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An unusually large value of the 22C matter radius, extracted by Tanaka et al. [Phys. Rev. Lett. 104, 062701
(2010)] from measured reaction cross sections, attracted great attention of scientific community. Since that time,
several experimental works related to the 22C nucleus have appeared in the literature. Some of the experimental
data, measured with high accuracy, allow us to fix 22C structure more reliably. Two limiting models reproducing
22C nuclear structure within the three-body cluster approach, that allow us to describe all existing experimental
data, are presented. The 22C ground state, continuum structure, and geometry are obtained. With fixed 22C wave
function, the prediction for the soft dipole mode in 22C, which is studied in the process of Coulomb fragmentation,
is performed.

DOI: 10.1103/PhysRevC.97.064307

I. INTRODUCTION

Comprehensive theoretical studies [2,3] of the ground-state
structure of the 22C and reactions cross sections for 22C
collision with the 12C target were done a few years before the
first experimental data [1] about the 22C structure appeared. In
these theoretical works the structure of the 22C nucleus was illu-
minated as an “ideal s-wave two-neutron halo nucleus” [2] and
enhanced reaction cross sections in comparison with 20C were
predicted. Varying the s-wave 20C core-n potential, 22C binding
energy has been predicted in the range 0.122–0.489 MeV
and root-mean-square (rms) matter radius—3.61–4.11 fm [3].
Later on, the experimental claim (2010) by Tanaka et al. [1]
that the hitherto heaviest known Borromean two-neutron halo
nucleus 22C may have a giant matter radius of 5.4 ± 0.9 fm
sparked off a lot of theoretical estimations [4–11], including
ours [12]. Tanaka and coauthors use a simplified three-body
model for 22C, giving a connection between the two-neutron
separation energy S2n and the experimental reaction cross
section. They come to the conclusion that a very small S2n ∼
10 keV is needed even if the two halo neutrons are situated in
pure s2 configuration.

The value of the two-neutron separation energy is not
experimentally known and the last (2003) estimate [13] assigns

*n.b.shulgina@gmail.com

for 22C a rather uncertain value, S2n = 0.42 ± 0.94 MeV. Direct
mass measurement [14] puts an upper limit for S2n � 360 keV.
Such ambiguity has supported discussions about 22C possibly
having an extremely large size.

In our previous article [12], in the absence of experimental
data except a huge matter radius [1], we explored how the
separation energy S2n influences the spatial extension of an s-
dominated Borromean halo nucleus and also other observables
that are directly connected to the large size of the ground state.
Simulations showed that to reach the experimentally suggested
lower boundary for the extracted matter radius, the separation
energy S2n of two neutrons in 22C should be of the order of tens
keV, while to reach the mean value the binding must be even
much weaker. Within the cluster model the spatial extension of
the nucleus is directly connected to the distance between the
matter and charge center of mass (c.m.) positions. This leads
to a swelling of the 22C charge radius due to the 20C core
motion about the nuclear c.m., compared with the original
charge size of the 20C core. Also, the strength and position
of soft dipole excitations are very sensitive to the separation
energy, thus to the system’s spatial extension. The position of
the soft dipole peak moves closer to the three-body threshold
with decreasing separation energy S2n. Correspondingly, the
separation between the average position of matter and charge
distributions becomes larger and the height of the dipole peak
is increased in accordance with the nonenergy weighted dipole
sum rule. Since the flux of virtual photons peaks at small
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excitation energies, this results in electromagnetic dissociation
cross sections that are very sensitive to the separation energy
and can reach huge values for the weak binding. All these
far-reaching consequences of a giant matter radius should be
tested against experimental data.

Recently (2016) new experimental work appeared [15],
where interaction cross section of 22C nuclei on a carbon target
at 240 MeV/nucleon had been measured with high accuracy.
Using a four-body Glauber model the 22C matter radius of
3.44 ± 0.08 fm was deduced, which is much smaller than the
previous value [1]. Togano et al. [15] emphasize that these new,
higher-precision data provide stronger constraints for assessing
the consistency of theories describing weakly bound nuclei.

Besides these data, the longitudinal momentum distribution
(LMD) of 20C after 22C fragmentation was measured by
Kobayashi et al. [16]. In spite of the fact that the accuracy
of these older measurements is not so high as in Ref. [15],
the LMD results can be used as an additional information to
constrain the 22C nuclear structure.

The experiment on proton removal from 22N at 68
MeV/nucleon, performed by Mosby et al. [17], showed no ev-
idence for a low-lying state of 21C. Authors have reconstructed
the 20C + n decay-energy spectrum and estimated a scattering
length limit of |as | � 2.8 fm. In principle, the experiment could
be used to fix the s-wave 20C-n potential. Unfortunately the
accuracy of the experiment is not sufficient, especially in the
very low energy range.

The experimental data (2012) on the 22C Coulomb dissocia-
tion cross sections on Pb target at 230–240 MeV/nucleon have
only been presented in Conference talk [18]. Preliminary data
are about 1000 mb, which is large but not extremely large.
These experimental data could be used for comparison with
theoretical predictions.

In view of the new experimental information it may be
worthwhile to review the 22C structure and reactions. For
that purpose we describe below the three-body cluster model,
which is used for description of the 22C nuclear structure, and
discuss the constraints that follow from recent experimental
data. Two models for the 22C structure that allow us to describe
existing experimental data will be presented. The content of
these models is different and they give two limiting cases within
which the nuclear structure of 22C nucleus may be found. (The
system of units h̄ = c = 1 is used in this paper.)

