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Abstract
We derive a formula for the effective critical electric field for runaway generation and decay that
accounts for the presence of partially ionized impurities in combination with synchrotron and
bremsstrahlung radiation losses. We show that the effective critical field is drastically larger than
the classical Connor–Hastie field, and even exceeds the value obtained by replacing the free
electron density by the total electron density (including both free and bound electrons). Using a
kinetic equation solver with an inductive electric field, we show that the runaway current decay
after an impurity injection is expected to be linear in time and proportional to the effective
critical electric field in highly inductive tokamak devices. This is relevant for the efficacy of
mitigation strategies for runaway electrons since it reduces the required amount of injected
impurities to achieve a certain current decay rate.

Keywords: runaway electron, tokamak, disruption, Fokker–Planck

(Some figures may appear in colour only in the online journal)

1. Introduction

When a plasma carrying a large electric current is suddenly
cooled, as happens in tokamak disruptions, a large toroidal
electric field is induced due to the dramatic increase of the
plasma resistivity. If this electric field is larger than a certain
critical electric field, a relativistic runaway electron beam can
be generated [1, 2]. Such runaway beams can damage the
plasma facing components on impact due to localized energy
deposition. Therefore, runaway electrons constitute a sig-
nificant threat to large tokamak experiments (e.g. ITER)
[3–5].

To minimize the risk of damage, it is crucial to under-
stand the runaway electron dynamics. Disruption mitigation
by material injection is motivated by the strong influence of

partially ionized atoms, as observed in experiments [3, 4, 6].
It is therefore important to have accurate models of the
interaction between fast electrons and the partially screened
nuclei of heavy ions. Fast electrons are not simply deflected
by the Coulomb interaction with the net charge of the ion, but
probe its internal electron structure, so that the nuclear charge
is not completely screened. Energetic electrons can therefore
be expected to experience higher collision rates against par-
tially ionized impurities compared to a fully ionized plasma
with the same effective charge, leading to a more efficient
damping. There has been a considerable effort to produce a
detailed theoretical description of this process [7–10].

A recent paper presented a generalized collision operator
which describes the interaction between fast electrons and
partially screened impurities via analytic modifications to the
collision frequencies [9]. The elastic electron–ion collisions
were modeled quantum-mechanically in the Born approx-
imation as in [7, 8], however, to obtain the required electron
density distribution of the impurity ions [7, 8] used the
Thomas–Fermi model. In [9] we used fitted results from
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density functional theory (DFT) thereby providing a more
accurate description. To describe inelastic collisions with
bound electrons, we employed Betheʼs theory for the colli-
sional stopping power [11], with mean ionization energies for
ions calculated in [12]. Our results show that, already at sub-
relativistic electron energies, the deflection and slowing-down
frequencies are increased significantly compared to standard
collisional theory [9].

The quantity that is arguably the most important for
runaway generation and decay is the threshold, or critical,
electric field, which in a fully ionized plasma without radia-
tion losses is given by the Connor–Hastie field Ec =
n e m cln 4e

3
0
2

e
2pL ( ) [2], where ne and me are the electron

density and mass, ln L is the Coulomb logarithm, ò0 is the
vacuum permittivity and c is the speed of light. Below the
threshold field no new runaway electrons are produced and all
preexisting runaways eventually thermalize. There is a wealth
of experimental evidence that the critical electric field is much
higher than Ec given above [13–18]. Well-diagnosed and
reproducible experiments in quiescent plasmas on a wide
range of tokamaks show that measured threshold electric
fields can be approximately an order of magnitude higher than
predicted by the Connor–Hastie threshold [13, 18]. Further-
more, it has been shown that the runaway electron current
decays much faster after high-Z particle injection than
expected from conventional theory [2], in contrast to low-Z
particle injection which results in a current decay rate only
slightly below that expected [14]. From a theoretical point of
view, the threshold electric field is expected to be higher than
Ec, as can be influenced by synchrotron [19, 20] and brems-
strahlung radiation losses, and also, as we will show here, by
the presence of partially ionized atoms. The value of the
critical electric field is not only interesting theoretically—it is
of immense practical importance as it determines the amount
of material that has to be injected in disruption mitigation
schemes [21].

In this paper we derive an analytical expression for the
effective critical field for runaway generation and decay that
takes into account the presence of partially screened impu-
rities, using the generalized collision operator derived in [9].
We present a formula that accounts for arbitrary ion species in
combination with synchrotron and bremsstrahlung losses. We
show that the effect of partially screened impurities is cap-
tured by replacing the plasma density in the critical electric
field with an effective density n n nfree boundk= + , where κ is
typically in the range 1–2 which implies that the effect of
bound electrons is significantly larger than suggested by
previous studies [22]. Furthermore, using a kinetic equation
solver with a 0 D inductive electric field, we verify the pre-
diction from [21], that the runaway current in highly inductive
tokamak devices after impurity injection will decay linearly
with time at a rate proportional to the effective electric field.
We expect these findings will facilitate future comparisons
with experimental observations of runaway-current decay,
however such analysis is beyond the scope of the present
paper.

