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The vdW-DF-cx0 exchange-correlation hybrid design [K. Berland et al., J. Chem. Phys. 146, 234106
(2017)] has a truly nonlocal correlation component and aims to facilitate concurrent descriptions of
both covalent and non-covalent molecular interactions. The vdW-DF-cx0 design mixes a fixed ratio,
a, of the Fock exchange into the consistent-exchange van der Waals density functional, vdW-DF-cx
[K. Berland and P. Hyldgaard, Phys. Rev. B 89, 035412 (2014)]. The mixing value a is sometimes
taken as a semi-empirical parameter in hybrid formulations. Here, instead, we assert a plausible
optimum average a value for the vdW-DF-cx0 design from a formal analysis; A new, independent
determination of the mixing a is necessary since the Becke fit [A. D. Becke, J. Chem. Phys. 98, 5648
(1993)], yielding a’ = 0.2, is restricted to semilocal correlation and does not reflect non-covalent
interactions. To proceed, we adapt the so-called two-legged hybrid construction [K. Burke ef al.,
Chem. Phys. Lett. 265, 115 (1997)] to a starting point in the vdW-DF-cx functional. For our approach,
termed vdW-DF-tlh, we estimate the properties of the adiabatic-connection specification of the exact
exchange-correlation functional, by combining calculations of the Fock exchange and of the coupling-
constant variation in vdW-DF-cx. We find that such vdW-DF-tlh hybrid constructions yield accurate
characterizations of molecular interactions (even if they lack self-consistency). The accuracy motivates
trust in the vdW-DF-tlh determination of system-specific values of the Fock-exchange mixing. We
find that an average value a’ = 0.2 best characterizes the vdW-DF-tlh description of covalent and
non-covalent interactions, although there exists some scatter. This finding suggests that the original
Becke value, a’ = 0.2, also represents an optimal average Fock-exchange mixing for the new, truly
nonlocal-correlation hybrids. To enable self-consistent calculations, we furthermore define and test a
zero-parameter hybrid functional vdW-DF-cx0p (having fixed mixing a’ = 0.2) and document that this
truly nonlocal correlation hybrid works for general molecular interactions (at reference and at relaxed
geometries). It is encouraging that the vdW-DF-cx0Op functional remains useful also for descriptions

of some extended systems. Published by AIP Publishing. https://doi.org/10.1063/1.5012870

. INTRODUCTION

An elegant and robust formulation of exchange-
correlation (XC) hybrid functionals' emerges by using the
adiabatic-connection formula’™ (ACF) to balance exchange
and correlation.!®"!® The ACF establishes the XC energy as
an integral of the electron-gas response dependence on the
assumed strength V; = AV of the electron-electron inter-
action, V. The 4 = 0 value is given by Fock exchange
EF°. The ACF-based hybrid construction is relevant when
the hybrid is based on plasmon- and constraint-based XC
functionals,®%142° where we can use a formal density-
scaling analysis>’~> to reliably extract the nature of the
electron-gas response at 4 — 1. This density and cou-
pling scaling analysis has been completed'!~!330 for both the
semilocal PBE functional'®?! and for truly nonlocal-
correlation functionals of the van der Waals density functional
(vdW-DF) method.?*?>-3? The scaling analysis for PBE leads
to a rationale for the popular PBEO hybrid,> computing EF°
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from Kohn-Sham (KS) orbitals obtained in a self-consistent
solution.

Some of us have recently extended the family of such
ACF-based hybrids, launching nonlocal-correlation hybrid
formulations, for example, vdW-DF-cx0,° based on the
consistent-exchange vdW-DF-cx version.”>* An exploration
of vdW-DF-based hybrids is motivated because the vdW-
DF versions still have a generalized gradient approxima-
tion (GGA)-type exchange and are thus prone to self-
interaction errors.">!! This limitation affects descriptions
of charge-transfer processes in molecular systems.**% Also,
the intra-molecular charge transfers affect non-covalent inter-
actions between molecules.*® The vdW-DF-cx0 hybrid is
given by

ES0 = gEF + (1 — a)E™ + ES, (1)

where Ey) denotes the exchange (correlation) component
of vdW-DF-cx. In launching the original vdW-DF-cx0 ver-
sion, we picked a fixed Fock-exchange mixing value a = 0.25
in analogy with the construction of PBE0.>!! The a = 0.25
choice is different from the a’ = 0.2 value that was originally

Published by AIP Publishing.
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suggested by Becke for molecular systems' and which is used,
for example, in the B3LYP hybrid.>~

This paper seeks to answer two questions for the vdW-
DF-cx0 design: (1) can we get away with picking a single, all
round, value of a for the study of molecules, and, if so, (2) what
would be a good mixing value a? The questions are important
since the vdW-DF-cx0 design aims to serve as a general pur-
pose materials theory that can deliver concurrent descriptions
of both covalent and noncovalent binding in molecules and in
bulk. Our analysis is not based on the full ACF-based hybrid
construction! %113 (using perturbation-theory studies to estab-
lish the 4 — 0 behaviors) for that would be prohibitively
costly. Instead we pursue a bootstrap approach, using the
so-called two-legged hybrid construction!>!® to define non-
self-consistent (vdW-DF-cx-based) hybrids in a design called
vdW-DF-tlh. Such constructions, summarized in Fig. 1 and
below, are computationally much cheaper. We simply have
to use our previously developed mapping of the coupling-
constant scaling for the vdW-DF-cx functional*® and adapt the
original PBE-based analysis.” Our vdW-DF-tlh construction
can be castin terms of Eq. (1), however, with the key difference
that the Fock-exchange mixing asys is now explicitly asserted
for each system and property of interest. From the computed
asys values, we can answer our questions around an optimum
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FIG. 1. Constructions of two-legged hybrids, termed vdW-DF-tlh, based on
vdW-DF-cx. Here the vdW-DF-tlh approximation is used for analysis of
the atomization energies of O, (top panel) and Liy (bottom panel). The
panels show the two-legged representations (thick red dashed lines) of the
A-dependence of the exchange-correlation binding contributions.>® The solid
blue curves show the A-dependence of the vdW-DF-cx exchange-correlation
binding contribution. The thin dashed lines are guiding the two-legged-hybrid
construction.'? The orange dashed lines show the two-legged representations
of this vdW-DF-cx variation, identifying the weighting bPF (orange circles)
between contributions evaluated at 4 — 0 and 2 — 1 limits of vdW-DF-cx.
The red circles identify the weighting b™® of the 4 — 0 and 2 — 1 limits
for a corresponding hybrid-vdW-DF-cx construction. Finally, the pair of ver-
tical thick bars identifies the Fock-exchange mixing value asys that reflects the
asserted value of HMYP.
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average mixing of the Fock exchange in the vdW-DF-cx0
design.

We furthermore consider the question: is there robustness
in the vdW-DF-cx0 design? To answer this question, we define
a zero-parameter (“Op”) version, termed vdW-DF-cx0Op (hav-
ing Fock mixing a’ = 0.2 as motivated by the vdW-DF-tlh
analysis). We contrast the performance with that of vdW-DF-
cx, the original vdW-DF-cx0 (having Fock mixing a = 0.25)
version, in self-consistent, fully relaxed calculations. We also
compare the performance at reference geometries against that
of dispersion-corrected GGA, meta-GGA, and against a tradi-
tional (that is, semilocal-correlation) hyblrid.38 Our test cases
are molecule systems, subsets of the G2%° and GMTKN5538
benchmark sets, bulk semiconductors, and a few transition
metals.*

The rest of the paper is organized as follows. In Sec. I,
we present the theory, summarizing the nature of the ACF-
hybrid formulation and of the starting point, the consistent-
exchange vdW-DF-cx version.”??433 Section III summarizes
computational details and Sec. IV details the two-legged
hybrid constructions, defining vdW-DF-tlh. Section V presents
our vdW-DF-tlh analysis, discusses a plausible value for the
Fock-mixing fraction in the vdW-DF-cx0 hybrid design, and
presents a performance comparison. Finally, Sec. VI contains
the summary and conclusion.

Il. THEORY

Computing the density-density correlation function y,
at general values of the coupling constant A for the electron-
electron interaction AV permits a formally exact determination
of the XC energy, via the ACF,”~

< du .
Bu=- [ e TrlxaV) - Ea @)
0 T

The last, so-called self-interaction term is  just
Esr = Tr{nV}/2 where 71 denotes the density operator. For
every A, we can define an XC hole

1 < du

nxca(l‘l‘)_—% o xa(r,r’siu) =6(r-r') (3)

and an XC energy contribution

Exa= 1+ // n(r)nxcﬂ(l‘l‘)_ @
r — 1’|

The exact XC energy then results from a coupling constant
integral

1
Exc:/ d/lExc,/l- (5)
0

A. Consistent-exchange vdW-DF

The vdW-DF method®20:21.23-25:3241.42 {5 an attractive
framework for approximating the XC energy in density
functional theory (DFT). The method starts by consider-
ing the XC holes of a generalized gradient approximation
(GGA) functional.’*?! It then adds a truly nonlocal correla-
tion term EM that systematically counts the total energy gain

by the electrodynamic coupling between such semilocal XC
holes, 244346
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The family of vdW-DF versions and variants?0->3:42:47-51
permits computationally efficient’>>* DFT studies of sparse
materials,>> systems which have important regions with a low
electron density. These truly nonlocal functionals have by now
found very broad applications, as summarized in Refs. 32,
55, and 56. The same is true for the related VV09 and VV10
functionals®>7-% that use a different screening model for the
account of nonlocal correlation effects.

