [58,60]
infiltration period
Ventilation rate natural m3/m2h 0.6-2.6 Building type, construction Lognormal [58,60]
ventilation period, ventilation system
Ventilation rate m3/m2h 0.8-11 Building type, construction Lognormal [58,60]
mechanical ventilation period, ventilation system
Electricity Electricity appliances kWh/ year 950-2526 Number of rooms class Lognormal [57]
use
Lighting power '\ 150-1100 Number of rooms class Lognormal [57]
Lighting full load hours h/year 150-1000 Occupancy time - [57]
Electricity auxiliary kWh/m? year 3-4.5 Building type Lognormal [57]
3. Updating Building lifetime year 10-200 Building type, building Weibull
building envelope component type, [59,64,65]
characteristics renovation period
Share energy efficiency % 25-90 Building type, Building - [59]
refurbishment component type,
renovation period
Insulation thickness mm 20-200 Building type, building -
after refurbishment component type, [22,58,60,61]
renovation period
U-value window after 11-1.8 Building type, renovation -
refurbishment period [22,58,60,61]
g-value window after - 0.54-0.7 Building type, renovation -
refurbishment period [22,58,60,61]

(continued on next page)
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Table 2 (continued)

Section Attribute Unit Range of Differentiated according to Distribution Source
data
HVAC Lifetime year 15-40 Building type, building Weibull
systems component type, [59,64,65]
renovation period
Efficiency space heating % 60-400 Heating system type, year - [22,60]
of installation
Efficiency hot water % 54-285 Hot water system type, - [22,60]
year of installation
Full load hours h [ year 6098-8760 Ventilation type - [22,60]
ventilation
Efficiency heat recovery % 50-90 Ventilation type, year of - [22,60]
installation
Specific fan power W/(m3/h) 0-0.91 Ventilation type, year of - [22,60]
installation
Building stock Climate data Solar irradiation kKWh/m? 4-168 month, orientation - [78]
assessment month
External temperature °C 0-16.8 month - [78]
Energy GHG factor kgCO, /kWh 0.03-0.3 Energy carrier - [53]
carrier
PE total factor kWh/kWh 0.33-3 Energy carrier - [53]
PE nonrenewable factor kWh/kWh 0.16-2.52 Energy carrier - [53]

B. Energy demand model

The energy demand model is based on a monthly steady-state
energy balance based on the norm ISO EN 13790 [79] (or the
equivalent Swiss norm SIA 380/1 [50]). It calculates monthly en-
ergy demand of each building for space heating, hot water, appli-
ance use, lighting and auxiliary electricity use (ventilation, pumps,
etc.).

The monthly space heating demand (Qy ,,) of the building is
calculated based on the balance between the sum of all heat losses
and gains for each month in the building according to below equa-
tion:

QH.m = QT.m + QVm - ng,m(QS.m + QOm + QEm) (1)

Where Qg ; is the heat losses from transmission, Qy ; is the heat
losses from ventilation, ng ¢ is the heat gains utilization factor,
Qs, +is the heat gains from solar radiation, Qp ; is the heat gains
from occupants, and Qg . is the heat gains from electricity use in
the building (lighting, appliances, etc.).

The heat losses from transmission (Qr ,)are calculated for each
component and summed up according to below equation:

Qrm=) Uc-Ac- AT b -ty -24-107 )
Cc

Where U, is the U-value of the component in W/m2 K, A is the
surface area of the component in m2, AT is the temperature dif-
ference between internal and external temperature in K, b is a re-
duction factor to account for surfaces with a reduction of thermal
losses such as floors against ground or unheated spaces and tp, is
the length of month m in days.

The heat losses from ventilation (Qy, ,) from both active (nat-
ural or mechanical ventilation) and passive (through infiltration)
ventilation are calculated according to below equation:

QV,m = PaCa - (QV.act : (1 - 7']HR) + Qv,inf) -AT- tm - 24 . ‘1073 (3)

Where pqc, is the heat capacity of air in Wh/m3 K, qy, g is the air
exchange rate due to active ventilation in m3/h, ngy is efficiency of
heat recovery from ventilation in % and q,, ;s is the air exchange
rate due to infiltration in m3/h.

The adjusted temperature difference (AT) between the external
and internal temperature is calculated based on Loga et al. [52] ac-
cording to below equation:

ATzfn'fr‘fu'(Ts,m—Te,m) (4)

Where f;, is the reduction factor for the nightly decrease of the in-
ternal air temperature, f; is the reduction factor for the partially
heated spaces, f, is the reduction factor for user influence (e.g.
blocking of building components through furniture, reduction of
set temperature to save heating costs), Ts, i is the set temperature
in °C and T, 1 is the external air temperature in °C.

The reduction factor for the nightly decrease of the internal air
temperature (f) is calculated based on Loga et al. [52] according
to below equation:
fn=09+ 01 (5)

h
Where h is the specific heat loss factor of the building in
W/mzﬂoor area K.

The reduction factor for the partially heated spaces (f;) is calcu-

lated based on Loga et al. according to Eq. (5).