II. THE BOUND STATE MODEL

Following our previous paper [12] we consider 22C as a
three-body cluster system (20C + n + n) and use the hyper-
spherical harmonics method to solve the Schrödinger three-
body equation [19,20].

Cluster models assume that the wave function of a nucleus
with A nucleons is factorized in a product of two parts,
�(r1, . . . ,rA) = φ(r1, . . . ,rAC

) ψ . The first φ(r1, . . . ,rAC
)

is the core wave function describing the motion of the AC

nucleons within the core. The second, ψ describes the relative
motion of the 20C core c.m. and the halo nucleons, the cluster
constituents.

For three-body cluster models ψ depends on two transla-
tional invariant Jacobi coordinates (x,y), where x is the relative

distance between two constituents, and y is the relative distance
between the c.m. of a pair of two constituents and the third
fragment.

Let {i,j,k} (1, 2, C for halo neutrons and core) numerate
the constituents of the three-body model, where r1,2 describe
the halo neutron’s coordinates in an arbitrary system and rC

denotes the position of the core c.m.. The normalized Jacobi
coordinates for the distance x between the two constituents
{j,k}, and y between the c.m. of the pair and the third fragment
{i}, as well as the nuclear center of mass coordinate Rc.m., are
related by

x =
√

AjAk

Ajk

(rj − rk), Ajk = Aj + Ak,

y =
√

AiAjk

A

[
ri − 1

Ajk

(Aj rj + Akrk)

]
, (1)

Rc.m. = 1

A
(Airi + Aj rj + Akrk), A = Ai + Aj + Ak.

Here, A1,2 = 1, AC , and A = (AC + 2) are masses (in units
of the nucleon mass m, which in our calculations equals the
mean value of proton and neutron masses) of halo neutrons,
the core, and the halo nucleus, respectively. For two-neutron
halo nuclei only two different Jacobi coordinate systems exist
since the two valence neutrons are identical particles. One,
labeled T (cluster representation), corresponds to the case
when the relative distance x is between the two halo neutrons.
In the second case, called Y (shell-model representation), the
relative distance x is between core C and one of neutrons.
To simplify notation we use the same letters x,y for different
Jacobi coordinates.

The bound state wave function ψ(x,y) that describes rela-
tive motion of the cluster constituents is characterized by the
total angular momentum J and its projection M on a quan-
tization axis. The ψJM (x,y) is a solution of the Schrödinger
three-body equation,

(Ĥ − E) ψJM (x,y) = 0, (2)

with Hamiltonian for three clusters given by

Ĥ = T̂ + V̂Cn(rC1) + V̂Cn(rC2) + V̂nn(r12), (3)

where T̂ is the kinetic energy operator for relative motion
of the constituents, and V̂Cn and V̂nn are the binary core-
neutron and neutron-neutron interactions, respectively. The
binary potentials depend on vectors rij = ri − rj that are
relative distances between constituents. Solutions of Eq. (2) at
a negative energy (E = −S2n < 0) define the bound states of
the halo nucleus.

For description of the wave function ψJM (x,y) we ap-
ply the method of hyperspherical harmonics [19]. In this
method the relative Jacobi coordinates (x,y) are mapped into
(ρ,�ρ), the hyperradius ρ and the set of five-dimensional
angular variables �ρ = {αρ,x̂,ŷ}. The hyperradius ρ and
hyperangle αρ are introduced by the following relations:

ρ2 = x2 + y2,

αρ = arctan(x/y), 0 � αρ � π/2, (4)
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i.e., x = ρ sin αρ, y = ρ cos αρ .The hyperradius ρ reflects the
size of the three-body system and is the same in any system
of Jacobi coordinates. The angular variables �ρ depend on the
selection of Jacobi coordinate system.

The wave function ψJM is decomposed [19] on hyperspher-
ical harmonics

ψJM (x,y) = 1

ρ5/2

∑
Kγ

χJ
Kγ (ρ)J JM

Kγ (�ρ), (5)

where the five-dimensional hyperharmonicY lx ly
KLML

(�ρ) has the
explicit form

J JM
Kγ (�ρ) = [Y lx ly

KL(�ρ) ⊗ χS

]
JM

, (6)

Y lx ly
KLM (�ρ) = �

lxly
K (αρ)

[
Ylx (x̂) ⊗ Yly (ŷ)

]
LM

, (7)

with the hyperangular function �
lxly
K (αρ) defined in Ref. [19].

The hyperharmonics Y lx ly
KLML

(�ρ) provide a complete orthogo-
nal set of functions defined on the five-dimensional sphere of
unit hyperradius. Here, K is the hypermoment, γ ={S,L,lx,ly}
is an abbreviation for a set of quantum numbers, which
characterize the relative motion of the three-fragments (lx, ly
are the relative orbital angular momenta for x and y motions,
L is the total orbital momentum), χSMS

is the spin function of
the halo neutron pair with spin S and its projection MS , core
spin equals zero.