In the vdW-DF method, we split the XC energy into
a semilocal GGA-type functional E2; and a truly nonlocal-
correlation term E?l. In general, there is also a crossover
term OEV related to the exchange description, as discussed
elsewhere,23:24:32.33

EYAW-DE — g0 4 EM 4 SED. (6)

The vdW-DF method can be interpreted as a computation-
ally efficient evaluation of the coupling-induced frequency
shifts in the Ashcroft picture of vdW forces.>**3#¢ The long-
range vdW forces are described as arising from an electron-
dynamical coupling between GGA-type XC holes and in
the presence of the screening produced by the surrounding
atoms.>*

The recent consistent-exchange vdW-DF-cx version?? is
crafted so that it preserves current in its account of the
electron-gas response.’® In practical terms, the consistent-
exchange vdW-DF-cx formulation seeks to eliminate the
adverse effects of the crossover term 6EQ in Eq. (6), mak-
ing it effectively an approximate mean-value evaluation®>>*
of the ACE~ This is possible as long as the interaction
is dominated by contributions with small values of the den-
sity gradient.?3?*3059 The vdW-DF-cx performs on par with
or better than the popular GGAs'®!® for many bulk, sur-
face, interface, and molecular properties.®®*-7¢ It reliably
accounts for van der Waals (vdW) forces in cases where
interactions compete,>’” for example, in the descriptions of
weak chemisorption, oxide ferroelectrics, and metal-organic
frameworks.233378.79

B. Coupling constant scaling and hybrids

Use of hybrid XC functionals in DFT is in general
motivated by the observation that the exchange dominates
in several molecular properties. A semilocal exchange form
often leads to too much confinement' of the so-called
XC hole®’ that reflects this electron-gas response. The
coupling-constant analysis of physically motivated function-
als!0-13-27.2830 permits us to pursue an ACF-based hybrid
construction.

The key observations are these. At physical conditions,
corresponding to 4 = 1, the plasmons dominate the x =i
behavior for homogeneous systems.®’ The same is expected
to hold in the weakly perturbed electron gas.'* Like the early
formulations of the local-density approximation (LDA),38!
the consistent-exchange vdW-DF-cx explicitly emphasizes a
plasmon foundation in its characterization of response y, in
the screened electron gas.?>-*0 This is done by crafting both
exchange and correlation terms from a single-pole response
model.>* A benefit is that we can expect EZSXIV‘DF to pro-
vide an accurate account in the 4 — 1 limit. However, in the
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A — 0 limit, the response y( must be different, given exclu-
sively by single-particle excitation and exchange effects. In
summary, we are motivated to extend the vdW-DF-cx design
with a hybrid formulation, such as the recently formulated
unscreened hybrid vdW-DF-cx0.

A more complete discussion is available by starting from
the vdW-DF-cx coupling-constant scaling.’® Here we just
summarize the principle and the results that are relevant for the
discussion of a hybrid vdW-DF-cx formulation. The essential
part is this result: using the simple density scaling

n(r) — nia(r) = n(r/2)/ 2%, 7

we can trace out the full coupling-constant variation using

d
Excaln] = 1 {/lexc[nl//l]}- (8)

The solid curves in Fig. 1 show the corresponding cou-
pling constant scaling as it emerges for the XC energy contri-
bution to the binding in the O, and Li, dimers. The relevant
quantity in typical DF theory calculations is energy differ-
ences, for example, the difference between the molecule and
atom total energies,

DF DF DF
AE™ = Z Ealom,i - Emol' ©

L

To discuss a hybrid formulation, we focus on the correspond-
ing changes in the XC contributions AE.[n] as well as on the
differences that arise upon mapping the coupling constant scal-
ing, AEL", and taking the A — 1 limit. For the hybrid vdW-DF
constructions, we also need to compute binding-energy con-
tributions, AE)?(S ) arising from the DF exchange (correlation)
components.

The full ACF-based hybrid construction'® provides a for-
mal argument that the Fock mixing in a hybrid construction
(aiming to compute, for example, atomization energies) should
be chosen in the form''"13 @ = 1/m, form =3, 4, 5, .... The
integer m reflects the nature'! of the perturbation-theory calcu-
lation that enters in the full ACF-based hybrid construction. '’
The value of m and thus a will, in principle, depend on both the
system and the property that one wishes to investigate (as well
as on the choice of the underlying functional). On the other
hand, the hybrid PBEO and the hybrid vdW-DF-cx0, Eq. (1),
are only truly useful for making material-specific predictions
(of structure and binding) when they are deliberately kept free
of parameters. Typically, hybrid GGAs are used following the
recommendation®? to stick with a fixed value of a (one of the
typical choices a = 0.25 or a = 0.2) since such choices are
consistent with the formal nature of a full ACF-based hybrid
construction.'!

Here, we argue that the same approach should be used
for vdW-DF-based hybrid constructions, including vdW-DF-
cx0 that is based on vdW-DF-cx.® Our discussion is based
on crafting system-specific approximations to the full ACF-
based hybrid construction,'®!:13 adapting the ideas of the
two-legged hybrid constructions for PBE.'? Our approxima-
tion scheme, termed vdW-DF-tlh, permits us to discuss if a
good (average) a value can be found for using the vdW-DF-
cx0 design® on problems defined by general (covalent and
non-covalent) interactions.
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lll. COMPUTATIONAL DETAILS

All of our calculations are based on the plane wave
Quantum Espresso package®®* which has the consistent
exchange vdW-DF-cx version,?? as well as the rigorous spin
extension of the vdW-DF method.”> All molecule studies
use an 80 Ry wavefunction-energy cutoff. Core electrons
are generally represented by Troullier-Martins type®> norm-
conserving pseudo potentials from the aBiniT package®® in
our studies of molecular properties. However, we used the
Quantum EsprEsso projector augmented-wave (PAW) setup®’
to also complete a set of PBE-XDM38# studies that we present
in a performance comparison.

For the vdW-DF-tlh construction, we rely on a numerical
analysis of the coupling-constant scaling of density functional
components, evaluating Eq. (8). Here we use a post-processing
code, termed pPACF, that we have described separately.? As
summarized below, we need to only compute the differences
in the Ex¢ 1=1 values (as obtained for given densities).

An 8 X 8 x 8k-point sampling and optimized norm-
conserving Vanderbilt (ONCV) pseudopotentials® are used
for our vdW-DF-cx and vdW-DF-cx0(p) characterizations of
bulk semiconductors and of a few transition metals.

We systematically rely on the adaptively compressed
exchange (ACE) operator’! for calculations of the Fock-
exchange term AEF°. This is now a standard part of QuanTum
Espresso® (although requiring a pre-compilation flag). Use of
ACE speeds up hybrid calculations for molecules and it dra-
matically accelerates hybrid studies of extended systems.”!
The ACE acceleration makes it possible to complete a self-
consistent hybrid DFT calculation of a transition-metal ele-
ment on the scale of hours (on a single, standard node of a
high-performance computer).

IV. HYBRID CONSTRUCTION: vdW-DF-tlh

The hybrids rely on calculations of the Fock-exchange

energy
EFo _ // iy (r,r)ity (r', ) (10)
* rJr I' —-r | |

where ni(r,r’) = 3; ¢:(r)¢;(r’) and where ¢; denotes the
set of solution wavefunctions. Fock-energy differences, AE}ZO,
defined in analogy with Eq. (9), are mixed with the exchange
description of the underlying density function (in our case
vdW-DF-cx) to correct the description of, for example, band
gaps and self-interaction effects. For standard hybrid calcu-
lations, the wavefunctions ¢; are taken as the KS solutions.
For discussion of atomization energies, however, we found
that it was necessary to assert AEL® from self-consistent
Hartree-Fock solutions.

A. Two-legged hybrid approximation

We first recall that any regular density functional “DF”
should itself be seen as providing a crossover between
approximations for the single-particle and for the many-
particle descriptions at A = 0 and A = 1, respectively.'!? For
the pure functional, we simply inquire when the A scal-
ing of vdW-DF-cx, or of any functional “DE,” intersects

the opposite diagonal'? [0, EPF ] - [1, EPF] at [PF, EDF].

J. Chem. Phys. 148, 194115 (2018)

The intersection point,
EDF[I’Z] EDF 1 [n]

DF
b~ [n] = EDF[n]

an

e [l
determines the weighting of 1 — 0 and A — 1 components
EQ [n] = b [nEX [n] + (1 = BPF[nDER (2], (12)

Note that 5PF[n] is itself a functional of the density—but that
is just a part of the overall “DF” description. For a description
of “DF” energy differences,

AEY = bOLAEYY + (1 - DOOAEL ), (13)

sys sys
there is, consequently, an explicit system dependence on the
weighting, b?ylz ,of 1 > 0and A — 1 contributions, as indicated
by the subscript “sys.”