1
C05vh-n2+1

Where h is the specific heat loss factor of the building in
W/m?go0r area K and ny is the share of indirectly or partially heated
spaces (e.g. stairways, etc.) in the thermal envelope.

The share of indirectly or partially heated spaces in the ther-
mal envelope n; is estimated based on Loga et al. [52] according to
below equation:

fy 6)

_1Ap — 100
50
Where Ap is the average dwelling size in the building.

The reduction factor for user influence (f,) is calculated based
on Loga et al. [52] according to below equation:

n,=025+0.2- tan (7)

fu=05+ (8)

1
1+05-h

Where h is the specific heat loss factor of the building in
W/mzﬂoor area K.

The heat gains from solar irradiation (Qg, ,) are calculated for
each window and summed up according to below equation:

Windows

Qim = Z Io-Ac-gc- (1 - fframe,C) - fshading.c - tm - 24 - 1073 (9)
C

Where I; is the global solar irradiation on the window surface in
kWh/m?2, A is the surface area of the window in m2, g is the solar
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gains factor of the window, fqme, ¢ is the frame Ratio of the win-
dow, finading, ¢ is the shading factor of the window and tp is the
length of month m in days

The heat gains from building occupants Qg , are calculated ac-
cording to below equation:

Qom="MNo-qo-to-tm-1073 (10)

Where ng is the number of occupants, qg is the heat gain from
each person in W/person, ty is the occupancy time in h/day and
person and ty is the length of month m in days

The heat gains from electricity use (Qg, ;) are calculated accord-
ing to Eq. (10).

Qem = (Ea+Er+Epu) - 5o (11)
Where E, is the electricity use from appliances in kWh/year, E; is
the electricity use from lighting in kWh/year, Eg,, is the electricity
use from auxiliary sources (pumps, ventilation, etc.) in kWh/year
and tp is the length of month m in days.

The final energy for space heating (Ey) can be calculated ac-
cording to below equation:

Ey = 37«,2 (QHm - fH,solar : Qsolar,m) (12)
NH

Where Qy ,, is the monthly space heating demand according to
Eq. (1) in KWh, Qg i is the heat provided from solar thermal
collectors in kKWHh, fy ¢ojqr is the share of the heat provided by solar
collectors used for space heating and ny is the efficiency of the
heating system for space heating in %.

The monthly hot water demand (Quw, 1p) of the building is cal-
culated according to below equation:

Quw = PwCw Mo - Viyw - tm - 24-1073 (13)

Where pycy is the heat capacity of water in Wh/m3 K, ng is the
number of occupants, Vg, is the daily hot water consumption per
occupant in m3/day person and t;, is the length of month m in
days.

The final energy for hot water (Epy) can be calculated accord-
ing to below equation:

12
m (QHWm - fHW,solar : Qsolar.m)

NHW

Enw = (14)
Where Qy , is the monthly hot water demand according to
Eq. (13) in kWh, Qgpjer i is the heat provided from solar thermal
collectors in kWh, fy ¢oiqr is the share of the heat provided by so-
lar collectors used for hot water and 7ny is the efficiency of the
heating system for hot water in %.

The monthly heat gains from solar thermal collectors (Qspjar, m)
is calculated according to below equation:

Qsolar,m = IG,c 'Ac * Nsolar * tm - 24 - 10_3' (15)

Where I;; is the global solar irradiation on the collector surface in
kWh/m2, A, is the surface area of the collector in m2, 1y, is the
efficiency of the solar collector and t;,; is the length of month m in
days

The total final energy demand of the building is calculated ac-
cording to below equation:

Etot = EH + EHW + EA + EL + EAux (]6)

Where Ey is the final energy for space heating in kWh/year, Eyy is
the final energy for hot water in kWh/year, E4 is the electricity use
from appliances in kWh/year, E; is the electricity use from lighting
in kWh/year and E,,y is the electricity use from auxiliary sources
(pumps, ventilation, etc.) in kWh/year
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Fig. 8. Share of refurbished and maintained building components in the synthetic
building stock as well as based on the calibration data from [59].

C. Calibration

The calibration of the generated synthetic is done on multiple
levels and along all three steps in the synthetic building stock gen-
eration as well as through the building stock model. The method-
ology described in step 1 guarantees that the generated building
stock has the same structure as the input dataset. Albeit, some
deviations through the random sampling of buildings can occur.
These deviations are, however, limited due to the size of the gen-
erated building stock. The structure of the dwelling stock is depen-
dent on the structure of the generated building stock sample. As a
result, deviations in the structure of the building stock are passed
along. What is more, the size of the generated dwelling stock is
dependent on the chosen exponential distribution to convert the
open-ended class “10 or more dwellings” into a numerical value.
The exponential distribution was accordingly calibrated for each
construction period, so that the generated dwelling stock reflects
the input data of the actual stock both in size and structure.

The state of the building stock in terms of its energy demand is
calibrated through different mechanisms. The already refurbished
share of the synthetic stock can be calibrated with data from [59].
The calibration results of the building stock according to the past
refurbishments is shown in Fig. 8. The deviation between the syn-
thetic data and the data from [59] is larger compared to the de-
viation in the structure of the stock. The share of already refur-
bished flat roofs and walls is matched rather well by the generated
synthetic stock, while the shares for pitched roofs and floors are
slightly underestimated. The share of refurbished windows is over-
estimated, especially when also including the maintained share.