Inserting decomposition Eq. (5) into the Schrödinger Eq. (2)
and projecting out the hyperharmonics Y lx ly

KLM (�ρ), we can get
a set of coupled K-harmonic equations for the hyperradial part
χJ

Kγ (ρ), {
− 1

2m

[
d2

dρ2
− L(L + 1)

ρ2

]
− E

}
χJ

Kγ (ρ)

= −
∑
K ′γ ′

V J
Kγ,K ′γ ′ (ρ) χJ

K ′γ ′(ρ), (8)

where L = K + 3/2 and the matrix elements are generated
from binary interactions in the following way:

V J
Kγ,K ′γ ′(ρ) = 〈J JM

Kγ (�ρ)
∣∣V̂Cn(rC1) + V̂Cn(rC2)

+ V̂nn(r12)
∣∣J JM

K ′γ ′(�ρ)
〉
. (9)

The asymptotic behavior for a Borromean three-body halo sys-
tem in the hyperradius is similar to that of a two-body system
in the binary separation, and for a bound state determined by
the separation energy

χJ
Kγ (ρ → 0) ∼ ρL+1, χJ

Kγ (ρ → ∞) ∼ exp (−κρ), (10)

where κ =√
2m|E|. The automatic incorporation of the correct

three-body asymptotic of bound state wave functions for Bor-
romean systems is one of the advantages of the hyperspherical
harmonic method.

Usually the system of the hyperradial Eqs. (8) is solved
in the T system of Jacobi coordinates since the symmetry
under permutation of two valence halo neutrons reduces
the number of allowed configurations and leads to smaller
dimension of coupled equations compared with the case of
the Y system where permutation symmetry does not appear

TABLE I. Parameters of the 20C + n potentials. Depths Vi are
given in MeV. Radii Ri and diffusenesses ai are given in units of fm.

Set Vc Rc ac V0 R0 a0 V1

B [2] 43.24 3.39 0.65 25.63
s-wave P1 200 1.46 0.4 23.2 3.01 0.67
s-wave P2 200 1.46 0.4 16.5 3.01 0.67
p-waves 200 1.86 0.716 43.24 3.39 0.65 25.63
d3/2-wave P1 45.0 3.39 0.65 25.63
d5/2-wave P1 43.24 3.39 0.65 25.63
d3/2-wave P2 45.95 3.39 0.65 25.63
d5/2-wave P2 43.24 3.39 0.65 25.63

explicitly. A unitary transformation between representations in
different Jacobi systems can be done by using the Raynal-Revai
coefficients [21].

III. CALCULATIONS

A. Choice of intercluster potentials

Within a cluster three-body (20C + n + n) model the bound
state properties of 22C are defined by the intercluster potentials.
The main problem in selecting binary potentials between the
constituents, is the absence of reliable experimental informa-
tion about the neutron-core system, beyond the fact that a
bound state of 21C does not exist. At present time the only
experiment which can be used to reconstruct a core-n potential
is the single-proton removal reaction from a beam of 22N done
(2013) by Mosby et al. [17]. No evidence for a low-lying
state was found, and the reconstructed 20C + n decay-energy
spectrum could be described with a s-wave line shape having
a scattering length |as | < 2.8 fm (the best fit to experimental
data being as = −0.05 fm). This means that s-wave interaction
is small or nearly zero. Since the experimental data [17] are not
very accurate at low energies, an alternative may be possible, in
which an s-wave virtual state, situated very close to threshold,
avoids registration because registration efficiency is nearly zero
in this region. The d-wave interaction cannot be constrained by
the experimental data [17] because the quadrupole states are
unlikely to be populated in the proton removal reaction from
the 22N ground state, which is accepted to have Jπ = 0−.

As a starting point we use the deep potential by Horiuchi
and Suzuki [2] (set B shown in Table I), which implies a shell
model ansatz: the 20C core in 22C has closed d5/2 subshell.
This potential has been chosen for calculations because it gives
reasonable geometry of 22C and has the following form:

V̂Cn(r) = −V0f (r) + V1(l · s)
1

r

df (r)

dr
+ Vse

−μr2
,

f (r) = 1

1 + e(r−R0)/a
, (11)

where the last Gaussian term in Eq. (11) acts in s-wave only
(Vs = 9.46 MeV, μ = 0.09 fm−2). This potential has Pauli-
forbidden states, which must be considered as already occupied
by core nucleons, and blocked for the halo neutrons. Different
approximations to the complete antisymmetric approach have
been developed within the framework of three-body cluster
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models (see, for example, Refs. [22,23], which contain de-
scriptions of different methods and study the consequences
of their applications). In fact, the way of Pauli principle
treatment should be considered as a part of the few-body model
and approximation due to such approach has to be included
in the total ambiguity of the used model. Here, the Pauli
forbidden states (namely s, p, d5/2) are projected out by means
of supersymmetric transformation [24] of the potential. As a
result, the deep potential for these partial waves gets repulsive
core at small distances. We regularize the core, which has
singularity at zero radius r , and finally simulate the transformed
potential in the following form:

V̂Cn(r) = Vcore(r) − V0f (r) + V1(l · s)
1

r

df (r)

dr
,

Vcore(r) = Vc

1 + e(r−Rc)/ac
. (12)

Here, a core part Vcore(r) provides a necessary repulsion to get
an attractive part which is shallow enough, thus a combined
potentials Eq. (12) has one bound state less then the original
potential Eq. (11). Simultaneously the new potential is a phase
equivalent to the old one.