The structure of the paper is as follows. In section 2 we
describe the kinetic model accounting for the effect of partial

screening in both the generalized collision operator and the
bremsstrahlung operator. Then we proceed in section 3 to
derive analytical expressions for the effective critical electric
field in the presence of partially ionized impurities. This
calculation generalizes the results in [20], in which the critical
electric field was calculated by assuming rapid pitch-angle
dynamics in the Fokker–Planck equation. In contrast to [20],
our study includes the effect of partially ionized impurities
and bremsstrahlung losses. We demonstrate how the presence
of partially screened impurities affects both synchrotron los-
ses (through pitch-angle scattering) and bremsstrahlung (as
partial screening affects the bremsstrahlung cross-section). In
section 4 we discuss the decay of a runaway current when
heavy impurities are injected. Through kinetic simulations,
we demonstrate the accuracy of the analytical expressions for
the effective critical electric field and the current decay.
Finally in section 5 we summarize our conclusions.

2. Kinetic equation including partially screened
impurities

In a uniform, magnetized plasma, the kinetic equation for
relativistic electrons can be written as follows:

p
F

f E

E

f

p p

f

C f S C f f

1

, 1

c

2

electric field

FP ava

collisions

br syn

radiation reaction

t
x

x
x

¶
¶

+
¶
¶
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¶

= + + -
¶
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  
  

⎛
⎝⎜

⎞
⎠⎟

{ } { } · ( ) ( )

where f is the electron distribution function, C fFP { } is the
partially screened Fokker–Planck collision operator as
described in section 2.1, which accounts for ionizing as well
as elastic collisions. The avalanche source is denoted Sava and
E is the component of the electric field which is antiparallel to
the magnetic field B. Radiation losses are modeled by Cbr (the
bremsstrahlung collision operator) and Fsyn (the synchrotron
radiation reaction force), which are described in section 2.2.
The normalized momentum is defined as p=γv/c is (with γ

the Lorentz factor), p B pBx = · ( ) is the cosine of the pitch-
angle, and the time variable τ is normalized to the relativistic
collision time

m c n e4 ln ,c 0
2

e
2 3

e
4

ct p= L( )

where we introduced a relativistic Coulomb logarithm

m c

T
T nln ln

1

2
ln 14.6 0.5 ln .

2

c 0
e

2

eV e20L = L + » + ( )

( )

Here, TeV is the temperature in eV, ne20 is normalized to
10 m20 3- and n Tln 14.9 0.5 ln ln0 e20 keVL = - + is the
thermal electron–electron Coulomb logarithm [23]. The
temperature dependence of ln cL is reduced compared to
ln 0L as it describes collisions between thermal particles and
relativistic electrons; (2)corresponds to evaluating the
energy-dependent electron–ion Coulomb logarithm ln eeL at

2
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γ=2. For future reference, the superthermal Coulomb
logarithms are given by [24]

ln ln ln 1 3ee
c gL = L + -( ) ( )

and

pln ln ln 2 . 4ei
cL = L + ( ) ( )

The parallel electric field E is thus most naturally com-
pared to the critical electric field Ec defined with the relati-
vistic Coulomb logarithm ln cL (rather than the thermal
ln 0L ):

E
n e

m c

m c

e

ln

4
.c

e
3

c

0
2

e
2

e

cp t
=

L
=

2.1. Collision frequencies with partially ionized impurities

When acting on relativistic electrons and T m ce
2 , the

linearized Fokker–Planck collision operator C fFP { } can be
simplified to

C f f
p p

p f
1

,FP D 2
3

sLn n= +
¶
¶

{ } { } ( )

where 11

2
2L x= -

x x
¶
¶

¶
¶

( ) is the Lorentz scattering operator.

The slowing-down frequency s s
een n= and the deflection

frequency D D
ee

D
ein n n= + are well known in the limits of

complete screening (i.e. the electron interacts only with the
net ion charge) and no screening (the electron experiences the
full nuclear charge). The generalized expressions for D

ein and
s
een taking into account partial screening are given in [9].

Focusing on the effective critical electric field Ec
eff in this

paper, the following equations are specialized to the super-
thermal momentum region, in which the critical momentum
pc corresponding to Ec

eff is found. Thus all of the following
expressions are given for superthermal electrons.

The generalized deflection frequency is, in units of c
1t- ,

given by

p

Z

n

n
Z Z a p N
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1
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ln ln

ln
2

3
. 5

j

j
j j j j
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D
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e
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2
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L
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Here, Z0,j is the ionization state, Zj is the charge number and
N Z Zj j je, 0,= - is the number of bound electrons of the
nucleus for species j, Z n Z nj j jeff 0,

2
e= å , where nj is the

density of species j, and ne represents the density of free
electrons. The parameter aj¯ was determined from DFT cal-
culations, and is an effective ion size which depends on the
ion species j. These constants are given for argon and neon in
table A1 in appendix A. In(5), we have assumed
p a1 10j

2- ¯ . Figure 1(a) shows the enhancement of the
deflection frequency for singly ionized argon and neon. At
typical runaway energies in the MeV range, the enhancement

is more than an order of magnitude compared to taking the
limit of complete screening and neglecting the variation of the
Coulomb logarithm, which would give Z1D effn = +¯ .

In the limit of p?1, the deflection frequency(5) can be
approximated by

pln , 6D D0 D1n n n» +¯ ( ¯ ¯ ) ( )

where the constants are given by

Z
n

n
Z Z a N1

1

ln
ln

2

3
,

7
j

j
j j j jD0 eff

c e

2
0,
2

e,
2ån = + +

L
- -⎜ ⎟⎛

⎝
⎞
⎠¯ ( ) ¯

( )

n

n
Z

1

ln
.