As a second calibration step, the model is calibrated against
the aggregate level residential energy demand of Switzerland both
in aggregate level and in the distribution of the household en-
ergy consumption according to the main energy carrier [66]. The
BDR is not up to date on the installed heating and hot water sys-
tems and has been shown to be outdated in many instances, e.g.
changes in heating systems in existing buildings have often not
been recorded [54]. To calibrate the distribution of heating system
the BDR data was adapted through the IPF routine to update the
outdated data basis of the building registry (see Section 2.3.1). The
resulting energy demand of the calibrated stock compared to na-
tional statistics on the household energy consumption [66] can be
seen in Fig. 9. Although the distribution of the demand can be met
by the model to large degrees, in overall the model still overesti-
mates the demand by around 4% (Statistics: 64.4 TWh, Synthetic
Stock: 67.2 TWh). The deviation is largest for Qil (0.7 TWh) and
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Table 3

Primary energy and emission factors used in the impact assessment of the building stock model based on data from [53].

Energy carrier =~ GHG emission factor [kgCO,/ kWhgg]

Primary energy total factor [KWhpgo /kKWhgg]

Primary energy nonrenewable factor [kWhpgponrenewable/KWheg]

0il 0.3 1.24 1.23
Gas 0.23 1.06 1.06
Wood 0.03 1.2 0.16
Electricity 0.1 3.01 2.52
District Heat 0.11 0.88 0.55
Biogas 0.13 0.33 0.3
2 L ! I ' T T [9] M. Jakob, H. Wallbaum, G. Catenazzi, G. Martius, C. Ndgeli, B. Sunarjo, Spatial
building stock modelling to assess energy-efficiency and renewable energy in
an urban context, in: Proceedings of the International Conference on CISBAT,
20 1 2013, pp. 1047-1052.
_ [10] C.F. Reinhart, C. Cerezo Davila, Urban building energy modeling -a review of
H a nascent field, Build. Environ. 97 (2016) 196-202, doi:10.1016/j.buildenv.2015.
E 15t 1 12.001.
? [11] M. Kohler, N. Blond, A. Clappier, A city scale degree-day method to assess
5 building space heating energy demands in Strasbourg Eurometropolis (France),
= 10F 1 Appl. Energy 184 (2016) 40-54, doi:10.1016/j.apenergy.2016.09.075.
(= [12] A. Mastrucci, O. Baume, F. Stazi, U. Leopold, Estimating energy savings for the
. residential building stock of an entire city: a GIS-based statistical downscaling
I 1 approach applied to Rotterdam, Energy Build. 75 (2014) 358-367. doi:10.1016/
j.enbuild.2014.02.032.
: - [13] A. Mastrucci, E. Popovici, A. Marvuglia, L. De Sousa, E. Benetto, U. Leopold, GIS-
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Fig. 9. Comparison of final energy demand of synthetic building stock (green bars)
compared to statistical data (blue bars) from Switzerland from [66]. (For interpre-
tation of the references to color in this figure legend, the reader is referred to the
web version of this article.)

Wood (0.46 TWh) and smallest for Gas (0.3 TWh). The general
overestimation of the demand can partially be explained by the
fact that the building stock is modeled as if all buildings are per-
manently occupied. At any rate, there is a share of around 1.47%
empty dwellings [55] as well as non-permanently occupied resi-
dences, which was not taken into account.

D. Primary energy and emission factors

Table 3.

References

[1] M. Economidou, B. Atanasiu, C. Despret, ]. Maio, I. Nolte, O. Rapf, Europe’s
buildings under the microscope: a country-by-country review of the en-
ergy performance of buildings, Build. Perform. Inst. Eur. (BPIE) (2011) ISBN:
9789491143014.

IPCC, Summary For Policymakers, Intergovernmental Panel On Climate Change,
Cambridge University Press, Cambridge, United Kingdom and New York, USA,
2014.

M. Kavgic, A. Mavrogianni, D. Mumovic, A. Summerfield, Z. Stevanovic,
M. Djurovic-Petrovic, A review of bottom-up building stock models for energy
consumption in the residential sector, Build. Environ. 45 (2010) 1683-1697,
doi:10.1016/j.buildenv.2010.01.021.

A. Mastrucci, A. Marvuglia, U. Leopold, E. Benetto, Life cycle assessment of
building stocks from urban to transnational scales: a review, Renew. Sustain.
Energy Rev. 74 (2017) 316-332, doi:10.1016/j.rser.2017.02.060.

N. Heeren, M. Jakob, G. Martius, N. Gross, H. Wallbaum, A component based
bottom-up building stock model for comprehensive environmental impact as-
sessment and target control, Renew. Sustain. Energy Rev. 20 (2013) 45-56,
doi:10.1016/j.rser.2012.11.064.

