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a b s t r a c t 

In Europe, the final energy demand and greenhouse gas (GHG) emissions of residential and commercial 

building stocks account for approximately 40% of energy and emissions. A building stock model (BSM) is 

a method of assessing the energy demand and GHG emissions of building stocks and developing path- 

ways for energy and GHG emission reduction. The most common approach to building stock modeling 

is to construct archetypes that are taken to representing large segments of the stock. This paper intro- 

duces a new method of building stock modeling based on the generation of synthetic building stocks. By 

drawing on relevant research, the developed methodology uses aggregate national data and combines it 

with various data sources to generate a disaggregated synthetic building stock. The methodology is im- 

plemented and validated for the residential building stock of Switzerland. The results demonstrate that 

the energy demand and GHG emissions can vary greatly across the stock. These and other indicators vary 

significantly within common building stock segments that consider only few attributes such as building 

type and construction period. Furthermore, the results indicate a separation of the stock in terms of GHG 

emissions between old fossil fuel-heated buildings and new and refurbished buildings that are heated by 

renewable energy. Generating a disaggregated synthetic building stock allows for a discrete representation 

of various building states. This enables a more realistic representation of past building stock alterations, 

such as refurbishment, compared with commonly used archetypes, and not relying on more extensive 

data sources and being able to accommodate a wide variation of data types. The developed methodology 

can be extended in numerous manners and lays groundwork for future studies. 

© 2018 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

.1. Background 

In Europe, final energy demand and greenhouse gas (GHG)

missions of residential and commercial building stocks account

or approximately 40% of energy and emissions [1,2] . In addition,

he building stock has been identified as one of the largest and

ostly untapped potential targets for improving energy efficiency

nd mitigating GHG emissions [1,2] . An overview of its potential

s required to develop targeted measures that make use of it; for

his, an accurate assessment of the distribution of energy and GHG

missions across the stock is required. However, this assessment

an be challenging because of the poor availability and quality of

ata as well as the complex system of interactions across the stock,
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uch as building stock developments, building alterations, and sin-

le technology measures. 

Building stock models (BSMs) offer a method of assessing the

nergy demand and environmental impact of building stocks, and

an demonstrate pathways for reducing GHG emissions and en-

rgy demand by considering the conflicts and synergies between

arious strategies and technological solutions at a stock level [3,4] .

hey have been used to evaluate policy scenarios [5–7] , the po-

ential for renewable energy sources [8,9] , and energy planning

n an urban scale [10–12] ; assess life cycle performance [13] ; and

tudy the heat island effect [14] , refurbishment strategies [15] , and

ealth impacts [16] . BSMs are differentiated according to two dis-

inct modeling approaches: top-down and bottom-up [3,17] . 

Recent developments in the field have focused on bottom-up

ethodologies as disaggregate data has become more readily avail-

ble [3,4,10] . They have the advantage of being specific technolo-

ies, and therefore, can model building stock changes more eas-

ly, through unprecedented technological developments and policy

nterventions. Bottom-up models typically estimate the energy de-
nder the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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mand of representative buildings in the stock and aggregate the

results to the stock level [3] . They can be applied at different

scales: from transnational to national [6,18–20] , and from urban

[12,21,22] to district scale [23,24] , using data from various levels

of disaggregation. Most BSMs assess the stock using representative

buildings in terms of archetype or sample buildings [17] . Archetype

buildings are artificially constructed buildings considered to repre-

sent a certain class of buildings in the stock (typically segmented

according to building type, age, and/or size) [24] . Sample build-

ings, however, are existing buildings taken to be representative of

a given section of the stock [18] . 

Both archetype and sample building modeling make it easy to

describe and analyze the building stock even with limited data

availability, and furthermore, to create new scenarios relatively

quickly [5,7,25] . However, they present restrictions in terms of the

complexity that can be modeled. They are especially limited in the

representation of heterogeneity in the building stock in terms of

size, building state, occupancy, and user influence [26,27] . These

modeling approaches are sensitive to assumptions from represen-

tative buildings, because any error in the description is extrapo-

lated in the aggregation process [25] . Thus, the uncertainty of re-

sults can be substantial, although this is not often reflected or as-

sessed in modeling practices [10] . 

There has been a rise in BSMs being developed for urban build-

ing stocks [10,28] . Typically, urban BSMs forego the use of repre-

sentative buildings and use individual building microdata such as

3D city models, building registries, and/or energy performance cer-

tificate data, which is combined using GIS. However, these models

rely on archetypical information to fill data gaps for many building

characteristics (e.g., U -values and heating system efficiency) [21] .

More recent approaches use probabilistic data to define uncertain

parameters [29] , based on which it is possible to calibrate and val-

idate models on a building level using energy consumption data

[26,30,31] . This is especially crucial to adequately represent previ-

ous energy efficiency measures in the stock, to not overestimate

future reduction potentials [10] . However, missing micro-level data

such as 3D building models makes it difficult to transfer advances

in building stock modeling from an urban to a national scale. 

1.2. Aim 

This paper presents he methodology of synthetic building

stock modeling to address shortcomings (of conventional BSM ap-

proaches) through generating a synthetic building stock as a mid-

point between individual building data and sample or archetyp-

ical buildings. We make use of methodologies developed for the

generation of disaggregated synthetic populations of individuals

and households based on aggregate data [32] . Synthetic popu-

lations are simplified representations of an actual population in

the form of artificially generated microdata from aggregate dis-

tributions or sample data. They are widely used in microsimula-

tions and agent-/individual-based models, where micro-level data

is required but often not available (e.g., because of privacy pro-

tection). Synthetic populations have been applied in fields such

as activity-based transportation models [32] and land-use models

[33] , as well as in the study of epidemic diffusion or policy im-

pacts [34] ; furthermore, they have been applied in models such

as ILUTE [35] or UrbanSim [33] . Similarly, in relation to buildings,

they have been proposed for modeling occupant behavior [36] or

housing location choices in land-use models [33,37] . In this paper,

we adapt the methodology for creating synthetic populations to

generate synthetic microdata on building stocks for use in build-

ing stock (energy) modeling. The methodology enables the cre-

ation of synthetic microdata on building stocks describing individ-

ual buildings and their usage as an alternative to aggregate average

archetype buildings. This will allow BSMs to more adequately de-
cribe the heterogeneity of building stocks in size, building state,

ccupancy, and user influence, even in data-poor cases (e.g., in ap-

lications on a national scale) or in cases where data is available

nly at an aggregate scale. 

This study aims to contribute to the field’s development by: 

• Describing a methodology for generating a synthetic build-

ing stock that can be used in building stock modeling. 

• Showcasing application of the developed methodology based

on the residential building stock of Switzerland. 

• Showing the distribution of energy demand and GHG emis-

sions of the residential building stock of Switzerland. 

The following section outlines the methodology for generating

 synthetic building stock ( Section 2.1 ), the building stock energy

nd environmental impact assessment model used to evaluate the

enerated stock ( Section 2.2 ), and its adaptation to the residential

uilding stock of Switzerland ( Section 2.3 ). The assessment results

f the generated stock are presented in Section 3 and discussed in

ection 4 . Finally, Section 5 summarizes the findings with respect

o the stated aims and provides an outlook for future research. 

. Methodology 

The proposed building stock modeling methodology is split into

wo main parts (see Fig. 1 ): synthetic stock generation and build-

ng stock assessment by means of analyzing the synthetic stock in

erms of different indicators. The generation of a synthetic building

tock follows three steps: 

1. The first step is building stock initialization, during which

the synthetic building stock is structured in terms of factors

such as type and age according to structural data of the real

building stock, typically available from national statistics or

registries ( Section 2.1.1 ). 

2. The second step is building characterization, during which

synthetic buildings are further characterized according to

the attributes required for building stock energy and envi-

ronmental modeling. These include building geometry and

energy relevant parameters (e.g., original U -values). This is

performed using distributions of archetypical data on build-

ing attributes and/or sample data ( Section 2.1.2 ). 