8
j

j
jD1

c e

2ån =
L

¯

( )

For the superthermal slowing-down frequency, we
obtain, in units of τc

−1,

p

n

n
N h

,

1

ln
ln ln . 9

j

j
j j

s

2

3 s

s
c

ee

e
e,

2å

n
g

n

n b

=

=
L

L + -
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

¯

¯ ( ) ( )

Here, h p I1j jg= - and Ij is the mean excitation energy
of the ion, normalized to the electron rest energy [12]; see
table A1 in appendix A. As sn given in(9) is based on the
Bethe stopping power formula matched to the low-energy
asymptote corresponding to complete screening, we refer to it
as the Bethe-like model. As shown in figure 1(b), the slowing-
down frequency is enhanced significantly compared to the
completely screened limit with constant Coulomb logarithm,

Figure 1. (a) The deflection frequency and (b) the slowing-down
frequency as a function of the incoming-electron momentum, for
both Ar+ (black) and Ne+ (red). These are normalized such that

pD c
1 3

Dn t g n= - ( ) ¯ and ps c
1 2 3

sn t g n= - ( ) ¯ . The solid lines denote

Dn from (5) and sn from (9), respectively. The approximate
Rosenbluth–Putvinski (RP) model of sn [22] is shown in dotted line.
Parameters: T=10 eV and n n 10 mZ e

20 3= = - .

3
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where 1sn =¯ . The enhancement is also significantly different
from a widely used rule of thumb that is mentioned in passing
by Rosenbluth and Putvinski [22], which suggests that
inelastic collisions with bound electrons can be taken into
account by adding half the number of bound electrons to the
number of free electrons. As shown in figure 1, the Rosen-
bluth–Putvinski (RP) model overestimates the slowing-down
frequency at low energies and is a significant underestimation
at high runaway energies. The weak energy-dependence of
the RP model is due to the energy-dependence in the elec-
tron–electron Coulomb logarithm in(3).

In the ultra-relativistic limit p?1, the slowing-down
frequency (9) is approximately

pln , 10s s0 s1n n n» +¯ ( ¯ ¯ ) ( )

where

n

n
N I1

1

ln
ln 1 , 11

j

j
j js0

c e
e,

1ån = +
L

--¯ ( ) ( )

n

n
N

1

2

1

ln
1 3 . 12

j

j
js1

c e
e,ån =

L
+

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟¯ ( )

2.2. Radiation losses

At the high densities typical of post-disruption scenarios,
bremsstrahlung may be an important energy loss mechanism
compared to synchrotron radiation reaction [25, 26]. In a fully
ionized plasma, the required density for bremsstrahlung
dominance is [27]

n B , 13e,20 T
2 ( )

with BT in units of Tesla and ne,20 normalized to 1020 m−3. In
a partially ionized plasma, both bremsstrahlung and syn-
chrotron losses will be enhanced, the latter through the
increased pitch-angle scattering. Both radiative energy loss
channels can therefore be significant at densities characteristic
of disruptions and are included in this paper.

The synchrotron radiation reaction force is given by
[28, 29]

p
F f
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( ) ( )

where synt is the synchrotron radiation-damping time scale
normalized to τc:

e B
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1

15.44 ln
. 15syn

1 c
4 2

0 e
3 3
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e,20
t
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= »
L

- ( )

We model partially screened bremsstrahlung with a
Boltzmann operator as presented in [26], using the model that
neglects the angular deflection due to the bremsstrahlung
process:

C p v f p
p p

p
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where p p p,br
1s¶ ¶( ) is the normalized cross-section for an

incident electron with momentum p1 to end up with
momentum p after emitting a bremsstrahlung photon carrying
the energy difference, and σbr is the total bremsstrahlung
cross-section for an incident electron of momentum p. The

integration is taken over k p1c
2

1g + - < ¥( ) , where,
following [26], photon energies are cut off at 0.1% of the
kinetic energy of the outgoing electrons in order to resolve the
infrared divergence, i.e.kc=(γ−1)/1000. The partially
screened bremsstrahlung cross-section is given in [30, 31]:
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where k is the photon momentum and q0=p1−p−k. We
use the form factor F(q) for partially ionized atoms presented
in [9],

F q
N

qa1
.j

j

j

e,

3 2
=

+
( )

( ¯ )

In order to get an analytically tractable problem when
deriving the effective critical electric field, a simplified
bremsstrahlung mean-force stopping power will be used in
section 3. Although a mean-force model has been shown to
significantly alter the steady-state electron distribution com-
pared to the full Boltzmann model, it captures the mean
energy accurately [26], and is therefore sufficient for the
purpose of deriving the effective critical electric field. This
assumption is verified with numerical calculations using the
full Boltzmann operator in section 4.

