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Symplectic methods for Hamiltonian isospectral
flows and 2D incompressible Euler equations on

a sphere

Milo Viviani

Department of Mathematical Sciences
Chalmers University of Technology and University of Gothenburg

Abstract

The numerical solution of non-canonical Hamiltonian systems is an

active and still growing field of research. At the present time, the biggest

challenges concern the realization of structure preserving algorithms for

differential equations on infinite dimensional manifolds. Several classical

PDEs can indeed be set in this framework. In this thesis, I develop a new

class of numerical schemes for Hamiltonian isospectral flows, in order to

solve the hydrodynamical Euler equations on a sphere. The results are

presented in two papers.

In the first one, we derive a general framework for the isospectral flows,

providing then a class of numerical methods of arbitrary order, based on

the Lie–Poisson reduction of Hamiltonian systems. Avoiding the use of

any constraint, we obtain a large class of numerical schemes for Hamil-

tonian and non-Hamiltonian isospectral flows. One of the advantages of

these methods is that, together with the isospectrality, they have near

conservation of the Hamiltonian and, indeed, they are Lie–Poisson inte-

grators.

In the second paper, using the results of the first one, we present a

numerical method based on the geometric quantization of the Poisson

algebra of the smooth functions on a sphere, which gives an approximate

solution of the Euler equations with a number of discrete first integrals

which is consistent with the level of discretization.

Keywords: Geometric integration, Symplectic methods, Structure preserving
algorithms, Lie–Possion systems, Hamiltonian systems, Isospectral flows, Euler
equations, Fluid dynamics.
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Introduction

History

The following thesis would like to summarize the last two and half years spent
on the study of the numerical solution of Lie–Poisson Hamiltonian systems and
their connection with other fields of mathematics and applications.

The starting point of the present research dates back to my master thesis,
defended in September 2015. In that work I was interested in the numerical
solution of the hydrodynamical Euler equations on a rotating sphere with con-
tinuous and singular (point vortices) vorticity fields. The aim of that thesis was
to get a numerical method which retained the main geometric properties of the
continuous equations in the discrete case. The hydrodynamical Euler equations
are indeed a classical example of Lie–Poisson Hamiltonian system. This means
that the equations encode a lot of symmetries and therefore conservation laws.
What had motivated my research was that there was not yet an established and
efficient way to integrate the Euler equations respecting those symmetries.

Eventually that thesis did not give a satisfactory result and the research
had to be continued during my PhD studies, started in October 2015 under the
supervision of prof. Klas Modin. During the first one and half years the results
obtained were quite satisfactory but still not really innovative. The main reason
was that our simulations of the Euler equations required very large matrices and
the algorithm developed still had too many implicit equations to be solved in
order to be really applicable.

Finally, we came to a turning point. In our approach, it was clear that, to
retain the first integrals, we needed to put some constraints on the equations.
However, what if the constraints could be instead intrinsically encoded into the
numerical method? This was not in general a feasible approach but surprisingly
it turned out that, in this case, aiming for simplicity was rewarding. Working
with this idea in mind it was possible to generate several numerical methods
much simpler and efficient than the previous ones. Moreover a lot of Lie–
Poisson systems could then be solved with the same approach and in fact, for
any quadratic Lie algebra, it was easy to derive a Lie–Poisson integrator of any
order. An encouraging fact was also that the methods developed looked like to
be the natural ones, requiring only the information coming from the Lie algebra.

Here I present these results in the following way. In the first section I will
introduce the general framework of Lie–Poisson Hamiltonian systems and some
remarks on the Poisson reduction. In section two, the theory and the numerics
of isospectral flows will be presented and discussed. In section three I will focus
on the numerical solution of the Euler equations on a sphere, which had been
the main source and aim of the whole research. Finally, I will conclude with a
summary of the papers and the aim of future research. In appendix, paper I-II
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are attached.

Motivation

The problems here presented are a classical and widely studied topic among the
geometric integration community. However, it may (or may not) be surprising
that several questions are still unsolved. It will be clear while reading the
thesis that the work here presented aims to connect different threads, either
to conclude or complete several papers found in literature. In particular, the
two main branches of the thesis, i.e., the Hamiltonian isospectral flows and
the incompressible Euler equations, will be connected. The first one will be
focused on the possibility of having intrinsic arbitrarily high order methods for
Hamiltonian isospectral flows. The positive answer obtained will lead to a direct
application to the second one and will provide a better understanding of the
possible advantages of having a Casimir functions-preservation discretization
scheme.
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1 Lie–Poisson systems

Since its foundation, mathematical physics has been built up from the language
and the concepts coming from geometry. The mechanics of Giuseppe Lodovico
Lagrangia, Leonard Euler and William Hamilton tried instead to develop an
analytical formulation of the fundamental laws of the Universe. Therefore it
was not expected that the same equations were hiding even more geometry
than before. Sophus Lie, Emmy Nöether and lately Vladimir Arnold showed
that the natural language of physics was indeed the differential geometry.

In this section I want to introduce and discuss one of the most intriguing and
ubiquitous structure arising in differential geometry and mathematical physics,
which is named after the French mathematician Siméon Denis Poisson.

1.1 Poisson structures and Hamiltonian systems

Definition 1 (Poisson bracket). Let M be a smooth manifold and C∞(M) the
real vector space of smooth real valued functions defined on M . The Poisson
bracket is a bilinear operation {·, ·} on C∞(M), satisfying the following condi-
tions:

• {F,G} = −{G,F} skew symmetry;

• {F,G ·H} = {F,G} ·H + {F,H} ·G Leibniz rule;

• {{F,G}, H}+ {{H,F}, G}+ {{G,H}, F} = 0 Jacobi identity.

A mainfold M equipped with a Poisson bracket is said to be a Poisson
manifold. The Poisson bracket can be represented by a form P∈

∧2
TM by1:

{F,G}(x) = Px(dF (x), dG(x)) (1)

for any x ∈M .

Definition 2 (Symplectic form). Let M be a smooth manifold. ω ∈
∧2

M is
said to be a symplectic form if it is closed and non degenerate, i.e., for any
p ∈M , v ∈ TpM , if for all w ∈ TpM ωp(v, w) = 0, then v = 0.

A manifold M equipped with a symplectic form ω is said to be a symplectic
manifold, and it is denoted as (M,ω).

1Note that we will denote by
∧

2 TM the space of the sections from M to the alternating
2-tensor on the tangent bundle of M while by

∧
2 T ∗M =:

∧
2 M the space of the sections

from M to the the alternating 2-tensor on the cotangent bundle of M , which are the usual
2-forms.
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Remark 1. We observe that M always admits a trivial Poisson bracket, i.e.,
the zero one, but not always a symplectic form. In fact M has to be of even
dimension and orientable (e.g., R2n, n > 0). Moreover, if M is compact, then
the second group of De Rahm cohomology of M must be non zero (e.g., S2 and
Tn are symplectic but neither RP

2 nor S2n for n > 1 are). Furthermore, a
symplectic form induces a canonical Poisson bracket as we will see below.

Definition 3 (Hamiltonian vector field). Let (M,ω) be a symplectic manifold.
A vector field X ∈ TM is said to be Hamiltonian if there exists a function
H ∈ C∞(M) such

ιXω = dH (2)

where ιXω is the contraction of ω by X, i.e., ιX :
∧2

M →
∧1

M such that, for
all p ∈M and v ∈ TpM , ιXωp(v) = ωp(Xp, v).

Remark 2. We observe that (2) are nothing else than the Hamilton equations.
In fact, for the sake of simplicity, assumeM = R

2n. Then a symplectic form can
be represented in the canonical coordinates q1, ..., qn, p1, ..., pn by the constant
skew matrix J ∈ M(2n,R) with coefficients as follows: Jij = 0 if i, j ≤ n or
i, j > n, Jij = δij if i > n, j ≤ n and Jij = −δij if i ≤ n, j > n. The dHq,p

can be written as ∇Hq,p and X(q, p) = (q̇, ṗ), where (q, p) are the flow line of
X from some initial values. So (2) becomes

J · (q̇, ṗ) = ∇Hq,p, (3)

which are the Hamilton equations after inversion of J .

Furthermore, we observe that ω induces a diffeomorphism
ω̂ : TM → T ∗M defined as ω̂(v) = ωp(v, ·) for every v ∈ TpM . So, given
F , we define the Hamiltonian vector field associate to F as XF = ω̂−1(dF ). Fi-
nally, given a symplectic manifold (M,ω), we define, for every F,G ∈ C∞(M)
the following Poisson bracket:

{F,G} = ω(XF , XG), (4)

where everything is defined pointwise. To compute (4) in local coordinates we
need the following basic theorem.

Theorem 1 (Darboux). Let (M,ω) be a symplectic manifold of dimension 2n.
Then for every p ∈ M , there exists a local chart (V, ϕ = (q1, ..., qn, p1, ..., pn))
centred in p, such that:

ω|V =
∑n
i=1 dqi ∧ dpi,

i.e., ω is represented by the matrix J defined above.
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Such coordinates are called canonical or Darboux coordinates. Now we can
write (4) in coordinates. Let (V, ϕ) be a chart given by the Darboux theorem,
then, in this chart, XF =

∑n
i=1

∂F
∂pi

∂
∂qi

− ∂F
∂qi

∂
∂pi

. A similar expression holds for

XG. Then, a straightforward computation leads to write (4) as:

{F,G} =
n∑

i=1

∂F

∂qi

∂G

∂pi
− ∂F

∂pi

∂G

∂qi
, (5)

where the relations dqi(∂qi) = 1, dqi(∂pi) = 0, dpi(∂qi) = 0, dpi(∂pi) = 1, for
i = 1, ...n, have been used. The canonical coordinates satisfy:

{qi, qj} = {pi, pj} = 0 and {qi, pj} = −{pj, qi} = δij for i, j = 1, ..., n.

An obvious consequence is that, for every F ∈ C∞(M), and any Hamiltonian
vector field XH we have:

XH(F ) = {F,H}.

So for pi, qi, i = 1, ..., n integral curves of XH we have that:

q̇i = XH(qi) = {qi, H} and ṗi = XH(pi) = {pi, H} for i = 1, ..., n,

which is an other formulation of the Hamilton equations (3).

Definition 4. Let (M,ω,H) be a Hamiltonian system, i.e., a symplectic man-
ifold with a Hamiltonian function H. A function f ∈ C∞(M) constant on any
integral curve of XH is said to be a first integral of the system. A vector field
X ∈ TM is said to be an infinitesimal symmetry if both ω and H are invariant
under the flow of X.

Theorem 2 (Noether theorem). Let (M,ω,H) be a Hamiltonian system.

• if f is a first integral, then Xf is an infinitesimal symmetry;

• on the other hand, if H1(M) = 0 (where H1(M) is the first group of De
Rham cohomology of M), then any infinitesimal symmetry is a Hamilto-
nian vector field of a first integral, uniquely defined, except for an additive
constant for any connected component of M .

1.2 Lie–Poisson systems

A remarkable Poisson structure can be naturally given to the vector spaces
that are also the dual of a Lie algebra. Consider a Lie algebra (g, [·, ·]), not
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necessarily of finite dimension, and let g∗ be its dual. Then on C∞(g∗) we have
the following (canonical) Poisson bracket:2

{F,G}±(v) = ±〈v, [dF (v), dG(v)]〉 (6)

where v ∈ g∗ and we have identified g ∼= g∗∗.
The Lie–Poisson bracket is a very important example of a generally neither

trivial nor symplectic Poisson bracket. In this case, the Poisson form P ∈ ∧2
Tg∗

is linear and can be expressed by:

Pij(v) = ±Ckijvk (7)

where Ckij are the structure constants of g. Let H be a smooth function on g∗.
Then, the system:

Ḟ (v(t)) = {F,H}±(v(t))
F (v(0)) = F (v0)

(8)

which has to be satisfied for any F ∈ C∞(g∗), it is said to be Lie–Poisson
system with Hamiltonian function H (the bracket is the one defined above and
v(t) ∈ g∗, for any t ∈ R). Because of the anti-commutativity of the Poisson
bracket, it is clear that in a Lie–Poisson system the Hamiltonian is a conserved
quantity in time. Moreover, depending on the rank of the form defining the
bracket, we have a certain number of first integrals of the motion, that are
the same for any Hamiltonian. These functions that commute with any other
one, i.e., {C, ·} = 0 are called Casimir functions. As we will discuss in the
next sections, the preservation of the Casimir functions and the Hamiltonian
by a numerical method is crucial in the applications in order to guarantee good
predictions for long times.

1.3 Co-adjoint representation

We want now express (8) in terms of the co-adjoint representation of a Lie
algebra. We have first to recall some definitions.

Let G be a Lie group, and consider the map

C : G×G −→ G

(g, h) 7→ Cg(h) := ghg−1.

Then, for each g ∈ G, we have the internal automorphism Cg. If we take
the differential of this map in the identity e we get the adjoint representation,
Ad of G in End(g), that is defined by:

2The ± sign depends on the fact that the Poisson bracket here defined can also be obtained
via the reduction of the canonical ones on the left (-) or right (+) invariant functions on T ∗G

(see section 1.4.1 below).
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Adg(X) =
d

dt |t=0
(g exptX g−1), ∀g ∈ G,X ∈ g.

Finally, differentiating Ad : G → End(g) and identifying End(g) with its
tangent, we obtain the map:

ad :g −→ End(g)

X 7→ adX = [X, ·].

Let us now define the dual of the adjoint representation, i.e., the represen-
tation of the group G and the Lie algebra g on the endomorphism of the dual of
the Lie algebra g∗. We define the co-adjoint representation Ad∗ : G→ End(g∗)
by:

〈Ad∗(g)(φ), X〉 = 〈φ,Ad(g−1)X〉 ∀g ∈ G,X ∈ g, φ ∈ g∗.

Proceeding as before, one can find the infinitesimal version ad∗ : g →
End(g∗), given by ad∗X = −(adX)∗, i.e.,

〈ad∗X(φ), Y 〉 = 〈φ,−adX(Y )〉 ∀X,Y ∈ g, φ ∈ g∗.

Let O be an orbit of the co-adjoint action Ad∗ : G × g∗ → g∗. It holds the
remarkable fact that the co-adjoint orbits have a canonical symplectic structure,
called Kirillov-Kostant-Souriau form. Let p ∈ O and X,Y ∈ g, then the two
form:

ωp(ad
∗
X(p), ad∗Y (p)) = 〈p, [X,Y ]〉,

is a symplectic form on O, where we have used the canonical identification of g∗∗

with g, from which we have obtained that T∗g∗ ≃ g∗× g. We conclude noticing
that the co-adjoint orbits are immersed submanifold3 where the Casimir func-
tions are constant. However, in general, the Casimir functions don’t characterize
the co-adjoint orbits4.