3. The third step is updating building characteristics, during

which various attributes of individual synthetic buildings are

updated with regards to past refurbishment, maintenance

measures and other alterations, to represent their current

state (e.g., in terms of current U -values or energy carrier;

Section 2.1.3 ). Aggregate sales data (e.g. of windows or heat-

ing systems) or sample data from surveys (such as [59] ) are

used to validate this step. 

Subsequently, the generated synthetic stock is assessed and cal-

brated using the building stock assessment model, which calcu-

ates the resulting energy demand of each generated building as

ell as their environmental impact. The results of the individual

uildings are then aggregated to a stock level. 

Synthetic stock generation in conjunction with the building

tock assessment model were implemented in Python, making use

f the libraries SciPy [38] , Numpy [39] , Pandas [40] , ipfn [41] , and

atplotlib to visualize the results [42] . 

.1. Synthetic building stock generation 

Multiple methodologies have been developed and applied to

reating synthetic populations. Literature mostly distinguishes be-

ween sample-based (also called reweighting) and sample-free

or synthetic reconstruction) methodologies [43,44] . Sample-based

ethods use a sample micro-dataset as a basis, which is adapted
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Fig. 1. Process for generating a synthetic building stock for use in building stock modeling. 
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o fit aggregate distributions of the whole stock; for example, by

pplying iterative proportional fitting (IPF) [32] . IPF adapts the el-

ments of a data table in that the marginal totals along various

imensions equal a defined distribution [37] . A sample-free ap-

roach is used where no micro-dataset is available. It builds a syn-

hetic population by iteratively assembling the population based

n known distributions of characteristics from aggregate datasets

hrough Monte Carlo random sampling [34] . Although both are vi-

ble methods, this study applies a sample-free approach, because

ften no suitable micro-dataset is available to apply a sample-

ased approach. 

A synthetic population is not simply a construction of records

f each individual person, but also their organization and struc-

uring into households. Similarly, the synthetic building stock can

e thought of as not just generating individual records of build-

ngs in the stock but also of the various usages in the building.

hese different usages can not only be various individual dwellings

n a building (as in the case study of this paper), but also non-

esidential usages in mixed-use or non-residential buildings. This

llows modeling at both a building and sub-building level (e.g.,

ifferentiating occupancy attributes and appliance equipment rates

cross various dwellings in one building). 

The synthetic building stock can be sized flexibly in that the

umber of buildings generated can be adapted. Therefore, it is

ossible to recreate an individual record for each building in the

tock. However, this is only of limited use because national build-

ng stocks typically consist of several million buildings, even for

mall countries. Therefore, the computational demand to run a

SM would increase significantly for larger countries. To limit the

omputational time in the assessment of a BSM, a synthetic build-

ng stock can be limited to a representative sample stock, thereby

reating representative building functions the same as representa-

ive samples in surveys as they each represent a portion of the

tock. All results of the building stock assessment can later be

caled. The scaling factor is determined based on the number (or

nother indicator such as gross floor area) of representative build-

ngs chosen for each cluster of the stock. 

Fig. 2 shows a representation of the synthetically created build-

ngs that result from adapting this study’s methodology. The main

ttributes of a building include building type and construction

ear, and they are directly defined at the building scale; the tech-

ical systems of each building are then defined individually. Thus,

ach building comprises several building envelope components, a

eating system, and ventilation concept (either natural or mechan-

cal). Each of these technical components is described by an instal-
 m  
ation or retrofit year as well as its technical characteristics. Each

uilding can have multiple use areas with a different usage type

r one to several dwellings (housing units) in case of residential

uildings (cf. Fig. 2 ). 

.1.1. Building stock initialization 

First, the synthetic building stock is initialized based on struc-

ural data on the building stock (see Fig. 1 ). The structural data

escribes the make-up of the building stock in terms of number

f buildings. Such data is typically available from national statis-

ical offices and describes the stock according to features such as

uilding type, construction period, and size. From that dataset, a

epresentative sample is drawn to initialize the synthetic stock and

reate the individual representative buildings. In case the building

tock should be reconstructed in its entirety, the sampling can be

mitted, and instead, the individual records are created according

o the number of buildings of the aggregated structural dataset.

he result of step one is a structure of individual building records

hat when aggregated represents the structural input data and can

e further characterized in step 2. 

.1.2. Building characterization 

The second step aims to further characterize the initialized

tock. It defines all further building attributes required for the gen-

rated synthetic building stock to be used in building stock mod-

ling (cf. Fig. 1 ). These attributes can be defined through selecting

ingle characteristics from a building typology or through Monte

arlo sampling from a distribution. The underlying data for this

an vary depending on availability. It can either come from statis-

ical offices, building standards, and surveys on parts of the stock,

s well as other reports. 

Ideally, available data provide a distribution of a certain at-

ribute across the entire stock or part of it, which allows for sam-

ling that attribute directly from the data. However, for most at-

ributes, available data sources do not have representative distribu-

ions for the building stock, but rather average values with a lower

nd upper bound. In this case, the probability distribution can be

onstructed based on these minimum and maximum values, sim-

lar to in life cycle inventory databases, to be able to run Monte

arlo simulations [45] . Normal or log-normal distributions can be

elected for most continuous variables (e.g., U -values). Log-normal

s suitable for skewed distributions as well as attributes that are

ositive and cannot be smaller zero. Uniform distribution can be

hosen for selective attributes where no clustering occurs near a

ean value (e.g., building orientation). Lastly, discrete attributes
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Fig. 2. Example representation of a synthetically created building through the application of the described methodology in the case study of the Swiss residential building 

stock with examples for the different elements (one per type; multiple opaque components exist, and there can be multiple dwellings per building) and characterizing 

attributes. 
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(e.g., number of occupants) can be defined as a binominal distri-

bution or shares (e.g. shares of buildings with a basement). 

In contrast to households, buildings have more correlated at-

tributes; the most notable is building geometry (i.e., wall, roof,

floor, and window areas), where surface areas cannot be individu-

ally randomly estimated because they relate to each other to make

a complete building. Therefore, rather than choosing these at-

tributes individually, a simple “shoebox” geometry of the building

is constructed to estimate the surface areas. The shoebox model

is estimated based on the total floor area within the building,

the number of floors, and the aspect ratio between the building’s

length and width, as well as a glazing ratio of the façade to esti-

mate the window areas. Subsequently, the total floor area is di-

vided by the number of floors to obtain the footprint area. The

length and width are then assumed based on the aspect ratio be-

tween the two (or vice versa, depending on data availability). From

this, the total façade area can be calculated based on the building

perimeter, number of floors, and floor height of the building. The

façade area is reduced if the building is determined to be attached

on one or two sides. The resulting façade area can be subdivided

between opaque wall area and window area using a glazed surface

area factor. The roof area is calculated based on the assigned roof

type of the building. In case the building was assigned a flat roof,

the roof area is equal to the footprint area, whereas for pitched

roofs, the area is calculated according to the roof slope. The floor

area is defined equal to the footprint area; however, depending on

whether the building has a basement or not, it is defined as being

toward the ground or unheated rooms. 

2.1.3. Updating building characteristics 

This step calibrates the current state of the building in terms

of past upgrades and refurbishment measures. It can be skipped
n case the available data sources are up to date and cover the

urrent state of the stock accurately. However, in most cases, es-

ecially the data on U -values and type of heating system installed

over the state of the building as it was originally built and not its

urrent state. In that case, this step is necessary to consider these

pgrades. 

This can be achieved in two stages: 

1. The year of the last intervention is defined for each building

component whose state requires updating. For recent buildings,

this might be the same as the year of building construction.

However, older buildings have all undergone one or more alter-

ation in their lifetime. 