For the mean-force model, we have

p
FC f f

p p
p F f

1
, 17br br 2

2
br» -

¶
¶

=
¶
¶

{ } · ( ) ( ) ( )

where the bremsstrahlung mean-force is given by F pbr =( )
k p p p p, dbr

1 1 1ò s¶ ¶( ( ) ) , the integral taken over all allowed
outgoing momenta p1. For argon and neon, a numerical
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investigation of(16) shows that Fbr is well approximated by
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3. Effective critical electric field

The critical electric field is a central parameter for both
generation of a runaway current and for its decay rate in a
highly inductive tokamak; in the latter case, it is predicted
that once the Ohmic current has dissipated, the induced
electric field will be close to the critical electric field so that
the current decays according to I t RE Ld d 2 c

effp= [21],
where L∼μ0R is the self-inductance and R is the major
radius of the tokamak. The physical argument is that the
runaway avalanche time scale is much faster than the
inductive time scale, and therefore the electric field must
be close to the critical electric field to prevent rapid current
variations.

We calculate the effective electrical field due to collisions
with partially screened ions by finding the minimum electric
field Ec

eff that satisfies the pitch-angle averaged force balance
equation

eE F 0,xá - ñ =

where F denotes the collisional and radiation forces on a
runaway electron.

In order to find Ec
eff , we assume rapid pitch-angle

dynamics compared to the time scale of the energy dynamics
[20, 32]. In the kinetic equation (1), this amounts to requiring
that the pitch-angle flux vanishes. Since 1syn

1t-  from (15),
we can neglect the effect of radiation on the pitch-angle
distribution (term marked as ‘neglect’ below) as well as the
effect of the avalanche source, which is slower than both
pitch-angle scattering and collisional friction. We demonstrate
the validity of these assumptions in appendix B by comparing
the resulting critical electric field and angular distribution to
kinetic simulations. Inserting the collision frequencies(6) and
(10) as well as the radiation terms(14) and (17), the kinetic
equation (1) can be rewritten
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where f p f2=¯ .

Following the method and notation of [20], the condition
that the pitch-angle flux vanishes yields the following form

for the angular distribution:

f G t p A A A, exp 2 sinh , 20x=¯ ( ) ( ) ( )

where the parameter A is defined as
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E

p E

2
.

D cn
º( )

Then,(19) integrated over pitch-angle yields a continuity
equation
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As the sign of U(p) determines if the distribution at p is
accelerated or decelerated, the effective critical electric field is
the minimum electric field for which force balance is possible:

E E U p Emin , 0 . 22
p

c
eff º =[ ∣ ( ) ] ( )

The minimum can be found analytically if A?1 (so that
Atanh 1» ) and the critical momentum fulfills p E 1c c

eff ( ) ,
which are consistent with our final solution if partially ionized
impurities dominate. Hence (6),(10) and(18) may be used,
and(22) is approximately solved by (see appendix C for more
details):3
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⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥¯ ¯ ¯

¯
¯
¯

( )

where the constants are given in(2), (7), (8), (11), (12), (15),
and (18), and δ, which is a measure of the effect of radiation
losses, is given by

E
E E

ln 2 .

24

c
eff D0

s1
2

D0 syn
1

c
eff

c
br0 br1 D0 s1d

n
n

n t
f f n n= + +

-⎛
⎝
⎜⎜

⎞
⎠
⎟⎟( ) ¯

¯
¯

( ¯ ¯ )

( )

Since δ depends on Ec
eff ,(23) is not in a closed form, and

therefore(23) and(24) are evaluated iteratively starting at
E Ec

eff
c
tot= , where Ec

tot is the critical electric field including
the density of both bound and free electrons:

E
n

n
E

n e

m c

ln

4
, 25c

tot e
tot

e
c

e
tot 3

c

0
2

e
2p

º =
L ( )

with n n n Nj j je
tot

e e,= + å . Here, we iterate once so that 0d =
E Ec

eff
c
totd =( ) and E1 c

eff
0d d d d» = [ ( )]. Equation (23) was

found to be accurate to within 10% for magnetic fields in the
range B n100T

2
20
tot for all considered impurity species and

plasma compositions.

3 A numerical implementation of (23) is available at https://github.com/
hesslow/Eceff.
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Figure 2 shows the effective critical electric field nor-
malized to Ec

tot. Our model, corresponding to(23), is shown
in black and compared to the full numerical solution to(22)
(using the algorithm in [33], implemented as fmincon in
MATLAB) for three different values of the magnetic field:
B=0 T in solid line, B=2 T dashed and B=5 T in dotted
line. These are shown for singly ionized argon in figure 2(a)
and singly ionized neon in 2(b). The behavior is only weakly
dependent on ionization states; this is illustrated with neutral
argon and Ar4+ in figure 3. In addition, we find that the
background deuterium density has a negligible effect on Ec

eff

when ZnZ?nD.
Figures 2–3 also show that with weakly ionized impu-

rities,

E E E .c
eff

c
tot

c 

Hence, it is more accurate to include all electrons in the cri-
tical electric field, than to count for instance half of the bound
electrons as done in the RP model (E E nc

RP
c
tot

e= +(
n n0.5 bound e

tot) ). This underestimation of the effective critical
field by the RP model is a result of using a simplistic form of
the inelastic collision rate as well as neglecting the effect of
pitch-angle scattering and radiation losses. To further explore
the scaling of Ec

eff with magnetic field strength and impurity
content, we approximate(23) in the case where one weakly
ionized state j dominates:

E

E

n

n

N n

n
S R

B

n a

1

ln

0.9

ln
, 26

j Z
j j

j

c
eff

c
tot

e

e
tot

e,

e
tot

c

T
2

20
tot» +

L
+ +

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟¯

( )