The hybrid vdW-DF-cx constructions should be seen
as a natural generalization of the regular-functional mixing
behavior Eq. (13); the generalization is motivated by the
fact that the Fock-exchange differences AEF°, Eq. (10), are
generally more accurate than the DF exchange description.
The two-legged non-empirical hybrid constructions'’? use
AE® to anchor the 1 — 0 limit, expressing a corrected
weighting

hyb _ ; hyb

= DUCAER + (1 - bAEDY, . (14)

AE; sy

By establishing the new weighting factors bsyy:) # blsjyl:,
below, we also determine rational choices for the mixing of
a Fock exchange term as expressed in a more common hybrid

construction form
AEY = ag AEF + (1 — ag) AEPY + EPF. (15)
The formal relation to Eq. (14) is given by

hyb
= AE,Y” — AEDF 16)
W AE}f" — AEDF

For the two legged constructions,
imate two gradients,

we define and approx-

L _ dAEca| o AEXN - AERS an
gsys dl =0 bEy]:_,
DF DF
R _ dAExc,/l — AE AEXC A=1 (18)
gsys dl T —1 _ belz .

The first gradient should ideally be computed in perturbation
theory, leading to the non-empirical hybrid construction dis-
cussed in Ref. 11; An exploration of this approach is beyond
the present scope. Both gradients are instead approximated,
as indicated, by a linear form given by belz , namely, the posi-
tion of the kink in a two-legged construction for vdW-DF-cx
itself.

Besides the vdW-DF-cx energy differences, we also com-
pute the Fock exchange energy difference to provide a vdW-
DF-cx- and system-specific determination of ggys (and ggys
when relevant). Adapting the logic of Ref. 12, the value
of ggys specifies a motivated approximation for balancing
A — 0and A — 1 contributions in cases where AEF® < AEPF,
The value of g& is only relevant for cases where AEL®
> AEPY and its use requires an additional discussion, given
below.
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The top panel of Fig. 1 illustrates the vdW-DF-tlh con-
struction for a typical molecular-binding case, binding in
the O, molecule. The orange circle identifies the cross-
ing point between the vdW-DF-cx coupling-constant scal-
ing (blue curve) and the diagonal (lower black dotted line)
from (1 = 0, ~AExc1=1) to (1 = 1,—-AEPY). The cross-
ing point (1 = b?yl;,—AE,]?CF) is system and property spe-
cific, with the value of b?yl; given by the generalization of
Eq. (11) to energy differences. The dashed orange curve
shows a two-legged approximation for the actual DF cou-
pling constant variation; this curve has a kink at the orange
circle.

Figure 1 summarizes our vdW-DF-tlh constructions. The
figure shows that there are differences between the Fock and
DF exchange binding contributions, AEE® and AEPF. We seek
revised coupling-constant curves that better approximate the
coupling-constant variation in the ACF determination of the
exact XC functional. The AEF® — AEPF difference is used to
define two-legged constructions,'? for example, the red dashed
curves in Fig. 1, anchored by —AEL® in the 1 — 0 limit
and the trusted —AFEy. =1 value at the other end. In essence,
we first use Eq. (14) to complete the vdW-DF-tlh calcula-
tion of the energy difference and we then use Eq. (15) to
extract the mixing agys that is equivalent to this vdW-DF-tlh
description.

Our two-legged hybrid constructions seek to follow the
DF coupling-constant scaling as far as possible as we move
to lower coupling constant values.!? This leads to placing the
kink (red circle) in the revised two-legged curve (dashed red
curve) both on the vdW-DF-cx coupling constant curve and on
the second indicated diagonal (upper black dotted line). The
intersection or kink (red circle) identifies the plausible value
of a revised weighting'?

AEPF — AE’X{&:1

hyb,L
b y —

W AEFe — AEDF

(19)
L
xea=1 — 8sys

of 1 » 0and A — 1 limits. In this case, the revised two-legged
approximation suggests that the plausible coupling-constant
curve would also be downward concave. The A value bgyyf L
will be located to the left of b2, as identified by the super-

sys?
script. The b?gg T is finally converted into a system (and prop-
erty) specific value of a plausible Fock-exchange mixing value
asys, given by Eq. (16), and as identified by the thick vertical
bar.

The lower panel shows how we have adapted the two-
legged constructions for descriptions of the atomization ener-
gies for Lip, LiH, and OH and for other cases where Ef o> E,?F .
Aiming again to align the coupling constant scaling behav-
ior in the large-A limit, we then place the kink (red circle)
of the revised two-legged approximation (red dashed line) at

hyb,R
(bys ", AERY), where

_oR
hyb.R _ 8sys (20)
sys T Fo DF R
AE® = AER 1 — 8sys
That is, in such adjusted two-legged constructions, bgyyf R is

the A value that formally specifies the weighting of 4 — 0 and
A — 1limits. As indicated by the superscript “R,” we then have

J. Chem. Phys. 148, 194115 (2018)
bsyyf RS b]S)yl;, leading to larger values of the corresponding
Fock-exchange mixing value agys.

Table I summarizes the vdW-DF-tlh constructions, show-
ing the ayys and atomization-energy results. The table focuses
on the systems that were originally analyzed for two-legged
hybrid constructions based on PBE.'?> We find that there is a
spread in the predicted values of asys. We also find that the
binding energies AEU" that are predicted with vdW-DF-tlh
improve the description relative to that provided by the vdW-
DF-cx starting point. However, it is important to point out
that the vdW-DF-tlh constructions are introduced for analysis
purposes only.

B. Limitations of vdW-DF-tlh usage

There are four fundamental and practical problems with
using vdW-DF-tlh. First, it cannot be cast in a self-consistent
formulation and thus cannot be used for general material
characterizations nor will it always be accurate.'> Second,
the design logic breaks down completely when —AE® is
lower than —AE}?C{; - Third, it is not clear that the two-legged
construction holds for cases where it implies using a small
value of the Fock mixing ratio, agys < 0.15, in Eq. (15),
for reasons discussed in Refs. 11-13. Fourth, in cases where
EF° < EDF (for example, as in the bottom panel of Fig. 1),
it is not easy to motivate the particular vdW-DF-tlh descrip-
tion as a plausible approximation to the exact ACF XC-
functional specification®” or even to the full ACF-based hybrid
construction.'?

The last point deserves an additional discussion as it
impacts our analysis. The coupling constant variation in Exc 2
should be downward concave in the exact ACF evaluation.?’ >
This downward-concave behavior is correctly reflected in the
coupling-constant variations that represent the vdW-DF-cx
functional behavior. With a full ACF-based hybrid construc-
tion,'? we would also expect a downward concave coupling
constant variation, having a form similar to that shown by the
red dashed line in the top panel of Fig. 1.

However, the approximate, non-self-consistent vdW-DF-
tlh construction sometimes produces an upward concave
coupling-constant variation, the bottom panel of Fig. 1. Such
variations, for the specific vdW-DF-tlh constructions, are not
motivated by formal theory,”®?° even if these vdW-DF-tlh
constructions are themselves fairly accurate in characteriza-
tions of atomization energies, molecular-reaction energies, and
ionization potential energies (Tables S.I, S.III, and S.IV of
the supplementary material, respectively). Interestingly, the
issue does not appear in the vdW-DF-tlh description of our
set of non-covalent inter-molecular bonding, Table S.V of the
supplementary material.

We interpret this practical problem for vdW-DF-tlh usage
for characterization of standard molecular properties (atom-
ization, reaction, and ionization energies) as a warning of
insufficient accuracy in the two-legged constructions. We note
that vdW-DF-tlh is not self-consistent so we need to have a
plausible guess for the character of the wavefunctions when
computing the Fock-exchange term. In hybrid-DFT calcu-
lations, we generally use KS wavefunctions (here obtained
in self-consistent vdW-DF-cx calculations), but these are not
directly relevant for a characterization of the Fock-exchange
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TABLE I. Exchange-correlation contribution to atomization energies of molecules, in kcal/mol (1 eV
= 23.06 kcal/mol). “cx” is short for vdW-DF-cx. All results are obtained for coordinates fixed in MP2(full)/6-
31G(d) optimized geometries,>® and calculations are thus lower bounds on the atomization energies. The test group
is that used in Ref. 12 to discuss the original PBE-based two-legged hybrid construction. The table also summarizes
the performance in terms of mean deviation (MD), mean absolute deviation (MAD), and mean absolute relative

deviation (MARD) values.