2. If a measure has been implemented, how the building compo-

nent was altered is assessed. The resulting efficiency improve-

ment is related to the year in which the measure is estimated

to have been implemented. 

Thus, the year of the last intervention is estimated endoge-

ously by the model. For each individual building component, the

ast intervention year is estimated through an estimated lifetime

ased on the Weibull distribution. The Weibull distribution was se-

ected because it is often used to estimate the lifetime of building

omponents [47,48] . However, other probability distributions such

s the Gompertz distribution, Gamma distribution, or a fixed life-

ime could also be used [46] . The distributions can be fitted based

n real duration data or estimated based on average renovation in-

ervals. Based on the fitted distribution, the year of the first inter-

ention can be estimated starting from the year of construction.

his process is repeated until the year of the next intervention sur-

asses the base year for which the synthetic building stock should

e representative of. 
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i  
If a component is altered in a given year, how it is changed

s assessed. In case of building envelope components, this would

ean first assessing whether the intervention has an effect on

he energy efficiency (i.e., added insulation or exchanged windows)

ompared with pure maintenance measures (i.e., repainted walls

r windows). This can be done through a random choice based on

ata on the share of renovations with an energy efficiency effect,

ompared with pure maintenance measures, or through evaluation

f a micro-economic discrete choice model [24] . The resulting effi-

iency improvement of the component (be that an envelope com-

onent or a HVAC system) can then be defined based on the effi-

iency standard of that year (e.g., typical insulation thicknesses/ U -

alues or heating system efficiencies). 

.2. Building stock assessment 

The generated synthetic stock is assessed according to its en-

rgy and GHG emissions using the building stock assessment

odel described below. The model is split into two parts, an

nergy demand model and an impact assessment model. The

nergy model first calculates the buildings’ energy demand in

erms of useful energy for space heating and domestic hot wa-

er ( Section 2.2.1 ). Based on the heating demand and the installed

eating system in the buildings, the final energy demand is calcu-

ated according to the split of energy carriers and energy services

i.e., space heating and domestic hot water) as well as the electric-

ty loads for lighting, appliances, and auxiliary electricity (i.e., ven-

ilation and pumps). This is fed into the impact assessment model,

hich calculates the primary energy and GHG emissions of the

uildings’ use phase (using primary energy and emissions factors

rom the literature; see Section 2.2.2 ). 

.2.1. Energy demand model 

First, the energy demand model calculates the useful energy de-

and for space heating using a monthly steady-state energy bal-

nce based on the norm ISO EN 52016-1 [49] (or the equivalent

wiss norm SIA 380/1:2016 [50] ) based on the building physics

arameters and usage data defined during the building character-

zation step. The internal electrical loads and hot water demand

re calculated at an individual building use area scale as specified

uring the building characterization step, and then aggregated to

he building scale. Based on the calculated useful energy demand

or space heating and hot water, final energy demand is estimated

epending on the heating system efficiencies. Different conversion

fficiencies are applied for space heating and hot water generation

o account for the different temperature levels and losses in dis-

ribution within the building. Solar thermal collectors are assessed

eparately based on a monthly energy balance of the possible pro-

uction and demand from domestic hot water and/or space heat-

ng. In case that monthly production exceeds actual demand, the

roduction is limited to cover this demand. Thus, no seasonal stor-

ge is assumed. A detailed description of the model can be found

n Appendix B . 

The energy demand model is set up to account for not only

he stock variability in terms of physical characteristics, but also

n terms of occupant related attributes such as demanded indoor

emperature or varying hot water use. The average indoor temper-

ture of the building is defined based on the average of the set

emperature of each building usage (e.g., for each dwelling) in the

uilding. 

However, as research of the performance gap has revealed, the

ealized indoor temperature is notably lower for inefficient build-

ngs compared with newer energy efficient buildings [51,52] . This

s considered through the use of adjustment factors for indoor

emperature depending on the energy efficiency standard of the
uilding according to [52] (see Appendix B for a mathematical de-

cription of the implementation of the approach). The approach of

oga et al. [52] considers three reduction factors: (1) a reduction

f the internal temperature during the night, (2) a reduction of

he average internal temperature caused by limited (or unheated)

paces within the heated floor area, and (3) the user influence

hrough reduced heating to save costs. Each of these factors de-

ends on the energy efficiency of the building and results in a re-

uction of the average indoor temperature from the set tempera-

ure the more inefficient the building is. 

.2.2. Impact assessment 

In this last step, the model calculates the direct and indirect

HG emissions and primary energy demand of the building’s use

hase’s final energy demand. The GHG emissions as well as total

nd non-renewable primary energy are then calculated using emis-

ion and primary energy factors of various energy carriers. For the

ase study of the residential building stock of Switzerland, these

ere based on [53] and are listed in Appendix D . In case of elec-

ricity, the emission and primary energy factors for the consump-

ion mix was used. The resulting emissions and primary energy

emand are split depending on different energy services. Consider-

ng the GHG emissions and primary energy demand of the build-

ng, indicators such as GHG emissions and energy use per m 

2 , per

uilding, or per occupant, are generated. 

.3. Case study: residential building stock of Switzerland 

The methodology was applied to the residential building stock

f Switzerland in 2015. Aggregate structural data comes from the

uilding and dwelling register (BDR), which holds data on all resi-

ential buildings and dwellings in Switzerland. The buildings are

escribed based on building type, construction period, number

f floors, number of dwellings, and heating and hot water sys-

ems. The BDR is not up to date regarding the installed heating

nd hot water systems, and has been shown to be outdated in

any instances [54] ; these shares were therefore adapted during

he calibration procedure (see Appendix C ). Dwellings are simi-

arly described according to the building type, construction period,

welling size, and number of rooms. The structuring of the reg-

stry in separate records on buildings and dwellings allows for a

oint generation of a building and dwelling stock. Fig. 2 presents

 flowchart of the implemented process of synthetic stock genera-

ion, which is further described in the following subsections. 

.3.1. Building stock initialization 

Based on aggregate data of the BDR on the building and

welling stock, an initial sample for both stocks is generated sep-

rately and then combined to initialize the stock (see Fig. 3 ). The

uilding stock sample is generated first. To limit the computational

ime in the BSM assessment, the building stock size is limited to

 representative sample stock of 10,0 0 0 synthetic buildings. Once

he initial building stock sample is generated, the interval class at-

ributes from the BDR for number of floors (e.g., 10 + floors), num-

er of dwellings (e.g., 6–9 dwellings) and the construction period

e.g., 1920–1944) are interpolated for each individual building in

he generated sample to obtain a numerical value. For open-ended

lass intervals (e.g., 10 + dwellings), which are not delimited on

oth sides, an exponential distribution is assumed and calibrated

sing aggregate data. For example, the number of dwellings in

uildings with 10 or more is calibrated so that the total number

enerated matches the distribution of the dwelling stock. 

Next, the dwelling sample is generated based on the size of the

uilding stock sample by summing up the number of dwellings of

ach building in the building stock. The generation of both build-

ng and dwelling stocks before they are merged guarantees that
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Fig. 3. Flow chart describing the process for generating a synthetic building and 

dwelling stock. 
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both stocks match the overarching structure of the input data. In

a similar manner to the buildings, the dwelling characteristics are

assigned by interpolating between the various class boundaries, or

extrapolated using an exponential function in case of open-ended

classes, to assign a numerical value to each attribute. 

In the last step of stock initialization, the building and dwelling

stocks are combined. This step is performed iteratively by picking a

building at random from the generated building stock sample and

assigning the defined number of dwellings to the building based

on the building type or construction period. However, some restric-

tions are placed on the selection of dwellings to limit inconsistent

combinations. These restrictions attempt to limit the generation of

buildings with an unrealistically small floor area compared with

the number of floors. Therefore, restrictions are set so that if there

are between 1 and 0.5 dwellings per floor, no dwellings smaller

than 70m 

2 are picked. If there were even less than 0.5 dwellings

per floor, then only dwellings larger than 150m 

2 are picked. In all

other cases, no restrictions related to the sampling of dwellings are

set. 