S I
a

Z
aln 1

3

2
1

1

ln
ln

3
ln , 27j j

j

j
j

1= - + +-
⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥¯

¯ ( )

R Z Z a0.09 ln . 28j j0= +( ) ¯ ( )

The screening constant Sj is given for all argon and neon
species in table A1 in appendix A. For typical magnetic fields,
the terms inside the brackets tend to be roughly 1–2 times
ln cL . As n N n nj je e, e

tot+ = with only one impurity species j,
one obtains E Ec

eff
c
tot . From(26), we thus conclude that the

effect of partially stripped impurities scale approximately
linearly with impurity density; more specifically,
E E n n n Ec

eff
c
tot

e bound e
tot

c
totk k= + »( ) , where κ is between

1 and 2. Consequently, our calculated of Ec
eff is up to 4Ec

RP in
typical tokamak scenarios.

The radiation term Rj quantifies the effect of brems-
strahlung and synchrotron losses; these are dominated by
synchrotron radiation reaction if

B n0.2 ,T
2

20
tot

which is lower than the fully ionized estimation(13). In this
case, Ec

eff depends linearly on B nT 20
tot . This agrees with

the scaling found in [20] for the fully ionized case. In contrast,
for low magnetic fields, bremsstrahlung can increase the
effective critical field by up to 20% for argon. This number is
insensitive to the plasma density and depends only on its ionic
composition.

Figure 2. Effective critical electric field normalized to Ec
tot (25) as

function of nZ, where nZ is the density of Ar+ (top) and Ne+

(bottom). The analytical expression(23) is plotted in black, and the
numerical solutions to(22) are illustrated in red. The magnetic field
is B=0 T (solid line), B=2 T (dashed line) and B=5 T (dotted
line). Parameters: T=10 eV, n 10 mD

20 3= - .

Figure 3. Effective critical electric field normalized to Ec
tot (25) as

function of nZ, where nZ is the density of (a) Ar0 and (b) Ar4+. The
black lines correspond to the analytical expression(23), and the red
lines are the numerical solutions to(22). The magnetic field is
B=0 T (solid line), B=2 T (dashed line) and B=5 T (dotted
line). Parameters: T=10 eV, n 10 mD

20 3= - .
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4. Current decay

The critical electric field, especially as modified by the effects
of partially screened nuclei and radiation losses, plays an
important role during the relaxation of runaway electrons. In
this section, we demonstrate with kinetic simulations that(23)
well characterizes the threshold between runaway growth and
decay under these modifications. Then, when the electric field
evolves self-consistently, we show that it remains tied to Ec

eff

under certain assumptions during the current decay phase of a
tokamak disruption.

If the current is carried by runaway electrons and the
shape of the runaway distribution is constant in time, the time
derivative of the current is related to the steady-state runaway
growth rate

E
n

n

t I

I

t

1 d

d

1 d

d
. 29

RE

REG º »( ) ( )

The scaling of the growth rate with impurity content may be
estimated from the RP formula [22] by replacing Ec with Ec

eff

and the density by the total electron density due to the fact
that bound and free electrons have equal probability of
becoming runaway electrons through knock-on collisions:

E
E

E

1

ln

1
1 , 30

c c
tot

c
efft

G ~
L

-
⎛
⎝⎜

⎞
⎠⎟( ) ( )

with n nc
tot

e e
tot

ct t= ( ) . The qualitative scaling of the analytic
growth rate is confirmed in figure 4, where the growth rate is
numerically calculated using CODE [34, 35], which directly
solves the kinetic equation (1). These simulations employed
the general field-particle knock-on operator of [36–38] and a
Boltzmann operator for partially screened bremsstrahlung
losses as described in section 2.2. The vertical lines denote the
analytic prediction in(23) for when one would expect the
transition between growth and decay of an existing runaway
population. Radiation losses affect where this threshold lies
and the analytic model Ec

eff accurately and robustly captures
this effect. In particular, we note that the mean-force

bremsstrahlung model employed in the analytical derivation
of Ec

eff agrees with the Boltzmann-type bremsstrahlung
operator used in the simulations within a few percent.

The electric field is hypothesized to remain close to Ec
eff

during the current decay phase of a tokamak disruption [21].
The mechanism by which this occurs is the fast time scale of
the avalanche generation in relation to the inductive time
scale of the system. A toroidal electric field is induced when
there is a time-changing magnetic flux through a current loop
such as a runaway beam. This magnetic flux is proportional to
the total current through the loop. The induced electric field is
therefore related to the rate of change of the current:

E
L

R

I

t2

d

d
, 31

p
= - ( )

where R is the major radius of the tokamak. This inductance
model has recently been implemented in CODE to calculate
the electric field self-consistently with the evolution of the
electron velocity distribution. In general, the exact value of
the inductance L will depend on the spatial distribution of
current, which will change in time. For a large-aspect ratio
current loop (such as a runaway beam), L can be approxi-
mated by [39]

L R
R

a

l
ln

8
2

2
. 32i

0m» - +⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥ ( )

Here, R is the major radius of the tokamak, a is the radius of
the runaway beam, and li parametrizes the distribution of
current within the beam. We have chosen li=1.5 as a
representative mid-plateau value, based on experimental
results from European medium sized tokamaks.

