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Artificially structured metasurfaces make use of specific configurations of subwavelength resonators to
efficiently manipulate electromagnetic waves. Additionally, optomechanical metasurfaces have the desired
property that their actual configuration may be tuned by adjusting the power of a pump beam, as resonators
move to balance pump-induced electromagnetic forces with forces due to elastic filaments or substrates.
Although the reconfiguration time of optomechanical metasurfaces crucially determines their performance,
the transient dynamics of unit cells from one equilibrium state to another is not understood. Here, we make
use of tools from nonlinear dynamics to analyze the transient dynamics of generic optomechanical
metasurfaces based on a damped-resonator model with one configuration parameter. We show that the
reconfiguration time of optomechanical metasurfaces is not only limited by the elastic properties of the unit
cell but also by the nonlinear dependence of equilibrium states on the pump power. For example, when
switching is enabled by hysteresis phenomena, the reconfiguration time is seen to increase by over an order
of magnitude. To illustrate these results, we analyze the nonlinear dynamics of a bilayer cross-wire
metasurface whose optical activity is tuned by an electromagnetic torque. Moreover, we provide a lower
bound for the configuration time of generic optomechanical metasurfaces. This lower bound shows that
optomechanical metasurfaces cannot be faster than state-of-the-art switches at reasonable powers, even at
optical frequencies.

DOI: 10.1103/PhysRevLett.120.197402

The field of optomechanics [1,2] has generated several
high-precision techniques to control and detect minute
motions of a variety of objects by optimizing the interaction
of light with mechanical degrees of freedom [3–5].
Conversely, optical forces and torques also provide a
versatile mechanism to control electromagnetic responses.
For example, optomechanical metasurfaces consist of a
collection of subwavelength unit cells with optimized
electromagnetic resonators that are connected by elastic
elements which may move to oppose pump-induced forces
[6–8]. The idea is to use the electromagnetic force of a
pump beam to displace [6,9–12], deform [13,14], or rotate
[9,15] electromagnetic resonators, so magnetic [6], chiral
[13,14,16], or other electromagnetic responses [9–11] may
be tuned by the power of the pump. Optomechanical
metasurfaces have been praised for their enhanced non-
linear response because hysteresis and jump phenomena
allow processing light with light [17–20] and may extend
the range of electromagnetic responses [21].
In this Letter, we demonstrate that hysteresis phenomena

dramatically increase the reconfiguration time of optome-
chanical metasurfaces due to critical slowing-down, a
phenomenon which is well established in other nonlinear
systems [22–24]. Based on a damped-resonator model, we
obtain a lower bound for the reconfiguration time which

scales unfavorably with the frequency and power of the
pump. As a result, the response times of optomechanical
switches do not improve on the state of the art [20].
Figure 1(a) visualizes a generic two-dimensional optome-
chanical unit cell that consists of electromagnetic resona-
tors connected to elastic components such as filaments,
membranes, or substrates [6,14]. We assume that the
configuration of the unit cell is described by one configu-
ration parameter ψ, whose value changes when the unit cell
is deformed from ψ0 in the absence of a pump to a new
equilibrium ψ eq in the presence of a pump. Note that the
electromagnetic action on the unit cell P0AðψÞ is propor-
tional to the power P0 that is deposited on the unit cell,
while its dependence on the configuration parameter AðψÞ
results from resonances of the electromagnetic modes. At
the equilibrium configuration, the electromagnetic action is
balanced by a restoring action of the elastic elementsRðψÞ,
which is to a very good approximation given by Hooke’s
law RðψÞ ¼ −κðψ − ψ0Þ [straight line in Fig. 1(b)]. Close
to equilibrium, the net electromagnetic action on the unit
cell results in an effective optical spring constant κopt ¼
κ − ½ðP0∂Aðψ eqÞÞ=∂ψ � [25] which determines if equilib-
rium states are stable (κopt > 0) or unstable (κopt < 0). For
the sake of tunability, we assume that the pump beam is
operated close to a resonance frequency f0 of the