2.3.2. Building characterization 

Next, the generated building stock is further characterized

through Monte Carlo sampling as described in Section 2.1.2 , based

on distributions generated from various data sources, statistical of-

fices [55] , building standards [50,56,57] , and other reports [22,58–

62] . A complete overview of the data sources and chosen distribu-

tion types for all input parameters can be found in Appendix A . 

First, the building geometry (wall, roof, floor, and window

areas) is generated through a shoebox model as described in

Section 2.1.2 . For this, the total heated floor area of the building

is estimated by multiplying the sum of the dwellings’ floor area

by a factor of + 15% and + 20% for single and multi-family houses,

respectively, to account for factors such as circulation area and

construction area, as proposed in [63] . After the surface areas of

the individual components are estimated, the physical properties

of the different building components are defined, such as U -value,

g-value (or SHGC), and frame-to-glazing ratio for windows, as well

as angle, orientation, and shading factor. Each of these parameters

is defined as well through Monte Carlo sampling based on differ-
nt distributions depending mainly on building type, construction

eriod, and building component type. The orientation of the whole

uilding is assigned randomly based on a uniform distribution. The

rientation of the individual building components is then defined

ccordingly. 

The space heating and hot water system, as well as whether

 solar collector is installed, is already contained in the structural

ata of the BDR. The efficiencies of the system are then defined

ased on the step to update building characteristics described in

he next section. Most residential buildings in Switzerland are nat-

rally ventilated; however, especially in newer buildings, venti-

ation systems with heat recovery are increasingly common. The

hare of residential buildings equipped with ventilation systems

ith heat recovery is estimated based on data from [22] . The ven-

ilation rate is defined based on the building type, age, and the

entilation system installed, and divided between infiltration and

atural/mechanical ventilation depending on the system type. 

For the individual dwellings, the number of occupants is based

n binominal distributions generated from household size data

rom [55] . The average occupancy time per day and person is then

efined based on average values for residential use from the build-

ng standard [56] . Similarly, the hot water consumption as well

s electricity use for lighting and appliances are defined based on

uilding standards [50,57] individually for every dwelling. Lastly,

he set temperature is defined on the dwelling scale to consider

he individual heating behavior of building occupants. 

.3.3. Updating building characteristics 

The lifetime distributions for this step are estimated based on

verage renovation rates for each building component for various

uilding types and construction periods from an empirical study

59] and standard building lifetimes [64,65] . Furthermore, [59] pro-

ides the share of renovations with an effect on the energy ef-

ciency (i.e., added insulation or exchanged windows) compared

ith pure maintenance measures (i.e., repainted wall or windows)

or building envelope components. In the second step, this data

s used to assess whether the building component was renovated

ith an energy efficiency retrofit or only maintained. In the case

f energy efficiency retrofit, the U -value of the building component

and the SGHC in case of windows) is updated based on data from

58,60] on the commonly applied insulation thicknesses and win-

ow standards in a given renovation period. Similarly, the heating

nd hot water system efficiency is defined depending on the up-

ated installation date of that system based on the lifetime distri-

ution, according to Section 2.1.3 . The efficiency of the systems is

hen determined based on the installation year, according to data

rom [22] . Similarly, the heat recovery efficiency and the specific

an power of the ventilation systems are determined based on data

rom [60] . 

. Results for the Swiss building stock 

In this section, the results of the synthetic building stock gen-

rated for Switzerland and its analysis with a BSM are described.

irst, the structure of the synthetic building stock is described.

ubsequently, the results of the stock assessment model are pre-

ented according to various levels of aggregation. 

.1. Structure of the stock 

Fig. 4 shows the structure of the generated synthetic building

nd dwelling stock, comparing the results to the distribution of

he input data used. As seen in both figures, this approach can

eproduce the distribution of the input data. However, some de-

iations occur because the synthetic stock is generated based on a
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Fig. 4. Distribution of various attributes across the created synthetic building (top) and dwelling (bottom) stock based on the initialization step. The synthetic stock data are 

shown in green and the input data in blue bars. The shares are weighted based on the number of buildings/dwellings in the stock. 
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Table 1 

Summary of indicators across the modeled synthetic building stock, which is compared with the indicators based on the national statistics on household energy 

consumption [66] . 

Indicator Statistics 2015 Total Per heated floor area Per building Per citizen 

Final energy 64.4 TWh 67.2 TWh 135.4 kWh / m 

2 41,230 kWh / building 8,111 kWh / capita 

Total primary energy 106.4 TWh 110.0 TWh 221.6 kWh / m 

2 67,502 kWh / building 13,280 kWh / capita 

Non-renewable Primary energy 91.1 TWh 82.2 TWh 165.5 kWh / m 

2 50,417 kWh / building 9,919 kWh / capita 

GHG emissions 12.3 mil. tCO 2 -eq. 12.8 mil. tCO 2 -eq. 25.7 kgCO 2 -eq / m 

2 77,837 kgCO 2 -eq / building 1.54 tCO 2 -eq / capita 
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random sample of 10,0 0 0 buildings instead of the 1.6 million resi-

dential buildings that exist in Switzerland. Moreover, Fig. 6 shows

that the deviation from the input distribution is more significant

for dwellings than buildings. This is because the synthetic dwelling

stock is generated from a stratified sample based on the number of

dwellings required to populate the synthetic buildings. This stratifi-

cation leads to a slightly increased distortion in the dwelling stock

as the deviations in the building stock are passed on to the syn-

thetic dwelling stock. This distortion is, however, kept minimal by

calibrating the number of dwellings assigned per building depend-

ing on the construction period (see Appendix C for details). 

3.2. Impact assessment of the stock 

The aggregated results of the modeled synthetic building pop-

ulation are summarized in Table 1 and compared with data based

on national energy statistics from [66] . Reference values for pri-

mary energy and GHG emissions can also be calculated based on

the energy statistics and the primary energy and emission factors

listed in Table 3 in Appendix D . The stock is analyzed based on its

total useful energy demand for heating (space heating and hot wa-

ter), final energy demand (for space heating, hot water, appliance

use, lighting, and auxiliary energy), primary energy (both total pri-

mary energy and non-renewable) alongside its GHG emissions. Re-

sults are shown both as a total as well as averages per heated floor

area, building, and citizen. The total final energy demand is overes-

timated by 4% from the national statistics, which is also mirrored

in the other indicators. The exception is non-renewable primary

energy, where the modeled results are lower than the statistics. A

more detailed comparison between modeled results and statistics

can be found in Appendix C . 

The distributions of the energy demand and GHG emissions

across the synthetic building stock is shown in Figs. 5 and 6 , and

are differentiated according to the construction period and heat-

ing system of the building. The distributions are weighted based

on the representative heated floor area of a given building in the

stock. The results show that the distribution of all indicators varies

greatly, both within the stock as a whole, and within each con-

struction period or heating system. The useful energy demand fol-

lows a long-tailed distribution across the stock. However, the re-

maining indicators (i.e., final energy, total and non-renewable pri-

mary energy, and GHG emissions) do not follow such a clear dis-

tribution and show two peaks. The specific final energy demand

has a clear secondary peak, which is made up mostly by build-

ings with a heat pump (cf. Fig. 6 ), which have a significantly lower

final energy demand for heating and hot water compared with

buildings with other heating systems. The separation of the two

peaks is amplified by the fact that most buildings with a heat

pump have been built since 20 0 0, as seen in the data from the

BDR [55] . These buildings already have a lower than average space

heating demand because of the higher efficiency standard of the

building envelope. This peak can also be seen for the distributions

of the primary energy demand (both total and non-renewable),

albeit less pronounced because of the different primary energy

factors of the various energy carriers, where the efficiency gain

from the heat pump in terms of final energy is partially lost be-
ause of the higher primary energy factor. Even so, in terms of

on-renewable primary energy, the buildings with the lowest de-

and are shown to be buildings with a wood-based heating sys-

em (cf. Fig. 6 ). In terms of GHG emissions, the highest share is

uildings emitting 5–10 kgCO 2 -eq per m 

2 and year. The more pro-

ounced peak compared with the other indicators comes from the

act that Switzerland has a relatively GHG-non-intensive electricity

onsumption mix (the production is mostly from hydro and nu-

lear power, complemented by somewhat more carbon-intensive

mports; see [53,67] ). This favors buildings with heat pumps com-

ared with non-electricity based heating systems in addition to the

lready lower final energy demand. Furthermore, a notable share

f single-family houses that are heated with wood can be seen,

s well as multi-family houses in cities connected to the district

eating grid, which decreases the GHG emissions of these build-

ngs compared with buildings with fossil heating systems. The sec-

nd peak and long tail of the distribution comprises the buildings

hat have an oil or gas boiler, which still account for 34% and 20%

f the stock, respectively (cf. Fig. 4 ). 