I. Sartori, N.H. Sandberg, H. Brattebg, Dynamic building stock modeling: gen-
eral algorithm and exemplification for Norway, Energy Build. (2016), doi:10.
1016/j.enbuild.2016.05.098.

R. Mckenna, E. Merkel, D. Fehrenbach, S. Mehne, W. Fichtner, Energy effi-
ciency in the German residential sector: a bottom-up building-stock-model-
based analysis in the context of energy-political targets, Build. Environ. 62
(2013) 77-88, doi:10.1016/j.buildenv.2013.01.002.

SJ. Quan, Q. Li, G. Augenbroe, J. Brown, P.PJ. Yang, A GIS-based energy balance
modeling system for urban solar buildings, Energy Proc. 75 (2015) 2946-2952,
doi:10.1016/j.egypro.2015.07.598.

[2

[3

[4

5

6

(7

8

based life cycle assessment of urban building stocks retrofitting- a bottom-
up framework applied to Luxembourg, in: Proceedings of the Envirolnfo ICT
Sustainability, 2015, pp. 47-56, doi:10.2991/ict4s-env-15.2015.6.

[14] A. Mavrogianni, M. Davies, Z. Chalabi, P. Wilkinson, M. Kolokotroni, ]. Milner,
Space heating demand and heatwave vulnerability: London domestic stock,
Build. Res. Inf. 37 (2009) 583-597, doi:10.1080/09613210903162597.

[15] J.L. Reyna, M.V. Chester, The growth of urban building stock: unintended lock-
in and embedded environmental effects, J. Ind. Ecol. 19 (2015) 524-537, doi:10.
1111 /jiec.12211.

[16] 1. Hamilton, J. Milner, Z. Chalabi, P. Das, B. Jones, C. Shrubsole, M. Davies,
P. Wilkinson, Health effects of home energy efficiency interventions in Eng-
land: a modelling study, BMJ Open 5 (2015) e007298-e007299, doi:10.1136/
bmjopen-2014-007298.

[17] L.G. Swan, V.I. Ugursal, Modeling of end-use energy consumption in the res-
idential sector: a review of modeling techniques, Renew. Sustain. Energy Rev.
13 (2009) 1819-1835, doi:10.1016/j.rser.2008.09.033.

[18] E. Mata, ASasic Kalagasidis, F. Johnsson, Building-stock aggregation through
archetype buildings: France, Germany, Spain and the UK, Build. Environ 81
(2014) 270-282, doi:10.1016/j.buildenv.2014.06.013.

[19] E. Mata, A.S. Kalagasidis, F. Johnsson, A modeling strategy for energy, carbon,
and cost assessments of building stocks, Energy Build. 56 (2013) 100-108,
doi:10.1016/j.enbuild.2012.09.037.

[20] T. Csoknyai, S. Hrabovszky-Horvith, Z. Georgiev, M. Jovanovic-Popovic,
B. Stankovic, O. Villatoro, G. Szendrd, Building stock characteristics and en-
ergy performance of residential buildings in Eastern-European countries, En-
ergy Build. 132 (2016) 39-52, doi:10.1016/j.enbuild.2016.06.062.

[21] M. Osterbring, E. Mata, L. Thuvander, M. Mangold, F. Johnsson, H. Wall-
baum, A differentiated description of building-stocks for a georeferenced ur-
ban bottom-up building-stock model, Energy Build. 120 (2016) 78-84, doi:10.
1016/j.enbuild.2016.03.060.

[22] Martin Jakob, G. Catenazzi, R. Forster, T. Egli, T. Kaiser, R. Looser, M. Melliger,
C. Nageli, U. Reiter, M. Soini, B. Sunarjo, Erweiterung des Gebdudeparkmod-
ells gemdss SIA-Effizienzpfad Energie [Extension of the Building Stock Model
according to the SIA Efficiency Path Energey], Swiss Federal Office of Energy,
Bern, Switzerland, 2016.

[23] J.A. Fonseca, T. Nguyen, A. Schlueter, F. Marechal, City energy analyst (CEA):
integrated framework for analysis and optimization of building energy systems
in neighborhoods and city districts, Energy Build. 113 (2016) 202-226, doi:10.
1016/j.enbuild.2015.11.055.

[24] C. Ndgeli, M. Jakob, B. Sunarjo, G. Catenazzi, A building specific, economic
building stock model to evaluate energy efficiency and renewable energy, in:
Proceedings of the International Conference on CISBAT, 2015, pp. 877-882.

[25] S. Moffatt, Stock aggregation: methods for evaluating the environmental per-
formance of building stocks, Annex 31, Energy-Related Environmental Imapacts
of Buildings, 2004.

[26] ]J. Sokol, C. Cerezo Davila, C.F. Reinhart, Validation of a Bayesian-based method
for defining residential archetypes in urban building energy models, Energy
Build. 134 (2017) 11-24, doi:10.1016/j.enbuild.2016.10.050.

[27] V. Aragon, S. Gauthier, P. Warren, PA.B. James, B. Anderson, Developing en-
glish domestic occupancy profiles, Build. Res. Inf. 0 (2017) 1-19, doi:10.1080/
09613218.2017.1399719.