Let us consider in detail this procedure for different partial
waves. For s-wave the starting potential from [2] has two bound
states (the second bound state is at energy about 14 keV). After
supersymmetric transformation the shape of the new potential
is parametrized as shown in Eq. (12). The parameters are given
in the second row (marked as “s-wave P1”) of the Table I except
depth parameter V0 which is equal to 24.9 MeV. This potential
still has one bound state, scattering length as is positive and
equals to 36 fm. Therefore we reduce V0 to 23.2 MeV to keep
the nucleus 21C unbound. Scattering length for the reduced
potential is negative and equals −1680 fm. The corresponding
virtual s-state is rather close to threshold and cannot be reliably
detected, given the condition in the experiment [17]. This
potential is marked as ‘s-wave P1’ in Table I. To obtain a
potential with the scattering length, estimated in Mosby et al.
experiment [17] as |as | < 2.8 fm, we reduce V0 to 16.5 MeV.
The parameters of this potential are marked as “s-wave P2” in
Table I. The s-wave scattering phases for all above mentioned
cases are shown in Fig. 1.

P-wave potentials do not play a noticeable role in the
22C structure. However, this interaction can be important, for
example, in calculations of 22C Coulomb dissociation. We use a
potential, which is phase equivalent to the potential of Horiuchi
and Suzuki, with parameters shown in Table I and marked as
“p-waves.”

A more complicated procedure was used to fix d-wave
potential since the starting deep potential gives Pauli forbidden
state in d5/2-wave, while d3/2 state is allowed. For the d3/2-wave
we use a slightly deepened Horiuchi-Suzuki potential (marked
as “d3/2-wave P1” in Table I) to compensate a more shallow s-
wave potential. For d5/2-wave we construct a phase equivalent
potential with parameters shown in Table I as “d5/2-wave P1.”
In an alternative set of potential parameters P2, we use for
d3/2-wave the potential (marked as “d3/2-wave P2” in Table I),
which is deeper than in P1 set, but gives the same rms matter

FIG. 1. Phases in 20C-n s-wave scattering. Upper solid line,
phases obtained in original deep Horiuchi-Suzuki potential; upper
dotted line, in-phase equivalent potential with repulsive core in s-
wave; lower solid line, in-P1 potential, providing unbound 21C; lower
dashed line, in-P2 potential, based on the experiment [17] by Mosby
et al.

radius of the 22C nucleus as P1. Scattering phases for d3/2-wave
are shown at Fig. 2.

In other partial waves, which are all allowed, the 20C-n
potential from the Horiuchi and Suzuki paper [2] is used (set
B in Table I).

The GPT potential [25], which includes repulsion at small
distances, spin-orbit, and tensor forces, has been used for
neutron-neutron interactions.

B. Calculated bound state wave functions

The system of the hyperradial Eq. (8) with binary potentials
defined above was solved in the T system of Jacobi coordinates.
Calculations have been performed up to ρ = 100 fm with
the restrictions lx < 4, ly < 4, and Kmax = 20. Such restric-
tions ensures that convergence of respective wave function
is reached. Two ground-state solutions with binding energies
S2n = 400 keV and 67 keV were obtained for calculations with
potential sets P1 and P2, respectively. These energies are at the
different boundaries of the energy region which is compatible
with experimental data. Both solutions describe well, as we
will see below, the other available experimental data but their

FIG. 2. Phases in 20C-n d3/2-wave scattering. Solid line, phases
obtained in modified Horiuchi-Suzuki potential P1; dotted line, in-P2
potential, based on the experiment [17] by Mosby et al.
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FIG. 3. Main components (K,lx,ly) of the 22C wave function for
P1 potential.

structure is a quite different. Thus, we may say, these solutions
show the level of ambiguity with which we know the structure
of the ground state of the 22C nucleus.

Figures 3 and 4 show the main components of wave func-
tions, calculated with P1 and P2 potentials, respectively. These
six components exhaust about 98% of the total normalization.
Observables including geometric characteristics, obtained for
these wave functions, are listed in the Table II. They include
matter Rmat and charge Rch radii of the 22C nucleus, that
have been obtained with the 20C matter and charge radii equal
2.98 fm. Also shown is the distance RC of the core c.m. from
c.m. of the nucleus, the distance RC(nn) between the core and
c.m. of the two halo neutrons, the distance Rnn between two
halo neutrons, and the distance RCn of a halo neutron from
core. In spite of similar description of the integral spatial
characteristics shown in Table II, from Figs. 3 and 4 follow
that the two solutions have different partial wave structures.
To better demonstrate these differences, weights of different
wave function components in the Y system in j -j coupling
are given in Table III. This representation corresponds to
the usual “shell-model” picture of the nuclear structure. The
numbers given in Table III demonstrate that the s- andd-motion
modes dominate in the nuclear structure and amount together
to more than 90% of the total weight. In the deep solution
(P1) the s-motion dominates (65%) while in the shallow
solution (P2) the d3/2 is the main component (60%). Such
behavior has a simple explanation if we remember that both
wave functions have a similar overall geometric characteristic.
Then the more compact deep solution must contain a larger
portion of the s-motion while a more shallow diffuse solution

FIG. 4. Main components (K,lx,ly) of the 22C wave function for
P2 potential.

TABLE II. The binding energy S2n and geometric characteristics
of the 22C ground state for calculations with potentials sets P1 and
P2. Energy is given in MeV units, radii characteristic in fm. The
row “angle” means the average angle between two halo neutron radii
counted from c.m. position of 22C. The row S = 0 shows weight of
wave function components with spin S = 0.

Observable P1 P2

S2n 0.400 0.067
Rmat 3.37 3.37
Rch 3.00 3.00
RC 0.461 0.466
RC(nn) 5.07 5.13
Rnn 7.10 6.93
RCn 6.19 6.19
Angle 71◦ 70◦

S = 0 86% 69%

must include a larger part of the d-motion. That is why we call
these two solutions limiting cases for description of ground
state structure of the 22C nucleus.