Let us go back to the Lie–Poisson system (8). We notice that the bracket
can be expressed in terms of the co-adjoint representation of g:

± 〈v, [dF (v), dH(v)]〉 = ∓〈v, addH(v)(dF (v))〉 = ±〈ad∗dH(v)(v), dF (v)〉. (9)

We want to remark that a Lie–Poisson system evolves precisely on the co-
adjoint orbits given by the Ad∗ action. In fact let consider F = F (v(t)) where
x(t) is a curve in g∗, and v(0) = v0. Applying the chain rule we get:

dF (v̇) = ±〈ad∗dH(v)(v), dF (v)〉
3If the action of the group G is also proper, e.g., G compact, then the co-adjoint orbits are

embedded submanifold.
4[13], pag. 479.
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for any F ∈ C∞(g∗). Hence it is true that:

v̇ = ±ad∗dH(v)(v). (10)

Integrating this system we get:

v(t) = Ad∗
exp(±

∫
t

0
dH(v(s))ds)(v0).

1.4 Momentum maps and Lie–Poisson reduction

In this section we will briefly recall the concept and the main properties of the
momentum map of a group action on a Poisson manifold. For further details
we refer to [12] and [13].

Let G be a Lie group acting to the left on a Poisson manifold P , such that
for any g ∈ G the action Φg is a Poisson map, i.e., {·, ·} ◦ Φg = {· ◦ Φg, · ◦ Φg}.
Let the infinitesimal action of G be the map ρ : g× P → TP defined by:

ρξ(p) =
d

dt |t=0
exp(tξ)p, (11)

for any ξ ∈ g, p ∈ P . Hence, ρξ is a vector field on P . Furthermore, we assume
the G-action to be Hamiltonian, i.e., there exists a function Jξ ∈ C∞(P ) such
that ρξ = {·, Jξ}. Then we define the momentum map µ : P → g∗ by:

〈µ(p), ξ〉 = Jξ(p). (12)

We remark that, if the Poisson bracket is induced by a symplectic form ω, then
the momentum map can be defined by the formula:

d〈µ(p), ξ〉 = ιρξ(p)ωp. (13)

For a right action one can repeat exactly the same calculations. The main
difference, as one can easily check, is that the map J : g → C∞(P) is a Lie
algebra homomorphism for the left action and a Lie algebra anti-morphism for
the right action (cfr. [12]).

Let us now denote µL (respectively µR) the momentum map coming from
the left (respectively right) G-action on P . Let also g∗− (respectively g∗+) be
the dual of the Lie algebra g endowed with the − (respectively +) Lie–Poisson
bracket.

The main property of the momentum maps is stated in the following propo-
sition:

Proposition 1 (Prop 2.1, [12]). Let µL : P → g∗+ (respectively µR : P → g∗−)
be the momentum map defined above. Then µL (respectively µR) is a Poisson
map.

8



Proof. Let consider the left case. By definition of the Lie–Poisson bracket:

{F,G}+(µ(p)) = 〈µ(p), [dF (µ(p)), dG(µ(p))]〉
= J[dF (µ(p)),dG(µ(p))](p).

Now, since J : g → C∞(P) is a Lie algebra homomorphism, we have that:

J[dF (µ(p)),dG(µ(p))](p) = {JdF (µ(p)), JdG(µ(p))}+(p).

Finally, by the definition of the Poisson bracket, it is enough to prove that:

d(JdF (µ(p))) = d(F ◦ µ)(p)−

Indeed, we have:

〈d(F ◦ µ)(p), vp〉 = 〈dF (µ(p)) ◦ dµ(x), vp〉
= 〈d〈µ(p), dF (µ(p))〉, vp〉
= 〈d(JdF (µ(p))), vp〉.

for any vp ∈ TpP .

1.4.1 Lie–Poisson reduction

Now that we have introduced the momentum maps, we can show how Lie–
Poisson systems are related to the canonical Hamilton equations.

Let (P, {·, ·}, H) be a Poisson Hamiltonian system and let (M,ω,Hψ) be a
Hamiltonian system, where Hψ = H ◦ ψ and ψ :M → P is a Poisson map.

Consider G a Lie group with a Hamiltonian left (resp. right) action5 on M
and such that Hψ is left (respectively right) G-invariant and G is transitive on
the fibres of ψ. Suppose that there exists a left momentum map µ : M → g∗,
where g is the associated Lie algebra of G. Then, by Proposition 1, we know
that µ is a Poisson map between the canonical Poisson bracket on M and the
Lie–Poisson bracket on g∗+.

Since Hψ is G−invariant, the momentum map µ is a conserved quantity of
the dynamical system. It is shown in [12] that, assuming there are no singular-
ities in the quotient with respect to the group action, given a co-adjoint orbit
O in g∗, the map ΨO = ψ|µ−1O induces an embedding Ψ̂O : µ−1O/G→ P to a
symplectic leaf of P 6.

5With Hamiltonian action, we understand an action such that its infinitesimal action is an
Hamiltonian vector field.

6It is a general fact that any Poisson manifold is a union of symplectic submanifolds, called
”symplectic leaves”. The trajectory of XH starting in a particular leaf necessarily stays there.
For g∗± the symplectic leaves coincide with the respective co-adjoint orbits.
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In particular, when M = T ∗G and P = g∗− (resp. P = g∗+), we can take
Ψ = µR (resp. µL) and µ = µL (resp. µR). Then, the canonical Hamilton

equations in T ∗G w.r.t to the Hamiltonian H̃ become the equations (8) on g∗−

(resp. g∗+) with respect to to the Hamiltonian H on g∗, defined by H ◦ µL = H̃

(resp. H ◦ µR = H̃).

1.5 Lie–Poisson systems on gl(n,C)∗

In this section, in view of the applications, we want to remark some facts about
Lie–Poisson systems on the dual of the general matrix Lie algebra gl(n,C)∗. In
particular, we want to clarify in detail the meaning of the identification between
gl(n,C)∗ and gl(n,C) and how this affects the representation of the equations
of a Lie–Poisson system.

1.5.1 ad vs ad∗

Considering the adjoint representation of gl(n,C) on itself:

adA(B) = [A,B] = AB −BA,

for any A,B ∈ gl(n,C).
Let us now look at the co-adjoint representation of gl(n,C) on gl(n,C)∗.

Consider the two different identifications of gl(n,C)∗ with gl(n,C):

〈A,B〉1 = Tr(AB)

〈A,B〉2 = Tr(A†B),

for A,B ∈ gl(n,C). The second one comes from the Frobenius inner product
on gl(n,C) (in terms of basis, the first one says that the dual element of a given
one is its complex adjoint whereas the second one says that it is itself)7.

Recalling that ad∗A = −(adA)
∗, the respective co-adjoint representations are:

ad∗1

A B = −[B,A] = adAB

ad∗2

A B = [B,A†] = − adA† B.

1.5.2 Euler–Poincaré equations and their representations

In literature, equations (10), for quadratic Hamiltonian functions, are often
called Euler–Poincaré equations. In this paragraph we want to show that the

7Here with † we understand the complex adjoint.
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dynamics generated is independent from the identification of gl(n,C)∗ with
gl(n,C).

To define the Euler–Poincaré equations, we need a symmetric positive-
definite linear map A : gl(n,C) → gl(n,C)∗. An explicit form of this map
depends on the way we identify the algebra with its dual. Let us denote A with
A and Ã, the respective form, with respect to ad∗2 and respectively, ad∗1 . We
then have that the following inner products are identically defined:

〈A,B〉A := 〈AA,B〉2 = Tr(((AA)†B)
=

〈A,B〉Ã := 〈ÃA,B〉1 = Tr(ÃAB).

for A,B ∈ gl(n,C). Therefore, we have to have that Ã = † ◦ A. Then, for
Ψ ∈ gl(n,C), the Lagrangian function can be defined as:

L(Ψ) =
1

2
〈Ψ,Ψ〉A =

1

2
〈Ψ,Ψ〉Ã.

The respective momentum variables in gl(n,C)∗ are:

ΩA =
∂L(Ψ)

∂Ψ
= AΨ

ΩÃ =

(
∂L(Ψ)

∂Ψ

)†

= ÃΨ

and we observe that (ΩA)
† = ΩÃ. From these calculations, we get the

Hamiltonian functions:

HA(ΩA) =
1

2
〈ΩA,A−1ΩA〉2

HÃ(ΩÃ) =
1

2
〈ΩÃ, Ã−1ΩÃ〉1.

So we have the identities:

∂HA(ΩA)

∂ΩA
= A−1ΩA = Ψ

∂HÃ(ΩÃ)

∂ΩÃ

= Ã−1ΩÃ = Ψ.

Finally, we get the equation of motion ([13], Chapt. 13):

〈Ψ̇, Y 〉A = −〈Ψ, adΨ Y 〉A = 〈A−1 ad∗2

Ψ AΨ, Y 〉A,
〈Ψ̇, Y 〉Ã = 〈Ψ, adΨ Y 〉Ã = −〈Ã−1 ad∗1

Ψ ÃΨ, Y 〉Ã,

11



for any Y ∈ gl(n,C). These can also be written in the strong form as:

Ψ̇ = A−1 ad∗2

Ψ AΨ = A−1[AΨ,Ψ†],

Ψ̇ = Ã−1 ad∗1

Ψ ÃΨ = −Ã−1[ÃΨ,Ψ],

or, considering the dual version for ΩA,ΩÃ:

Ω̇A = ad∗2

A−1ΩA
ΩA = [ΩA, (A−1ΩA)

†],

Ω̇Ã = ad∗1

Ã−1Ω
Ã

ΩÃ = −[ΩÃ, Ã
−1ΩÃ].

Remark If we transpose the second equation, we get:

Ω̇†

Ã
= [Ω†

Ã
, (Ã−1ΩÃ)

†],

and, using the fact that (ΩA)
† = ΩÃ, and Ã−1ΩÃ = A−1ΩA, we see that the

Euler–Poincaré equations are independent from the choice of the pairing.

1.5.3 Lie–Poisson maps on gl(n,C)∗

Consider the identification of gl(n,C) with its dual, via the Frobenius pairing.
After this identification, the Lie–Poisson structure on gl(n,C)∗ is completely
determined by the structure constants of gl(n,C). Therefore any Lie algebra
morphism of gl(n,C) will be a Lie Poisson map on gl(n,C)∗ and viceversa.

We now want to check how it looks with respect to ad∗. Let consider a :
gl(n,C) → gl(n,C) invertible Lie algebra morphism, A,B ∈ gl(n,C) and φ ∈
gl(n,C)∗ ≡ gl(n,C) (via the Frobenius identification). Then we get:

Tr((a ad∗A(φ))
†B) = −Tr((a[A†, φ])†B)

= −Tr(φ†[A, a†B])

= −Tr((aφ)†[a−TA,B])

= −Tr(([A†a−1, aφ])†B)

= Tr((ad∗a−TA(aφ))
†B).

So we have the formula:

a ad∗A(φ) = ad∗a−TA(aφ). (14)

Consider A to be equal to ∇H(φ), for a smooth function H defined on
gl(n,C)∗, i.e., we have a Lie–Poisson Hamiltonian system. Then the action on
an invertible linear map on the (Lie–Poisson) Hamiltonian vector field is:

a ·XH := Da ◦XH ◦ a−1,

12



where XH(φ) = ad∗∇H(φ)(φ). Then, using the formula (14), we get:

a ·XH(φ) = a ad∗∇H(a−1φ)(a
−1φ)

= ad∗a−T∇H(a−1φ)(φ)

= ad∗∇(H◦a−1)(φ)(φ)

= XH◦a−1(φ),

which is again a Lie–Poisson Hamiltonian system.
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2 Isospectral flows and their numerical solution

2.1 Isospectral flows and their properties

The isospectral flows are a central class of dynamical systems with symmetries.
They arise in fact in different contexts: Lie–Poisson reduction, matrix factor-
ization, Lax pairs of integrable systems, et cetera [8],[10],[16]. As the name
suggests, isospectral flows represent a dynamical system on linear operators
such that the spectrum of operator is fixed during the whole evolution. If the
operators are diagonalizable, then, at each time, the operator is similar to the
initial one.

Let the flow
Φ : [0,∞)× L(V ) → L(V )

(t,W ) 7→ Φt(W )

be an isospectral flow on L(V ), where V is a finite dimensional vector space of
dimension n. Let W0 be the initial value. Then, for any t ≥ 0, there exists U(t)
such that:

W (t) = Φt(W0) = U(t)−1W0U(t). (15)

By differentiation of (15), one find that W is the solution of:

Ẇ = [B(W ),W ]
W (0) =W0,

(16)

where B(W ) = U−1U̇ and the bracket is the usual matrix commutator [A,B] =
AB −BA.

Other than the eigenvalues of the operator, one can choose a different set of
generators for the first integrals of (16). This is provided by the momentum of
W . In fact:

d

dt
Tr(W k) = Tr(W k−1[B(W ),W ]) = Tr(B(W )[W k−1,W ]) = 0,

for k = 1, 2, ... . SinceW is represented by a n×nmatrix, its first nmomenta
are independent, then they are related by the Cayley–Hamilton theorem (in fact
Tr(W k) =

∑n
i=1 λ

k
i , for λi the eigenvalues of W ).

When B(W ) takes the form of (the transpose of) a gradient of a function, the
equation (16) will be said Hamiltonian-Isospectral flow. The word Hamiltonian
is because the function H such that B = −∇H† is a conserved quantity of (16).
In fact:

d

dt
H(W ) = −Tr(∇H(W )†[∇H(W )†,W ]) = −Tr(W [∇H(W )†,∇H(W )†]) = 0.

14



A further reason to use the word Hamiltonian is that L(V ), endowed with
the bracket [·, ·], can be seen as the Lie algebra gl(n,C) and the equations (16)
as the reduced form of a canonical Hamiltonian system, as shown in section
1.4.1.

Indeed, if we identify the dual of gl(n,C) with itself, via the Frobenius
inner product 〈A,B〉 = Tr(A†B), the equations (16) above form a Lie–Poisson
Hamiltonian system with respect to the co-adjoint representation of gl(n,C) on
gl(n,C)∗ given by:

ad∗AB = [B,A†] = − adA† B

for A ∈ gl(n,C), B ∈ gl(n,C)∗ ∼= gl(n,C).

2.1.1 Restriction to a subspace of gl(n,C)

It is interesting, both for theoretical and practical purposes, to analyse the
case when W evolves on a subspace S of gl(n,C). It is clear that if W ∈ S
then B(W ) has to be in n(S), i.e., the normalizer of S in gl(n,C), which is
the largest subalgebra of gl(n,C) such that [n(S), S] ⊆ S. This framework is
used in Paper I to encompass at the same time the ”classical” isospectral flows,
e.g., W ∈ Sym(n), B(W ) ∈ o(n), and the Lie–Poisson systems on reductive
Lie-algebras.

2.2 Numerical approximation of the isospectral flows

As we have shown above, the main feature of the isospectral flows is to have a
set of first integrals that can be expressed as polynomials of a certain order. A
direct application of a Runge–Kutta method to (16) would not preserve these
invariants. It has actually been proved that in general none will work for this
purpose [8].