The distribution of the various results according to both build-

ng type and construction period are visualized in Fig. 7 . For all in-

icators, a trend towards lower energy demand and GHG emissions

an be seen for both building types for the more recent construc-

ion periods. Nevertheless, the variation of the various indicators

or each construction period is very large, especially for the earlier

onstruction periods. This is also highlighted by the rather large

umber of outliers. 

When comparing the two building types, both the median as

ell as the variation of the different indicators seems to be lower

or multi-family houses compared with single-family houses. The

verage lower median of multi-family houses is caused by the gen-

rally more compact building geometry, which leads to a lower

pecific heat demand compared with single-family houses. An ex-

eption to this trend is the category of single-family houses from

he construction period until 1920. Here, the median GHG emis-

ions and non-renewable primary energy are lower for single-

amily houses compared with multi-family houses of the same

eriod. This originates from this period’s higher share of wood-

eated single-family houses. The lower variation of the different

ndicators for multi-family houses may stem from the fact that

uilding attributes defined on the dwelling scale are averaged

cross multiple dwellings in a multi-family house. This leads to a

ower variation of the resulting energy demand, and therefore, a

ower variation of the other indicators. 

. Discussion 

The discussion’s structure is in two sections. First, general

ethodological findings are discussed, and then additional insights

re derived from the case study. 

.1. Discussion of the methodology 

.1.1. Advantages of synthetic building stocks 

The methodology described in this paper improves on the gen-

rally used archetype approach of building energy models in nu-
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Fig. 5. Distribution of specific useful energy demand (only for space heating and DHW), final energy, primary energy (total and non-renewable), and GHG emissions across 

the synthetic building stock according to construction period. The shares are weighted based on the representative floor area in the stock. 
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Fig. 6. Distribution of specific useful energy demand (only for space heating and DHW), final energy, primary energy (total and non-renewable), and GHG emissions across 

the synthetic building stock according to main heating system type. The shares are weighted based on the representative floor area in the stock. 
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Fig. 7. Boxplot of the specific useful energy demand (only for space heating and DHW), final energy, primary energy (total and non-renewable), and GHG emissions across 

the synthetic building stock according to construction period and building type. Left-side: single-family houses; right-side: multi-family houses. The median is shown with 

a red line. 
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merous manners. It has the following advantages: (1) Generating

numerous representative buildings and using input distributions

makes it possible to consider the heterogeneity in the stock as well

as the uncertainty and variation in the input data. (2) The method

considers nonlinearities of interactions in the stock, such as the ef-

ficiency standard of the building envelope and the heating system.

(3) The data need is not significantly higher than for the common

archetype approach. (4) The possibility exists to consider various

data types, including sample studies and surveys to calibrate dis-

tributions and reflect heterogeneity. 

Generating numerous discrete representative buildings repro-

duces the heterogeneity in the building stock. The representative

buildings represent a share of the stock just as building archetypes

do, but they also reflect the heterogeneity in the stock in terms

of past building stock alterations such as refurbishments, as well

as variations of the occupancy and user influence across the stock.

Past renovation measures are not considered an average improve-

ment of the energy efficiency of a given archetype, but as a dis-

crete event for a selection of the representative buildings. Varia-

tion in number of occupants, user influence, and other uncertain

parameters are considered using probabilistic distributions of dif-

ferent parameters across the stock. Therefore, the synthetic stock

can reproduce the variability and uncertainty of characteristics in

the stock model and show how output variables at the building

level vary across the stock. 

The heterogeneity of the stock can have large implications

when investigating energy conservation and GHG mitigation mea-

sures for the building stock as the effectiveness of energy efficiency

measures differs between non-retrofitted, fully retrofitted, and par-

tially (average) retrofitted buildings. Because of nonlinearities, the

average of the individual results may not be equal to the results of

an average situation. Thus, the synthetic stock model can provide

a more detailed understanding of the distribution energy demand

and GHG emissions in the existing stock, thereby providing a more

robust basis for assessing future stock developments as well as in-

vestigate refurbishment strategies and policy interventions. 

The increased level of detail of the method does not signifi-

cantly increase the amount of data required compared with a con-

ventional archetype approach. The data sources used are also the

ones commonly applied in archetype modeling, but the data is

processed to give a more detailed overview over the stock. Com-

pared with an individual building approach (requiring data from

each building), the synthetic building stock uses fewer, and more

crucially, less sensitive data. All data sources that were used to

generate the stock for Switzerland are publicly available. This, in

theory, makes the method as broadly applicable as the archetype

approach. 

The method can accommodate a wider variation of data types

compared with archetype approaches, particularly distributional

information derived from surveys. Including such data sources

strengthens the generated synthetic building stock because it helps

to reproduce the heterogeneity in the stock. Being able to accom-

modate such different data sources and not relying on a single

source (e.g., a complete building registry as an individual building-

based approach would) makes the methodology easier to adapt to

different situations of data availability, and therefore, more trans-

ferable to other cases. 

4.1.2. Critical review of the methodology 

The current implementation of the methodology shown in

this paper has some limitations. In particular, the following as-

pects should be considered: (1) The combination of building and

dwelling types may lead to unrealistic combinations in some cases.

(2) The different input distributions are assumed to be indepen-

dent from each other; however, in reality, these may often be cor-

related with one another. 
At this stage of implementation, the relationship between

welling and building characteristics beyond the attributes of

uilding type and construction period is often not explicitly con-

idered. This may lead to unrealistic composition of dwelling types

ithin a building because they are assigned randomly based on

uilding type and construction period, which might also explain

he large number of outliers in Fig. 7 . This aspect was partially

ddressed by introducing restrictions on the size of the dwellings

o be chosen from, yet no link was considered between dwellings

n the same building when assigning dwellings. For instance,

wellings within the same multi-family building are more likely

o belong to the same size group, which was not considered. How-

ver, with the methodology proposed, this could easily be consid-

red if the underlying micro-level data or a sample thereof could

e used as a basis for generating the synthetic stock. 

In addition, the data quality could be improved when it comes

o building characterization and updating, where representative

ata for the stock are often lacking altogether, and data must be

sed from many diverse sources. Hence, most attributes in these

teps are defined independently from each other. This leads to un-

ealistic combinations of attributes in some of the synthetic build-

ngs, because in reality, many attributes (e.g., the refurbishment

tatus of various building components) are interconnected. This is

hown in the results by the large number of outliers in Fig. 7 . At a

tock level, not enough data is available upon which and to what

egree different building characteristics are linked to each other.

ere, a remedy could be common sense assumptions, and more

pidemiological studies on building energy use could help fill in

he gaps in the long-term [68] . Such interdependencies could be

mplemented by introducing structured correlations between the

arious probabilistic distributions. 