Figure 5 shows the 22C correlation density in the T system,
calculated with P1 potential. A prominent dineutron compo-
nent, forming at relatively large distances between core and
two neutron center of mass appears, and a small sigarlike
configuration, where neutrons are situated at large distances
on opposite sides of the core. Correlation density calculated
with P2 potential looks similarly.

C. Fragmentation cross sections and longitudinal
momentum distribution (LMD)

Note again, that the wave function content and binding en-
ergy for the two potentials are very different, but corresponding
geometry is very similar. If we had more accurate experimental
data on binding energy we could make a choice at this stage
already. However, in the absence of exact data on binding
energy we are going to compare our results for reaction cross
sections with the precise reaction data [15]. Thus, we fit P2
potential in d3/2-wave to get the same rms matter radius for
both potentials, keeping in mind that a reaction cross-section
depends mainly on geometry.

TABLE III. Weights of ground state wave function components
(Y system, j -j coupling scheme) of the 22C nucleus for calculations
with two versions of the potential.

Version P1 P2
Component (%) (%)

s2
1/2 64.98 31.63

p2
1/2 1.89 2.27

p2
3/2 3.83 4.67

d2
3/2 27.19 59.04

d2
5/2 0.57 0.70

f 2
5/2 0.65 0.72

f 2
7/2 0.87 0.96
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FIG. 5. The 22C correlation density for P1 potential.

For calculation of the cross sections an integration of the
wave function with profile functions according to well-known
formulas, given in the Appendix, has been performed. The
calculated partial cross sections at 240 MeV/nucleon beam
energy and the experimental data given in Refs. [15,16] are
shown in Table IV.

It should be noted that a modified Horiuchi-Suzuki po-
tential (P1) provides a 22C wave function, which gives the
experimental reaction cross section [15] without any additional
fitting. The potential P2, motivated by the experiment of Mosby
et al. [17] and fitted to give the same geometry as the P1
potential, describes the experimental reaction cross section
within experimental error bars. So, both wave functions meet
experimental data on 22C reaction cross section, measured with
high accuracy. In the same paper [15], the experimental data
on reaction cross section of the 20C core on the same target
at 280 MeV/nucleon is given as 1111 ± 8 ± 9 mb, which
we recalculated for beam energy 240 MeV/nucleon, giving
σR = 1115 mb. If our three-body approach to 22C is valid,
the reaction cross sections for 22C and 20C allow to estimate a

TABLE IV. 22C fragmentation cross sections on 12C target at 240
MeV/nucleon beam energy: two-neutron stripping σ0n, one-neutron
stripping σ1n, diffraction σ2n, two-neutron removal cross section σ−2n,
and reaction cross section σR . All cross sections are given in mb.

Value σ0n σ1n σ2n σ−2n σR

Theory P1 8 109 31 148 1283
Theory P2 7 92 21 120 1293
Experiment 266(19) [16] 1280± 22 ± 7 [15]

two-neutron removal cross section σ−2n as [26,27]

σ−2n < σR(22C) − σR(20C free). (13)

In contrast to the free 20C nucleus, the core 20C inside 22C
moves around the common center of mass and its effective
radius grows. From the experimental data [15], it follows
that σ−2n < 165 ± 46 mb. Reaction cross sections of 20C core
inside 22C nucleus were calculated in Glauber model for P1
and P2 wave functions and are equal to 1141 and 1172 mb,
correspondingly. So, the core motion contributes to the reaction
cross section at the level of 30–50 mb. The same result was
obtained for 11Li in the paper [28].

Other data on two-neutron removal cross section has been
reported in the paper [16], σ−2n = 266(19) mb. This value
evidently contradicts to σ−2n < 165 ± 46 mb, deduced from
the experimental work [15]. However, σ−2n in the paper [16]
seems to be obtained in a model dependent way (see Eq. (1) in
Ref. [16]). “To do so total reaction cross sections of 1375 mb
for 22C, 1090 mb for 20C..., which were estimated using eikonal
calculations, were employed.” A theoretical reaction cross
section of 1375 mb for 22C is much larger than experimental
value 1280 ± 22 ± 7 mb, while a theoretical reaction cross
section of 1090 mb for 20C is lower than experimental value
1111 ± 8 ± 9 mb. Therefore, the deduced σ−2n appears to be
as large as 266(19) mb. Besides contradictory two neutron re-
moval cross section, 20C longitudinal momentum distribution
(LMD) after fragmentation on 12C target has been obtained.
Although the accuracy of LMD is not very high, we try to test
our wave functions against these new data.

It was pointed out by Bertulani and McVoy [29] that the
longitudinal component of the momentum (taken along the
beam or z direction) gives the most accurate information on
the intrinsic properties in the halo and that it is insensitive to
details of the collision and the size of the target. The shape
of the momentum distribution reflects the momentum content
in halo part of total wave function. Since the experimental
cross section of two neutron removal [16] is controversial,
we compare with experimental data only the shape of LMD.
Unfortunately, the experimental shape [16] is not very precise
either. Taking into account all these circumstances, to get the
LMD shape we restrict ourselves to the Fourier transform of
the 22C wave function:

dσ

dky‖
∼

∣∣∣∣
∫

dx dy exp(−ı(ky‖ · y‖))ψJM (x,y)

∣∣∣∣
2

. (14)