A popular method to overcome this issue is the so called Runge-Kutta-
Munthe-Kaas scheme [10],[16]. The idea is to solve

U̇ = UB(U−1W0U) (17)

for U and then find W using (15). Since U is in a Lie group G, the Munthe-
Kaas method consists in lifting (17) to its Lie algebra g via some map from
g → G (e.g., exp,Cay). Then, on g, any classical Runge-Kutta method can
be applied. This method allows to preserve the isospectrality of the flow but
in general not its Lie–Poisson structure and therefore, for example, we cannot
expect (near) conservation of the Hamiltonian H . An other disadvantage is that
the lifting can be expensive to compute. However, a huge advantage is that it
provides explicit isospectral methods.
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A related technique is given by the symplectic Lie group methods on T ∗G as
developed by Bogfjellmo and Martinsen [4]. These methods rely on an invertible
mapping between the Lie algebra and (an identity neighbourhood of) the Lie
group, such as the exponential map (works in general) or the Cayley map (works
for quadratic Lie groups).

An other approach for solving (16) is given by the so called RATTLE method
[10]. RATTLE is a general method for Hamiltonian systems with constraints.
To use RATTLE for (15), one has to pull-back the equations from g∗ to T ∗G
and then solve the constrained Hamiloninan system. It indeed provides a Lie–
Poisson integrator for (18) but with the burden of solving implicit equations
to constrain the system on the right manifold. Some attempts of removing the
constraints can be found for example in [15].

Our approach, presented in Paper I, has (independently) followed exactly
that thread. Indeed, starting from some simple cases, it was not hard to realize
that, with some manipulations of the canonical symplectic Runge-Kutta meth-
ods, in many cases the removal of the constraints was possible. This has led to
a large class of isospectral methods directly defined on the Lie algebra.
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3 2D Euler equations on the sphere and their
numerical solution

3.1 Hydrodynamical Euler equations

Consider a homogeneous, incompressible, inviscid, two-dimensional fluid which
is constrained to move on a spherical surface, embedded in the standard Eu-
clidean R3, which is rotating with constant angular speed, with respect to a
fixed normal axis. The equations of motion of such a fluid are given by the well
known Euler equations of hydrodynamics:

v̇ + v · ∇v = −∇p− 2Ω̃× v
∇ · v = 0

(18)

where v is the velocity vector field of the fluid, p is its internal pressure and
Ω̃ = (Ω · n)n is the projection of the angular rotation of the sphere Ω to the
normal n at a point of the sphere. The last term in the first equation of (18),

Fc = −2Ω̃× v is called Coriolis force.
The geometry behind this system turns out to play a central role in under-

standing the behaviour of the fluid [2], [3], [12] and in the investigation of nu-
merical methods to solve it [1], [14], [17], [18]. In particular the Euler equations
(18) can be equivalently expressed in terms of the one form v♭ as a Lie–Poisson
system on the dual of the infinite-dimensional Lie-algebra of divergence-free
vector fields. The respective Poisson tensor is degenerate so that there is an
infinite number of independent first integrals (Casimir functions) [3].

On the other hand, an equivalent formulation of (18) is given in terms of
the vorticity ω = (∇× v) · n. We notice that by the Stokes’ theorem it must be
that

∫
ω = 0. Then the Euler equations (18) can be written as:

ω̇ = {ψ, ω}
∆ψ = ω − f,

(19)

where f = 2Ω·n and ψ is the unique solution to the Poisson equation in C∞(S2),
such that

∫
ψ = 0.

In this form the Euler equations are a Lie–Poisson system on the smooth
functions on the sphere which integrate to 0. The Hamiltonian is given by

H(ω) =
1

2

∫
(ω − f)ψ.

The (infinitely many) Casimir functions are given, for any smooth f , by
F (ω) =

∫
f(ω). In fact, it is easy to check:

d

dt

∫
f(ω) = −

∫
f ′(ω)v · ∇ω = −

∫
v · ∇f(ω) =

∫
(∇ · v)f(ω) = 0,
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where we have used the following identity:

{ψ, ·}p = (Xψ)p(·) = p · (∇ψ ×∇·) = (p×∇ψ) · ∇· = −vp · ∇ · .

The presence of all these first integrals turns out to be the leading point in
giving a suitable discretization of (19).

3.2 Geometric structure of the Euler equations

The geometric picture of fluid dynamics dates back to Arnold [2]. The velocity
vector field of a 2D incompressible fluid moving on a symplectic surface (S, α),
embedded in the Euclidean R

3, may indeed be seen as a trajectory in the Lie
algebra of divergence free vector fields, denoted by sdiff(S). The Euler equations
(18) can be seen in this picture as a Lie–Poisson system on the dual space of
sdiff(S). Consider the standard pairing of 1-forms and vector fields, i.e.,

〈β,X〉 =
∫

S

β(X)α,

where β ∈ ∧1 S and X is a vector field on S. Then one gets that, for X ∈
sdiff(S), the pairing is invariant with respect to any exact translation of β.8

Therefore we have that sdiff∗(S) =
∧1 S/d

∧0 S.

Let us continue to work on S = S2. In [3] it’s shown that the Euler equa-

tions (18) are equivalent to a Lie–Poisson system on
∧1

S2/d
∧0

S2 = sdiff∗(S2)
(which is isomorphic to the kernel of the 1-form divergence operator δ), with
respect to the Hamiltonian function:

H([η]) =
1

2
〈η − c♭, η♯ − c〉,

which represents the kinetic energy in the non inertial frame. Here
η = (v + c)♭, [η] is its respective class in

∧1
S2/d

∧0
S2 and c is the velocity

due to the rotation of the sphere. The Lie–Poisson system can be written as:

Ḟ ([η]) = 〈ad∗dH([η]), dF 〉,

for any F : sdiff∗(S2) → R, where ad∗ : sdiff(S2) → End(sdiff∗(S2)) is the
co-adjoint representation of sdiff(S2). Equivalently (see I.6-7, [3]):

˙[η] = −LdH([η]).
8This is easily checked as

∫
df(X)α =

∫
(ιX)dfα =

∫
(LXf)α =

∫
f(LXα) = 0, where

f ∈ C∞(S) and we have used the fact that X is volume preserving.
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where L is the Lie derivative. In our case, we have dH = η♯ − c = v. Hence:

˙[η] = −Lv([η]). (20)

Note that Lie–Poisson system above defined is respect to the dual pairing
in sdiff(S2), being dF ∈ (sdiff∗(S2))∗ ∼= sdiff(S2).

At this point, to get rid off the equivalence class, one just needs to take the
exterior derivative of (20) and, using the fact that [Lv, d] = 0, get the Euler
equations in the vorticity form:

β̇ = −Lvβ, (21)

where β = d[η] ∈ ∧2
S2 represents the vorticity of v.

We write the vorticity in terms of the volume form α such that β = qα,
where the q ∈ C∞(S2) and has zero mean. Then we get

Lvβ = Lv(qα) = (Lvq)α+ qLvα = (Lvq)α,

being v volume preserving.
By taking the Hodge star of (21), via the identification

∧2
S2 ∼=

∧0
S2 =

C∞(S2), we can understand (21) in C∞
0 (S2), i.e., the space of smooth functions

which integrate to 0. Hence, we get a map ∗d : sdiff∗(S2) → C∞
0 (S2) between

a Lie–Poisson algebra and a Poisson algebra. If we call ad∗ the Lie–Poisson
structure in sdiff∗(S2) and ad the Poisson structure in C∞

0 (S2), then we have:

Lemma 1. The map π ≡ ∗d : sdiff∗(S2) → C∞
0 (S2) is such that

π∗ ad
∗ = ad .

Proof. Let v ∈ sdiff(S2) and [η] ∈ sdiff∗(S2). Let call q = d[η] and, as above,
again ∗q = q.

π ◦ ad∗v[η] = − ∗ dLv[η] = − ∗ Lvd[η] = −Lvq = LXψq = {ψ, q} = adψ q,

where ψ is the only function in C∞
0 (S2) such that Xψ = −v (it exists being v

divergence free and being S
2 simply connected.).

It is now important to notice that, via the L2 pairing, we can identify the
dual of C∞

0 (S2) with itself. We can also endow it with a Lie–Poisson structure
which coincides with ad in C∞

0 (S2). Let call p : C∞
0 (S2) → C∞

0 (S2)∗ the
identification. Then we have:

Theorem 3. The map p ◦ π : sdiff∗(S2) → C∞
0 (S2)∗ is a Lie–Poisson isomor-

phism.
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Proof. This follows immediately from the Lemma above and the fact that
ad∗ψ q = −(adψ q)

∗ = adψ q, which is due to the fact:

∫
(v · ∇f)g +

∫
f(v · ∇g) =

∫
v · ∇(fg) = −

∫
∇ · v(fg) = 0

and the equivalence:

〈(adψ q)∗, g〉 = −
∫
(v · ∇q)g =

∫
q(v · ∇g) = 〈q,− adψ g〉.

As we have seen in the previous paragraph, a consequence of the Euler
equations of being a Lie–Poisson system is that there exists an infinite number
of independent first integrals or Casimir functions. This fact turns out to be
the leading point in giving a suitable spatial discretization of the system. In
fact, while solving the equations with a numerical scheme, we cannot expect
to preserve all the infinite first integrals but what we do want to get is having
an increasing number of first integrals with respect to the size of the discrete
problem. This cannot be achieved by simply considering a truncated spectral
decomposition of the vorticity [17], [18].

Instead we used the approach proposed by Zeitlin in [18], based on the
theory of geometric quantization of compact Kähler manifolds [6], [5], [11]. It
provides a sequence of finite-dimensional twisted-representations of the infinite-
dimensional Lie algebra of divergence-free vector fields, sdiff(S2). This sequence
can also be seen as a finite dimensional approximation of sdiff(S2), in the sense
of the Lα-convergence, which will be explained below. Then, for any of those
quasi-representations, we get a finite dimensional analogue of (19), i.e., a Lie–
Poisson Hamiltonian system on su(n) (or sl(n,C)), for any n ≥ 1, with n − 1
independent Casimir functions.

3.3 Lα-convergence

Let us consider a Lie-algebra (g, [·, ·]) and a family of labelled Lie algebras
(gα, [·, ·]α)α∈I , where α ∈ I = N or R. Furthermore, assume then that to any
element of this family it is associated a distance dα and a surjective projection
map pα : g → gα. Then we will say that (g, [·, ·]) is an Lα-approximation of
(gα, [·, ·]α)α∈I if:

• if x, y ∈ g and dα(pα(x), pα(y)) → 0, for α → ∞, then x = y,

• for all x, y ∈ g we have dα(pα([x, y]), [pα(x), pα(y)]α) → 0, for α → ∞,

• all pα, for α ≫ 0, are surjective.
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The above definition is given in [5] and it is a quite weak requirement to get
a limit for a sequence of Lie algebras. Indeed the same sequence may converge
in the Lα sense to different Lie algebras [6]. Much depends on the choice of the
projections that are not canonical. However, for our purposes, since we have
already a target and we need a suitable sequence to approximate it, we won’t
need more than that.

Let us now consider the smooth complex functions with 0 mean on the
sphere, and denote them with C∞

0 (S2,C). This vector space can be canonically
endowed by a Poisson structure given by the respective Hamiltonian vector
fields of two functions and a symplectic form α on S2. We have, for any f, g ∈
C∞

0 (S2,C):

{f, g} = α(Xf , Xg). (22)

With this bracket, C∞
0 (S2,C) becomes an infinite dimensional Poisson alge-

bra. A basis is given by the complex spherical harmonics, which will be denoted
in the standard notation and azimuthal-inclination coordinates (φ, θ) as:

Ylm =

√
2l+ 1

4π

(l −m)!

(l +m)!
Pml (cos θ)eimφ,

for l ≥ 1 and m = −l, . . . , l. In this basis it has been built up by J. Hoppe [11]
and fully proved (even in a more general contest) by M. Bordemann, E. Mein-
renken and M. Schlichenmaier [5] an explicit Lα-approximating sequence, given
by the matrix Lie algebra (sl(n,C), [·, ·]n)n∈N , where [·, ·]n = n3/2[·, ·], the
rescaled usual commutator of matrices.

The distances are given by a suitable matrix norm and the projections are
defined by associating to any spherical harmonic a respective matrix, for any
n ∈ N, i.e., pn : Ylm 7→ T nlm, where

(T nlm)m1m2
= (−1)n/2−m1

√
2l+ 1

(
n/2 l n/2
−m1 m m2

)
,

where the round bracket is the Wigner 3j-symbols. The result can be summa-
rized as:

Theorem 4 (Bordemann, Hoppe, Meinrenken, Schlichenmaier [6],[5]). Let us
consider the Poisson algebra (C∞

0 (S2,C), {·, ·}) whose pairing is defined in (22).
Then with respect to pn defined above and dn any matrix norm, we have that
(C∞

0 (S2,C), {·, ·}) is an Lα-approximation of (sl(n,C), [·, ·]n)n∈N.
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3.4 The reduced system

We can now derive the spatial discretization of the Euler equations via the
Lα-approximation. We first present the system without the Coriolis force.

For any n ∈ N, we get an analogous of the Euler equations (19):

Ẇ = [∆−1
n W,W ]n, (23)

where W ∈ sl(n,C) and ∆−1
n is the inverse of the discrete Laplacian as defined

in [18]. The crucial property of ∆−1
n is that ∆−1

n T nlm = (−l(l + 1))−1T nlm, for
any l = 1, ..., n, m = −l, ..., l.

We remark that, for a real valued vorticity, W is actually in su(n), which
means that W lm = (−1)mWl−m.

The discrete Hamiltonian takes the following form:

H(W ) =
1

2
Tr(∆−1

n WW †).

The discrete system has the following independent n− 1 of first integrals9

Fn(W ) = Tr(W k) for k=2,..,n

which, up to a normalization constant dependent on n, converge to the powers
of the continuous vorticity.

3.4.1 With the Coriolis force

In the case with the Coriolis force, the discrete system is:

Ẇ = [∆−1
n (W − F ),W ]n,

where F = 2ΩT n10 represents the discrete Coriolis force.
The discrete Hamiltonian in this case takes the following form:

H(W ) =
1

2
Tr(∆−1

n (W − F )(W − F )†).

4 Summary of the results in the papers

4.1 Paper I: Lie–Poisson methods for isospectral flows

In paper I, we treat isospectral flows and Lie–Poisson systems together, which
lead to a general recipe for solving both numerically, capturing their main geo-
metrical features.

9One should notice that by definition Tr(W ) = 0 for all W ∈ sl(n,C) and Tr(Wn) can be
replaced by det(W ), by the Cayley–Hamilton theorem.
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Consider the following Hamiltonian isospectral flow for W ∈ g, Lie subalge-
bra of gl(n,C) and H smooth function on g:

Ẇ = [∇H(W )†,W ]
W (0) =W0.

(24)

Then we have the following fact:

Proposition 2. If g is a semisimple Lie algebra then ∇H(W )† ∈ g and, via
the Frobenius norm identification, (24) is a Lie–Poisson system on g∗.

If we just have a general isospectral flow

Ẇ = [B(W ),W ]
W (0) =W0,

(25)

for W ∈ S, linear subspace of gl(n,C), then, for being (25) well defined, B(W )
has to belong to n(S), i.e., the gl(n,C)-normalizer of S.