[28] ]. Keirstead, M. Jennings, A. Sivakumar, A review of urban energy system mod-
els: approaches, challenges and opportunities, Renew. Sustain. Energy Rev. 16
(2012) 3847-3866, doi:10.1016/j.rser.2012.02.047.

[29] C. Cerezo, ]J. Sokol, S. AlKhaled, C. Reinhart, A. Al-Mumin, A. Hajiah, Compari-
son of four building archetype characterization methods in urban building en-
ergy modeling (UBEM): a residential case study in Kuwait City, Energy Build.
154 (2017) 321-334, doi:10.1016/j.enbuild.2017.08.029.


http://refhub.elsevier.com/S0378-7788(17)33642-3/sbref0001
http://refhub.elsevier.com/S0378-7788(17)33642-3/sbref0001
http://refhub.elsevier.com/S0378-7788(17)33642-3/sbref0001
http://refhub.elsevier.com/S0378-7788(17)33642-3/sbref0001
http://refhub.elsevier.com/S0378-7788(17)33642-3/sbref0001
http://refhub.elsevier.com/S0378-7788(17)33642-3/sbref0001
http://refhub.elsevier.com/S0378-7788(17)33642-3/sbref0001
http://refhub.elsevier.com/S0378-7788(17)33642-3/sbref0002
https://doi.org/10.1016/j.buildenv.2010.01.021
https://doi.org/10.1016/j.rser.2017.02.060
https://doi.org/10.1016/j.rser.2012.11.064
https://doi.org/10.1016/j.enbuild.2016.05.098
https://doi.org/10.1016/j.buildenv.2013.01.002
https://doi.org/10.1016/j.egypro.2015.07.598
http://refhub.elsevier.com/S0378-7788(17)33642-3/sbref0009
http://refhub.elsevier.com/S0378-7788(17)33642-3/sbref0009
http://refhub.elsevier.com/S0378-7788(17)33642-3/sbref0009
http://refhub.elsevier.com/S0378-7788(17)33642-3/sbref0009
http://refhub.elsevier.com/S0378-7788(17)33642-3/sbref0009
http://refhub.elsevier.com/S0378-7788(17)33642-3/sbref0009
http://refhub.elsevier.com/S0378-7788(17)33642-3/sbref0009
https://doi.org/10.1016/j.buildenv.2015.12.001
https://doi.org/10.1016/j.apenergy.2016.09.075
https://doi.org/10.1016/j.enbuild.2014.02.032
https://doi.org/10.2991/ict4s-env-15.2015.6
https://doi.org/10.1080/09613210903162597
https://doi.org/10.1111/jiec.12211
https://doi.org/10.1136/bmjopen-2014-007298
https://doi.org/10.1016/j.rser.2008.09.033
https://doi.org/10.1016/j.buildenv.2014.06.013
https://doi.org/10.1016/j.enbuild.2012.09.037
https://doi.org/10.1016/j.enbuild.2016.06.062
https://doi.org/10.1016/j.enbuild.2016.03.060
https://doi.org/10.1016/j.enbuild.2015.11.055
http://refhub.elsevier.com/S0378-7788(17)33642-3/sbref0022
http://refhub.elsevier.com/S0378-7788(17)33642-3/sbref0022
http://refhub.elsevier.com/S0378-7788(17)33642-3/sbref0022
http://refhub.elsevier.com/S0378-7788(17)33642-3/sbref0022
http://refhub.elsevier.com/S0378-7788(17)33642-3/sbref0022
https://doi.org/10.1016/j.enbuild.2016.10.050
https://doi.org/10.1080/09613218.2017.1399719
https://doi.org/10.1016/j.rser.2012.02.047
https://doi.org/10.1016/j.enbuild.2017.08.029

18 C. Ndgeli et al./Energy & Buildings 000 (2018) 1-18

[30] A.T. Booth, R. Choudhary, D.J. Spiegelhalter, Handling uncertainty in housing
stock models, Build. Environ. 48 (2012) 35-47, doi:10.1016/j.buildenv.2011.08.
016.

[31] P. Symonds, ]. Taylor, Z. Chalabi, A. Mavrogianni, M. Davies, I. Hamilton, S. Var-
doulakis, C. Heaviside, H. Macintyre, Development of an England-wide indoor
overheating and air pollution model using artificial neural networks, J. Build.
Perform. Simul. 9 (2016) 606-619, doi:10.1080/19401493.2016.1166265.

[32] RJ. Beckman, K.A. Baggerly, M.D. McKay, Creating synthetic baseline popu-
lations, Transp. Res. Part A Policy Pract. (1996), doi:10.1016/0965-8564(96)
00004-3.

[33] P. Waddell, UrbanSim: modeling urban development for land use, transporta-
tion, and environmental planning, J. Am. Plan. Assoc. 68 (2002) 297-314,
doi:10.1080/01944360208976274.

[34] F. Gargiulo, S. Ternes, S. Huet, G. Deffuant, An iterative approach for gen-
erating statistically realistic populations of households, PLoS One 5 (2010),
doi:10.1371/journal.pone.0008828.