Molecule AE®T AE™ AEHF AE AEZ AES | dsys AE'
LiH 58 58 31 28 51 64 0.13 58
CH,4 420 429 168 222 307 362 0.21 418
NH3 298 303 82 127 202 252 0.21 293
OH 106 105 31 28 55 73 0.17 106
H,0 233 237 67 110 160 193 0.20 228
HF 141 145 39 74 98 115 0.18 139
Li, 24 19 16 -3 11 18 0.27 24
LiF 138 140 111 124 148 165 0.21 137
CyH, 406 417 112 237 310 361 0.17 395
CoHy 563 579 212 326 436 510 0.19 557
HCN 313 320 11 125 188 232 0.17 301
co 259 265 5 101 137 164 0.15 251
N, 228 228 -96 6 59 97 0.17 211
NO 153 161 -41 30 73 105 0.17 148
Cl 58 70 -18 60 77 89 0.11 61
0, 120 138 -24 32 61 83 0.17 128
H, 110 112 23 30 57 73 0.22 110
F, 38 52 -95 10 27 41 0.10 42
P, 117 120 -68 -13 30 60 0.18 110
Average dasys G2-1 subset 0.18

MD (kcal/mol) 5.95 -3.45
MAD (kcal/mol) 6.68 5.02
MARD (%) 6.47 2.89

energies of atom and molecules. They will not always produce
AEY® estimates that are accurate.

Table S.II of the supplementary material shows a vdW-
DF-tlh characterization of atomization energies, when instead
we use self-consistent Hartree-Fock calculations to determine
the Fock-exchange energy. The table shows that this adjust-
ment in the two-legged hybrid construction ensures that a
downward concave variation underpins the vdW-DF-tlh analy-
sis for atomization energies for all but four cases. One of these
exceptions is the case of the Li dimer, the specific example that
we analyze in the bottom panel of Fig. 1. Computing AEL® from
Hartree-Fock solution wavefunctions is, on the other hand, not
motivated for the study of the reaction or of general ionization
energies.

We base our analysis of the vdW-DF-cx0 design, below,
on vdW-DF-tlh constructions in which AEE® is computed from
vdW-DF-cx wavefunctions for all but the atomization ener-
gies (where we use HF). This means including cases with an
upward concave scaling behavior, for example, in the case
of reaction and ionization energies (Tables S.II-S.IV of the
supplementary material). The impact on our analysis and for
the predictions for an average mixing value agy, however,
is limited. For molecular atomization, reaction, and ioniza-
tion energies (Tables S.II-S.IV of the supplementary mate-
rial), the set of vdW-DF-tlh constructions suggest an average
Fock mixing value a = {(agys) = 0.186 ~ 0.2 for the vdW-DF-
cx0 design.® If instead we had restricted the analysis set to

cases with a resulting downward-concave coupling-constant
variation, 2282 the average would be (asys) = 0.178.

V. RESULTS AND DISCUSSIONS

The usefulness of our two-legged hybrid vdW-DF-cx con-
structions is that they provide analysis of the nature of and the
extent of exchange mixing a = 1/m in the vdW-DF-cx design.®
We note that the formal ACF-based hybrid construction'®!!13
motivates that we should pick m = 4, m = 5, or perhaps
m=6.%

A necessary condition for using our vdW-DF-tlh con-
structions for an analysis of the vdW-DF-cx0 design is that
the vdW-DF-tlh characterizations can be seen as accurate. In
the following, we therefore list a summary of the vdW-DF-tlh
constructions and of the asserted average mixing values (dsys),
in concert with statistical analysis of performance for molec-
ular interactions, as compared against quantum-chemistry
reference calculations. 383993

Overall, we present and summarize vdW-DF-tlh construc-
tions for atomization energies (the G2-1 set, Table S.II of
the supplementary material), for reaction energies (subset of
G2RC, Table S.III of the supplementary material), for ioniza-
tion energies (subset of G211IP, Table S.IV of the supplemen-
tary material), for inter-molecular non-covalent interactions
(S22, Table S.V of the supplementary material), for intra-
molecular non-covalent interactions (IDISP, Table S.VI of the
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supplementary material), for binding energies of aluminum
dimers (A12X6, S.VII of the supplementary material), and for
a set of Diels-Alder reaction energies (DARC, Table S.VIII of
the supplementary material), using reference geometries and
reference binding energies in the G2* and the GMTKN553
benchmark sets. For each of the benchmark (and construc-
tion) subsets, we report the vdW-DF-tlh specification of the
averaged Fock-exchange mixing parameter {asys), the mean
deviation (MD), mean absolute deviation (MAD), and mean
absolute relative deviation (MARD) values that characterize
the vdW-DF-tlh constructions.

Figure 2 shows representative examples of the IDISP,
Al12X6, and DARC benchmark sets. We include these bench-
mark sets because they are expected to reflect effects of the
electron affinity and delocalization errors on both non-covalent
and covalent molecular binding and thus challenge hybrid for-
mulations.” The intra-molecular non-covalent IDISP set has
a low average absolute relative energy of about 14 kcal/mol*®
and represents cases where the weaker vdW interaction com-
petes with other binding mechanisms.>*%° The DARC sets are
defined from systems also involving double and triple bonds.
Here one might expect a better performance from a meta-GGA
(like SCAN®® or dispersion-corrected versions thereof26-38)
than from a standard hybrid.”> They are important tests on
our analysis of and search for a plausible average value of
the Fock-exchange mixing parameter (asys) in the vdW-DF-
cx0 design.® They allow us to test if the average (asys) = 0.2
obtained by the vdW-DF-tlh analysis of atomization, reaction,
and ionization cases (discussed in Sec. IV A) also holds in
more general molecular interaction cases.

A. Summary of vdW-DF-tlh constructions
and performance

Table II reports an overview of the performance of vdW-
DF-tlh, compared with that of PBEO and of vdW-DF-cx itself

J. Chem. Phys. 148, 194115 (2018)
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FIG. 2. Tests of the role of charge relocation in general molecular interaction:
representative examples from the benchmark sets>® of intra-molecular non-
covalent binding (IDISP, top row) of aluminum dimerization (Al2X6, middle
row) and of Diels-Alder reaction energies (DARC, bottom row).38

and as obtained for a range of benchmarks for covalent molec-
ular binding. The table also lists the average of the asy, values
that results in the two-legged constructions. The distribution
of such agys values centers on (asys) = 0.2. However, there
is also some scatter in the vdW-DF-tlh specification of asys
values, as seen in Tables S.II and S.III of the supplementary
material.

Table II shows that, overall, the performance of vdW-
DF-tlh is good for covalent molecular binding properties,
as compared with PBEO, with vdW-DF-cx, and with the
original vdW-DF-cx0 version.® To provide a fair comparison,

TABLE II. Summary of two-legged hybrid construction and comparison of performance for the 55 molecule
atomization energies of the G2-1 data set,3® for 17 molecular reaction energies in the G2RC data set,3® and for 26

ionization potentials in the G21IP data set.>® All energies are in kcal/mol (1 eV = 23.06 kcal/mol). “cx”

is short

for vdW-DF-cx. The results are evaluated at coordinates fixed in MP2(full)/6-31G(d) optimized geometries for
G2-139 and at experimental geometries for G2RC and for G211P.3® The Fock exchange terms are calculated using
the orbitals of Hartree-Fock (vdW-DF-cx) calculations for G2-1 (for G2RC and for G21IP). The average mixing

ratios, asys, are 0.18, 0.21, and 0.18, respectively.

Molecule AEPBEO AE™* AET™ AES0 AE0P
G2-1 atomization a=0.25 a=0 (asys) =0.18 a=0.25 a =0.20
MD (kcal/mol) -4.37 8.28 -1.46 -2.85 -0.61
MAD (kcal/mol) 5.50 8.94 4.29 5.58 4.18
MARD (%) 4.42 6.47 2.98 4.17 3.24
G2RC subset (17 reactions) a=025 a=0 (asys) =0.21 a=0.25 a’ =0.20
MD (kcal/mol) -3.80 -0.10 -1.80 -2.34 -1.89
MAD (kcal/mol) 5.68 5.78 4.90 4.43 4.54
MARD (%) 38.03 57.08 38.55 35.10 38.46
G211P subset (26 molecules) a=025 a=0 (asys) = 0.18 a=0.25 a =020
MD (kcal/mol) -1.22 -2.67 -343 -0.02 -0.32
MAD (kcal/mol) 5.27 4.25 5.57 4.19 4.22
MARD (%) 2.16 1.66 2.28 1.75 1.76
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the table lists PBEO, vdW-DF-cx, and vdW-DF-cx0 results
for energies at the reference geometries that were also used
in the vdW-DF-tlh characterizations; we shall return to a
discussion of relaxation effects below. The MD, the MAD,
and the MARD decrease for the set of G2-1 atomization
energies. The vdW-DF-tlh remains comparable to the perfor-
mance of PBEO and vdW-DF-cx0 for the subset of reaction
energies. The vdW-DF-tlh performance for ionization ener-
gies seems to slightly worsen, however, likely because the
absence of a self-consistent determination affects the orbital
description.

Table III reports a summary of the two-legged con-
struction and a comparison of the vdW-DF-tlh performance
for the S22 benchmark set,”>?° focusing on inter-molecular

J. Chem. Phys. 148, 194115 (2018)

binding energies. The table is divided into cases with hydro-
gen, dispersion, and mixing bonding cases but also summa-
rizes the overall performance as compared to vdW-DF-cx
and to vdW-DF-cx0, Ref. 6. Again, there is some scatter in
the predicted plausible agzys values but the average is cen-
tered on 0.2. The performance of vdW-DF-tlh is better than
that of vdW-DF-cx0 in which the good account of hydro-
gen bonding is preserved, while vdW-DF-tlh avoids some of
the errors that vdW-DF-cx0 makes for purely vdW bonded
cases.®

Table IV shows a summary of the vdW-DF-tlh construc-
tion as well as a performance comparison for the IDISP, A12X,
and DARC benchmark sets.”” There is for these additional
vdW-DF-tlh construction cases only a small scatter of the

TABLE III. Binding energies of the S22 data set. The geometries are optimized at either the CCSD(T) or MP2 level as taken from Ref. 92. The reference
interaction energies are taken from Ref. 93 as suggested by the GMTKNS5S5 data set. The Fock exchange term is calculated using vdW-DF-cx orbitals.