PHYSICAL REVIEW LETTERS 120, 197402 (2018)

0031-9007=18=120(19)=197402(6) 197402-1 © 2018 American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.120.197402&domain=pdf&date_stamp=2018-05-11
https://doi.org/10.1103/PhysRevLett.120.197402
https://doi.org/10.1103/PhysRevLett.120.197402
https://doi.org/10.1103/PhysRevLett.120.197402
https://doi.org/10.1103/PhysRevLett.120.197402


metasurface, so the electromagnetic action P0AðψÞ reaches
a maximum at the value ψmax of the reconfiguration
parameter for which the metasurface is most resonant
[Fig. 1(b)]. As explained in Fig. S1 of the Supplemental
Material [26], the equilibrium states depend in a highly
nonlinear way on the power of the pump and may form
hysteresis curves [Fig. 1(c)]. An optomechanical metasur-
face with one configuration parameter will always generate
a hysteresis curve for a particular range of parameter values
ψ0 [see Fig. S1(e) of the Supplemental Material [26] ] when
the electromagnetic action has an inflection point ψFL
[Fig. 1(b)]. This inflection point allows for multiple
equilibrium states in between ψ0 and ψmax, i.e., multiple
intersections between the electromagnetic action and the
restoring action in Fig. 1(b), and has to exist when the unit
cell has multiple resonances, symmetries in terms of the
configuration parameter, or when the electromagnetic
action approaches zero, as in Refs. [7,15]. To investigate
whether optomechanical metasurfaces may be used as a
switch, we study the transient dynamics of unit cells as they
evolve from one equilibrium configuration ψ ð1Þ

eq to another
ψ ð2Þ
eq under the influence of the time-averaged electromag-

netic action. Note that the electromagnetic problem decou-
ples from the mechanical problem because mechanical
frequencies are much lower than the frequency of the pump
beam. Therefore, we have extracted the electromagnetic
action from finite-element simulations before solving for
the nonlinear dynamics of the unit cell, for which the

electromagnetic action is a nonideal source [22,27]. In
particular, the unit cell is modeled as a damped resonator,
whose equation of motion

M
∂2ψ

∂t2 þ γ
∂ψ
∂t þ κðψ − ψ0Þ ¼ P0hAðψ ; f0Þi

contains the (moment of) inertia M of the movable parts
of the unit cell, a damping term γ, a spring constant κ due
to an elastic element with equilibrium state ψ0, and a
time-averaged electromagnetic action P0hAðψ ; f0Þi. We
impose that the restoring parameter κ is optimized, so the
restoring action allows for a reasonable change Δψ of the
configuration. In mathematical terms, at the desired
power of operation P0op, the restoring parameter is related
to the maximal value of the electromagnetic action:
κΔψ ¼ P0 opAmax. Importantly, κ cannot be increased at
will to improve the reconfiguration time. The equation of
motion is solved in dimensionless coordinates with
normalized parameters γ̃ ¼ ðγ=MÞ, κ̃ ¼ ðκ=Mγ̃2Þ, Ã ¼
ðA=Mγ̃2Þ in terms of an evolution parameter τ ¼ γ̃t on a
two-dimensional phase plane ðψ ; ðdψ=dτÞÞ,

dψ
dτ

¼ v;
dv
dτ

¼ −v − κ̃ðψ − ψ0Þ þ P0hÃðψ ; f0Þi: ð1Þ

Throughout this Letter, we assume that the
resonator is critically damped, i.e., γ̃crit¼
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðκ=MÞ−ðP0=MÞð∂Aðψ eqÞ=∂ψÞ
p