The 20C momentum p is connected to ky by the relation p =√
20/11 ky . The results of calculations are shown in Fig. 6 to-

gether with experimental data [16]. The theoretical curves have
been corrected for the experimental resolution (27 MeV/c).
The shape, obtained with P1 wave function, coincides with
experiment perfectly, except from a minor disagreement at very
high momenta. The shape, obtained with P2 wave function, fits
experimental data less, thus demonstrating sensitivity to the
wave function content. We recall, that the P1 wave function
contains about 65% of s-wave and 30% of d-wave while
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FIG. 6. Longitudinal momentum distribution of 20C core after 22C
fragmentation on 12C target for P1 potential (solid line) and for P2
potential (dashed line). Points are experimental data from Ref. [16].

the P2 wave function contains about 27% s-wave and 60%
d-wave. Large amount of d-wave in P2 wave function leads
to wide wings of LMD. For P1 wave function the FWHM is
equal to 78 MeV/c, while for P2 it is equal to 75 MeV/c.
This is illustrated at Fig. 7, where the original LMD (without
corrections for experimental resolution) are shown for different
hyperangular momentum contents. The shape is seen to be very
sensitive to wave function structure.

D. Soft dipole mode and Coulomb dissociation

Characteristics of nuclear halos are revealed not only in
the specific structure of the ground state (loosely bound,
abnormal spatial extension with extreme clusterization) but
also in low-energy excitations above the breakup threshold
where a concentration of transition strength is observed. The
most spectacular is the appearance of a soft dipole excitation
mode that dominates the electromagnetic dissociation (EMD)
cross section. In stable nuclei all dipole excitations are usually
concentrated in the giant dipole resonance that corresponds to
high-frequency collective proton-neutron vibrations. In neu-
tron halo nuclei all charges are concentrated in the core, thus
the charge and matter c.m. do not coincide and low-frequency
dipole oscillations of the halo neutrons against the core may
easily be excited. Historically the large Coulomb dissociation
cross sections for 11Li incident on heavy targets were predicted
[30] by assuming that the 11Li nucleus is composed of a
9Li core and a point di-neutron, and subsequently confirmed
experimentally (see, for example, Ref. [31]). Existence of
a new low-lying dipole resonance mode (the so-called soft
dipole mode) in such systems was suggested by Ikeda [32]. It

FIG. 7. Longitudinal momentum distribution of 20C core after 22C
fragmentation on 12C target for P1 potential (a) and for P2 potential
(b). Solid lines, total LMD; dashed line, K=0 contribution; dash-
dotted line, K > 0 contribution. Both LMD are normalized to unity.

should be noted that at least for the lightest Borromean halo
nuclei 6He and 11Li, the low-lying dipole excitation mode is
not a resonant one, but a more general three-body low-lying
continuum response [33] (see also Ref. [34]) where the same
conclusion have been obtained for 22C). The position of the E1
peak depends on the properties of the ground state due to its
closeness to a breakup threshold. In case of resonance it has to
be dependent from the properties of continuum state (position
of the resonance pole) but not a ground state.

The electric dipole excitations describe transitions from
ground to continuum states by action of the dipole operator.
To obtain the E1 strength function we solve the following
equation:

(Ĥ − Ef )ψ (+)
Jf Mf μ = D̂μ ψ

(gs)
JM , (15)

where Ef is the three body energy in continuum, ψ
(gs)
JM is

the ground-state wave function, obtained from the solution of
Eq. (2), and ψ

(+)
Jf Mf μ is three-body continuum wave function

with outgoing wave boundary conditions. Dipole operator D̂
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for two neutrons and core is

D̂ = e

A∑
i=1

Zi |ri − Rc.m.| Y1μ(r̂i) = e

√
3

4π
ZC RC.

The non-energy-weighted sum rule for E1 transition can be written as∫
dBE1(Ef )

dEf

dEf = 1

2J + 1

∑
μM

〈
ψ

(gs)
JM

∣∣D̂∗
μD̂μ

∣∣ψ (gs)
JM

〉 = 3

4π
e2Z2

C

〈
R2

C

〉
. (16)

It is interesting to note that the sum rule value or 〈R2
C〉 is sensitive to correlations. For example, it is possible that the

radial extent of neutron wave functions is very large, but 〈R2
C〉 is small (this happens if the neutrons reside on opposite sides of

the core, so called “cigar-like” configuration).
In hyperspherical variables RC = −√

A12/AAC y and the dipole operator can be written as

D̂μ = e Zeff ρ cos(αρ) Y1μ(ŷ), (17)

where Z2
eff = Z2

C A12/AAC = 9/55. For continuum wave functions, defined as

ψ
(+)
Jf Mf μ = C

Jf Mf

JM1μ

∑
Kf γf

χ
Jf

Kf γf
(ρ)

ρ5/2
J Jf Mf

Kf γf
(�ρ),

where  = √
2mEf and C

Jf Mf

JM1μ is the Clebsch-Gordon coefficient, the Schrödinger equation is reduced to[
d2

dρ2
− (Kf + 3/2)(Kf + 5/2)

ρ2
+ 2mEf

]
χ

Jf

Kf γf
(ρ) − 2m

∑
K ′

f γ ′
f

VKf γf ,K ′
f γ ′

f
(ρ)χ

Jf

K ′
f γ ′

f
(ρ) = �

Jf

Kf γf
(ρ)

�
Jf

Kf γf
(ρ) = 2meZeff

∑
Kγ

ρ χJ
Kγ (ρ)

〈J Jf

Kf γf
(�ρ)

∥∥ cos(αρ) Y1(ŷ)
∥∥J J

Kγ (�ρ)
〉

= 2meZeff

∑
Kγ

ρ χJ
Kγ (ρ) (−)lx+S+J δSSf

δlx l
f
x

l̂y l̂
f
y L̂L̂f Ĵ√

4π

{
lx ly L

1 Lf l
f
y

}{
Lf Sf Jf

J 1 L

}

×C10
ly0l

f
y 0

〈
�

l
f
x l

f
y

Kf
(αρ)

∣∣ cos(αρ)
∣∣�lxly

K (αρ)
〉
.