[35] P. Salvini, EJ. Miller, ILUTE: an operational prototype of a comprehensive mi-
crosimulation model of ILUTE: an operational prototype of a comprehensive
microsimulation model of urban systems, Netw. Spat. Econ. 5 (2005) 217-234.

[36] CJ. Andrews, M.S. Allacci, J. Senick, H.C. Putra, I. Tsoulou, Using synthetic pop-
ulation data for prospective modeling of occupant behavior during design, En-
ergy Build. (2016), doi:10.1016/j.enbuild.2016.05.049.

[37] R. Moeckel, K. Spiekermann, M. Wegener, Creating a Synthetic Population, in:
Proceedings of the Eighth International Conference on Computers in Urban
Planning and Urban Management, 2003, pp. 1-18.

[38] SciPy developers, SciPy, 2018. (2018). https://www.scipy.org/index.html (ac-
cessed March 15, 2018).

[39] NumPy developers, NumPy, 2018. (2018). http://www.numpy.org/ (accessed
March 15, 2018).

[40] Tom Augspurger, Bartak Chris, Phillip Cloud, Andy Hayden, Stephan Hoyer,
Wes McKinney, Jeff Reback, Chang She, Masaaki Horikoshi, Joris Van denBoss-
che, Pandas: Python Data Analysis Library, 2018 (accessed March 15, 2018).
https://pandas.pydata.org/index.html .

[41] Damien Forthommme, ipfn 1.1.7, 2018. (2018). https://pypi.python.org/pypi/
ipfn/1.1.7 (accessed March 15, 2018).

[42] John Hunter, Darren Dale, Eric Firing, Michael Droettboom, et al., Matplotlib
2.2.0, 2018. (2018). https://matplotlib.org/ (accessed March 15, 2018).

[43] M. Lenormand, G. Deffuant, Generating a synthetic population of individuals
in households: sample-free vs sample-based methods, J. Artif. Soc. Soc. Simul.
16 (2013) 1-10, doi:10.18564/jasss.2319.

[44] K. Hermes, M. Poulsen, A review of current methods to generate synthetic spa-
tial microdata using reweighting and future directions, Comput. Environ. Urban
Syst. 36 (2012) 281-290, doi:10.1016/j.compenvurbsys.2012.03.005.

[45] R. Frischknecht, N.J. Editors, H. Althaus, G. Doka, R. Dones, T. Heck, S. Hellweg,
R. Hischier, T. Nemecek, G. Rebitzer, M. Spielmann, Ecoinvent v2.0: overview
and Methodology, (2007).

[46] A. Miatto, H. Schandl, H. Tanikawa, How important are realistic building lifes-
pan assumptions for material stock and demolition waste accounts? Resour.
Conserv. Recycl. 122 (2017) 143-154, doi:10.1016/j.resconrec.2017.01.015.

[47] N. Kohler, W. Yang, Long-term management of building stocks, Build. Res. Inf.
35 (2007) 351-362, doi:10.1080/09613210701308962.

[48] N.H. Sandberg, 1. Sartori, H. Brattebg, Using a dynamic segmented model to
examine future renovation activities in the Norwegian dwelling stock, Energy
Build. 82 (2014) 287-295, doi:10.1016/j.enbuild.2014.07.005.

[49] SO, ISO 52016-1:2017: Energy performance of buildings - Energy needs for
heating and cooling, internal temperatures and sensible and latent heat loads
Part - 1: Calculation procedures, 2017.

[50] SIA (Swiss Society of Engineers and Architects), 380/1: Heizwdrmebedarf
[380/1: Space Heating Demand], 2016.

[51] D. Majcen, L.C.M. Itard, H. Visscher, Theoretical vs. actual energy consumption
of labelled dwellings in the Netherlands: discrepancies and policy implications,
Energy Policy 54 (2013) 125-136, doi:10.1016/j.enpol.2012.11.008.

[52] T. Loga, M. GroRklos, J. Knissel, Der Einfluss des Gebdudestandards und des
Nutzerverhaltens auf die Heizkosten [The Influence of Building Standards and
the User Behaviour on the Heating Costs], Institut Wohnen und Umwelt (UWI),
Darmstadt, Germany, 2003.

[53] KBOB (Koordination Conference of Public Building Owners), Liste Oekobilanz-
daten im Baubereich [List Life Cycle Assessment Data in the Building Sector],
KBOB, Bern, Switzerland, 2016.

[54] UWE (Office for Environment and Energy Canton Luzern), Gebdude-
Heizenergiebedarf - Methodik zur Schdtzung des Heizenergiebedarfs der
Wohngebdude mittels kantonalem Gebdude- und Wohnungsregister [Building
Heating Demand - Method for the Estimation of the Heating Demand of Res-
idential Buildings using the Canton, Bau-, Umwelt- und Wirtschaftsdeparte-
ment Unwelt und Energie (UWES), Luzern, Switzerland, 2013.

[55] SFOS (Swiss Federal Office of Statistics), Bau- und Wohnungswesen 2015 [Con-
struction and Housing 2015], Swiss Federal Office of Statistics, Neuchatel,
Switzerland, 2017.