, so the unit cell con-
verges in an optimal way. In the Supplemental Material [26]
Figs. S10 and S11, the reconfiguration time of over- and
underdamped resonators is shown to be higher. As a
particular illustration of the time-averaged electromagnetic
action P0hÃðψÞi, we consider an optically active bilayer
metasurface [28–30] consisting of cross wires that are
connected by torsional wires as in Fig. 2(a). Other mech-
anisms to tune optically active metasurfaces can be found in
Refs. [19,31–37]. The ability to turn a linearly polarized
signal beam over an angle δ is determined by the relative
orientation φ of the crosses [8,28,38], which provides the
reconfiguration parameter of the metasurface. As explained
in the SupplementalMaterial [26] andRefs. [39–41] therein,
the electromagnetic torque and the optical activity δ have
been extracted from full-wave numerical simulations for
various angular orientations of the crosses and frequencies
of the pump (see Figs. S3–S5 in the Supplemental Material
[26]). The simulations were performed at 1 W incident
power on a single unit cell, and the frequency of the
pump is eventually fixed close to a resonance frequency
(f0 ¼ 10.6 GHz). Figure S8 in the Supplemental Material
[26] shows that the dynamics of the unit cell is insensitive to
the specific frequency of the pump. Therefore, only the
power of the pump is a relevant parameter that may
lead to bifurcations. For a preferred power of operation of
P0opW and for deviations of about Δφ ¼ 1 rad, our
numerical simulations impose a restoring constant of
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FIG. 1. Visualization of a generic optomechanical unit cell
whose internal configuration ψ changes to compensate for the
electromagnetic action P0AðψÞ on elastic elements with a restor-
ing action κðψ − ψ0Þ. (a) The initial equilibrium ψ0 changes toψeq
when a pump beam acts on the unit cell. (b) Equilibrium states
correspond to intersections of the electromagnetic action of the
pump and the restoring action of an elastic element with restoring
parameter κ. (c) Equilibrium states are either stable (blue) or
unstable (red) and may form hysteresis curves for specific values
of ψ0 due to the presence of an inflection point ψFL.
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κ ¼ 3.6 × 10−4 P0op. In the following, the use of P0op ¼ 1

does not affect the generality of the results. Figure 2(b)
confirms that the cross-wire metasurface has a hysteresis
curve with stable (blue) and unstable (red) equilibrium
orientations for several values of the equilibrium parameter
φ0. Note that the wires experience a (counter) clockwise
rotation in the orange (blue) area, leading to an upward
(downward) trajectory in the graph. Therefore, bifurcations
in the lower part of Fig. 2(b) and unstable states in the upper
part of Fig. 2(b) cannot be reached by changing the pump
power and will be excluded by the blue regions in Figs. 2(e)
and 2(f). Figure 2(b) further shows that when φ0 is smaller
than 1.03 rad, there are bifurcation points where solutions
are created or merged. Figure 2(c) visualizes a collection
of trajectories through phase space for P0 ¼ 1, each
with different initial conditions on the horizontal axis.
Trajectories in red (blue) correspond to an equilibrium
parameter φ0 ¼ 0.85 rad (φ0 ¼ 1.35 rad) of the wire, for
which there are (no) bifurcations. In both cases, trajectories
quickly converge to a specific curve before moving slowly
toward a single equilibrium [Fig. 2(c)]. However, in the case
of φ0 ¼ 0.85 rad, the trajectory through phase space
approaches a bifurcation point and experiences a critical
slowing-down, so its angular velocity is strongly reduced.
For underdamped systems, the trajectory in phase space

connects to the slow curve close to bifurcations, but
otherwise spirals down toward equilibrium [see Fig. S4(c)
in the Supplemental Material [26] ]. A semianalytical for-
mula for the reconfiguration time Δt is derived based on
alternative coordinates ðφ; ṽÞ,