In both cases, we require the following assumption to hold (the Hamiltonian
case is for B = ∇H†):

Assumption 1. Given ε > 0, let Sε be a ε-neighbourhood of S in gl(n,C).
Then we assume that B = B(Z) can be extended on Sε, such that B(Z) ∈ n(S)
for all Z ∈ Sε, where n(S) is the gl(n,C)-normalizer of S.

This assumption is not restrictive. For example one can extend B = B(Z)
invariantly with respect to the S-orthogonal directions. Notice that S is a linear
space, therefore this extension of the gradient of the Hamiltoninan requires only
an orthogonal projection of Z to S.

Finally consider the lifted equations on T ∗GL(n,C), for (Q,P ) ∈ T ∗GL(n,C)
such that W = Q†P satisfies (25):

Q̇ = QB(Q†P )

Ṗ = −PB(Q†P )†.
(26)

Then Q has to belong to N(S), the GL(n,C)-normalizer of S. If this is
preserved by a numerical method, we have obtained an isospectral integrator:

Theorem 5. Let W = W (t) be the solution of (25) in some linear subspace
S of gl(n,C) and let Assumption 1 hold. Then a symplectic numerical method
applied to (26) descends to an isospectral integrator on S for (25) if:

”there exists a fixed G ∈ GL(n,C) such that GQ† ∈ N(S)”

is a first integral of the discrete flow.
Moreover, if B = ∇H† and S = g, semisimple (or reductive) Lie algebra,

the method is a Lie–Poisson integrator for (24).
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The second constructive result is that any symplectic Runge-Kutta method
gives a Lie–Poisson integrator for gl(n,C), sl(n,C) and any of their quadratic
reductive subalgebras. The general s-stage methods is given by the following
scheme.

Given a Butcher tableau:
c A

bT

of a s-stage symplectic Runge-Kutta method with time step h, we get the
following Lie–Poisson integrator:

Xi = −h(Wn +
∑s

j=1 aijXj)∇H(W̃i)
†, for i = 1, ..., s.

Yi = h∇H(W̃i)
†(Wn +

∑s
j=1 aijYj), for i = 1, ..., s.

Kij = h∇H(W̃i)
†(
∑s

j′=1(aij′Xj′ + ajj′Kij′ )), for i, j = 1, ..., s.

W̃i =Wn +
∑s

j=1 aij(Xj + Yj +Kij), for i = 1, ..., s.

Wn+1 =Wn + h
∑s
i=1 bi[∇H(W̃i)

†, W̃i],

where the unknowns are Xi, Yi,Kij for i, j = 1, ..., s and the last two lines are
explicit.

In the paper, it is shown how it can be simplified in several cases. We
conclude the article by presenting several applications of the method to the rigid
body equations, the point vortex equations, the Heisenberg spin chain equations,
the Euler equations, the Toda lattice and the Toeplitz inverse problem.

In the figure below we show the results for one of our methods applied to
the generalized rigid body equations.

4.2 Paper II: A structure preserving scheme for the Euler
equations on a (rotating) sphere

In this paper we present a new class of numerical schemes to discretize the Euler
equations, both in time and space . These methods are obtained by combining
the results of Paper I and the geometric quantization reduction proposed by
Zeitlin (cf. Section 3), which leads to an ODE in su(n):

Ẇ = [∆−1
n W,W ]n. (27)

where ∆−1
n is the discrete Laplacian operator.
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Hamiltonian variation

Eigenvalues variation

Figure 1: Generalized 45-dimensional rigid body in so(10). Eigenvalues (which
occur in pair) and Hamiltonian variation; h = 10−1; inertia tensor I = diag(1 :
10); initial value (W0)ij = 1/10 if i < j, (W0)ij = −1/10 if i > j, (W0)ij = 0 if
i = j.

The numerical methods developed have the advantage to preserve, up to
machine precision, the discrete Casimir functions, nearly conserving the Hamil-
tonian and obtaining a discrete flow qualitatively similar to the original Euler
equations.

The simplest scheme for the quantized Euler equations (27) that we propose
is the 2nd order isospectral midpoint rule. With time step h, it is:

X = −h(Wn + 1
2X)∆−1

n W̃

K = h
2∆

−1
n W̃ (X +K)

W̃ =Wn + 1
2 (X −X† +K)

Wn+1 =Wn +X −X† +K −K†.

(28)

In Figures 2-3, we show the results of two simulations, where we have applied
(28) to two examples studied in [9] and [7].
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Figure 2: Vorticity ω(x, t) from the top-left at t = 0s, 4s, 40s, 140s, for the intial
data in [9]. The horizontal axis is the azimuth ϕ ∈ [0, 2π] and the vertical axis
is minus the inclination θ ∈ [0, π]. Spatial discretization in su(501).

Figure 3: Vorticity ω(x, t) from the top-left at iteration= 1, 150, 300, 450, for the
intial data in [7]. The horizontal axis is the azimuth ϕ ∈ [0, 2π] and the vertical
axis is minus the inclination θ ∈ [0, π]. . Spatial discretization in su(201).
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5 Proposals for future work

5.1 Paper I: Lie–Poisson methods for isospectral flows

In Paper I, we presented a general approach for solving numerically Lie–Poisson
systems on reductive Lie algebras. In view of the Levi decomposition of fi-
nite dimensional Lie algebras, i.e., that any of them can be decomposed into a
semi-direct product of a semisimple and a solvable Lie subalgebra, it would be
interesting to develop analogous results for Lie–Poisson systems on solvable Lie
algebras.

5.2 Paper II: A structure preserving scheme for the Euler
equations on a (rotating) sphere

In paper II, encouraging results in the study of the Euler equations have been
shown. However, our simulations, despite good, should be implemented with
higher resolution, in order to give more reliable predictions.

Analogously, a full analysis of the convergence of the quantized equations
to the original one is still missing and it should be accomplished to understand
the quality of such an approximation.

Last but not least, simulations of coupled continuous and singular vorticity
(point vortices) have yet to be done.
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LIE–POISSON METHODS FOR ISOSPECTRAL FLOWS

KLAS MODIN AND MILO VIVIANI

Abstract. The theory of isospectral flows encompasses a large class of dy-
namical systems, e.g., gradient flows, Lie–Poisson Hamiltonian systems, etc..
Their numerical resolution is a classical problem in geometric integration. The
main issue is due to the fact that the preservation of the spectra in the discrete
flow requires the conservation of high order polynomials and, for example, no
Runge-Kutta method can preserve arbitrary quadratic and cubic invariants at
the same time. However, there exist high order numerical methods (e.g., RK-
MK) which can do this, but in general they are not Lie–Poisson integrators.
In this paper we present a general framework for isospectral flows and we pro-
vide a class of numerical methods of arbitrary order, based on the Lie–Poisson
reduction of Hamiltonian systems. Avoiding the use of any constraint, we pro-
vide a large class of numerical schemes for Hamiltonian and non-Hamiltonian
isospectral flows. One of the advantages of these methods is that, together
with the isospectrality, they have near conservation of the Hamiltonian and
indeed they are Lie–Poisson integrators.
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2 KLAS MODIN AND MILO VIVIANI

1. Introduction

Lie–Poisson systems and isospectral flows are two well-studied classes of dynam-
ical systems. The former appear as Poisson reductions of Hamiltonian systems for
which the configuration and symmetry space is a Lie group (see the monograph
[11] and references therein). The classical example is the free rigid body as viewed
by Poincaré [18]. The latter, isospectral flows, appear as Lax formulations of in-
tegrable systems (see the survey papers [22, 2, 21] and references therein). The
classical example is the Toda lattice as viewed by Flaschka [20, 5].

The study of numerical methods for the two classes are by now classical subjects
in numerical analysis. The motivation for such schemes came through the strong
connection between matrix factorizations in numerical linear algebra and isospectral
flows (see the survey papers [3, 17]). This was initiated by the remarkable discovery
that the iterative QR-algorithm for computing eigenvalues is a discretization of the
(non-periodic) Toda flow [19, 4].

The general form of an isospectral flow is

Ẇ = [B(W ),W ], W ∈ S ⊂ gl(n,C). (1)

Here, [·, ·] denotes the matrix commutator, S is a linear subspace of the Lie algebra
gl(n,C), and the function B : S → n(S) maps into the normalizer algebra n(S) (see
Section 3 below for details). The most studied setting is when S = Sym(n,R) is
the space of symmetric real matrices, for which the normalizer is the Lie algebra
of skew-symmetric real matrices n(S) = so(n). Another setting is when S = g is a
Lie subgroup of gl(n,C), for which the normalizer is the subalgebra itself n(S) = g.

The predominant example connecting isospectral flows and Lie–Poisson systems
is Manakov’s n-dimensional rigid body [10]. Let us now discuss this connection.

Recall that a Lie–Poisson system evolves on the dual g∗ of a Lie algebra g. Given
a Hamiltonian function H on g∗, the flow W (t) ∈ g∗ is given by

Ẇ = ad∗dH(W )(W ), (2)

where the operator ad∗ is defined by

〈ad∗U (W ), V 〉 = 〈W, [U, V ]〉 ∀U, V ∈ g. (3)

Without loss of generality we may assume that g is a subalgebra of gl(n,C). To
identify gl(n,C)∗ with gl(n,C) we use the Frobenius inner product

〈W,V 〉 = Tr(W †V ),

where W † denotes the conjugate transpose. In this way we also identify g∗ with
the subspace g ⊂ gl(n,C). Next we extend the Hamiltonian to all of gl(n,C) by
taking it to be constant on the affine spaces given by translations of the orthogonal
complement of g. Then dH corresponds to ∇H . From the definition (3) and the
identification of g∗ with g we get

ad∗W (M) = Π [W †,M ],

where Π is the orthogonal projection gl(n,C) → g. We thus arrive at an explicit
formulation of the Lie–Poisson system (2), namely

Ẇ = Π [∇H(W )†,W ]. (4)
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Now, the key observation is that if the representation of g as a subalgebra of
gl(n,C) is closed under conjugate transpose, then equation (4) becomes the isospec-
tral flow

Ẇ = [∇H(W )†,W ]. (5)

Such a representation is possible if and only if g is a semisimple Lie algebra (see
Section 2–3 below for details). Thus we arrive at the statement that Lie–Poisson
systems for any reductive1 Lie algebra can be viewed as isospectral flows. Recall
that most classical Lie algebras are reductive, for example gl(n,C), gl(n,R), sl(n,C),
sl(n,R), u(n), su(n), so(n), and sp(n).

An interesting consequence of equation (5) is that whenever the function B(W ) in
the isospectral flow (1) can be written as B(W ) = ∇H(W )†, then it can be extended
to a Lie–Poisson system on gl(n,C) (or possibly a smaller reductive Lie algebra
containing S). Indeed, just extend the Hamiltonian function H to be constant of
the affine fibres orthogonal to S. In this way we obtain an extended system foliated
into invariant affine subspaces generated by S. The Toda-flow is an example where
this construction is possible (see Section 5.2 below).

The key feature of isospectral flows is, of course, that the eigenvalues of W are
preserved. Equivalently, given any analytic function f extended to matrices, the
function

F (W ) = Tr(f(W ))

is a first integral regardless of the choice of B(W ) in (1). From the perspective of
Lie–Poisson systems (5), this means that F (W ) is a Casimir function associated
with the Lie–Poisson structure (3). Although there are infinitely many Casimir
functions, only a finite number of them can be functionally independent.

In this paper we develop spectral preserving numerical methods for flows of the
form (1) which, in the case of Hamiltonian isospectral flows (5), also preserves the
Lie–Poisson structure. There already exist at least four ways to achieve this:

• If the Hamiltonian can be written as a sum of explicitly integrable Hamil-
tonians one can use splitting method (see [15] and references therein).

• The Lie–Poisson system on g∗ ≃ g can be extended to a constrained canon-
ical Hamiltonian system on T ∗G ≃ TG ⊂ TGL(n,C). One can then use
the symplectic RATTLE method (or higher order versions of it) for the
constrained system (see [8, 16]).

• One can use symplectic Lie group methods on T ∗G as developed in [1].
These methods rely on an invertible mapping between the Lie algebra and
(an identity neighbourhood of) the Lie group, such as the exponential map
(works in general) or the Cayley map (works for quadratic Lie groups).

• One can, in some cases, use collective symplectic integrators, which rely on
Clebsch variables originating from a Hamiltonian action of G on a symplec-
tic vector space (see [13, 14] for details).

Compared to these methods our approach is: (i) simpler since the algorithms are
formulated directly on the algebra g ⊂ gl(n,C); (ii) free of constraints; (iii) free of
algebra-to-group maps, such as the exponential or Cayley map; (iv) generic as they
apply to any isospectral Hamiltonian flow. Furthermore, through the framework

1A Lie algebra is said to be reductive if it is isomorphic to the direct sum of a semisimple Lie
algebra and an abelian Lie algebra. Since the abelian part does not affect the bracket, and the
transpose of a reductive Lie algebra is still reductive, the results we have obtained are still valid
for reductive Lie algebras.
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of Poisson reduction (cf. [11]) our methods are directly related to classical sym-
plectic Runge–Kutta methods (or partitioned symplectic Runge–Kutta methods).
We therefore believe they merit the designation Isospectral Symplectic Runge–Kutta
(IsoSyRK) methods.

2. Main results

Recall that a Runge–Kutta method is defined by its Butcher tableau (cf. [7])

c A

bT
(6)

Also recall that if

biaij + bjaji = bibj , (7)

for i, j = 1, ..., s, then the corresponding Runge–Kutta method is symplectic when
applied to canonical Hamiltonian systems on R2n. However, directly applying a
symplectic Runge–Kutta method to the Hamiltonian isospectral flow (5) does not
yield a Poisson integrator nor does it, in general, preserve the isospectral property,
as it is well known.

Definition 1 (IsoSyRK). Given a Butcher tableau (6) fulfilling the symplectic
condition (7), the corresponding Isospectral Symplectic Runge–Kutta method for
the flow (1) is the map

ΦhB : gl(n,C) ∋ Wk 7−→ Wk+1 ∈ gl(n,C)

defined by

Xi = −
(
Wn +

s∑

j=1

aijXj

)
hB(W̃i)

Yi = hB(W̃i)
(
Wk +

s∑

j=1

aijYj

)

Kij = hB(W̃i)
( s∑

j′=1

(aij′Xj′ + ajj′Kij′ )
)

W̃i = Wk +

s∑

j=1

aij(Xj + Yj +Kij)

Wk+1 = Wk +

s∑

i=1

bi[hB(W̃i), W̃i],

for i, j = 1, ..., s, where h > 0 denotes the step size.

Theorem 1. The method in Definition 1 fulfills the following properties:

(1) It has the same order as the underlying Runge–Kutta method.
(2) It is isospectral; for any analytic function f extended to matrices

Tr(f(Wk+1)) = Tr(f(Wk)).

(3) It is equivariant with respect to Lie algebra morphisms;
if A : gl(n,C) → gl(n,C) is a linear invertible mapping fulfilling for all
X,Y ∈ gl(n,C)

A[X,Y ] = [AX,AY ], (8)
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then the following diagram commutes

Wk W ′
k

Wk+1 W ′
k+1

A

ΦhB Φ
hA◦B◦A−1

A

(4) It is a Lie–Poisson integrator if the isospectral flow is Hamiltonian, i.e., of
the form (5).