When E Ec
eff» , the growth rate can be expanded

according to

E E E ...,c
eff

c
effG = G¢ - +( )[ ]

which allows(31) to be solved analytically:

E E
R

LI E
1

2
. 33c

eff

RE c
eff

p
» -

G¢

⎛
⎝⎜

⎞
⎠⎟( )

( )

This yields a condition under which the electric field remains
close to Ec

eff :

LI E R2 .RE c
eff pG¢ ( )

With the estimate of EG¢( ) from the numerical results of
figure 4 (at B=0 T) and estimating R/a≈5 we find that the
minimum required current for E Ec

eff» is approximately

I 60 kA. 34RE  ( )

This value is substantially lower than the estimation of
250 kA in [21], which did not include the effect of partial
screening or radiation losses. Since this threshold current is
inversely proportional to the inductance, the estimate(34) is
only weakly dependent on the details of the spatial current
distribution. Therefore, the exact value of the instantaneous
inductance does not affect the primary result of this section:
for large enough inductance, the electric field remains
approximately tied to Ec

eff during the current decay phase,
leading to a predictable decay time scale.

Figure 4. Steady-state runaway growth rate as a function of electric
field normalized to the critical electric field Ec,0

eff without radiation
losses. The solid black line is without radiation losses; the dashed–
dotted blue line includes bremsstrahlung and the dashed green line
includes both bremsstrahlung and synchrotron losses corresponding
to B=5 T. The vertical lines denote the analytical prediction
E Ec

eff= . Parameters: n 10 mD
20 3= - , a density of Ar+ given by

n n4Ar D= and T=10 eV.

7

Plasma Phys. Control. Fusion 60 (2018) 074010 L Hesslow et al



To test the hypothesis that E Ec
eff» when IRE?60 kA,

we generate a forward-beamed initial distribution obtained
from a simulation with a large electric field; the initial average
runaway energy in our simulation is 17.2MeV. We then inject
singly ionized argon with a density that is four times the deu-
terium density n 10 mD

20 3= - . Starting at an initial current
density j 12.9 MA m0

2= - , we let the electron distribution
evolve with a self-consistent electric field in a strongly, inter-
mediate or weakly inductive system. At a constant current
density, varying I L R0

RE
0m( ) corresponds to varying L/(μ0R)

through the beam aspect ratio R/a or the initial current I0 =
j a0

2p . The following values were chosen in the simulations:
a L R i 4.30, ii 1.57 and iii 0.142

0p m =( ) ( ) ( ) ( ) . If R/a=5
and li=1.5, these three values correspond to an initial current
of Ii 23 MA;0

RE =( ) Iii 8.3 MA;0
RE =( ) and Iiii 0.75MA0

RE =( ) .
As in the growth rate simulations, we include both synchrotron
losses, the full bremsstrahlung model and a Chiu-Harvey type
avalanche operator.

Figure 5(a) shows the current decay, which is linear (as
expected) and faster in the low-inductance case. Figure 5(b)
shows the electric field evolution. Clearly, in the high-
inductance case, the electric field is close to the critical field
after an initial transient. This means that, in highly inductive
devices such as ITER, the current decay is to a very good
approximation given by I t RE Ld d 2RE c

effp= - . Enhanced
Ec
eff will lead to faster current decay, and(23) quantifies how

fast the decay is.
On the other hand, the induced electric field deviates by

approximately 10% from Ec
eff in the low-inductance case.

Since the initial current I0
RE=750 kA is high in relation to

many medium sized tokamak experiments, E Ec
eff» gives an

overestimation of the current decay rate in many of today’s
devices. The relative deviation from Ec

eff observed in
figure 5(b) is consistent with the estimation

E E I1 60 kAc
eff

RE- » from(33) and (34).
Although the predicted induced electric field obeys

E Ec
eff with our assumptions, several effects could lead to a

higher induced electric field in an actual experimental dis-
charge. For example, a stronger electric field would be
necessary to balance a runaway population with sub-relati-
vistic energy, in which case the steady-state growth rate used
here is inaccurate. Other effects such as transport [40–42],
trapping [22, 43] and wave–particle interaction [10, 44–46]
may also increase the runaway current decay rate and
accordingly the induced electric field. Such complete mod-
eling remains the subject of future work. Nevertheless, partial
screening has a major effect on the critical electric field as
demonstrated here, and therefore the results derived herein
should be an important piece toward improved experimental
comparison of the runaway current decay rate as well as the
avalanche growth rate.

Finally, we note that the simulations with an inductive
electric field validate the initial assumption of rapid pitch-
angle dynamics in(19); we find that the resulting pitch-angle
distribution in(20) is accurate for E E ;c

eff» see appendix B.
The distribution function in(20) is consequently appropriate
for determining the effective critical electric field, but not for
describing runaway generation.

5. Conclusion

Recent experimental studies on several tokamaks show that
the onset and decay of runaway electrons occurs for critical
electric fields that are considerably higher than the Connor–
Hastie field Ec. One reason is that there are other runaway loss
mechanisms in addition to damping due to collisions in a fully
ionized plasma that seem to dominate both in disruptive and
quiescent cases. In this paper, we show that if there are heavy
partially ionized impurities present in the plasma, the domi-
nant effect on the critical electric field is the effect of partial
screening. The effective critical field is further increased due
to the enhanced radiation loss rates when partially ionized
impurities are present.