This system of equations is solved for the three-body problem as it has been described in Ref. [35]. For calculation of observables
the flux of particles through the hypersphere of the large radius is used:

FJf
(Ef ) = 1

m
Im

⎡
⎣∑

Kf γf

χ
Jf ∗
Kf γf

(ρ)
d

dρ
χ

Jf

Kf γf
(ρ)

⎤
⎦

∣∣∣∣∣∣
ρ→∞

= 

m

∑
Kf γf

∣∣AJf

Kf γf

∣∣2
. (18)

The values A
Jf

Kf γf
are asymptotic amplitudes defined as

χ
Jf

Kf γf
(ρ)

ρ→∞= A
Jf

Kf γf
h

(+)
Kf +2(ρ) → A

Jf

Kf γf
eiρ.

It is easy to show that ∫
dρ

∑
Kf γf

∣∣�Jf

Kf γf
(ρ)

∣∣2 = 2

π
m2

∫
FJf

(Ef ) dEf ,

and connection between flux and nonenergy weighted sum rule is∫
dBE1(Ef )

dEf

dEf = 1

2π

∑
Jf

2Jf + 1

2J + 1

∫
FJf

(Ef ) dEf = 1

2π

∑
Jf

2Jf + 1

2J + 1

∫ √
2Ef

m

∑
Kf γf

∣∣AJf

Kf γf

∣∣2
dEf . (19)

Thus, the strength function for electromagnetic E1 dissociation
is obtained as

dBE1(Ef )

dEf

= 1

2π

∑
Jf

2Jf + 1

2J + 1
FJf

(Ef ). (20)

The calculations of dipole strength function are shown at Fig. 8
for two ground-state solutions P1 and P2. The hypermoments
up to Kmax = 19 are taken into account in the calculations to
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FIG. 8. Calculated 22C dipole strength functions for P1 potential
(solid line) and for P2 potential (dashed line).

get convergence of matrix elements. The cluster non-energy
weighted sum rule is given in Table V.

Small binding energy for P2 potential (67 keV) leads to
shifting of strength function maximum to smaller energies
as compared to the P1 case (400 keV). At the same time
the large percentage of d-wave in P2 potential makes the
strength function wider. Relative contribution of dominant
dipole transitions (s → p, d → p, d → f ) depends on energy
of fragments in continuum. For example, at Ef = 0.5 MeV
the contribution of s → p transitions for the P2 version is
82%, d → p transitions—12%, d → f transitions—4%. At
Ef = 4 MeV the contributions change drastically to 50%,
47%, and 3%, respectively. We remind, that all these estimates
are given in the “shell model” Y system. It is interesting to
note, that in the low energy range, where a soft dipole mode
is expected, the first hyperharmonic in T system (Kf = 1,
Lf = 1, Sf = 0, l

f
x = 0, l

f
y = 1) contributes by about 96% to

the total strength function.
As we have seen above, the total strength is directly

restricted (within the three-body cluster model) by the dis-
placement

√
〈|R2

C |〉 of the charge c.m. from the matter c.m.
Values of the core displacement for the 22C ground state for
different potentials are given in the row RC of Table II.

Correlations, which can be measured in Coulomb dissocia-
tion experiments, depend on energy of fragments in continuum.
In Fig. 9 one example is shown at different energies Ef . Here,
correlations are plotted as function of cos(θκ ) = (k̂x · k̂y)
(linear momenta kx and ky are conjugated to the Jacobi
coordinates x and y, respectively) and energy ratio Ex/Ef .
It is seen from Fig. 9 that neutrons at this energy fly mainly

TABLE V. The cluster nonenergy weighted sum rule of the 22C
dipole strength functions calculated for potentials giving different
separation energies S2n of the ground state. The sum rule is given for
two ranges of the total continuum energy Ef and measured in percent
of the computed total sum rule in e2f m2 (the column NEWSR)

S2n Ef � 5 MeV Ef � 10 MeV NEWSR

0.400 93.4 96.4 1.826
0.067 86.6 93.0 1.866

FIG. 9. Correlations for 22C Coulomb dissociation in T system
for P2 potential at Ef = 0.5 MeV (a) and Ef = 4.0 MeV (b).

in directions where relative motion (kx) is a perpendicular to
their total momenta (ky). Correlations at different energies
reflect different hyperangular content: at low energy K =
0 hyperharmonic dominates, while at Ef = 4 MeV K = 4
hyperharmonic starts to play a role.