(5) It restricts to a Lie–Poisson integrator for any Lie subalgebra g ⊂ gl(n,C)
defined by

W ∈ g ⇐⇒ W †J + JW = 0, (9)

where J2 = cI for some c ∈ R\{0}.
(6) It restricts to a Lie–Poisson integrator for any Lie subalgebra given by ar-

bitrary intersections of gl(n,R), sl(n,C), and Lie algebras of the form (9).
(7) It extends to a Lie–Poisson integrator for direct products of Lie algebras of

the form in item (6).
(8) It restricts to an isospectral integrator on the orthogonal complement g⊥ ⊂

gl(n,C) of any Lie algebra g of the form in item (6).

Remark 1. Items (5)–(7) of Theorem 1 implies that the IsoSyRK methods consti-
tute Lie–Poisson integrators for the classical Lie algebras sl(n,C), sl(n,R), so(n),
u(n), su(n), sp(n,C), and sp(n,R). Item (8) implies that they also preserve the
classical isospectral setting as flows on symmetric or Hermitian matrices, since, for
example, so(n)⊥ = Sym(n,R).

We also have a weaker result for the partitioned symplectic Runge–Kutta mehtods.
A partitioned Runge–Kutta method is defined by two Butcher tableau (cf. [7])

c A

bT

ĉ Â

b̂T
(10)

Also recall that if

biâij + b̂jaji = bib̂j ,

b̂i = bi,
(11)

for i, j = 1, ..., s, then the corresponding partitioned Runge–Kutta method is sym-
plectic when applied to canonical Hamiltonian systems on R2n.

Definition 2 (IsoSyPartRK). Given a Butcher tableau (10) fulfilling the symplectic
condition (11), the corresponding Isospectral Symplectic Runge–Kutta method for
the flow (1) is the map

ΦhB : gl(n,C) ∋ Wk 7−→ Wk+1 ∈ gl(n,C)
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defined by

Xi = −h
(
Wn +

s∑

j=1

aijXj

)
∇H(W̃i)

†

Yi = h∇H(W̃i)
†
(
Wn +

s∑

j=1

âijYj

)

Kij = h∇H(W̃i)
†
( s∑

j′=1

(aij′Xj′ + âjj′Kij′ )
)

W̃i = Wn +
s∑

j=1

aijXj + âij(Yj +Kij)

Wn+1 = Wn + h
s∑

i=1

bi[∇H(W̃i)
†, W̃i].

for i, j = 1, ..., s, where h > 0 denotes the step size.

Theorem 2. The method in Definition 2 fulfills the following properties:

(1) It has the same order as the underlying Runge–Kutta method.
(2) It is isospectral; for any analytic function f extended to matrices

Tr(f(Wk+1)) = Tr(f(Wk)).

(3) It is equivariant with respect to Lie algebra morphisms;
if A : gl(n,C) → gl(n,C) is a linear invertible mapping fulfilling for all
X,Y ∈ gl(n,C)

A[X,Y ] = [AX,AY ], (12)

then the following diagram commutes

Wk W ′
k

Wk+1 W ′
k+1

A

ΦhB Φ
hA◦B◦A−1

A

(4) It is a Lie–Poisson integrator if the isospectral flow is Hamiltonian, i.e., of
the form (5).

(5) If it restricts to a Lie–Poisson integrator for a Lie subalgebra g ⊂ gl(n,C)
defined by

W ∈ g ⇐⇒ W †J + JW = 0, (13)

where J2 = cI for some c ∈ R\{0} and bi 6= 0 for i = 1, ..., s, then the
two Butcher tableau coincide and the partitioned Runge–Kutta method is
already a Runge–Kutta method.

(6) If it restricts to a Lie–Poisson integrator for a Lie subalgebra given by ar-
bitrary intersections of gl(n,R), sl(n,C), and Lie algebras of the form (13)
and bi 6= 0 for i = 1, ..., s then the two Butcher tableau coincide and the
partitioned Runge–Kutta method is already a Runge–Kutta method.
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3. Reduction theory for isospectral Lie–Poisson integrators

Let us consider the Lie–Poisson Hamitonian systems of the form (5) and let
W = W (t) be its solution in some linear subspace S of gl(n,C). Then the condition
for the equations (5) to be well defined is that ∇H(W )† is in the gl(n,C)-normalizer
of S. We recall here its definition:

Definition 3. Let G be a Lie group and g its Lie algebra. Let then S ⊆ g be a
linear subspace. Then the two sets:

N(S) = {g ∈ G|g−1Sg ⊆ S}

n(S) = {n ∈ g|[n, S] ⊆ S}

are respectively called the G−normalizer and the g−normalizer of S. Notice that
N(S) is a subgroup of G and n(S) is a Lie subalgebra of g.

We now want to give some examples of Definition 3. We first give the following
definition.

Definition 4. Let g ⊆ sl(n,C) be a Lie algebra and J ∈ GL(n,C). Then g is said
to be a J−quadratic Lie algebra with respect to J if A†J + JA = 0, for any A ∈ g.

Examples:

(1) S = sl(n,C) and n(S) = gl(n,C)

(2) S = g ⊂ sl(n,C) J-quadratic Lie subalgebra such that n(S) = g ⊕ CId,
e.g., S = su(n) and n(S) = u(n), with J = Id.

(3) S = g⊥, where g ⊂ sl(n,C) J−quadratic Lie subalgebra such that n(S) =
g⊕ CId.2, e.g., S = Sym(n,R) and n(S) = o(n), with J = Id.

Remark 2. A crucial fact to consider is that the semisimple Lie algebras are, up
to representation, those that are closed under transposition ([9], Prop. 6.28). This
means that, after the identification with the dual of the Lie algebra g with itself,
a Lie–Poisson system on a semisimple Lie algebra g coincides with a Lie–Poisson
system on gl(n,C) restricted to g. Therefore equations (5) on g form a Hamiltonian
Lie–Poisson system on g, for g semisimple (or reductive) Lie algebra and H smooth
function on g.

We proceed taking the extending the equations (5) to T ∗GL(n,C), in such a way
that they transform into the canonical Hamiltonian equations on T ∗GL(n,C). To
do so, we will use the inverse process of the Poisson reduction, via the associated
momentum map with respect to the left cotangent lifted action of GL(n,C) on
T ∗GL(n,C):

G.(Q,P ) = (G−1Q,GTP ), (14)

for G,Q ∈ GL(n,C) and P ∈ T ∗
QGL(n,C), [7].

The fact that the momentum map is a Poisson map between T ∗GL(n,C) and
gl(n,C)∗ means that a symplectic map in T ∗GL(n,C) can be mapped to a Poisson
map in gl(n,C)∗. Therefore, in terms of numerical analysis, this means that a
Poisson integrator on gl(n,C)∗ can be obtained from a symplectic integrator in
T ∗GL(n,C).

2In general, when on gl(n,C) is given the Frobenius inner product, we have that if n(S⊥) =
n(S)†.
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Let µ : T ∗GL(n,C) → gl(n,C) be the momentum map with respect to the
cotangent lifted action of GL(n,C) on T ∗GL(n,C). It is given by µ(Q,P ) = Q†P ,
for Q ∈ GL(n,C) and P ∈ T ∗

QGL(n,C), [7]. Using this momentum map, we lift

the equation (5) to the cotangent bundle T ∗GL(n,C), obtaining the Hamiltonian
system:

Q̇ = Q∇H(Q†P )

Ṗ = −P∇H(Q†P )†.
(15)

We need to seek some conditions which provide the equivalence of (15) and (5).
We stress again the fact that we are identifying g∗ with g, via the Frobenius pairing.

Proposition 1. Consider the Hamilton equations (15), with (Q,P ) ∈ T ∗GL(n,C),
and S ⊆ gl

∗(n,C) a linear subspace. Then the following three statements are equiv-
alent:

(1) (Q†P )(t) ∈ S for any t ≥ 0;

(2) Q†
0P0 ∈ S and ∇H(Z)†(t) ∈ n(S) for any Z ∈ S;

(3) Q†
0P0 ∈ S and there exists a fixed G ∈ GL(n,C) such that GQ†(t) ∈ N(S)

for any t ≥ 0.3

Proof. 1) ⇒ 2) Clearly Q†
0P0 ∈ S, moreover S ∋ dQ†P

dt
= [∇H(Q†P )†, Q†P ], since

S is a linear space and (Q†P )(t) is in it for any t ≥ 0. But this exactly means that
∇H(Q†P )† has to be in n(S).

2) ⇒ 1) We have that:

(Q†P )(t) = exp(
∫ t

0
∇H(Q†P )†(s)ds)Q†

0P0 exp(−
∫ †

0
∇H(Q†P )†(s)ds),

which proves the statement, being N(S) ⊇ exp(n(S)).
2) ⇒ 3) WLOG we can assume Q0 already in N(S). Then we have that:

Q†(t) = exp(
∫ t

0 ∇H(Q†P )†(s)ds)Q†
0,

which proves the statement.
3) ⇒ 2) By the formula above we have that:

Q†(t)Q−T
0 = exp(

∫ t

0
∇H(Q†P )†(s)ds).

Since the LHS is in N(S) we must have, by the arbitrarily of t, that
∇H(Q†P )†(t) ∈ n(S) for any t ≥ 0. �

Before proceeding with the theory, we recall the definition of weak and strong
first integral.

Definition 5. Let M be a smooth manifold and N ⊂ M a smooth submanifold.
Consider the following dynamical system on N:

ẏ = f(y)
y(0) = y0,

(16)

with f smooth vector field on N and y0 ∈ N . Then assume that f can be extended
on a ε−neighbourhood Nε of N in M .

3This statement could be replaced by assuming Q†(t) ∈ N(S) for any t ≥ 0, provided that Q
†
0

is already in N(S).
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Then a differentiable function I : Nε → C is said to be a weak, respectively,
strong first integral of (16) if:

∇I(y)f(y) = 0 for all y ∈ N
∇I(y)f(y) = 0 for all y ∈ Nε.

(17)

Remark 3. In numerical analysis, the difference between strong and weak first
integrals is crucial. In general, numerical methods cannot be fully constrained to
take values at any stage only on a prescribed manifold. Therefore they are expected
to conserve at most the strong first integrals.

Motivated by this remark we need to make the following:

Assumption 1. Given ε > 0, let Sε be a ε−neighbourhood of S in gl(n,C). Then
we assume that ∇H† = ∇H(Z)† can be extended on Sε, such that ∇H(Z)† ∈ n(S)
for all Z ∈ Sε, where n(S) is the gl(n,C)-normalizer of S.

For example, one can extend ∇H† = ∇H(Z)† invariantly with respect to the
S-orthogonal directions. Notice that S is a linear space, therefore this extension
of the gradient of the Hamiltoninan requires only an orthogonal projection of Z to
S. In many cases we will see that this is not even necessary, provided that the
algorithm is well implemented.

Under the assumption 1, the proposition 1 says that (Q†P ) ∈ S is just a weak first
integral of the Hamiltonian system (15), provided that the gradient of the Hamilton-
ian is in n(S). In fact having (Q†P ) ∈ S is equivalent to have [∇H(Q†P )†, Q†P ] ∈ S
which is not in general true forQ†P in an ε−neighbourhood of S. Instead an equiva-
lent strong first integral is given by the third statement, which says that there exists
a fixed matrix G such that GQ† ∈ N(S) at any time. Therefore only the numerical
methods that have GQ† ∈ N(S) as a discrete invariant can descend to an integrator
on S.

For example, since symplectic Runge-Kutta methods preserve general quadratic
first integrals, in the case that N(S) is a quadratic Lie group and S its Lie algebra,
they will satisfy (Q†P )(t) ∈ S, for any t ≥ 0. On the other hand, only the sym-
plectic partitioned Runge-Kutta methods that in the Q−component are already
quadratic-first integral preserving can be expected to fulfil (Q†P )(t) ∈ S, for any
t ≥ 0.

We summarize these results in the following theorem.

Theorem 3. Let W = W (t) be the solution of (5) in some linear subspace S of
gl(n,C) and let assumption 1 hold. Then a symplectic numerical method applied to
(15) descends to a Lie–Poisson integrator on S for (5) if:

”there exists a fixed G ∈ GL(n,C) such that GQ† ∈ N(S)”

is a first integral of the discrete flow.

4. Isospectral symplectic Runge–Kutta methods

In this section, we will specify theorem (3) for the symplectic Runge-Kutta and
partitioned Runge-Kutta methods. We will derive some practical numerical schemes
for solving the equation (5), for the examples stated in the previous section.
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4.1. Symplectic Runge-Kutta methods. Given a Butcher tableau:

c1 a11 . . . a1s
...

...
. . .

...

cs as1 . . . ass

b1 . . . bs

the associated Runge-Kutta method for (15) is given by:

KQ
i = (Qn + h

∑s

j=1 aijK
Q
j )∇H((Qn + h

∑s

j=1 aijK
Q
j )†(Pn + h

∑s

j=1 aijK
P
j ))

KP
i = −(Pn + h

∑s

j=1 aijK
P
j )∇H((Qn + h

∑s

j=1 aijK
P
j )†(Pn + h

∑s

j=1 aijK
P
j ))†

Qn+1 = Qn + h
∑s

i=1 biK
Q
i

Pn+1 = Pn + h
∑s

i=1 biK
P
i ,

for i, j = 1, ..., s. The Runge-Kutta method is symplectic, i.e., the discrete flow is a
symplectic map, if it holds biaij + bjaji = bibj for any i, j = 1...s.

Theorem 4. Given a Butcher tableau:

c A

b
T

of a symplectic s-stages Runge-Kutta method we have that:

(1) the method descends to an implicit Lie–Poisson integrator for (5) in S =
sl(N,C) in 2s+ s2 unknowns,

(2) it also descends to an implicit Lie–Poisson integrator for (5) in S equals to
any J−quadratic Lie subalgebra or the orthogonal space to a J−quadratic
Lie subalgebra of sl(N,C) in s+ s2 unknowns.

Moreover, the definition of the descended maps is completely constructive.

Remark 4. No modification in the definition of gradient of the Hamiltonian is
needed to fulfil assumption 1, as shown in the proof of Theorem 4.

We get in particular the following schemes:

1. S = sl(n,C).

Xi = −h(Wn +
∑s

j=1 aijXj)∇H(W̃i)
†

Yi = h∇H(W̃i)
†(Wn +

∑s

j=1 aijYj)

Kij = h∇H(W̃i)
†(
∑s

j′=1(aij′Xj′ + ajj′Kij′))

W̃i = Wn +
∑s

j=1 aij(Xj + Yj +Kij)

Wn+1 = Wn + h
∑s

i=1 bi[∇H(W̃i)
†, W̃i],

for i, j = 1, ..., s, where the unknowns are Xi, Yi,Kij for i, j = 1, ..., s and the last
two lines are explicit.
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2. S = g ⊆ sl(n,C) J−quadratic.