We give analytical formulas for the effective critical
electric field Ec

effincluding partial screening and radiation
effects, derived under the condition of rapid pitch-angle
dynamics. The validity of this assumption and the value of the
effective critical electric field is demonstrated by numerical
simulations with the kinetic equation solver CODE. The most
complete expression for the critical electric field is given
in(23). It has been shown to be valid for a wide range of
magnetic fields, impurity species and plasma composition. To
make the parametric dependencies more transparent, we also
give an approximate expression in(26) that is valid when one
weakly ionized state dominates, which is often the case in a
cold post-disruption tokamak plasma.

Figure 5. Current decay (top) and electric field (bottom) for
T 10 eV= , Ar+ with n n4Ar D= , n 10D

20= m−3, for three different
inductance parameters AL a L R2

0p mº˜ ( ) in solid blue, dashed
green and dotted black line respectively. The initial average runaway
energy was 17.2 MeV. Bremsstrahlung losses were included here,
and B=0 T for simplicity.
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As expected, we find that in the presence of large
amounts of heavy impurities, the effective critical field can be
drastically higher than Ec which is proportional to the density
of free electrons: Ec

eff even exceeds the value obtained by
including the total density of both free and bound electrons. In
contrast to RP [22], where the effective density includes half
of the bound electrons, n n n0.5e bound= + , our calculations
show that the bound electrons are weighted by a factor of
typically 1–2. This enhancement is attributed to the energy-
dependent collisional friction, pitch-angle scattering as well
as radiation losses. Bremsstahlung and synchrotron losses
both increase the effective critical field, typically by tens of
percent.

Using a 0 D inductive electric field we calculate the
runaway current decay after impurity injection. Through
kinetic simulations we confirm the accuracy of the formula
for the effective critical field(23), and demonstrate that the
electric field stays close to the effective critical field when the
runaway current satisfies IRE?60 kA, in which case
I t Ed dRE c

effµ . These findings are relevant for the efficacy of
mitigation strategies for runaway electrons in tokamak devi-
ces: since the runaway current decay rate is typically 2–4
times higher than what is predicted by the RP formula, a
lower quantity of assimilated material is required for suc-
cessful mitigation. As screening significantly increases the
critical electric field, we anticipate that this effect is of
importance to include in experimental comparisons; however,
accurate predictions may require the modeling of spatial
effects which are not considered here.
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Appendix A. Constants for the effective electric field

Table A1 summarizes the constants needed to compute the
value of the effective electric field in the presence of argon
and neon. The effective ion size aj¯ is determined by DFT
simulations and is related to aj in [9] through a a2j j a=¯
where α≈1/137 is the fine-structure constant. The mean
excitation energy Ij is taken from [12]. These give Sj

from(27) according to

S I
a

Z
aln 1

3

2
1

1

ln
ln

3
ln .j j

j

j
j

1= - + +-
⎡
⎣
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⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥¯

¯

Appendix B. Angular dependence of the runaway
electron distribution function

The simulations with an inductive electric field (figure 5) can
be used to validate the initial assumption of rapid pitch-angle
dynamics in(19) leading to the pitch-angle distribution
in(20). Expanding f̄ in Legendre polynomials

f f p P ,
L

L Lå x=¯ ¯ ( ) ( )

we relate the predicted analytical distribution in(20) to the
ratio between the zeroth and the first Legendre modes of the

Figure B1. The distribution width parameter f f31 0
¯ ¯ as a function of

momentum p taken after 200 ms for the high-inductance case in
figure 5. This snapshot is representative for all times and for both the
intermediate and the high-inductance cases.

Table A1. Constants to determine Ec
eff .

aln j¯ Iln j
1- Sj aln j¯ Iln j

1- Sj

Ar0 4.6 7.9 13.0 Ne0 4.7 8.2 12.2
Ar1+ 4.5 7.8 12.8 Ne1+ 4.6 8.0 12.0
Ar2+ 4.4 7.6 12.6 Ne2+ 4.5 7.9 11.8
Ar3+ 4.4 7.5 12.5 Ne3+ 4.4 7.7 11.6
Ar4+ 4.3 7.3 12.3 Ne4+ 4.3 7.5 11.4
Ar5+ 4.2 7.2 12.2 Ne5+ 4.1 7.3 11.2
Ar6+ 4.1 7.0 12.0 Ne6+ 4.0 7.0 10.8
Ar7+ 4.0 6.8 11.8 Ne7+ 3.7 6.6 10.4
Ar8+ 3.9 6.6 11.5 Ne8+ 3.2 5.9 9.5
Ar9+ 3.8 6.5 11.4 Ne9+ 3.1 5.8 9.5
Ar10+ 3.7 6.4 11.3
Ar11+ 3.6 6.2 11.1
Ar12+ 3.6 6.1 11.0
Ar13+ 3.5 5.9 10.8
Ar14+ 3.3 5.7 10.5
Ar15+ 3.1 5.3 10.1
Ar16+ 2.6 4.7 9.4
Ar17+ 2.5 4.7 9.4
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distribution:

f

f A A

1

3

1

tanh

1
. B.11

0

= -⎜ ⎟⎛
⎝

⎞
⎠

¯
¯ ( )

The ratio given in(B.1) quantifies the narrowness of the
electron distribution: f f3 01 0 =¯ ¯ corresponds to an isotropic
distribution while the f f3 11 0 ¯ ¯ for a narrow, beam-like
distribution. Figure B1 compares the numerical value of
f f31 0
¯ ¯ as computed in CODE in solid black line, to the ana-
lytical prediction(B.1) in dashed green line. The analytical
formula accurately predicts the distribution width on the
entire interval from a fully isotropic distribution at p=0 to a
narrow beam for p?1. This validates our assumptions on
the rapid pitch-angle dynamics in(19). In contrast, for larger
electric fields (E E 5c

eff  ), we find that the distribution
rather follows the formula in Fülöp et al [47], which is
derived in the limit of E Ec

eff .