AEret AESX AE!UR AECX0 AECX0p dsys
Ammonia dimer 3.133 2.63 2.79 2.87 2.82 0.20
Water dimer 4.989 4.57 4.77 4.86 4.80 0.21
Formic acid dimer 18.753 18.65 19.38 19.64 19.42 0.21
Formamide dimer 16.062 14.93 15.72 15.91 15.71 0.21
Uracil dimer h-bonded 20.641 19.01 19.78 20.04 19.82 0.20
2-pyridoxine 2-aminopyridine complex 16.934 16.88 17.13 17.32 17.22 0.18
Adenine-thymine Watson-Crick complex 16.660 15.45 15.82 16.06 15.92 0.18
Average asys Hydrogen Bonding 0.20
MD(kcal/Mol) -0.72 -0.26 -0.07 -0.21
MAD(kcal/Mol) 0.72 0.49 0.43 0.48
MARD(%) 6.78 4.44 3.63 4.26
Methane dimer 0.527 0.63 0.75 0.79 0.76 0.19
Ethene dimer 1.472 0.98 1.33 1.42 1.33 0.20
Benzene-methane complex 1.448 1.29 1.55 1.65 1.58 0.19
Benzene dimer parallel displaced 2.654 2.60 3.04 3.25 3.12 0.17
Pyrazine dimer 4.255 3.90 4.44 4.69 4.53 0.18
Uracil dimer stack 9.805 9.30 10.40 10.79 10.49 0.19
Indole-benzene complex stack 4.524 4.27 4.88 5.18 5.00 0.17
Adenine-thymine complex stack 11.730 10.84 12.15 12.69 12.31 0.18
Average agys Dispersion Bonding 0.18
MD (kcal/Mol) -0.33 0.27 0.51 0.34
MAD (kcal/Mol) 0.35 0.30 0.52 0.37
MARD (%) 11.60 11.98 16.53 13.54
Ethene-ethyne complex 1.496 1.54 1.69 1.75 1.70 0.19
Benzene-water complex 3.275 2.94 3.30 3.41 3.32 0.20
Benzene-ammonia complex 2312 2.06 2.36 2.46 2.38 0.19
Benzene-HCN complex 4.541 4.11 4.69 4.83 4.68 0.21
Benzene dimer T-shaped 2717 2.55 2.93 3.09 2.98 0.18
Indole-benzene T-shape complex 5.627 5.24 5.80 6.01 5.86 0.18
Phenol dimer 7.097 6.29 6.92 7.14 6.97 0.19
Average dasys Mixed Bonding 0.19
MD (kcal/Mol) -0.33 0.09 0.23 0.12
MAD (kcal/Mol) 0.35 0.14 0.23 0.15
MARD (%) 8.28 4.71 7.88 5.27
Average asys All S22 dimers 0.19
MD (kcal/Mol) -0.45 0.04 0.24 0.09
MAD (kcal/Mol) 0.47 0.31 0.40 0.34
MARD (%) 9.01 7.27 9.68 7.95
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TABLE IV. Two-legged hybrid construction and comparison of performance for systems with pronounced intra-molecular noncovalent binding (IDISP), for
covalent binding in aluminum complexes (Al12X6), and for the Diels-Alder set of reaction energies (DARC). The geometries and reference energies for the IDISP
(6 systems), A12X6 (6 systems), and DARC (14 systems) data sets are taken from Ref. 38. The values in square brackets are calculated with optimized geometries
using the corresponding functionals—in the case of IDISP: including/excluding the C> Hy6 unfolding case (the only case where there is any discernible relaxation

effect, see Table S.VI-S.VIII of the supplementary material).

Reaction AEPBEO AE®* AE1R AEX0 AEX0P
IDISP a=025 a=0 (asys) = 0.18 a=0.25 a =020
MD (kcal/mol) 1.42 2.02[2.73/2.67] 1.01 0.78[1.30/0.75] 1.03[1.56/1.11]
MAD (kcal/mol) 9.77 2.36[2.73/2.67] 1.66 1.90[2.40/2.07) 1.75[2.32/2.03]
MARD (%) 241.98 31.52[50.64/29.97] 22.44 28.79[53.38/22.88) 24.00[51.11/22.59]
AI2X6 a=025 a=0 (asys) = 0.20 a=025 a =020
MD (kcal/mol) -3.29[-3.32] —2.67[-2.67] -1.70 -1.65[-1.67] -1.86[-1.88]
MAD (kcal/mol) 3.29[3.32] 2.67[2.67] 1.70 1.65[1.67] 1.86[1.88]
MARD (%) 10.05[10.16] 6.81[6.81] 451 4.21[4.26] 4.75[4.81]
DARC a=025 a=0 (asysy = 0.21 a=025 a =020
MD (kcal/mol) 1.06[1.08] —0.84[-0.86] —4.00 —4.74[-4.72] —3.94[-3.94]
MAD (kcal/mol) 3.28[3.28] 1.70[1.70] 4.00 4.74[4.72] 3.94[3.94]
MARD (%) 12.80[12.82] 5.60[5.52] 12.49 15.39[15.35] 12.30[12.33]

asys values around the average value 0.20, as detailed in the
supplementary material.

The description for IDISP is good already at the level of
vdW-DF-cx (as further discussed below) and improves with
the hybrid formulations. The two-legged hybrid constructions
(“vdW-DF-tlh”) are better than the original vdW-DF-cx0 ver-
sion and approach that of PBEO-D3, Ref. 38. The same trend
is found also for the AI2X6 set. The deviations for vdW-
DF-cx and hybrids are larger but so is the average absolute
energy, and the MARD values are smaller than those in the case
of IDISP. Again the hybrid vdW-DF formulations, including
vdW-DF-tlh, improve the description.

Previous studies have indicated that meta-GGA descrip-
tions (with dispersion corrections as in SCAN-D3) perform
better than at least traditional semilocal hybrids for the
DARC set.’®% Here the regular vdW-DF-cx functional?’
performs very well. Use of the hybrid vdW-DF formula-
tions worsens this performance, although the two-legged con-
struction (‘“vdW-DF-tlh”) still performs at the level of PBEO
(Table 1V).

We trust the vdW-DF-tlh analysis, summarized in
Table IV, for all of the IDISP, A12X6, and DARC sets. Our
trust builds on the observation that vdW-DF-cx, the original
vdW-DF-cx0 version,® and a new zero-parameter (“Op”) spec-
ification, denoted as vdW-DF-cx0p and defined below, are all
highly accurate in their characterization of structure. This is
true for all of the AI2X6 and DARC systems and all but one
of the IDISP systems.

Tables S.VII and S.VIII of the supplementary material
report results obtained at reference geometries as well as
(inside square brackets) at fully relaxed geometries. There are
no discernible structural relaxations in either of cx, c¢x0 (or
cx0p) and consequently no relevant energy differences in the
binding and reaction energies that we have obtained for A12X6
and DARC.

Figure 3 compares the structure result of a fully relaxed
vdW-DF-cx calculation against that of the quantum-chemistry
reference data® for the folded morphology of CoHye; There

are similar structure differences for vdW-DF-cx0 and vdW-
DF-cx0p calculations. Such results are relevant for the last
of the IDISP benchmark tests, namely, concerning CyyHae
unfolding. Table S.VI of the supplementary material docu-
ments that there is no observable relaxation effect in any of
the first 5 benchmark cases of the IDISP benchmark set (as in
all of the A12X6 and DARC cases).

The total relaxation effect on the results for the Cy;Hye
unfolding energy is found to be just 2-3 kcal/mol for the hybrid
vdW-DF versions, Table S.VI of the supplementary material.
However, the relaxation does cause a change of sign for all
of the vdW-DF-cx, vdW-DF-cx0, and vdW-DF-cx0p results
(relative to the quantum-chemistry reference data®®) for this
particular case. The relaxation effects translate into a finite
impact on the IDISP MARD value, Table IV. At the same
time, the MARD increase with relaxations is still originating
from just one structure, Fig. 3.