Xi = −h(Wn +
∑s

j=1 aijXj)∇H(W̃i)
†

Kij = h∇H(W̃i)
†(
∑s

j′=1(aij′Xj′ + ajj′Kij′))

W̃i = Wn +
∑s

j=1 aij(Xj − J−1X†
jJ +Kij)

Wn+1 = Wn + h
∑s

i=1 bi[∇H(W̃i)
†, W̃i],

for i, j = 1, ..., s, where the unknowns are Xi,Kij for i, j = 1, ..., s and the last two
lines are explicit. The last line is also equivalent to:

Wn+1 = Wn +

s∑

i=1

bi(Xi − J−1X†
jJ +Kii − J−1K†

iiJ).

3. S = g⊥, g ⊆ sl(n,C) J−quadratic.

Xi = −h(Wn +
∑s

j=1 aijXj)∇H(W̃i)
†

Kij = h∇H(W̃i)
†(
∑s

j′=1(aij′Xj′ + ajj′Kij′))

W̃i = Wn +
∑s

j=1 aij(Xj + J−1X†
jJ +Kij)

Wn+1 = Wn + h
∑s

i=1 bi[∇H(W̃i)
†, W̃i],

for i, j = 1, ..., s, where the unknowns are Xi,Kij for i, j = 1, ..., s and the last two
lines are explicit. The last line is also equivalent to:

Wn+1 = Wn +

s∑

i=1

bi(Xi + J−1X†
jJ +Kii + J−1K†

iiJ).

Proof. [thm. 4]

(1) For S := sl(n,C) we have that n(S) = gl(n,C) and N(S) = GL(n,C).
Therefore the hypothesis of theorem 3 are trivially satisfied.

To get the explicit construction, we look at the argument of the gradient
of the Hamiltonian which suggests to define:

Wn+1 := Q†
n+1Pn+1

Wn := Q†
nPn

Xi := hQ†
nK

P
i

Yi := h(KQ
i )†Pn

Kij := h2
s∑

j′=1

aij′ (K
Q
j )†KP

j′

W̃i := Wn +

s∑

j=1

aij(Xj + Yj +Kij),

for i, j = 1, ..., s. The equations for Xi, Yi are quite straightforward (con-
sider the equations of the Runge-Kutta method defined at the beginning
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of the paragraph and just transpose the first one and multiply by Pn and
multiply the second one by Q†

n, respectively).
To get those ofKij , we first transpose the first equation, then we multiply

it (indexed now by j) by h2aij′K
P
j′ and then we sum over j′. Therefore we

get:

Kij = h∇H(W̃i)
†(

s∑

j′=1

(aij′Xj′ + aij′K̃jj′ )) for i, j = 1, ..., s,

where

K̃ij := h2
s∑

j′=1

aij′(K
Q
j′ )

†KP
j .

Multiplying the second equation (indexed now by j′) by h2aij′(K
Q
j′ )

†

and then summing over j′, obtaining:

K̃ij = −h(
s∑

j′=1

(aij′Yj′ + aij′Kjj′ ))∇H(W̃i)
† for i, j = 1, ..., s.

Using then the (obvious) fact that:
s∑

j′=1

s∑

j′′=1

aij′ajj′′ (K
Q
j′′ )

†KP
j′ =

s∑

j′=1

s∑

j′′=1

ajj′aij′′ (K
Q
j′ )

†KP
j′′ ,

for i = 1, ..., s, we get that:
s∑

j′=1

aij′K̃jj′ =
s∑

j′=1

ajj′Kij′ for i, j = 1, ..., s.

Therefore the K̃ij depend completely on the Kij and so we can neglect
them, obtaining the desired equations for the Kij .

Finally, to get the equation for Wn+1, we multiply the third transposed
with the fourth and we get:

Wn+1 = Wn +

s∑

i=1

bi(Xi + Yi) + h2
s∑

i,j=1

bibj(K
Q
i )†KP

j .

Using the symplecticity of the method, the last term becomes:

h2
s∑

i,j=1

(biaij + bjaji)(K
Q
i )†KP

j =
s∑

i=1

bi(Kii + K̃ii).

Therefore, we have:

Wn+1 = Wn +

s∑

i=1

bi(Xi + Yi +Kii + K̃ii).

Now substituting the equations found for Xi, Yi,Kii, K̃ii we get the de-
sired equation for Wn+1.

(2) Symplectic Runge-Kutta methods preserve exactly the strong quadratic
first integrals of a dynamical system. In particular, when S is one of the
spaces in the examples 2-3, they preserve N(S) = {Q ∈ GL(n,C)|Q†JQ =
J}. Therefore, by theorem 3, they descend to a Lie–Poisson integrator on
S.
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It is also easy to check that, if we assume ∇H† to be in n(S), we get

Yi = −J−1X†
i J . Moreover, from the definition of Kij and K̃ij and the

equations:

Kij = h∇H(W̃i)
†(

s∑

j′=1

(aij′Xj′ + ajj′Kij′)) for i, j = 1, ..., s,

K̃ij = −h(

s∑

j′=1

(aij′Yj′ + aij′Kjj′ ))∇H(W̃i)
† for i, j = 1, ..., s,

we get also that

s∑

j=1

aij(−J−1K†
ijJ) =

s∑

j=1

aijK̃ij =

s∑

j=1

aijKij .

This implies that W̃ ∈ S and therefore we don’t need to do any extension
to the gradient of Hamiltonian. �

Remark 5. The following observation is valid for the examples 2) and 3) but for
simplicity we consider S = su(n). If one looks at the methods above may notice
that it might be possible to only calculate the skew part of the Xj. In fact, it is
quite easy to check (by some identities shown in the proof) that

∑s

j=1 aijKij is
always skew symmetric. However, if now we assume the Xj to be skew, the method
becomes exactly the underling Runge-Kutta scheme. This is impossible since that is
not isospectral. In fact one can find that the symmetric part of the Xj paired with

∇H(W̃i)
†, in the form X∇H(W̃i)

† + X∇H(W̃i)
†, is determinant in defining the

skew symmetric part of the Xj. Therefore, there is no hope to present the schemes
above only in terms of the matrix bracket.

4.2. Partitioned symplectic Runge-Kutta methods. Given two Butcher tableau:

ĉ1 â11 . . . â1s
...

...
. . .

...

ĉs âs1 . . . âss

b̂1 . . . b̂s

c1 a11 . . . a1s
...

...
. . .

...

cs as1 . . . ass

b1 . . . bs

the associated partitioned Runge-Kutta method for (15) is given by:

KQ
i = (Qn + h

∑s

j=1 âijK
Q
j )∇H((Qn + h

∑s

j=1 âijK
Q
j )†(Pn + h

∑s

j=1 aijK
P
j ))

KP
i = −(Pn + h

∑s

j=1 aijK
P
j )∇H((Qn + h

∑s

j=1 âijK
Q
j )†(Pn + h

∑s

j=1 aijK
P
j ))†

Qn+1 = Qn + h
∑s

i=1 b̂iK
Q
i

Pn+1 = Pn + h
∑s

i=1 biK
P
i ,

for i, j = 1, ..., s. The partitioned Runge-Kutta method is symplectic, i.e., the

discrete flow is a symplectic map, if it holds biâij + b̂jaji = bib̂j and b̂i = bi, for any
i, j = 1...s.
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Theorem 5. Given two Butcher tableau:

ĉ Â

b̂
T

c A

b
T

of a symplectic partitioned s-stages Runge-Kutta method we have that:

(1) the method descends to an implicit Lie–Poisson integrator for (5) in S =
sl

∗(N,C) in 2s+ s2 unknowns,
(2) if it also descends to an implicit Lie–Poisson integrator for (5) in S equals

to any J−quadratic Lie subalgebra or the orthogonal space to a J−quadratic
Lie subalgebra of sl(N,C) (in s+ s2 unknowns), then bi 6= 0 implies aij =
âij , for i, j = 1, ..., s, i.e., the partitioned symplectic Runge-Kutta method
is already a symplectic Runge-Kutta method.

Moreover, the definition of the descended map is completely constructive.

We get in particular the following scheme:

S = sl(n,C).

Xi = −h(Wn +
∑s

j=1 aijXj)∇H(W̃i)
†

Yi = h∇H(W̃i)
†(Wn +

∑s

j=1 âijYj)

Kij = h∇H(W̃i)
†(
∑s

j′=1(aij′Xj′ + âjj′Kij′))

W̃i = Wn +
∑s

j=1 aijXj + âij(Yj +Kij)

Wn+1 = Wn + h
∑s

i=1 bi[∇H(W̃i)
†, W̃i],

for i, j = 1, ..., s, where the unknowns are Xi, Yi,Kij for i, j = 1, ..., s and the last
two lines are explicit.

Proof. [thm. 5]

(1) The proof is, mutatis mutandis, identical to the one of the previous theorem.
We have just to change accordingly the following definitions:

K̃ij := h2
s∑

j′=1

âij′ (K
Q
j )†KP

j′

Kij := h2
s∑

j′=1

aij′ (K
Q
j )†KP

j′

W̃i := Wn +
s∑

j=1

aijXj + âij(Yj +Kij),

and pointing out the following identity:
s∑

j′=1

aij′K̃jj′ =

s∑

j′=1

âjj′Kij′ for i, j = 1, ..., s.

Finally we just use the condition of symplecticity for partitioned Runge-
Kutta methods.
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(2) Partitioned symplectic Runge-Kutta methods preserve exactly the strong
quadratic first integrals of a dynamical system if they are on the form
Q†AP , for a fixed matrix A. In particular, when S is one of the spaces
in the examples 2-3, to preserve N(S) = {Q ∈ GL(n,C)|Q†JQ = J}
the method associated to Q-part has to preserve already the quadratic
first integrals. This fact, together the condition of symplecticity of the
partitioned Runge-Kutta methods, implies that aij = âij , for i, j = 1, ..., s
whenever bi 6= 0. �

Remark 6. The order of convergence of the descended methods is the same as
the underlying Runge-Kutta ones (see Figure 1), since if Qn = Q(nh) +O(hp) and
Pn = P (nh)+O(hp), then Wn = Q†

nPn = W (nh)+O(hp) = Q(nh)†P (nh)+O(hp).

100 101
10-20

10-15

10-10

10-5

100

Convergence of the methods

Figure 1. Convergence estimate for the methods, in loglog scale.
The x axis is i = 1, ..., 10, such that the time step is h = 0.1/i, the
y axis is the error of the numerical methods. The continuous lines
represent the error respectively for a 2nd, 4th, 6th order symplectic
Runge-Kutta method. The dashed lines are the functions f(i) =
i3, f(i) = i5, f(i) = i7.

4.3. Linear equivariance of the schemes. Here we show that the numerical
methods above are equivariant with respect to any invertible linear Lie–Poisson
map, where here it is understood as a linear Lie–Poisson map such that the form
of the equations remains the same after the transformation, but possibly with a
different Hamiltonian (see Theorem 11.5.1., [11]). Consider the numerical scheme
above defined as a map F between the space of Hamiltonian Lie–Poisson vector
fields on g∗ and the Lie–Poisson maps of g∗ into itself.

Recall that we have the following actions of an affine map a:

a ·X := Da ◦X ◦ a−1

a · Φ := a ◦ Φ ◦ a−1,

for any vector field X and diffeomorphism Φ.
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Under our usual identification of g with its dual an invertible Lie–Poisson map
a on g∗ has to satisfy:

a · [∇H(W )†,W ] = A[∇H(A−1W )†, A−1W ] = [∇(H ◦ a−1)(W )†,W ].

The numerical scheme F is then said Lie–Poisson linear equivariant if:

a · F (f) = F (a · f), (18)

for any Hamiltonian Lie–Poisson field f on g∗ and any linear Lie–Poisson map a.
Let us now consider equation (18) for the partitioned symplectic Runge-Kutta

schemes. The same conclusion for the symplectic Runge-Kutta method will follow
straightforwardly from this. We want to check if for any Wn ∈ sl(n,C) and affine
map a on sl(n,C) it holds:

a(F (f)(Wn)) = F (Da ◦ f ◦ a−1)(a(Wn)). (19)

The RHS looks like:

Xi = −hA(A−1(AWn +
∑s

j=1 aijXj))∇H(A−1W̃i)
†

Yi = hA∇H(A−1W̃i)
†(A−1(AWn +

∑s

j=1 âijYj))

Kij = hA∇H(A−1W̃i)
†(
∑s

j′=1(A
−1(aij′Xj′ + âjj′Kij′)))

W̃i = AWn +
∑s

j=1 aijXj + âij(Yj +Kij)

Wn+1 = AWn + h
∑s

i=1 biA[∇H(A−1W̃i)
†, A−1W̃i],

for i, j = 1, ..., s, which is equivalent to

A−1Xi = −h(Wn +
∑s

j=1 aijA
−1Xj)∇H(A−1W̃i)

†

A−1Yi = h∇H(A−1W̃i)
†(Wn +

∑s

j=1 âijA
−1Yj)

A−1Kij = h∇H(A−1W̃i)
†(
∑s

j′=1(aij′A
−1Xj′ + âjj′A

−1Kij′))

A−1W̃i = Wn +
∑s

j=1 aijA
−1Xj + âij(A

−1Yj +A−1Kij)

Wn+1 = A(Wn + h
∑s

i=1 bi[∇H(A−1W̃i)
†, A−1W̃i]),

for i, j = 1, ..., s. Relabelling Xi := A−1Xi, Yi = A−1Yi,Kij := A−1Kij , W̃i :=

A−1W̃i we get:

Xi = −h(Wn +
∑s

j=1 aijXj)∇H(W̃i)
†

Yi = h∇H(W̃i)
†(Wn +

∑s

j=1 âijYj)

Kij = h∇H(W̃i)
†(
∑s

j′=1(aij′Xj′ + âjj′Kij′))

W̃i = Wn +
∑s

j=1 aijXj + âij(Yj +Kij)

Wn+1 = A(Wn + h
∑s

i=1 bi[∇H(W̃i)
†, W̃i]),
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for i, j = 1, ..., s, which is exactly the LHS of (18), which proves the linear equiv-
ariance.

5. Examples

In this section, we mention some important examples of Lie–Poisson dynamical
systems and we show that applying the numerical methods above presented we get
the expected results of near conservation of the Hamiltonian and exact conservation
(up to round off) of the Casimir functions.

5.1. A Hamiltonian integrable system in the momentum coordinates: the

free rigid body in n dimensions. The core example among Hamiltonian systems
is the free rigid body dynamics. It is known that in any dimension the equations
of motions form a complete integrable system in so(n), [10]. The Hamiltonian is
given by:

H(W ) =
1

2
Tr((I−1W )†W ),

where W ∈ so(n) and I : so(n) → so(n) is a symmetric positive definite inertia
tensor. The equations of motion are:

Ẇ = −[I−1W,W ]
W (0) = W0.

(20)

We have solved (20), with the method 2 of theorem 4, descending from the mid-
point rule. As shown in figure 2, we have that the Hamiltonian is nearly conserved
and the Casimir functions are conserved up to machine precision.