dψ
dτ

¼ ṽ − ψ ;
dṽ
dτ

¼ −κ̃ðψ − ψ0Þ þ μ
hÃðψÞi

hÃmaxðψÞi
: ð2Þ

For convenience, we have normalized the electromagnetic
action by introducing a parameterμ. For example, a critically
damped unit cell atP0 ¼ 1 results in a value μ ¼ 0.04which
is very small. Because of this, trajectories in phase space
reduce to the diagonal line ṽ ¼ φ [Fig. 2(d)]. As a result, the

reconfiguration time Δt to switch from ψ ð1Þ
eq to ψ ð2Þ

eq with an
accuracy of Δ ¼ 0.1° ¼ 0.1ðπ=180Þ rad along this line is
given by

Δt ¼ 1

γ̃

Z
ψ ð2Þ
eq −Δ

ψ ð1Þ
eq

dψ

μÃnormðψÞ − κ̃ðψ − ψ0Þ
: ð3Þ

Figures 2(e) and 2(f) contain the reconfiguration time that is
required to reach the equilibrium state forP0 ¼ 0.6 (red) and
P0 ¼ 1 (blue) from initial orientations on the horizontal axis.
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FIG. 2. Transient dynamics of a cross-wire metasurface. (a) An optomechanical cross-wire unit cell with a wire equilibrium φ0 and an
angular orientation φ due to pump-induced torques. (b) Nonlinear dependence of stable (blue) and unstable (red) equilibrium states on
the pump power P0 for several values of φ0 ∈ f0.85 rad;…; 1.35 radg. Blue and orange shaded regions, respectively, indicate when the
total torque is positive or negative when φ0 ¼ 0.85. (c) Trajectories through phase space for φ0 ¼ 0.85 rad and φ0 ¼ 1.35 rad at P0 ¼ 1.
Each trajectory starts on the horizontal axis and evolves fast to a fixed curve, along which slow dynamics dominates the reconfiguration
time. (d) Visualization of the slow curve in alternative coordinates ðφ; ṽÞ leads to a diagonal line. (e), (f) Numerical (circles) and analytic
(solid curves) predictions of the configuration time for φ0 ¼ 1.35 rad and φ0 ¼ 0.85 rad with P0 ¼ 0.6 (red) and P0 ¼ 1 (blue).
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Equilibriumorientations are easily found by looking for dips
in the curve. The semianalytical predictions of Eq. (3) (solid
lines) agree very well with exact numerical solutions of the
equation of motion (circles and crosses). For small separa-
tions, the elastic response of the wire contributes the most to
the reconfiguration time, which increases in a logarithmic
fashion [Eq. (3)]. At larger separations, contributions due to
the nonlinear response of the metasurface dominate, and
switching times increase substantially when the net torque is
lowest. In particular, in the presence of bifurcations
[Fig. 2(f)], initial conditions φð0Þ close to the unstable
equilibrium for P0 ¼ 0.6 induce singular switching times.
Although catastrophic initial conditions cannot be reached
by increasing or decreasing the pump [Fig. 2(b)], as
indicated by the blue regions in Figs. 2(e) and 2(f), hysteresis
curves may yet increase reconfiguration times by an
order of magnitude. From an application point of view,
one would like to determine the time that is required to
change the electromagnetic response by a particular amount
Δδ ¼ δð2Þ − δð1Þ. In Fig. 3(a), the colored dots represent
initial orientations φð1Þ that impose different changes in the
electromagnetic responseΔδ as they evolve toward the final
equilibrium φð2Þ at P0 ¼ 1 (green dot). Importantly, these
states can be reached for all values ofφ0 in Fig. 2(b), without
moving too close to the bifurcation points, so the reconfig-
uration time is mainly limited by the damped motion of the

unit cell. The accumulated changeΔδ ¼ j R ψ ð2Þ

ψ ð1Þ ð∂δ=∂ψÞdψ j
can be expressed with respect to the reconfiguration
time Δt by making use of Eq. (3): Δδ ¼
γ̃j RΔt