B. Definition of a parameter-free hybrid: vdW-DF-cx0p

The vdW-DF-tlh analysis of the vdW-DF-cx0 design®
motivates us to define a new version,

FIG. 3. Schematics of the folded Cy;Hygg system as described at the
GMTKNS55 reference geometries®® (black) and at the geometry relaxed
in vdW-DF-cx calculations (brown and white). This structure defines the
last of the IDISP benchmarks and it is the only case of all of the IDISP,
Al2X6, and DARC systems where there are any discernible relaxations in
vdW-DF-cx, vdW-DF-cx0, and vdW-DF-cxOp calculations (relative to the
quantum-chemistry reference data on structure®®).
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ES® = 'EF 4+ (1 - ')ES* + ES¥, 1)

to enable self-consistent calculations for general molecular
(covalent and noncovalent) interactions. The choice of the
a’ = 0.2 value represents an optimal average value for gen-
eral molecular interactions. A motivation for introducing this
vdW-DF-cx0p version, Eq. (21), is that it can be seen as strictly
free of adjustable parameters. It is parameter free in the sense
that the mixing value a’ is asserted from a formal analysis (i.e.,
our vdW-DF-tlh constructions) that reflects the expected ACF
behavior of vdW-DF-cx.>°

At the same time, it should be made clear that the two-
legged construction vdW-DF-tlh clearly identifies some scatter
in the set of suggested asys mixing values (even if concen-
trated around (asys) = 0.2). On the one hand, the scatter in
asys could just be a consequence of vdW-DF-tlh not being
self consistent. On the other hand, the scatter does suggest
that the simple, unscreened hybrid vdW-DF-cx0 design, and
the vdW-DF-cx0Op version in particular, cannot be expected
to be accurate for all types of molecular problems, let alone
bulk-systems cases.

To provide an insight into the relevance of either of these
possibilities, we are led to next explore the performance of
the vdW-DF-cx0p version for molecular and some extended
systems. A simple comparison of the vdW-DF-cxOp useful-
ness with that of vdW-DF-cx,2? of vdW-DEF-tlh (above), of the
original vdW-DF-cx0 version,® and with that of other hybrids
or vdW inclusive functionals can provide some guide lines
for how to best continue the development of truly nonlocal-
correlation hybrids like the vdW-DF-cx0 design. Also, it
may be that while there is some scatter in the vdW-DF-tlh
assessment of plausible agys values, there may not be a large
impact of changing the Fock-exchange mixing in the vdW-
DF-cx0 design. That is, the vdW-DF-cxOp version might pro-
vide a good all-round description of covalent and noncovalent
interaction properties in any case.

C. Robustness of the vdW-DF-cx0p: Molecular tests

We first note that Tables II-IV also include a raw sum-
mary of the vdW-DF-cx0p performance comparison for fixed
geometries. Additional details for individual systems in the
full G2-1, G2RC, G21IP, IDISP, Al2X6, DARC, and S22
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benchmark sets are given in the Tables S.VI-S.XII of the
supplementary material. We find that vdW-DF-cxOp per-
forms on par with vdW-DF-tlh for both covalent and non-
covalent binding properties, even if slightly worse in the
case of atomization and dispersion energies. Moreover, vdW-
DF-cxOp works on par with or improves the vdW-DF-cx0
performance for covalent binding properties. The vdW-DF-
cxOp functional also improves the description of dispersion
and mixed binding cases of S22, although slightly worsen-
ing the description of cases with a pronounced hydrogen
bond.

Table V shows a comparison of the vdW-DF-cx and
vdW-DF-cxOp performances for the S22 data set against
so-called dispersion-corrected GGA descriptions: PBE-
XDM, 388 PBE-D3,%7 and PBE-TS.?® These are descriptions
in which a pair-potential formulation of the vdW attraction is
added to PBE. The numbers outside square parentheses reflect
results obtained at reference geometries and we find that per-
formance of vdW-DF-cx and vdW-DF-cx0p functionals, as
measured in the MAD values, are comparable to those of the
dispersion-corrected versions. This is true in spite of the fact
that the group of dispersion-corrected functionals (PBE-XDM,
PBE-D3, and PBE-TS) employ a damping function which is
fitted to training sets that themselves include (or consist of)
the S22 data set. The damping in the PBE-XDM and PBE-D3
versions is detailed, for example, in Ref. 38 and is broader
than S22, comprising about 60 systems. For assessment of
the S22 performance of vdW- or dispersion-corrected func-
tionals, there are documented effects of focusing the training
of the damping function on just the S22 set.®” Our vdW-DF-
cx and vdW-DF-cx0Op functionals avoid such parameter issues
completely, being set by formal many-body physics inputs>!->*
(including the ACF-based argument for picking the a’ = 0.2
mixing).

Table VI compares the MAD values that we here obtain
for vdW-DF-cx0Op (“cx0Op”) against those obtained in PBE-
D3, revPBE-D3, SCAN-D3, and PBE0O-D3 in the GMTKNS55
report>® and against the results that we obtain in vdW-DF-
cx and in the original vdW-DF-cx0 version.® Reference 38
highlights (rev)PBE-D3 and SCAN-D3 as good, all round
choices on the lower rungs of functional approximations
and PBEO-D3 represents a natural hybrid reference (being a

TABLE V. Performance of vdW-DF-cx and vdW-DF-cx0Op for S22 data set compared with dispersion corrected
DFT methods: PBE—XDM,88’89 PBE—D3,97 and PBE-TS.8 The geometries are taken from Ref. 92 and the reference
energies are taken from Ref. 93. The values in brackets are from fully relaxed calculations. In the lower part is the
statistics of the binding distance for fully relaxed dimers. The PBE-XDM results are obtained using QUANTUM

ESPRESSO with PAW pseudopotentials.$’

AESX AECxOp AEPBE*XDM AEPBE*DS AEPBE*TS
MD (kcal/mol) —0.45[-0.60] 0.09[-0.31] -0.41[-0.36] —0.09[-0.20] 0.20[0.02]
MAD (kcal/mol) 0.47[0.68] 0.34[0.60] 0.59[0.54] 0.54[0.57] 0.34[0.49]
MARD (%) 9.01[9.43] 7.95[9.90] 9.75[8.40] 11.56[11.05] 10.01[12.83]

d* — dref dcx()p _ dref dPBE—XDM _ dref dPBE—DS _ dref dPBE—TS _ dref

MD (A) 0.058 0.034 0.064 0.061 0.018
MAD (A) 0.068 0.044 0.075 0.073 0.040
MARD (%) 2.38 1.57 2.65 2.57 1.50
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TABLE VI. Comparison of performance of vdW-DF-cx (“cx”), vdW-DF-cx0 (“cx0”), and vdW-DF-cxOp
(“cx0p”) against that of dispersion-corrected functionals, PBE-D3, revPBE-D3, SCAN-D3, and PBEO-D3. The
comparison is made for subsets of the GMTKNS55 benchmark database.3® The table reports mean absolute devia-
tion (MAD) values in kcal/mol for calculations performed at reference geometries and against reference energies
listed in Ref. 38. The statistics for the dispersion-corrected functionals are taken from Ref. 38 and are computed in
an orbital-based approach, not the plane wave pseudopotential approach that we use here for the vdW-DF versions.

Reaction AESX AESX0 AESX0p AEPBE-D3 AETeVPBE-D3 AESCAN-D3 AEPBE0-D3
G2RC 6.16 4.01 4.24 6.92 6.16 6.39 6.75
G211P 4.08 4.13 4.10 3.84 4.20 4.69 3.68
S22 0.47 0.40 0.34 0.48 0.43 0.47 0.48
IDISP 2.36 1.90 1.75 2.76 3.14 2.05 1.54
Al2X6 2.67 1.65 1.86 1.63 2.07 2.13 1.48
DARC 1.70 4.74 3.94 331 3.71 2.01 3.76

vdW-inclusive extension of a popular semilocal-correlation
hybrid, PBEO). The comparison is made for the here-
investigated GMTKNSS5 subsets and at listed reference geome-
tries. Taken together, the set of benchmarks probes the abil-
ity of vdW-DF-cx and vdW-DF-cx0Op to describe a range of
molecular-interaction properties. As such, Table VI can be
seen as a supplement to Ref. 76, which found that vdW-
DF-cx performs significantly better for a broad comparison
of molecule problems than both PBE-TS?® and the so-called
TS-MBD extension.'?°

We can only provide a qualitative discussion since, in con-
trast to our present cxOp/cx/cx0 plane wave calculations, the
set of dispersion-corrected results is obtained in quantum-
chemistry codes using quadruple-¢ atomic orbitals.’® Nev-
ertheless, we can observe that the vdW-DF-cxOp and vdW-
DF-cx0 have the best performance for reaction energies.
On average, the vdW-DF-cx and vdW-DF-cxOp perform
at the same level as the listed set of dispersion-corrected
functionals.

Figure 4 summarizes a comparison of PBEO, vdW-DF-cx,
vdW-DF-cx0, and vdW-DF-cx0p performances for covalent,
intra-molecular binding, using the aforementioned subsets
of G2 and GMKTKN55%%3 but allowing for full structural
approximations. The underlying data is given in the Tables
S.VI-S.XI of the supplementary material. The zero-parameter
hybrid vdW-DF-cx0p performs better overall than PBEO and
vdW-DF-cx0 for these G2 and GMTKNSS5 subsets but the
improvements are just moderate.