Hamiltonian variation

Eigenvalues variation

Figure 2. Generalized 45-dimensional rigid body in so(10).
Eigenvalues (which occur in pair) and Hamiltonian variation;
h=10−1; inertia tensor I = diag(1 : 10); initial value (W0)ij = 1/10
if i < j, (W0)ij = −1/10 if i > j, (W0)ij = 0 if i = j.
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5.2. A Hamiltonian integrable system in the Lax pair coordinates: the

Toda lattice. Among the Hamiltonian integrable systems the Toda lattice is a
well known and studied example. It represents a system of particles interacting
pairwise with exponential forces. The equations of motion are determined by the
Hamiltonian:

H(p, q) =

n∑

k=1

(
1

2
p2k + exp(qk − qk+1)

)
,

where (qi, pi) are the canonical coordinates of the n particles. Independently,
Hénon, Flaschka and Manakov proved that the Toda system is integrable when
qn = qn+1 (periodic boundary conditions), [7]. To do that, they found a Lax pair
formulation of the Toda flow. They applied the following change of variables:

ak = −
1

2
pk, bk =

1

2
exp

(
1

2
(qk − qk+1)

)
,

to get an equivalent isospectral flow:

L̇ = [B(L), L], (21)

where

L =




a1 b1 0 ... bn
b1 a2 b2 ... 0
0 b2 a3 ... 0
...

...
...

. . .
...

bn 0 0 ... an



, B(L) =




0 b1 0 ... −bn
−b1 0 b2 ... 0
0 −b2 0 ... 0
...

...
...

. . .
...

bn 0 0 ... 0



.

In these coordinates the Hamiltonian is simply H(L) = 2Tr(L2). Let us now
extend B(L) to any matrix L, such that B(L) = diag(L, 1) − diag(L,−1) +
diag(L,−n) − diag(L, n). We notice that we can take as a new Hamiltonian

the function H̃(W ) = −1/2Tr(L†B(L)) + H(L), which generates the isospectral
flow (21) and has the same level sets of H(L). In fact, since B(L) ∈ so(n) when
L ∈ Sym(n,R), Tr(L†B(L)) = 0 for L ∈ Sym(n,R) and ∇Tr(L†B(L)) = 2B(L),
when extended to any matrix L, being B(·) symmetric with respect to the Frobe-
nius inner product. Moreover, since H(L) is a Casimir function for (21) its gradient
doesn’t affect the dynamics.

We can apply the methods 3 of theorem 4, descending from the midpoint rule.
Since the H(L) is one of the Casimir functions of the flow, we have that it is
preserved up to machine precision (see figure 3).

5.3. A Hamiltonian non-integrable system: vorticity Euler equations on

a sphere. On the 2-sphere the hydrodynamical Euler equations have an equivalent
formulation in terms of vorticity of the velocity vector field of a 2-D incompressible,
inviscid, homogeneous fluid. These look like:

ω̇ = {∆−1ω, ω}
ω(0) = ω0,

(22)

where ω is a smooth function on S2 with zero mean and, ∆−1 is the inverse of
the Laplace-Beltrami operator on the sphere (it is invertible because the kernel
are just the constant functions) and the bracket is the one defined by the volume
form on the sphere. This system is an infinite dimensional Lie–Poisson system
on sdiff∗(S2), the dual of the algebra of the volume preserving diffeomorphisms
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Figure 3. Periodic 8-dimensional Toda Lattice. Eigenvalues vari-
ation; h=10−1; initial values ai = bi = (−1)i, for i = 1, .., 4.

on the sphere. Moreover, the integral of any smooth function f on sdiff∗(S2) is
a conserved quantity of (22), which means that there exist an infinite number of
independent first integrals.

It is well known that a quantization of (22) gives the so called sine-bracket Euler
equations on su(n) (or sl(n,C)), for any n ≥ 1, whose solutions converge point-
wise to those of (22) for n → ∞ (see [6], for a global convergence result for the
Euler equations on a 2-dimensional torus). The nice property of the sine-bracket
Euler equations is that they better resemble (22) compared to a general spectral
approximation, having a increasing number of first integrals converging to those of
(22) when n → ∞. Specifically we have that the sine-bracket Euler equations look
like:

Ẇ = [∆−1
n W,W ]

W (0) = W0,
(23)

where W ∈ su(n) and ∆−1
n is the inverse of the discrete Laplace-Beltrami operator

on the sphere (it is invertible because the kernel are just the multiple of the identity
matrix).

The equations (23) are a Lie–Poisson Hamiltonian system with respect to the
Hamiltonian H(W ) = 1

2 Tr((∆
−1
n W )†W ). The Casimir functions of (23) are the

momenta of W or equivalently, the eigenvalues of W .
We present the numerical solution of (23) using the numerical scheme (2) of

theorem 4, descending from the midpoint rule. As seen in figure 4, we have ma-
chine precision conservation of the Casimir functions and near conservation of the
Hamiltonian. Moreover the definition of ∆n allows to have a complexity of O(n3).
The RHS approximation of the Euler equations has an accuracy of O(n2) which is
much less than the spectral accuracy of the classical spectral methods which how-
ever don’t preserve the Casimir functions. We will discuss this topic in details in a
forthcoming paper.
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Hamiltonian variation

Eigenvalues variation

Figure 4. Euler equations on su(n), for n = 11. Eigenvalues and
Hamiltonian variation; h=10−1; initial value W0 the normalized
and trace free matrix from Alm = i if l 6= m, Alm = 2i if l = m.

5.4. Hamiltonian systems on a product of Lie algebras: Point vortices

on a sphere and Heisenberg spin chain. The methods above presented can
be extended to a product space. For example we can deal with (su(2)∗)n, where
n is the number of vortices or spin particles in the point-vortices equation and,
respectively, in the Heisenberg spin chain.

The Hamiltonian for the point vortices is:

H(W1,W2, ...,Wn) = −
1

4π

n∑

i,j=1
i<j

ΓiΓj log

(
1−

Tr(W †
i Wj)

‖Wi‖2‖Wj‖2

)
,

where W1, ...,Wn are the positions of the point vortices and Γ1, ...,Γn the respective
magnitude, and for the Heisenberg spin chain:

H(W1,W2, ...,Wn) =
n∑

i=1

Tr(W †
i Wi+1),

where W1, ...,Wn are the spins of the particles and W1 = Wn+1 [12].
For this systems a new first integral arises, due to the SU(2) symmetry of the

Hamiltonians:

G.H(W1,W2, ...,Wn) = H(GW1G
−1, GW2G

−1, ..., GWnG
−1) = H(W1,W2, ...,Wn),

for any G ∈ SU(2). This is given by the (weighted) sum of the vortices/spin
particle:

M(W1,W2, ...,Wn) =
n∑

i=1

ΓiWi.

Here we show in figure 5 that together with the norm of each particle, this first
integral is also preserved up to machine precision.
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Figure 5. 4 point vortex on a sphere. Three compontents of
the momentum and Hamiltonian variation; h=10−1; initial values:
x1 = [1 0 0], x2 = [−1 0 0], x3 = [0 1 0], x4 = [0 − 1 0].

5.5. A non-Hamiltonian vector field: Toeplitz inverse eigenvalue prob-

lem. The methods introduced can be applied also to non-Hamiltonian systems.
As an example, we consider the Chu’s flow on symmetric real matrices. Here in-
stead of ∇H(W )† we take B(W ), where:

B(W ) =




0 W1,1 −W2,2 W1,2 −W2,3 ... W1,n−1 −W2,n

W2,2 −W1,1 0 W2,2 −W3,3 ... W2,n−1 −W3,n

W3,2 −W2,1 W3,3 −W2,2 0 ... W3,n−1 −W4,n

...
...

...
...

...
Wn,2 −Wn−1,1 Wn,3 −Wn−1,2 Wn,4 −Wn−1,3 ... 0




Notice that when W ∈ Sym(n,R), B(W ) ∈ so(n). The Chu’s flow was intro-
duced to solve in practice the Toeplitz inverse eigenvalue problem, i.e., given a
certain set of eigenvalues, find a Toeplitz matrix with that prescribed spectra (we
recall that a Toeplitz matrix is a symmetric matrix whit constant elements on the
diagonals). Toeplitz had in fact established with a non constructive proof that,
for any given spectra, there exists a Toeplitz matrix with those eigenvalues. Chu
instead proved that the fixed point of its flow are Toeplitz matrices, provided that
the eigenvalues are distinct [23].

The Chu’s flow is very interesting even from a numerical point of view because
there exist periodic orbits in it. This means that the convergence is not automat-
ically ensured. However these orbits are unstable and because of the drift in the
numerical methods is true that the Chu’s flow in practice always converge to a
Toeplitz matrix, when the starting point has distinct eigenvalues [23].

However, a qualitatively better simulation of the Chu’s flow can be obtain if it is
restricted to the centrosymmetric matrices. A matrix is said to be centrosymmetric
if it is invariant with respect to a rotation of the components of π grade. In other
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words a matrix A is centrosymmetric if:

A†E − EA = 0,

where

E =




0 0 ... 0 1
0 0 ... 1 0
...

...
. . .

...
...

0 1 ... 0 0
1 0 ... 0 0



.

Let us denote with Centro(n) the Lie algebra of centrosymmetric matrices of
dimension n. In particular we have that the Toeplitz matrices are centrosymmetric
and the tensor B(W ) is centrosymmetric when W is symmetric and centrosymmet-
ric [23]. Therefore, for the Toeplitz problem, the Chu’s flow can be restricted to
the symmetric-centrosymmetric matrices. With this restriction the periodic orbits
are numerically preserved and therefore the simulation of the flow is more realistic.

We show in figure (6)-(7) the difference of the behaviour of the flow with and
without the restriction to the centrosymmetric matrices.

Notice that by theorem 3, since the flow is in S determined by quadratic con-
straints, we have that the methods (5) descend to an isospectral integrator on
the symmetric-centrosymmetric matrices, provided that B(W ) is in its normalizer
(which is so(n) ∩ Centro(n)).

We have taken the following initial value proposed in [23], confirming the results
there presented.

W0 =




0.1336 0 0 0.5669
0 −0.1336 0.378 0
0 0.378 −0.1336 0

0.5669 0 0 0.1336



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Figure 6. Chu’s flow without forcing centrosymmetry of B(W ).
Components evolution; h=10−1; initial value W0.
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A STRUCTURE-PRESERVING SCHEME FOR THE EULER

EQUATIONS ON A ROTATING SPHERE

MILO VIVIANI

Abstract. The Euler equations for an incompressible fluid on a sphere are
a fundamental model of oceanic and atmospheric dynamics on Earth. Their

solution has been a long standing challenge which concerns several different

approaches, both from an analytical and numerical point of view. From a
numerical point of view, the main issue is to take as much as possible of the

geometry of the problem into account when discretizing the original system.

Currently, there is not yet an a fully satisfactory way to do it. However, a
possible approach is provided by the quantization of the Poisson algebra of

the smooth functions on a sphere. Combining this this technique with the

symplectic integration of Lie–Poisson systems, we present a new numerical
method which gives an approximate solution of the Euler equations with a

number of discrete first integrals consistent with the level of discretization.

The method is then tested on two examples found in literature, showing good
agreement with the results there found.
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1. Introduction

The motion of a fluid on a surface is a wide and well established field of study
[2], [3], [4], [5], [14], whose applications in oceanography, weather forecasting and
astrophysics have motivated extensive research from a numerical point of view [1],
[8], [9], [10], [15], [17], [18]. The geometry encoded in the equations describing this
phenomenon plays a central role in understanding the behaviour of the fluid [3],
[4], [14], and in the investigation of numerical methods to simulate it [1], [15], [17],
[18].

1
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Following the references above, in this paper we consider a homogeneous, incom-
pressible, inviscid, two-dimensional fluid which is constrained to move on a spherical
surface, embedded in the standard Euclidean R3, and possibly rotating with con-
stant angular speed Ω, with respect to a fixed normal axis. The equations of motion
of such a fluid are given by the well-known Euler equations of hydrodynamics:

(1)
v̇ + v · ∇v = −∇p− 2Ω̃× v
∇ · v = 0,

where v is the velocity vector field of the fluid, p is its internal pressure, and

Ω̃ = (Ω ·n)n is the projection of the angular rotation of the sphere Ω to the normal

n at a point of the sphere. The last term in the first equation of (1), Fc = −2Ω̃×v,
is called Coriolis force. Equations (1) can be equivalently expressed in terms of the
one form v[ as a Lie–Poisson system on the dual of the infinite-dimensional Lie-
algebra of divergence-free vector fields. The respective Poisson tensor is degenerate
so that there is an infinite number of independent first integrals (Casimir functions)
[4].

An equivalent formulation of (1) is given in terms of the vorticity ω = (∇×v) ·n.
We notice that by the Stokes’ theorem it must be that

∫
ω = 0. Then the Euler

equations (1) can be written as:

(2)
ω̇ = {ψ, ω}

∆ψ = ω − f,
where f = 2Ω ·n, ∆ is the Laplace-Beltrami operator on the sphere (which is minus
the Hodge Laplacian and hence negative semidefinite), and ψ is the unique solution
to the Poisson equation in C∞(S2), such that

∫
ψ = 0.

In this form the Euler equations are a Lie–Poisson system on the smooth func-
tions on the sphere which integrate to 0. The Hamiltonian is given by

H(ω) =
1

2

∫
(ω − f)ψ.

The (infinitely many) Casimir functions are given, for any smooth real function g,
by F (ω) =

∫
g(ω). This is easy to check:

d

dt

∫
g(ω) = −

∫
g′(ω)v · ∇ω = −

∫
v · ∇g(ω) =

∫
(∇ · v)g(ω) = 0,

where we have used the fact that

{ψ, ·}p = (Xψ)p(·) = p · (∇ψ ×∇·) = (p×∇ψ) · ∇· = −vp · ∇ · .
The presence of all these first integrals turns out to be the leading point in

giving a suitable discretization of (2). In fact, while solving it with a numerical
scheme, we cannot expect to preserve all the infinitely many first integrals, but
what we do want is that the number of conserved quantities increases with the size
of the discrete problem. As shown in [17], [18], this cannot be achieved by simply
considering a truncated spectral decomposition of the vorticity.

We consider instead the approach proposed by Zeitlin [18] based on the theory
of geometric quantization of compact Kähler manifolds [7],[6],[12]. It provides a
sequence of finite-dimensional twisted representations of the infinite-dimensional Lie
algebra of divergence free vector fields, which converges1 to the latter Lie algebra.

1Here the term converge is referred to Lα-convergence, which is explained later.
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Then, for any of these twisted-representations, we get a finite dimensional analogue
to (2), i.e., a Hamiltonian Lie–Poisson system on su(n) (or sl(n,C)), for any n ≥ 1,
with n − 1 Casimir functions. To solve the obtained equations, i.e., to discretize
the equations in time, we apply a Lie–Poisson integrator presented in [16], such
that there is conservation of the discrete first integrals and near conservation of the
Hamiltonian.

This method is then applied to two examples given in literature. The first one is
taken from [10]. In this example the sphere is non rotating and the main interest is
in the long time behaviour of the fluid. In [10], the author claims that eventually a
non steady state of four vortices is reached. The second one is given in [8]. In this
case, the sphere is rotating and the main qualitative behaviour is the north-west
movement of a Gaussian vortex, given as initial value for the vorticity. The results
obtained with our method have a good qualitative agreement with those in [10] and
[8], but respect to the methods used there, ours also exhibit conservation of the
Enstrophy (together with the other discrete first integrals) and near conservation
of the Hamiltonian.