[56] SIA (Swiss Society of Engineers and Architects), Merkblatt 2024: Standard-
Nutzungsbedingungen fiir die Energie- und Gebdudetechnik [Bulletin 2024:
Standard Usage Conditions for Energy and Building Technology], Swiss Society
of Engineers and Architect, Ziirich, Switzerland, 2006.

[57] SIA (Swiss Society of Engineers and Architects), 380/4: Elektrische Energie im
Hochbau [380/4: Electrical Energy in Buildings], Swiss Society of Engineers and
Architect, Ziirich, Switzerland, 2006.

[58] M. Jakob, E. Jochem, K. Christen, Grenzkosten bei forcierten Energie-
Effizienzmassnahmen in Wohngebduden [Marginal Costs of Forced Energy Effi-
ciency Measures in Residential Buildings], Swiss Federal Office of Energy, Bern,
Switzerland, 2002.

[59] M. Jakob, G. Martius, G. Catenazzi, H. Berleth, Energetische Erneuerungsraten
im Gebdudebereich: Synthesebericht zu Gebdudehiille und Heizanlagen [En-
ergy Efficiency Refurbisment Rates in the Building Sector: Synthesis Report for
the Building Enevelope an Heating Systems], Swiss Federal Office of Energy,
Bern, Switzerland, 2014.

[60] M. Jakob, S. Kallio, C. Ndgeli, W. Ott, R. Bolliger, S. Von Griinigen, Integrated
strategies and policy instruments for retrofitting buildings to reduce primary
energy use and GHG emissions (INSPIRE) - Generic strategies for buildings in
Switzerland, Swiss Federal Office of Energy, Bern, Switzerland, 2014.

[61] Wiiest und Partner, Energieplanungsbericht 1998 - Kontrollrechnung
Sanierungstdtigkeit [Energy Planning Report 1998 - Verification Calcula-
tion of Refuribishment Activities], Ziirich, Switzerland, 1998.

[62] Wiiest und Partner, Bauen, Markt und Energie - eine Standortbestimmung
[Construction, Market and Energy - a location decision], Flums, Switzerland,
1994.

[63] R. Dettli, S. Bade, A. Baumgartner, M. Bleisch, Vorstudie zur Erhebung von En-
ergiekennzahlen von Wohnbauten [Prestudy for the Survey of Energy Charac-
terization Factors of Residential Buildings], Bern, Switzerland, 2007.

[64] TP BAU, Alterungsverhalten von Bauteilen und Unterhaltskosten - Grundlagen-
daten fiir den Unterhalt und die Erneuerung von Wohnbauten [Ageing Be-
haviour of Building Components and Maintenance Costs - Background Data for
the Maintenance and Refurbishment of Residential Buildings], Bundesamt fiir
Konjunkturfragen, Bern, Switzerland, 1994.

[65] Ulrich Agethen, K. Frahm, K. Renz, Erik Peter Thees, Lebensdauer von Bauteilen,
Zeitwerte [Lifetime of Building Components, Time Values], Bund Technischer
Experten e.V., Essen, 2010.

[66] FOE (Swiss Federal Office for Energy), Schweizerische Gesamtenergiestatistik
2015 [Swiss Energy Statistics 2015], Swiss Federal Office for Energy, Bern,
Switzerland, 2016.

[67] R. Frischknecht, M. Tuchschmid, K. Flury, Primdrenergiefaktoren von En-
ergiesystemen [Primary Energy Factors of Energy Systems], ESU-services Ltd.,
Uster, Switzerland, 2012.

[68] I.G. Hamilton, AJ. Summerfield, R. Lowe, P. Ruyssevelt, CA. Elwell,
T. Oreszczyn, Energy epidemiology: a new approach to end-use energy de-
mand research, Build. Res. Inf. 41 (2013) 482-497, doi:10.1080/09613218.2013.
798142.

[69] S. Torabi Moghadam, C. Delmastro, S.P. Corgnati, P. Lombardi, Urban energy
planning procedure for sustainable development in the built environment:
a review of available spatial approaches, ]. Clean. Prod. 165 (2017) 811-827,
doi:10.1016/j.jclepro.2017.07.142.

[70] D.M. Smith, G.P. Clarke, K. Harland, Improving the synthetic data generation
process in spatial microsimulation models, Environ. Plan. A 41 (2009) 1251-
1268, doi:10.1068/a4147.

[71] M. Mangold, M. Osterbring, H. Wallbaum, L. Thuvander, P. Femenias, Socio-
economic impact of renovation and energy retrofitting of the Gothenburg
building stock, Energy Build. 123 (2016) 41-49, doi:10.1016/j.enbuild.2016.04.
033.

[72] M. Hecher, S. Hatzl, C. Knoeri, A. Posch, The trigger matters: the decision-
making process for heating systems in the residential building sector, Energy
Policy 102 (2017) 288-306, doi:10.1016/j.enpol.2016.12.004.

[73] J. Busch, K. Roelich, C.S.E. Bale, C. Knoeri, Scaling up local energy infrastruc-
ture; an agent-based model of the emergence of district heating networks,
Energy Policy 100 (2017) 170-180, doi:10.1016/j.enpol.2016.10.011.