Next we contrast the performances for G2-1, G2RC, and
G211IP in fully relaxed hybrid studies, Fig. 4, with those
obtained using reference geometries, Table II. We find that both
vdW-DF-cx0 and vdW-DF-cx0p characterizations for relaxed
geometries are clearly better (essentially unchanged) for G2-
1 (for G2RC and G21IP). This is somewhat in contrast to
the behavior for vdW-DF-cx itself. For PBEO, there are only
limited effects of including relaxations for G2-1, G2RC, and
G211P.

As already discussed in Subsection V A and as detailed
in Table IV, we find that vdW-DF-cx, vdW-DF-cx0, and
vdW-DF-cx0p all perform excellently for structure charac-
terizations in the IDISP, AI2X6, and DARC sets. This is
encouraging for the vdW-DF-cx and hybrid vdW-DF-cx for-
mulations since these cases are included in the GMTKN55%

to test the ability of functionals to describe the effect of
intra-molecular charge relocation on weaker binding ener-
gies.’®

Figure 3 shows the structure of the folded Ca,Hag system.
As mentioned above, this is the one case where the vdW-DF-
cx and hybrid vdW-DF-cx structure results differ from the
reference data among the IDISP/AI2X6/DARC benchmarks
(Tables S.VI-S.VIII of the supplementary material). We note
that the IDISP benchmark subset is itself small,>® and it is
relevant to assert the extent that this single difference affects
our vdW-DF-cx/vdW-DF-cxOp benchmarking for the IDISP
set. Accordingly, we include in Table IV a summary of bench-
marking with fully relaxed IDISP results while both including
and excluding this special Cy;Hu¢ unfolding case; if the spe-
cial case is omitted, we find again a good vdW-DF-cx and
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FIG. 4. Comparison of PBEO, vdW-DF-cx (cx), vdW-DF-cx0 (cx0), and
vdW-DF-cx0p (cxOp) performances for binding properties of small molecules,
for the G2-1 subsets of the G2 set> and for the G2RC, G211P, IDISP, A12X6,
and DARC subsets of the GMTKN55 benchmark set.3® We compare the
mean-average deviations that reflect fully relaxed results, measured against
the reference energy data.
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vdW-DF-cx0p performance for IDISP, even when character-
ized in terms of the MARD values.

The comparison of vdW-DF-cx and vdW-DF-cx0 perfor-
mances for the DARC deserves a separate discussion. The
DARC set probes description of systems with multiple bonds
and this is a class of systems where the vdW-DF-cx already
performs very well, Fig. 4. However, comparing the vdW-DF-
¢x MD and MAD values for the DARC setin Table IV, itis also
clear that vdW-DF-cx provides a systematic underestimation
of the DARC energies. Since, furthermore, the use of vdW-
DF-cx0p systematically decreases these reaction energies, we
end up with a worse performance for vdW-DF-cx0Op. Our find-
ing that the DARC set challenges vdW-DF-cx0Op is consistent
with previous findings that semilocal-correlation hybrids per-
form worse than, for example, meta-GGA based descriptions
for the DARC set.”

In the case of non-covalent inter-molecular bonding, there
is a potential for more pronounced geometry relaxations (not
reflected in Table III) to play a role. For example, in the S22
set of molecular dimers, the binding energies are small and the
geometries can be significantly adjusted by forces. Computing
binding energies at a fixed geometry need not provide a rele-
vant description of the binding energy minima as described
with a given (hybrid) functional. Thus ignoring relaxation
might prevent us from learning if the functional in question
is strongly over-binding.

The top panels of Fig. 5 illustrate the procedure that we
provide for a revised comparison of the performance for S22,
going beyond the Table II comparison. In this, we follow the
approach that we have also previously used, for example, in
the recent paper launching the vdW-DF-cx0 hybrid vdW-DF
design.® We begin with reference dimer geometries, which in

J. Chem. Phys. 148, 194115 (2018)

the S22 benchmark case are extracted from a series of increas-
ingly more accurate quantum chemistry calculations, ending
with an interpolation among coupled cluster (CC) studies for
geometries located around the expected energy minimum. We
next adjust the inter-molecular separations inwards and out-
wards in steps of 0.025 A and obtain a binding curve for
vdW-DF-cx, for vdW-DF-cx0, and for vdW-DF-cx0p. Finally,
we extract both the molecular-dimer binding separation d and
binding energy estimates AE relative to the S22 reference data,
dcc and AEcc.

The top panels also reveal the importance of including
structural relaxations. While a comparison at the dcc geometry
works well (for regular and hybrid vdW-DF-cx) in the case of
hydrogen bonded systems (like the water dimer) and in the
case of mixed bonding (like the water-benzene complex), it
leads to an underestimation of the binding energy in systems
(like the benzene-benzene complex) with a pure dispersion
bonding. This is one good reason to use vdW-DF-cx0p instead
of vdW-DF-tlh.

The bottom panel of Fig. 5 shows the full comparison
of performances for vdW-DF-cx, vdW-DF-cx0, and vdW-
DF-cx0p; the underlying data is listed in Table S.XII of the
supplementary material. The upper (lower) half of this panel
reports the variation in d — dcc (in AE — AEcc). We have
(as in Table III) separated the survey into cases reflecting
hydrogen binding, dispersion bonding, and mixed bonding.
As also observed in Ref. 6, we find that hybrid vdW-DF-cx
(vdW-DF-cx0 and vdW-DF-cx0p) is accurate for hydrogen
and mixed bonding cases but less accurate for the cases with
a pure dispersion bonding.

Table V also includes a characterization of the vdW-
DF-cxOp performance for S22 wusing the approximate

water dimer benzene dimer
T T

benzene-water
0 T T T T T
x CC
cx
_1 [ . = -
— x0
= — cx0p
o 72k —+ —+ -
é 2
T x
< -3 - T 7
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T
-4 T T b FIG. 5. Comparison of performance of vdW-DF-cx, of
vdW-DF-cx0, and of vdW-DF-cxO0p for (inter-molecular)
_5bL £ £ _ noncovalent binding in the S22 data set.”>® The top
| | ) L | | | ) panel illustrates how, in this performance comparison,
0.2 0.0 02 -02 0.0 02 =02 0.2 we partly include the effects of geometry relaxations,
(d = dcc)dce computing (for each functional) binding-energy curves
hydrogen dispersion mixed as we decrease or increase the inter-molecular separation
Q4FT T T T T T T T N L J T relative to the S22 reference (marked by a cross). The bot-

d— dcc(A)

tom panels compare the functional-specific results for the
binding separation d and the binding energy AE, respec-
tively. The variation is plotted relative to the S22 reference
values, dcc and AEcc.
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determination of relaxation effects, Fig. 5. That is, the table
includes a characterization of binding energies (inside square
brackets in the top half) and of optimal binding separations
(with average deviations listed in the bottom Table part);
further detail is included in Table S.XII of the supplemen-
tary material. When focused on relaxed calculations (for
S22), we find that vdW-DF-cxOp improves the vdW-DF-cx
description, especially in terms of binding separations. The
performances of the strictly parameter-free vdW-DF-cx and
vdW-DF-cx0p functionals are also comparable to those of the
dispersion-corrected versions (PBE-XDM, etc).

Taken overall, our analysis demonstrates that the vdW-
DF-cx0 design is robust toward small changes in the Fock-
exchange mixing. While the use of vdW-DF-cxOp does
improve the description over the vdW-DF-cx0, the improve-
ment is not dramatic. At the same time, we find that the
vdW-DF-cx0p version does have a good average choice for
the exchange mixing a’ = 0.2, one that works for both covalent
and noncovalent molecular binding.

This choice a’ = 0.2 is, of course, already in wide use
for traditional molecular investigations, for example, used in
the construction of so-called optically tuned range-separated
hybrids (OTRSH).'°! However, we have documented here
that @’ = 0.2 is also motivated and applicable in the new
vdW-DF-cx0 design® which can therefore provide concurrent
descriptions of general types of molecular interactions.

D. Robustness of vdW-DF-cx0p: Extended systems

The vdW-DF-cx0 design also aims to be useful for
systems comprising both molecules and bulk. We therefore
include a comparison of vdW-DF-cx0 (at ¢ = 0.25) and
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vdW-DF-cxO0p (at a’ = 0.2) performances for a few extended
systems.

Table VII contrasts the PBE, PBEO, vdW-DF-cx, vdW-
DF-cx0, and vdW-DF-cx0p descriptions of the cubic-cell lat-
tice constant b, the cohesive energy Eopn, and bulk modulus
B for a set of traditional semiconductors (and related insu-
lators): C, Si, SiC, and GaAs. The listed experimental val-
ues for b and E.,p, are corrected for vibrational zero-point
energy and thermal effects, as available in Ref. 40. Hybrids
are expected to behave reasonable for the description of bulk
semiconductors and PBEO generally improves the description
of PBE. Similarly, while the vdW-DF-cx characterization is
already at the level of PBE or better, the hybrid vdW-DF-
cx formulations provide bulk-semiconductor descriptions that
are accurate for the structure, cohesion, and elastic proper-
ties. This suggests that vd W-DF-cxOp may also serve us for a
parameter-free description of molecules on a semiconducting
substrate.