2. Numerical integration of the Euler equations

In this section we propose a numerical scheme to solve the equations (2). For
the discretization in space, we consider the system of differential equations devel-
oped by Zeitlin [18], based on the work of Hoppe et al. on the approximation
of infinite dimensional Lie algebras [6],[7]. The main idea is that in order to re-
spect the infinite dimensional features of the Euler equations, we need to have a
consistent discretization of the system, such that we get a qualitatively coherent
behaviour of the system. In our case this means that we want a number of dis-
crete Casimir functions increasing with respect to the level of discretization. It
has been found that there exists a sequence of finite dimensional matrix algebras
whose respective Lie–Poisson systems have the desired properties. The sequence
is given by {sl(N,C)}N∈N and {su(N,C)}N∈N, which are an approximation (Lα-
approximation) of C∞(S2,C) and C∞(S2,R), respectively. To integrate the equa-
tions obtained after the discretization in space, we consider a numerical scheme
presented in [16]. Finally, the space-time numerical method derived has the de-
sired properties of nearly conserving the Hamiltonian and exactly (up to machine
precision) the discrete Casimir functions.

2.1. Spatial discretisation via sl(N,C). This section is devoted to the technique
used to get a finite dimension analogous of the Euler equations on a sphere. The
main theoretical concept behind this approach is the so called Lα-approximation.

2.1.1. Lα-approximation. Let us consider a Lie-algebra (g, [·, ·]) and a family of
labelled Lie algebras (gα, [·, ·]α)α∈I , where α ∈ I = N or R. Furthermore, assume
then that to any element of this family, a distance dα and a surjective projection
map pα : g→ gα are associated. Then we say that (g, [·, ·]) is an Lα-approximation
of (gα, [·, ·]α)α∈I if:

• if x, y ∈ g and dα(pα(x), pα(y))→ 0, for α→∞, then x = y,
• for all x, y ∈ g we have dα(pα([x, y]), [pα(x), pα(y)]α)→ 0, for α→∞,
• all pα, for α� 0, are surjective.

The above definition is given in [6], and it is a quite weak requirement to obtain
a limit for a sequence of Lie algebras. Indeed the same sequence may converge
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in the Lα sense to different Lie algebras [7]. Much depends on the choice of the
projections, that are not canonical.
However, for our purpose, since we have already a target and we need a suitable
sequence to approximate it, we do not need more than that.

Let us now consider the smooth complex functions with 0 mean on the sphere,
and denote them by C∞0 (S2,C). This vector space can be canonically endowed by a
Poisson structure given by the respective Hamiltonian vector fields of two functions
and a symplectic form α on S2. We have for any f, g ∈ C∞0 (S2,C):

(3) {f, g} = α(Xf , Xg).

With this bracket, C∞0 (S2,C) becomes an infinite dimensional Poisson algebra. A
basis is given by the complex spherical harmonics, which is denoted in the standard
notation and azimuthal-inclination coordinates (φ, θ) as:

Ylm =

√
2l + 1

4π

(l −m)!

(l +m)!
Pml (cos θ)eimφ,

for l ≥ 1 and m = −l, . . . , l. In the spherical harmonics basis, an explicit Lα-
approximating sequence for C∞0 (S2,C) has been built up by J. Hoppe [12], and
fully proved (in a more general contest) by M. Bordemann, E. Meinrenken and
M. Schlichenmaier [6]. It is given by the matrix Lie algebras (sl(N,C), [·, ·]N )N∈N,
where [·, ·]N = N3/2[·, ·], the rescaled usual commutator of matrices.

The distances are given by a suitable matrix norm, and the projections are
defined associating to any spherical harmonic a respective matrix in sl(N,C), for
any N ∈ N, i.e., pN : Ylm 7→ TNlm, where

(TNlm)m1m2
= (−1)n/2−m1

√
2l + 1

(
N/2 l N/2
−m1 m m2

)
,

where the round bracket is the Wigner 3j-symbols. The result can be summarized
as:

Theorem 1 (Bordemann, Hoppe, Meinrenken, Schlichenmaier [7],[6]). Let us con-
sider the Poisson algebra (C∞0 (S2,C), {·, ·}), whose pairing is defined in (3). Then
with respect to pN above defined, and dN any matrix norm, (C∞0 (S2,C), {·, ·}) is
an Lα-approximation of (sl(N,C), [·, ·]N )N∈N.

2.1.2. The reduced system. We can now derive the spatial discretization of the Eu-
ler equations via the Lα-approximation. We first present the system without the
Coriolis force.

For any N ∈ N, we get an analogue of the Euler equations (2):

(4) Ẇ = [∆−1N W,W ]N ,

where W ∈ sl(N,C) and ∆−1N is the inverse of the discrete Laplacian as defined

in [18]. The crucial property of ∆−1N is that ∆−1N TNlm = (−l(l + 1))−1TNlm, for any
l = 1, ..., N , m = −l, ..., l.

We remark that, for a real valued vorticity, W is actually in su(N,C), which
means that W lm = (−1)mWl−m.

The discrete Hamiltonian takes the following form:

H(W ) =
1

2
Tr(∆−1N WW †).
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The discrete system has the following independent N − 1 of first integrals2

Fn(W ) = Tr(Wn) for n=2,..,N

which, up to a normalization constant dependent on N , converge to the powers
of the continuous vorticity.

2.2. With the Coriolis force. In the case with the Coriolis force, the discrete
system looks like:

Ẇ = [∆−1N (W − F ),W ]N ,

where F = 2ΩTN10 represents the discrete Coriolis force. The discrete Hamiltonian
in this case takes the following form:

H(W ) =
1

2
Tr(∆−1N (W − F )(W − F )†).

2.3. Time discretisation by Isospectral-RK methods. The final step in the
discretization consists in solving (4) with a suitable numerical scheme. To take
advantage of the quantization of the original equations, we have to solve (4) with
a Lie–Poisson integrator. In this way we would get an exact conservation of the
Casimir functions and a near conservation of the Hamiltonian. Since (4) is a Hamil-
tonian isospectral flow, we can apply one of the methods presented in [16]. The
simplest method is the 2nd order isospectral midpoint rule. Given a time step
disctretization h, it looks like:

(5)

X = −h(Wn + 1
2X)∆−1N W̃

K = h
2∆−1N W̃ (X +K)

W̃ = Wn + 1
2 (X −XT +K)

Wn+1 = Wn +X −XT +K −KT .

In the numerical scheme X,K are N × N auxiliary matrix variables implicitly
defined in the first two lines of (5). For the derivation and the theory behind (5),
we refer to [16]. We recall that (5) preserves the Casimir functions of (4) up to
machine precision and nearly conserve the Hamiltonian H.

It is now important to remark that since the matrices TNlm, with the Frobenius
inner product, share the same orthogonality properties of Ylm, with the L2(S2)
inner product. Therefore, if the initial vorticity ω0 is represented by a finite linear
combination of spherical harmonics, then choosing N sufficiently large, the Hamit-
lonian and the Enstrophy, i.e., the integral of the square of the vorticity, coincide
with the quantized ones.

2One should notice that by definition Tr(W ) = 0 for all W ∈ sl(N,C) and Tr(WN ) can be
replaced by det(W ), by the Cayley-Hamilton theorem.
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2.3.1. With the Coriolis force. In presence of the Coriolis force term F the scheme
becomes:

(6)

X = −h(Wn + 1
2X)∆−1N (W̃ − F )

K = h
2∆−1N (W̃ − F )(X +K)

W̃ = Wn + 1
2 (X −XT +K)

Wn+1 = Wn +X −XT +K −KT .
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3. Simulations

3.1. Random initial vorticity given in [10]. We have tested our method on
the initial data proposed in [10]. One main claim in [10] is that no steady state
is reached after long time simulations but rather four main vortices are created
and move around the sphere. In this subsection we show and compare the results
obtained with our method with those in [10].

We have run our simulation in MATLAB, taking W0 ∈ su(N), for N = 501 and
normalized, time-step h = 0.1, and solving (5) with a Newton type iteration with
tolerance of 10−13.

Figure 1. Simulation with method (5). Vorticity ω(x, t) from the
top-left at t = 0s, 4s, 40s, 140s, for the intial data in [10]. The
horizontal axis is the azimuth ϕ ∈ [0, 2π] and the vertical axis is
minus the inclination θ ∈ [0, π].

We can see that at time t = 4s, both our simulation and those in [10] give very
similar results, with the beginning of some ”artificial” ripples in ours due to a less
detail in the solution. In the simulation in [10], the level of truncation is in fact at
N = 2800. However, as shown in [10], the early-intermediate vorticity, i.e., at time
t = 40s, is already different according to different simulations. In fact ours is very
divergent to any of the ones in [10], as shown in figure 1-2.

For longer times, at the end of our simulation, i.e., at t = 140s, we have the
creation of four large vortices. We have also found that the two vortices with
positive vorticity, i.e., the bright ones, are quite stable in their position, whereas
the two negatives are drifting away.

Here we want to summarize the main conclusions obtained from our simulation.

• A direct comparison of Figure 1B and Figure 2B shows that they are almost
indistinguishable. Figure 1C and Figure 2C exhibit instead a significant
divergence, also due to the different resolution in which the simulations
have been carried. However, in Figure 1D, we also get four main persistent
non steady large vortices, as shown in Figure 2D [10].
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Figure 2. Simulation in [10]. Vorticity ω(x, t) from the top-left
at t = 0s, 4s, 40s, 400s, for the intial data in [10]. The horizontal
axis is the azimuth ϕ ∈ [0, 2π] and the vertical axis is minus the
inclination θ ∈ [0, π].

• From the theory, we know that our method has a number of discrete con-
servation laws proportional with the level of truncation. In the imple-
mentation, we have solved the method (5) with a Newton iteration, with
tolerance parameter equals to 10−13. Hence, we have that the Enstrophy
and the other Casimir functions (i.e., the eigenvalues of W ) are conserved
up to a fluctuation of the order of 10−13.
• In figure 3, we can also see the near conservation of the Hamiltonian that

is conserved up to order 10−6.
• However, we cannot claim that our simulation is a proof for any realistic

prediction for long time evolution of the vorticity for the following reasons:
1. it is still not proved a complete analytical result about the convergence
in time of the Lα-approximation of the Euler equations on the sphere (for
the torus we have [11]); 2. our simulation was carried with good detail, but
a higher detailed one would be necessary for direct comparison with the
results in [10].
• One difficulty in extracting information from our simulations depends on

the fact that we have to express W in the TNlm basis, which for being cal-
culated requires the evaluation of the 3j-Wigner symbols for very large
numbers. A fast computation of those or a full library is not known by the
author.
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Figure 3. Hamiltonian variation |H − H0| in simulation with
method (5). The horizontal axis is the number of records (each
record is 200 iterations). Each 70 records corresponds to a real
time second.

3.2. Gaussian vortex on a rotating sphere given in [8]. The second example
we present is done taking the initial condition defined in [8], which is a Gaussian vor-
tex on a rotating sphere. A Gaussian vortex centred in xc = [sin(π/20) 0 cos(π/20)]
is defined in [8] as:

(7) ω0(x) = 4π exp(−16|x− xc|2) + C,

for x ∈ S2 and C such that the integral of ω0 is 0. Here we show the behaviour
obtained with N = 201, h = 0.1 and angular speed of the sphere Ω = 2

√
3π. To

derive a formula for W0, we have developed (7) in the complex spherical harmonics
Ylm, using a least square approximation, and then we have summed up the com-
ponents found in the TNlm basis. In figure 4, we show the output of the simulation.
We can see the vortex moving north west (i.e., top-left) and stretching during its
migration, as observed in [8].
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Figure 4. Simulation with method (6). Vorticity ω(x, t) from the
top-left at record= 1, 150, 300, 450 (each record is 200 iterations),
for the intial data in [8]. The horizontal axis is the azimuth ϕ ∈
[0, 2π] and the vertical axis is minus the inclination θ ∈ [0, π].
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Figure 5. Hamiltonian variation |H − H0| in simulation with
method (6). The horizontal axis is the number of records (each
record is 200 iterations).
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4. Complexity and time scaling

4.1. Complexity. The most demanding computational operation is, a priori, the
inversion of the discrete Laplacian ∆N . It is indeed a 4th order tensor defined on a
particular basis of sl(n,C). Fortunately a deep study has been done in [13], where
and simpler formulas are provided. In particular, we use the following expression
in components:

(∆N )
M ′

1M
′
2

M1M2
=2δ

M ′
1

M1
δ
M ′

2

M2
(s(s+ 1)M1M2)

− δM
′
1

M1+1δ
M ′

2

M2+1

√
s(s+ 1)M1(M1 + 1)

√
s(s+ 1)M2(M2 + 1)

− δM
′
1

M1−1δ
M ′

2

M2−1

√
s(s+ 1)M1(M1 − 1)

√
s(s+ 1)M2(M2 − 1),

for M1,M
′
1,M2,M

′
2 = 1, ..., N and s = (N−1)/2. Moreover, to make ∆N invertible

we require that ∆NId = Id. This of course does not affect the dynamics being Id
in the centralizer of sl(N,C). We store ∆N in a sparse matrix of full size N2×N2,
and then to have ∆−1N , we apply the sparse LU-factorization, which gives two sparse

L,U matrices to be inverted to calculate ∆−1N . We remark that the definition of ∆N

and its LU-factorization can be done once and for all. In conclusion, the operation
of multiplication by ∆−1N has a complexity of O(N2), as shown in figure 6.

102 103
10-2

10-1

100

101

Figure 6. Complextiy of ∆−1N multiplication for N = 101, ..., 1001
in loglog scale. f(N) = N3 in red dashed-dot, f(N) = N2 in yellow
dashed, ∆−1N multiplication in continuous blue line.

We have solved (5) with a Newton iteration type. Since the number of iterations
is independent of N , the global complexity of the algorithm is as much as two full
matrix multiplication, which is O(N3), as shown in figure 7.

4.2. Time scaling. The equations (4) are quadratic, and therefore are not invari-
ant under rescaling of W . The rescaling W 7→ cW is equivalent to multiplying the
bracket by the same constant c. In particular, we notice that for all N ≥ 1 the
matrices TNlm are orthonormal with respect to the Frobenius norm. Therefore, the

constant N3/2 in front of the matrix commutator implies that the step-size h of
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102 103
10-1

100

101

102

103

Figure 7. Complextiy of the whole algorithm for N =
101, ..., 1001 in loglog scale. f(N) = N3 in red dashed-dot,
f(N) = N2 in yellow dashed, ∆−1N multiplication in continuous
blue line.

discretization (or equivalently the length of the simulations) is scaled of a factor
N3/2. As local accuracy, i.e., the dimension of the discrete vorticity, goes as N2,
an improvement of a factor c in the spatial accuracy, at a certain time, requires√
c
3√
c
3/2

= c2 4
√
c more operations.
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