0 ð∂δ=∂ψÞðP0ÃðψÞ − κ̃ðψ − ψ0ÞÞdtj. In addition,
because the motion of the unit cell in regions with a low
electromagnetic action take up the most time, the average
ð1=ΔψÞj R ð∂δ=∂ψÞðP0ÃðψÞ − κ̃ðψ − ψ0ÞÞdψ j is larger
than the time average ð1=ΔtÞj R ð∂δ=∂ψÞðP0ÃðψÞ−
κ̃ðψ − ψ0ÞÞdtj. As a result, we obtain the following lower
bound:

Δt ≥
1

γ̃

jΔδjðψ ð2Þ − ψ ð1ÞÞ
j R dδ

dψ ðψÞ½P0ÃðψÞ − κ̃ðψ − ψ0Þ�dψ j
: ð4Þ

As expected, the lower bound increases for weak resonances
(ðdδ=dψÞ small) and low net torques. Note that the previous
derivation is only valid when ðdδ=dψÞÃ has a constant sign;
i.e., it is not strictly valid when the trajectory crosses a
resonance of the response function. Figure 3(b) shows that
the reconfiguration time always exceeds the lower bound
(black dots), which, in this case, lies slightly below 5 times
the characteristic decay time of a critically damped oscillator
(gray dots). Surprisingly, but in agreement with Eq. (3), the
reconfiguration time improves in the presence of bifurca-
tions, i.e., when metasurface designs implement low values
for the restoring parameter φ0. This is because hysteresis
curves push equilibrium states to higher powers [Fig. 2(b)];

i.e., the power of the pump that is required to reach φð2Þ is
higher for φ0 ¼ 0.85 rad than for φ0 ¼ 1.35 rad. However,
from an experimental point of view, the power of operation
may be limited. For example, the blue region contains those
parameter values φ0 < 1.16 for which the power of the
pump is at least twice the desired power of operationP0op. If
moderate changes in power are required, bifurcations should
be avoided.
In the Supplemental Material [26], we derive scaling

laws for the reconfiguration time in terms of the
resonance frequency f and the intensity of the pump I:
Δt ¼ ½ðf=f0Þ�α½ðI=I0Þ�−1=2Δt0, with α ¼ −1=2ð−1Þ for
torque-based (force-based) optomechanical unit cells.
For example, an optical cross-wire metasurface with
parameters based on Ref. [10], i.e., f ¼ 2.0 × 1014 Hz
and I ¼ 31 W=mm2 converges at best in 4.4 ms when
using Δt0 ¼ 50 s from Fig. 3(b), f0 ¼ 10.6 GHz, and
I0 ¼ ð1 W=225Þ mm2. Force-based optomechanical
metasurfaces have a slightly better scaling that would
lead to Δt ¼ 0.63 × 10−6Δt0. This roughly corresponds
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PHYSICAL REVIEW LETTERS 120, 197402 (2018)

197402-4



to a maximum bandwidth of a few MHz, in agreement with
Ref. [10] but still 3 orders of magnitude lower than state-of-
the-art silicon switches [20].
In conclusion, the transient dynamics of optomechanical

metasurfaces is adversely affected both by the presence of
bifurcations (Fig. 2) and by the slow exponential con-
vergence of damped mechanical elements [Eq. (3)]. In
particular, critical slowing-down may restrict the reconfig-
uration time by over an order of magnitude. In addition, the
lower bound for the reconfiguration time [Eq. (4) and
Fig. 3] scales slowly with the resonance frequency and the
intensity on the unit cell, so optomechanical metasurfaces
cannot be used as fast switches, even at optical frequencies.
To boost switching times, one may (1) try to manipulate
particles separately with highly confined fields [2], (2) use
other mechanisms for tuning metasurface properties
[21,42], or (3) generate dynamic optical responses through
a continuous modulation of the pump beam [10,11].
However, also for modulated systems, nonlinear dynamics
may restrict the speed by which one may switch from one
modulation pattern to another.
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