.1.3. Calibration 

The calibration of the generated synthetic stock is an issue just

s in all BSMs. The stock generated in this study was calibrated

nd validated at various scales in terms of structure, past refur-

ishment activities, and aggregate energy consumption. Be that as

t may, a more detailed calibration could be performed by calibrat-

ng input distributions for the building characterization step based

n energy consumption data, through using Bayesian methods as

roposed by Sokol et al. [26] . However, this would require more

etailed data on a representative sample of buildings across the

tock to calibrate the input distributions. Furthermore, the avail-

bility of such a sample would mean that other methodologies for

he generation of synthetic stocks such as the sample-based ap-

roach mentioned in Section 2 could be investigated. Calibrating

he step for updating the building characteristics based on the cur-

ent state of the building stock (e.g., gathered through surveys) is

 valid approach; however, a more detailed longitudinal dataset

racking building stock developments over time (e.g., studies un-

erlying the report by Jakob et al. [59] ) might help to improve the

nderlying building component lifetime distributions [46] , as well

s the combination of different measures commonly applied in a

uilding. 

.2. Discussion of case study results 

Applying the synthetic stock methodology to the residential

uilding stock of Switzerland demonstrates that the developed

ethod can accurately reproduce aggregate results (cf. Table 1 and

ig. 9 in the appendix), and also provide information on the distri-

ution of energy demand and GHG emissions within the stock (cf.

igs. 4 –7 ). This is a clear value added compared with traditional

pproaches using building archetypes that are mostly based on av-

rages. 
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The results for the Swiss residential building stock show that

nergy demand as well as GHG emissions can vary greatly across

he building stock. This variation mainly arises from the energy

tandard of the construction period, building size, past retrofit

easures that are unequally implemented, and most importantly,

rom the heating system’s energy carrier. Moreover, varying factors

nder the user’s influence (e.g., demanded indoor temperature, do-

estic hot water consumption, or ventilation rate) affect the dis-

ribution of energy demand and GHG emissions in the stock. 

The results show that the variation within common classifi-

ations of building type and construction period can be much

arger than the average differences between construction periods

r building types (cf. Figs. 5 and 7 ). This highlights the limita-

ions of an archetype approach because they are typically defined

cross these two dimensions. Therefore, the effectiveness of ren-

vation measures are only to a certain extent explained by typ-

cal archetype variables such as construction period, but more

o by the current state of the building (which varies widely as

hown by the results). Considering these variations would there-

ore strengthen the usefulness of the results from BSMs to investi-

ate refurbishment strategies and policy interventions. 

The impact assessment of the generated stock shows that espe-

ially for final energy and GHG emissions, a division of the stock

nto two main clusters occurs: one cluster represents older, non-

etrofitted and mostly fossil fuel-heated buildings, and the other

epresents newer buildings with a renewable energy-based heat-

ng system such as a heat pump. Although decarbonization of the

eating supply could significantly reduce direct GHG emissions in

ll buildings, in Switzerland, these systems to date are mainly in-

talled in newer buildings (and to a lesser extent in retrofitted

uildings) that are already rather energy efficient. A large share of

lder, fossil fuel-heated buildings remains to be addressed. 

. Conclusion and outlook 

This paper describes a new methodology for the generation of

ynthetic building stocks to be used in bottom-up building stock

odeling. The method for generating the initial building stock per

e comprises three steps: (1) building stock initialization, (2) build-

ng characterization, and (3) updating building characteristics. In a

ubsequent step, the generated synthetic building stock is assessed

n terms of its energy demand and GHG emissions. The method

as implemented for the residential building stock of Switzerland

nd calibrated based on the overall structure of the stock, the

ast renovation activities, and the aggregate energy demand of the

uilding stock. This paper focused on the methodology develop-

ent to generate synthetic building stocks for building stock mod-

ling and helps set the scope for future work. 

The methodology was applied and tailored to the building stock

f Switzerland; nonetheless, the approach is transferable to other

ountries and other scales (e.g., a regional scale). However, such

n application will depend on the size of the stock, model pur-

ose, and data availability. Although the methodology can theoret-

cally be applied to a stock of any size, it does not make practical

ense to go below a stock size of several thousand buildings be-

ause at that scale, the stochasticity of the approach might lead to

nrealistic results. One approach to remedy that would be over-

ampling (i.e., generating a synthetic stock that is larger than the

ctual stock, where each building has several representative build-

ngs) or through a Monte Carlo simulation approach. Moreover, an

pplication on a city scale may be feasible; for example, to inform

 policy assessment. However, at that scale, building stock model-

ng results are often also used for energy planning purposes [69] .

n that case, a synthetic stock is not enough, but rather data on

he individual building are required. However, a building charac-
erization approach can still be used to fill data gaps at a building

evel. 

The developed methodology can be extended in numerous

anners, which lay the groundwork for future work. A possible

evelopment would be to make the synthetic population spatially

ifferentiated by distributing the population based on regions (e.g.

antons in Switzerland or NUTS regions), the municipality, or even

own to a hectare raster level. Methodologies on how to spa-

ially distribute a synthetic population exist and have been proven

seful in transportation and land-use models [37,70] . Another fur-

her development is the extension of the approach to include non-

esidential buildings to encompass the complete building stock of

 country. This would allow an improved representation of mixed-

se buildings, which are typical for an urban environment. Data

vailability on the non-residential building stock is generally even

oorer than for residential buildings, which limits this approach.

ne way to address this would be to use synthetic businesses as a

roxy to estimate the non-residential floor space [37] . Another ex-

ension of the approach would be to combine the synthetic build-

ng stock with a synthetic population. This would make it possible

o model occupant behavior in greater detail [36] or estimate the

mpact of changes in the building stock on the population, includ-

ng social sustainability indicators (e.g., [71] ). 

The results of Switzerland demonstrate how the discrete repre-

entation of different building states in the synthetic building stock

llows for a more realistic representation of past building stock al-

erations such as refurbishment. It also lays the groundwork for

he development of a dynamic BSM based on a synthetic build-

ng stock using methodologies such as agent-based modeling. This

an be applied both in terms of modeling decisions at the building

cale, such as renovation and heating system substitution choices

24,72,73] , or to model macro development through the integra-

ion of location choice and land-use models [33] . Such a dynamic

odel could be extended to include material attributes (such as

all constructions instead of U -values) as in the database devel-

ped by Ostermeyer et al. [74] , to model the material intensity of

he stock and its related embodied emissions and how it develops

ver time [75,76] . 

The combination of datasets to generate a synthetic building

tock for stock modeling comes with many challenges, which were

utlined in this paper. Although we demonstrated the feasibility

f the use of synthetic building stocks from the available data

ources, room exists for improvement with regards to data qual-

ty. In particular, in terms of the distribution of the combination

f building attributes or previous building stock alterations, data is

everely lacking. Here, more cross-sectional and longitudinal stud-

es on the state and development of the building stock could in-

rease understanding of these aspects at a stock level, while simul-

aneously improving the data basis for the generation of synthetic

tocks and building stock modeling. 
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Table 2 

Description of input data and data sources. The table is structured according to the different steps in the method and the building stock assessment. Reading example: 

The attribute “Number of Buildings” has the unit #, the data table has values ranging from 1 to 53,997 and it is differentiated in according to building type, construction 

period, number of floors class, number of dwellings class, heating system type, hot water system type and solar system installed, it is not represented by a distribution 

and the source is [55] . 