Appendix C. Derivation of the effective critical field

The effective critical field can be found analytically noting
that the critical momentum fulfills p p E 1c c c

eff º ( ) .
Moreover, we assume that A, which is defined in(20), fulfills
A?1 (so that Atanh 1» ). These two assumptions are
consistent with our final solution if partially ionized impu-
rities dominate. Hence (6),(10) and(18) may be used in the
expression for the effective critical field(22), and the
requirement U(p)=0 [with U given in (21)] results in a
quadratic equation in E/Ec:

E
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E

E
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where h(p) and ò(p) are both positive functions of p within the
assumption pc?1:
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Consequently, finding the effective critical field amounts to
evaluating the positive solution to(C.1)
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at the minimum pc
, the critical momentum which minimizes

Ec
eff in(C.1), which is determined by
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The derivatives of h(p) and ò(p) are given by
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and thus(C.3) is solved by
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Here, xrad describes the relative importance of synchrotron
radiation compared to bremsstrahlung.

To evaluate(C.2), we first simplify h pc
( ) using

1 1 2 1 2 1 21d d d+ + = + --( ) ( ) :
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



 



n n

n n n

n n
d

n f f

f f
d

n n
n
n

n
d

= +

+
+

+ -
+ +

+
+

+ +
+ -

+

» + + +

+ + -
+
+

º
  

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

( ) ¯ ¯

¯ ( ¯ ¯ )
¯ ¯ ( )

( )

¯
( )

¯ ¯ ¯
¯

¯ ( )
( )

( )

where we assumed pln 1D0 D1 c
n n -¯ ¯ ( ) since D0 D1n n¯ ¯

typically; see (7) and(8). Furthermore, we assumed
plnbr1 br0 br1 c
f f f+ . To simplify pc ( ), we approximate

E E h pc
eff

c c
» ( ) and assume plnD1 D0 D1 c

n n n+¯ ¯ ¯ :

p E
p

p

x

x

h p
x

x

2
1 2 1

ln

ln 1

1

2
1 2 1

1
.

C.8

c
s1

c
eff D0 D1 c

D0 D1 c

rad

rad

s1
c

rad

rad

 






n
d

n n

n n

n
d

= + -
+

+ +

´
+

» + -
+

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

( ) ¯ ( )
¯ ¯

¯ ¯ ( )

¯ ( )( )
( )

Then,

h p p

h p
x

x

h p
x

x

h p
x

x

4

2
1 2 1

2

1

2
1 2 1

5 2

1

2
1 2 1

3 2

1
,

C.9

c
2

c

0 c
s1 rad

rad

0 c
s1 rad

rad

0 c
s1 rad

rad

 







n
d

n
d

n
d

+

» + + -
+
+

´ + + -
+
+

» + + -
+
+

⎛
⎝⎜

⎞
⎠⎟

( ) ( )

( ) ¯ ( )

( ) ¯ ( )

( ) ¯ ( )

( )
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where the last approximation is a matching between the
behavior at x 1rad  and x 1rad  for h p2 0 c

 ( )
1 2 1s1n d+ -¯ ( ), i.e. screening effects dominate over

radiation reaction effects. This assumption also motivates the
approximation

p pln ln ln 2 . C.10c c0 D0 s1
  n n» » ( ¯ ¯ ) ( )

Finally, the effective critical field(C.2) is the mean of(C.7)
and(C.9):

E

E
h p 1 2 1

1 ln
2

2 1 . C.11

c
eff

c
0 c s1

s0 s1
D1

D0

D0

s1

 n d

n n
n
n

n
n

d

» + + -

» + + + +
⎡
⎣⎢
⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥

( ) ¯ ( )

¯ ¯ ¯
¯

¯
¯

( )

For δ in equation (C.4), we again approximate pln c


using(C.10) but also neglect the D1n̄ terms compared to D0n̄ ,
which is motivated both by the smallness of D1n̄ compared to

D0n̄ and the fact that(C.10) overestimates pln c
 if the effect of

radiation reaction is significant. Accordingly, we obtain

E E
ln

2
. C.12D0

s1
2

D0 syn
1

c
eff

c
br0 br1

D0

s1
d

n
n

n t
f f

n
n

» + +
-⎛

⎝
⎜⎜

⎞
⎠
⎟⎟¯

¯
¯ ¯

¯
( )

Equation (C.11) is a not in a closed form since δ depends on
Ec

eff , but an accurate approximation is obtained after one
iteration of(C.11) and(C.12). This is shown in a comparison
with the full numerical solution to(22) in figures 2 and 3.
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