[74] Y. Ostermeyer, C. Ndgeli, N. Heeren, H. Wallbaum, Building inventory and refur-
bishment scenario database development for Switzerland, J. Ind. Ecol. 0 (2017)
1-14, doi:10.1111 [jiec.12616.

[75] A. Stephan, A. Athanassiadis, Quantifying and mapping embodied environmen-
tal requirements of urban building stocks, Build. Environ. 114 (2017) 187-202,
doi:10.1016/j.buildenv.2016.11.043.

[76] V. Augiseau, S. Barles, Studying construction materials flows and stock: a
review, Resour. Conserv. Recycl. 123 (2017) 153-164, doi:10.1016/j.resconrec.
2016.09.002.

[77] H. Wallbaum, N. Heeren, M. Jakob, M. Gabathuler, N. Gross, G. Mar-
tius, Gebdudeparkmodell SIA Effizienzpfad Energie Dienstleistungs-und
Wohngebdude-Vorstudie zum Gebdudeparkmodell Schweiz [Building Stock
Model SIA Efficiency Path Energy for Service and REsidential Buildings -
Prestudy for the Buildign Stock Model Switzerland], Bern, Switzerland, 2009.

[78] SIA (Swiss Society of Engineers and Architects), Merkblatt 2028: Klimadaten
fiir Bauphysik, Energie- und Gebdudetechnik [Bulletin 2028: Climate Data for
Buildign Physics, Energy and Building Technology], Swiss Society of Engineers
and Architect, Ziirich, Switzerland, 2008.

[79] 1SO, ISO 13790:2008 Energy performance of buildings — Calculation of energy
use for space heating and cooling, 2006 (2008) 162.


https://doi.org/10.1016/j.buildenv.2011.08.016
https://doi.org/10.1080/19401493.2016.1166265
https://doi.org/10.1016/0965-8564(96)00004-3
https://doi.org/10.1080/01944360208976274
https://doi.org/10.1371/journal.pone.0008828
http://refhub.elsevier.com/S0378-7788(17)33642-3/sbref0032
http://refhub.elsevier.com/S0378-7788(17)33642-3/sbref0032
http://refhub.elsevier.com/S0378-7788(17)33642-3/sbref0032
https://doi.org/10.1016/j.enbuild.2016.05.049
http://refhub.elsevier.com/S0378-7788(17)33642-3/sbref0034
http://refhub.elsevier.com/S0378-7788(17)33642-3/sbref0034
http://refhub.elsevier.com/S0378-7788(17)33642-3/sbref0034
http://refhub.elsevier.com/S0378-7788(17)33642-3/sbref0034
https://www.scipy.org/index.html
http://www.numpy.org/
https://pandas.pydata.org/index.html
https://pypi.python.org/pypi/ipfn/1.1.7
https://matplotlib.org/
https://doi.org/10.18564/jasss.2319
https://doi.org/10.1016/j.compenvurbsys.2012.03.005
https://doi.org/10.1016/j.resconrec.2017.01.015
https://doi.org/10.1080/09613210701308962
https://doi.org/10.1016/j.enbuild.2014.07.005
http://refhub.elsevier.com/S0378-7788(17)33642-3/sbref0041
http://refhub.elsevier.com/S0378-7788(17)33642-3/sbref0041
https://doi.org/10.1016/j.enpol.2012.11.008
https://doi.org/10.1080/09613218.2013.798142
https://doi.org/10.1016/j.jclepro.2017.07.142
https://doi.org/10.1068/a4147
https://doi.org/10.1016/j.enbuild.2016.04.033
https://doi.org/10.1016/j.enpol.2016.12.004
https://doi.org/10.1016/j.enpol.2016.10.011
https://doi.org/10.1111/jiec.12616
https://doi.org/10.1016/j.buildenv.2016.11.043
https://doi.org/10.1016/j.resconrec.2016.09.002

	Synthetic building stocks as a way to assess the energy demand and greenhouse gas emissions of national building stocks
	1 Introduction
	1.1 Background
	1.2 Aim

	2 Methodology
	2.1 Synthetic building stock generation
	2.1.1 Building stock initialization
	2.1.2 Building characterization
	2.1.3 Updating building characteristics

	2.2 Building stock assessment
	2.2.1 Energy demand model
	2.2.2 Impact assessment

	2.3 Case study: residential building stock of Switzerland
	2.3.1 Building stock initialization
	2.3.2 Building characterization
	2.3.3 Updating building characteristics


	3 Results for the Swiss building stock
	3.1 Structure of the stock
	3.2 Impact assessment of the stock

	4 Discussion
	4.1 Discussion of the methodology
	4.1.1 Advantages of synthetic building stocks
	4.1.2 Critical review of the methodology
	4.1.3 Calibration

	4.2 Discussion of case study results

	5 Conclusion and outlook
	 Acknowledgments
	 Appendix
	 A. Description of input data and data sources
	 B. Energy demand model
	 C. Calibration
	 D. Primary energy and emission factors

	 References