Section Attribute Unit 

Range of 

data Differentiated according to Distribution Source 

1. Building 

stock 

initialization 

Building 

stock 

Number of buildings # 1–53,997 Building type, construction 

period, number of floors 

class, number of dwellings 

class, heating system type, 

Hot water system type, 

solar system installed 

– [55] 

Dwelling 

stock 

Number of dwellings # 1–183,003 Building type, construction 

period, dwelling size class, 

number of rooms class 

– [55] 

2. Building 

characterization 

Building 

geometry 

Share roof type pitched % 19–100 building type, construction 

period 

– [22] 

Share buildings with 

basement 

% 70–90 building type, construction 

period 

– [22] 

height floor m 2.7–3 Building type, construction 

period 

Lognormal [22] 

Share one side attached % 0–20 Building type, construction 

period 

– [22] 

Share two sides 

attached 

% 5–50 Building type, construction 

period 

– [22] 

Aspect ratio 

(length/width) 

– 25–100 Building type, construction 

period 

Lognormal [22] 

Share glazing short side % 10–55 Building type, construction 

period 

Lognormal [22] 

Share glazing long side % 10–55 Building type, construction 

period 

Lognormal [22] 

Building orientation ° 0–180 – Uniform –

Building 

envelope 

U -value W/m 

2 K 0.16–2.4 Building type, construction 

period, Building component 

type 

Lognormal 

[22,58,60,61] 

g -value window – 0.45–0.78 Building type, construction 

period 

Lognormal 

[22,58,60,61] 

Window shading factor % 60–90 – Lognormal [22,50] 

Window frame ratio % 10–30 – Lognormal [22,50] 

Internal heat capacity 

building 

J/K m 

2 80,0 0 0 - 

370,0 0 0 

– Lognormal [77] 

Occupancy Number of occupants # 1–7 Dwelling size class Binominal [55] 

Occupancy time h/persons day 10–18 – Lognormal [50,56] 

Indoor temperature °C 18–22 – Lognormal [50,56] 

Consumption hot water l/persons day 30–50 – Lognormal [50,56] 

HVAC 

systems 

Share mechanical 

ventilation with heat 

recovery 

% 0–25 – – [22] 

Ventilation rate 

infiltration 

m 

3 /m 

2 h 0.2–0.4 Building type, construction 

period 

Lognormal [58,60] 

Ventilation rate natural 

ventilation 

m 

3 /m 

2 h 0.6–2.6 Building type, construction 

period, ventilation system 

Lognormal [58,60] 

Ventilation rate 

mechanical ventilation 

m 

3 /m 

2 h 0.8–1.1 Building type, construction 

period, ventilation system 

Lognormal [58,60] 

Electricity 

use 

Electricity appliances kWh/ year 950–2526 Number of rooms class Lognormal [57] 

Lighting power W 150–1100 Number of rooms class Lognormal [57] 

Lighting full load hours h/year 150–10 0 0 Occupancy time – [57] 

Electricity auxiliary kWh/m 

2 year 3–4.5 Building type Lognormal [57] 

3. Updating 

building 

characteristics 

Building 

envelope 

lifetime year 10–200 Building type, building 

component type, 

renovation period 

Weibull 

[59,64,65] 

Share energy efficiency 

refurbishment 

% 25–90 Building type, Building 

component type, 

renovation period 

– [59] 

Insulation thickness 

after refurbishment 

mm 20–200 Building type, building 

component type, 

renovation period 

–

[22,58,60,61] 

U -value window after 

refurbishment 

1.1–1.8 Building type, renovation 

period 

–

[22,58,60,61] 

g -value window after 

refurbishment 

– 0.54–0.7 Building type, renovation 

period 

–

[22,58,60,61] 

( continued on next page ) 
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Table 2 ( continued ) 

Section Attribute Unit Range of 

data 

Differentiated according to Distribution Source 

HVAC 

systems 

Lifetime year 15–40 Building type, building 

component type, 

renovation period 

Weibull 

[59,64,65] 

Efficiency space heating % 60–400 Heating system type, year 

of installation 

– [22,60] 

Efficiency hot water % 54–285 Hot water system type, 

year of installation 

– [22,60] 

Full load hours 

ventilation 

h / year 6098–8760 Ventilation type – [22,60] 

Efficiency heat recovery % 50–90 Ventilation type, year of 

installation 

– [22,60] 

Specific fan power W/(m 

3 /h) 0–0.91 Ventilation type, year of 

installation 

– [22,60] 

Building stock 

assessment 

Climate data Solar irradiation kWh/m 

2 

month 

4–168 month, orientation – [78] 

External temperature °C 0–16.8 month – [78] 

Energy 

carrier 

GHG factor kgCO 2 /kWh 0.03–0.3 Energy carrier – [53] 

PE total factor kWh/kWh 0.33–3 Energy carrier – [53] 

PE nonrenewable factor kWh/kWh 0.16–2.52 Energy carrier – [53] 
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. Energy demand model 

The energy demand model is based on a monthly steady-state

nergy balance based on the norm ISO EN 13790 [79] (or the

quivalent Swiss norm SIA 380/1 [50] ). It calculates monthly en-

rgy demand of each building for space heating, hot water, appli-

nce use, lighting and auxiliary electricity use (ventilation, pumps,

tc.). 

The monthly space heating demand ( Q H, m 

) of the building is

alculated based on the balance between the sum of all heat losses

nd gains for each month in the building according to below equa-

ion: 

 H,m 

= Q T,m 

+ Q V,m 

− ηg,m 

( Q S,m 

+ Q O,m 

+ Q E,m 

) (1) 

here Q T, t is the heat losses from transmission, Q V, t is the heat

osses from ventilation, ηg, t is the heat gains utilization factor,

 S, t is the heat gains from solar radiation, Q P, t is the heat gains

rom occupants, and Q E, t is the heat gains from electricity use in

he building (lighting, appliances, etc.). 

The heat losses from transmission ( Q T, t ) are calculated for each

omponent and summed up according to below equation: 

 T,m 

= 

∑ 

c 

U c · A c · �T · b c · t m 

· 24 · 10 

−3 (2) 

here U c is the U -value of the component in W/m 

2 K, A c is the

urface area of the component in m 

2 , �T is the temperature dif-

erence between internal and external temperature in K, b c is a re-

uction factor to account for surfaces with a reduction of thermal

osses such as floors against ground or unheated spaces and t m 

is

he length of month m in days. 

The heat losses from ventilation ( Q V, m 

) from both active (nat-

ral or mechanical ventilation) and passive (through infiltration)

entilation are calculated according to below equation: 

 V,m 

= ρa c a ·
(
q v ,act · ( 1 − ηHR ) + q v ,in f 

)
· �T · t m 

· 24 · 10 

−3 (3) 

here ρa c a is the heat capacity of air in Wh/m 

3 K, q v, act is the air

xchange rate due to active ventilation in m 

3 /h, ηHR is efficiency of

eat recovery from ventilation in % and q v, inf is the air exchange

ate due to infiltration in m 

3 /h. 

The adjusted temperature difference ( �T ) between the external

nd internal temperature is calculated based on Loga et al. [52] ac-

ording to below equation: 

T = f n · f r · f u · ( T s,m 

− T e,m 

) (4) 
here f n is the reduction factor for the nightly decrease of the in-

ernal air temperature, f r is the reduction factor for the partially

eated spaces, f u is the reduction factor for user influence (e.g.

locking of building components through furniture, reduction of

et temperature to save heating costs), T s, m 

is the set temperature

n °C and T e, m 

is the external air temperature in °C. 

The reduction factor for the nightly decrease of the internal air

emperature ( f n ) is calculated based on Loga et al. [52] according

o below equation: 

f n = 0 . 9 + 

0 . 1 

h 

(5) 

here h is the specific heat loss factor of the building in

/m 

2 
floor area K. 

The reduction factor for the partially heated spaces ( f r ) is calcu-

ated based on Loga et al. according to Eq. (5) . 

f r = 

1 

0 . 5 

√ 

h · n r 
2 + 1 

(6) 

here h is the specific heat loss factor of the building in

/m 

2 
floor area K and n r is the share of indirectly or partially heated

paces (e.g. stairways, etc.) in the thermal envelope. 