Simple hybrids (like PBEO or the vdW-DF-cx0 design)
should not generally be used for the description of conduct-
ing systems because they rely on the inclusion of the Fock
exchange and thus lack an inherent account of screening. Nev-
ertheless, we include in Table VII a comparison of structure,
cohesion-energy, and elastic-response characterizations for a
few second-row transition metals. Again, zero-point energy
and thermal corrections on the experimental numbers are
included from Ref. 40, where available.

One of us has previously documented that the reg-
ular nonlocal-correlation functional vdW-DF-cx is itself
highly accurate for characterizations of the thermo-physical

properties of non-magnetic transition-metal elements;’’

TABLE VII. Comparison of vdW-DF-cx (abbreviated “cx”), vdW-DF-cx0 (“cx0”), and vdW-DF-cxO0p (“cx0p”)
performances for bulk semiconductors and a few second-row transition metals: cubic-cell lattice constant b (in A),
cohesive energy E¢qp, (in V), and bulk modulus B (in GPa). Reference energies are experimental values corrected
(except for B) by an estimate for zero-point energy corrections, as listed in Ref. 40.

PBE PBEO cX cx0 cxOp Reference
C b 3.572 3.553 3.561 3.550 3.552 3.543
Econ 7.671 7.505 7.841 7.572 7.618 7.583
B 430 463 440 467 463 443
Si b 5.464 5.441 5.437 5.430 5.431 5.416
Econ 4.504 4.558 4.743 4723 4.766 4.681
B 89 99 93 101 100 99
SiC b 4374 3.352 4.358 4.346 4.348 4.342
Econ 6.368 6.353 6.590 6.489 6.542 6.488
B 210 229 217 232 229 225
GaAs b 5.745 5.645 5.680 5.608 5.622 5.638
Econ 3.130 3.191 3.408 3.411 3.407 3.393
B 60 76 67 80 77 76
Rh b 3.837 3.791 3.789 3.764 3.768 3.793
Econ 5.939 4.111 6.407 4.496 4.814 5.784
B 247 281 283 304 300 269
Pd b 3.945 3.917 3.884 3.879 3.878 3.875
Econ 3.790 2.862 4.337 3.296 3.499 3918
B 170 170 202 190 196 195
Ag b 4.165 4.166 4.075 4.106 4.099 4.056
Econ 2.524 2.322 2.897 2.635 2.683 2.972
B 84 80 108 94 97 109
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Table VII (with results obtained here using a different code)
confirms this observation.

Table VII furthermore shows that the vdW-DF-cx0 and
vdW-DF-cx0Op versions remain usable for some properties,
specifically for structure. Not surprisingly, the cohesive ener-
gies worsen, although the vdW-DF-cx0p version performs bet-
ter in this regard than both PBEQ and vdW-DF-cx0. However,
the fact that the structure characterizations remain accurate
for these transition metals is promising. This suggests that
vdW-DF-cxOp remains at least relevant for descriptions of
molecular adsorption subjected to full relaxation, as is often
necessary.>>%’

Finally, we note that a full discussion of the extended sys-
tems, and especially of the metals, requires attention to the
questions of screening exchange contributions. The vdW-DF-
cxOpis acompletely unscreened hybrid and so we are presently
over-estimating the effects of long-range exchange. Improve-
ments relative to the vdW-DF-cx0 design® are motivated and
could take the form of adapting the HSE'>!03 or OTRSH'"!
logic to the vdW-DF framework.

VI. SUMMARY AND CONCLUSION

Adapting the motivation for PBE-based hybrids,'""!? we
have constructed system-specific two-legged hybrids vdW-
DF-tlh based on the vdW-DF-cx coupling-constant varia-
tion.** The vdW-DF-tlh constructions are related to the idea
of a perturbation-theory approach to hybrid density function-
als;'%!113 Tt combines calculations of the functional coupling-
constant variation and MP2 results to establish the Fock mix-
ing fraction a ~ 1/m (m integer) directly.'” The two-legged
hybrid constructions'? provide a qualitative discussion of this
strictly parameter-free perturbation-based hybrid approach.
We emphasize that the vdW-DF-tlh design is not suggested
for pursuing broad calculations; it is for analysis only.

Our overall discussion is based on using vdW-DF-tlh
for molecular problems: subsets of the G2-1 atomization
energy,’ the G2RC set of reaction-energies,”> the G211P set of
ionization-potentials,” the S22 set of inter-molecular binding
benchmarks,’?%° the IDISP set of intra-molecular noncova-
lent interactions,>® the A12X6 set of aluminum dimerization
energies,3&95 and the DARC set of Diels-Alder reaction ener-
gies. The IDISP, AI2X6, and DARC energies all test effects
of electron affinities and delocalization errors. While lacking
self consistency, we find that the vdW-DF-tlh is accurate. This
builds confidence in our qualitative results: (a) the plausible
all-round value for a hybrid vdW-DF-cx0 design would be
a =0.2, close to but different from the a = 0.25 value that was
used in Ref. 6, but also, (b) there is only a partial rationale
for just using single, fixed Fock-exchange mixing fraction in
Eq. (1) since there is a scatter in the values that we extract from
trying to use vdW-DF-tlh.

As an interesting aside, we note that the vdW-DF-tlh anal-
ysis can be used to check if, in some specific problem, a
given choice of the Fock mixing is very off for the hybrid
use, for example, very different from the typical recommenda-
tions for hybrids,%?> @ = 0.25 or @’ = 0.2. This analysis can
be made using our code pPACF for tracking the coupling-
constant variation of the vdW-DF-cx functional (and other
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semilocal- or nonlocal-correlation density functionals), as
evaluated for system-specific, self-consistent electron-density
solutions.*"

Our analysis leads us to explore a specific version, termed
vdW-DF-cx0p, of the vdW-DF-cx0 design.6 This is done,
because unlike vdW-DF-tlh, the vdW-DF-cxOp (with fixed
mixing a’ = 0.2) can be carried to self-consistency. We find
that vdW-DF-cx0Op, compared to the original vdW-DF-cx0
form (having a = 0.25), generally improves the descrip-
tion of molecular systems, as expected by the vdW-DF-tlh
analysis.

We suggest using the vdW-DF-cx0p version (of the vdW-
DF-cx0 design®) for both covalent and noncovalent molec-
ular systems. We make this suggestion because vdW-DF-
cxOp can be seen as restricting all parameter inputs to for-
mal many-body perturbation theory: Even the assessment
of an optimal average mixing value @’ = 0.2 comes from
analysis of the vdW-DF-tlh constructions (which, in turn is
based on the analysis of ACF behavior for the underlying
strictly parameter-free vdW-DF-cx). We also observe that the
vdW-DF-tlh analysis does indicate a finite scatter in relevant
asys values for general hybrid characterizations of molecular
interactions. We see this scatter as, in part, expected from
the long tradition in using traditional semilocal-correlation
hybrids.S’l 1-13,82

The vdW-DF-cx0p usefulness originates, in practice, from
our present demonstration that a single, fixed value a’ = 0.2
can be used for a concurrent description of both covalent and
noncovalent interactions in molecules. In addition, we find
that it is useful in some extended-system cases. The vdW-DF-
cx0 design® is robust and there are only moderate effects of
changing the Fock-exchange mixing.

It is interesting that our present vdW-DF-tlh-based iden-
tification of an optimal average mixing value, a’ = 0.2, for
the vdW-DF-cx0 design® is identical to the value Becke orig-
inally extracted for standard semilocal-correlation hybrids.!
The a’ = 0.2 value is in broad usage for molecular prob-
lems, for example, in the definition the OTRSH!?! that can
reliably track electronic excitations. Becke’s identification of
a’ is based on a fit, comparing results from a range of poten-
tial semilocal-correlation hybrids to mostly covalent interac-
tion properties of molecules (and some atom problems). By
contrast, the present specification is based on a formal ACF-
based analysis'%~!>27-30 for the underlying regular vdW-DF-cx
functional.

We view the fact that there are two independent but coin-
ciding specifications of a’ = 0.2 as an indication of a soundness
in the logic of nonlocal-correlation hybrid functionals. The
vdW-DF-cx can formally be seen as a systematic extension
of semilocal GGA functionals,2*? with a seamless integra-
tion. The vdW-DF-cx construction secures a highly reliable
traditional-material description in cases with a dense electron
distribution.33:9266.70 Such cases include covalent bonding in
molecules. It is therefore possible to view the present work
both as a formal rediscovery of the Becke a’ = 0.2 mixing value
and as a demonstration that it extends to noncovalent molec-
ular binding as well. The demonstration is important because
vdW-DF-cx0 has a different design logic than the traditional
semilocal-correlation hybrids.
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SUPPLEMENTARY MATERIAL

See supplementary material for 12 tables, denoted as S.I-
S.X1lI, individually introduced and referenced in the text above.
The supplementary-material tables detail the two-legged
hybrid constructions as well as the vdW-DF-cx, vdW-DF-cx0,
vdW-DF-cx0p, and PBEO performances for individual molec-
ular systems or reactions in the G2-1, G2RC, G21IP, S22,
IDISP, AlI2X6, and DARC benchmark sets. As such, they
provide the basis for our assessment of an optimum average
mixing ratio {asys) and for the performance comparisons that
we summarize in Tables [-VII (and in Figs. 4 and 5).
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