The share of indirectly or partially heated spaces in the ther-

al envelope n r is estimated based on Loga et al. [52] according to

elow equation: 

 r = 0 . 25 + 0 . 2 · tan 

−1 A D − 100 

50 

(7)

here A D is the average dwelling size in the building. 

The reduction factor for user influence ( f u ) is calculated based

n Loga et al. [52] according to below equation: 

f u = 0 . 5 + 

1 

1 + 0 . 5 · h 

(8) 

here h is the specific heat loss factor of the building in

/m 

2 
floor area K. 

The heat gains from solar irradiation ( Q S, m 

) are calculated for

ach window and summed up according to below equation: 

 S,m 

= 

Windows ∑ 

C 

I G · A c · g c ·
(
1 − f f rame,C 

)
· f shading,C · t m 

· 24 · 10 

−3 (9) 

here I G is the global solar irradiation on the window surface in

Wh/m 

2 , A c is the surface area of the window in m 

2 , g c is the solar
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Fig. 8. Share of refurbished and maintained building components in the synthetic 

building stock as well as based on the calibration data from [59] . 
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gains factor of the window, f frame, C is the frame Ratio of the win-

dow, f shading, C is the shading factor of the window and t m 

is the

length of month m in days 

The heat gains from building occupants Q O, m 

are calculated ac-

cording to below equation: 

Q O,m 

= n O · q O · t O · t m 

· 10 

−3 (10)

Where n O is the number of occupants, q O is the heat gain from

each person in W/person, t O is the occupancy time in h/day and

person and t m 

is the length of month m in days 

The heat gains from electricity use ( Q E, m 

) are calculated accord-

ing to Eq. (10) . 

Q E,m 

= ( E A + E L + E Aux ) ·
t m 

365 

(11)

Where E A is the electricity use from appliances in kWh/year, E L is

the electricity use from lighting in kWh/year, E Aux is the electricity

use from auxiliary sources (pumps, ventilation, etc.) in kWh/year

and t m 

is the length of month m in days. 

The final energy for space heating ( E H ) can be calculated ac-

cording to below equation: 

E H = 

∑ 12 
m 

(
Q H,m 

− f H,solar · Q solar,m 

)

ηH 

(12)

Where Q H, m 

is the monthly space heating demand according to

Eq. (1) in kWh, Q solar, m 

is the heat provided from solar thermal

collectors in kWh, f H, solar is the share of the heat provided by solar

collectors used for space heating and ηH is the efficiency of the

heating system for space heating in %. 

The monthly hot water demand ( Q HW, m 

) of the building is cal-

culated according to below equation: 

Q HW 

= ρw 

c w 

· n O · V HW 

· t m 

· 24 · 10 

−3 (13)

Where ρw 

c w 

is the heat capacity of water in Wh/m 

3 K, n O is the

number of occupants, V HW 

is the daily hot water consumption per

occupant in m 

3 /day person and t m 

is the length of month m in

days. 

The final energy for hot water ( E HW 

) can be calculated accord-

ing to below equation: 

E HW 

= 

∑ 12 
m 

(
Q HW,m 

− f HW,solar · Q solar,m 

)

ηHW 

(14)

Where Q H, m 

is the monthly hot water demand according to

Eq. (13) in kWh, Q solar, m 

is the heat provided from solar thermal

collectors in kWh, f H, solar is the share of the heat provided by so-

lar collectors used for hot water and ηH is the efficiency of the

heating system for hot water in %. 

The monthly heat gains from solar thermal collectors ( Q solar, m 

)

is calculated according to below equation: 

Q solar,m 

= I G,c · A c · ηsolar · t m 

· 24 · 10 

−3 · (15)

Where I G is the global solar irradiation on the collector surface in

kWh/m 

2 , A c is the surface area of the collector in m 

2 , ηsolar is the

efficiency of the solar collector and t m 

is the length of month m in

days 

The total final energy demand of the building is calculated ac-

cording to below equation: 

E tot = E H + E HW 

+ E A + E L + E Aux (16)

Where E H is the final energy for space heating in kWh/year, E HW 

is

the final energy for hot water in kWh/year, E A is the electricity use

from appliances in kWh/year, E L is the electricity use from lighting

in kWh/year and E Aux is the electricity use from auxiliary sources

(pumps, ventilation, etc.) in kWh/year 
. Calibration 

The calibration of the generated synthetic is done on multiple

evels and along all three steps in the synthetic building stock gen-

ration as well as through the building stock model. The method-

logy described in step 1 guarantees that the generated building

tock has the same structure as the input dataset. Albeit, some

eviations through the random sampling of buildings can occur.

hese deviations are, however, limited due to the size of the gen-

rated building stock. The structure of the dwelling stock is depen-

ent on the structure of the generated building stock sample. As a

esult, deviations in the structure of the building stock are passed

long. What is more, the size of the generated dwelling stock is

ependent on the chosen exponential distribution to convert the

pen-ended class “10 or more dwellings” into a numerical value.

he exponential distribution was accordingly calibrated for each

onstruction period, so that the generated dwelling stock reflects

he input data of the actual stock both in size and structure. 

The state of the building stock in terms of its energy demand is

alibrated through different mechanisms. The already refurbished

hare of the synthetic stock can be calibrated with data from [59] .

he calibration results of the building stock according to the past

efurbishments is shown in Fig. 8 . The deviation between the syn-

hetic data and the data from [59] is larger compared to the de-

iation in the structure of the stock. The share of already refur-

ished flat roofs and walls is matched rather well by the generated

ynthetic stock, while the shares for pitched roofs and floors are

lightly underestimated. The share of refurbished windows is over-

stimated, especially when also including the maintained share. 

As a second calibration step, the model is calibrated against

he aggregate level residential energy demand of Switzerland both

n aggregate level and in the distribution of the household en-

rgy consumption according to the main energy carrier [66] . The

DR is not up to date on the installed heating and hot water sys-

ems and has been shown to be outdated in many instances, e.g.

hanges in heating systems in existing buildings have often not

een recorded [54] . To calibrate the distribution of heating system

he BDR data was adapted through the IPF routine to update the

utdated data basis of the building registry (see Section 2.3.1 ). The

esulting energy demand of the calibrated stock compared to na-

ional statistics on the household energy consumption [66] can be

een in Fig. 9 . Although the distribution of the demand can be met

y the model to large degrees, in overall the model still overesti-

ates the demand by around 4% (Statistics: 64.4 TWh, Synthetic

tock: 67.2 TWh). The deviation is largest for Oil (0.7 TWh) and
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Table 3 

Primary energy and emission factors used in the impact assessment of the building stock model based on data from [53] . 

Energy carrier GHG emission factor [kgCO 2 / kWh FE ] Primary energy total factor [kWh PEtot /kWh FE ] Primary energy nonrenewable factor [kWh PEnonrenewable /kWh FE ] 

Oil 0.3 1.24 1.23 

Gas 0.23 1.06 1.06 

Wood 0.03 1.2 0.16 

Electricity 0.1 3.01 2.52 

District Heat 0.11 0.88 0.55 

Biogas 0.13 0.33 0.3 

Fig. 9. Comparison of final energy demand of synthetic building stock (green bars) 

compared to statistical data (blue bars) from Switzerland from [66] . (For interpre- 

tation of the references to color in this figure legend, the reader is referred to the 

web version of this article.) 

W  

o  

f  

m  

e  

d

D

R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[  

 

 

 

 

 

[  

 

 

 

[  

 

 

 

 

[  

 

[  

 

 

 

[  

 

[  

 

 

ood (0.46 TWh) and smallest for Gas (0.3 TWh). The general

verestimation of the demand can partially be explained by the

act that the building stock is modeled as if all buildings are per-

anently occupied. At any rate, there is a share of around 1.47%

mpty dwellings [55] as well as non-permanently occupied resi-

ences, which was not taken into account. 

. Primary energy and emission factors 

Table 3 . 
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