The behavior of the dipole strength functions has strong
influence on Coulomb dissociation cross sections when the
halo nucleus collides with the heavy target. The estimation of
the Coulomb dissociation can be obtained within the frame-
work of first-order perturbation theory [36,37]. According to
the virtual photon method, the electromagnetic excitation of the
halo nucleus can be described as absorption of virtual photons
generated by the target nucleus and defined by the product of
the dipole strength function and the spectrum of the virtual
photons that peaks at low excitation energies. The Coulomb
excitation cross section σEλ

with multipolarity Eλ is related to
the strength function dBEλ/dEf as

d2σEλ

dEf 2πbdb
= α

(2π )3(λ + 1)

λ[(2λ + 1)!!]2
(Ef + S2n)2λ−1 dBEλ

dEf

× dnEλ

db
Fabs(b), (21)

where Ef is the energy above the 2n-emission threshold, S2n

is the three-body binding energy, b is the impact parameter
related to the scattering angle θ in the laboratory frame (in the
quasiclassical approach) as

b = a cot(θ/2),

dnEλ
/db is the virtual photon spectrum, which can be defined

analytically for E1 transitions [36,37]. The factor Fabs(b)
in Eq. (21) takes into account a nuclear absorption. In the
Bertulani-Baur model it is approximated by the stepwise
function at a minimal impact parameter (corresponding to
the grazing angle). Here the factor is replaced by a smooth
absorption function found within the eikonal approximation
of the Glauber model [38,39] as

Fabs(b) = 〈�gs||Sn(b,r1)Sn((b,r2)SC((b,r3)|2|�gs〉
Details can be found in the Appendix. Contrary to the original
Bertulani-Baur model the integration over impact parameter
can’t be done analytically. Table VI gives cross sections for
the 22C Coulomb dissociation (integrated up to 10 MeV total
continuum energy) caused by the collision with a 208Pb target
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TABLE VI. Estimation of the E1 Coulomb dissociation cross
sections σE1(mb) for the reaction 22C + 208Pb at different beam
energies for different 20C − n potentials.

Ebeam (MeV/nucleon) P1 P2

790 801 888
240 1185 1375
140 1624 1918
40 3357 4337

at different beam energies. The cross sections are given in
Fig. 10 for the two versions of the core-n potential—P1 and
P2. Especially remarkable is version P2 when the respective
Coulomb dissociation cross section is very large.

Cross section of Coulomb and nuclear fragmentation of 22C
on 208Pb target at beam energy 240 MeV/nucleon has been
measured and preliminary results published in Ref. [18]. Since
in the experiment [18] 20C core is registered, the nuclear part
here is the two neutron removal cross section σ−2n. According
to experimental data, total cross section is about 1500 ± 100
mb. The Coulomb dissociation cross section has been extracted
in Ref. [18] by model dependent way and according to Fig. 2
in Ref. [18] is about 900 ± 150 mb. We calculated the total
fragmentation cross section (Coulomb + nuclear) on 208Pb
at beam energy 240 MeV/nucleon in Glauber model and got
1614 mb for P1 potential and 1751 mb for P2 potential. First
result agrees well with the preliminary cross section [18].

In Ref. [34], the ground-state energy, rms radii, and E1
strength distribution were calculated within the three-body
model in hyperspherical coordinates. Qualitatively this ap-
proach is similar to that we used, but the technical realization
and calculation details are different. Our model (P 1) is close to
the set 3 (more deeply bound), and our model (P 2) is similar to
the set 1 from the article [34]. Unfortunately, authors did not
give any numbers for breakup cross sections but qualitative
conclusions on a possible ground state structure and B(E1)
distributions are similar to ours. They also remarked that the
low-energy peak in the E1 distribution is an effect of the low
binding of ground state and that it is not a resonance effect.

FIG. 10. Calculated 22C Coulomb dissociation cross sections as
a function of relative three body energy in continuum for P1 potential
(solid line) and for P2 potential (dashed line).

IV. CONCLUSIONS

Given new experimental data (2013, 2016) our previous
(2012) investigation of 22C, Ref. [12] has been updated and
22C structure has been determined more reliably. Two limiting
versions of 20C core-neutron potentials have been determined,
and examined for relevance to existing experimental data.
The 22C wave functions, obtained with the two versions of
potentials have the same Rmat = 3.37 fm, but very different
separation energy (400 and 67 keV) and (hyper)angular mo-
mentum contents. It is well-timed to mention here that accurate
experimental data on 22C binding energy is urgently needed for
selecting 22C structure.

Since the nuclear reaction cross section mainly depends on
geometry, both wave functions give nearly the same reaction
cross sections on 12C target (1283 and 1293 mb), which
coincide with the very recent (2016) precise experimental data
1280 ± 22 ± 7 mb [15]. Comparison of the two versions with
experimental data on 20C longitudinal momentum distribution
after fragmentation on 12C target [16], which is sensitive to
(hyper)angular momentum contents, shows, that version P1
(65%s2

1/2 and 27%d2
3/2) is more preferable than version P2

(30%s2
1/2 and 60%d2

3/2). However, the experimental accuracy
should be higher to make final decision.

Preliminary results on 22C Coulomb dissociation [18] allow
selection of a preferable version. P1 version of core-n potential,
providing 22C binding energy of 0.4 MeV meets experimental
data within experimental error bars. Energy dependence of
Coulomb dissociation cross section is very sensitive to 22C
binding energy, which specifies peak position, and to angular
momentum content, which defines ”width” of the energy
distribution. So, it could be very important, if preliminary
results [18] could be transformed to final ones.

APPENDIX: PROFILE FUNCTIONS

In this Appendix the profile functions SPT are constructed
and fitted to reproduce the experimental cross sections of
the 22C constituents on a 12C target. Unfortunately, there is
not much experimental data available. We follow here the
ideas of Ref. [3] and repeat them briefly. The reaction cross
section σR and the elastic cross section σel of the constituent-
target collision are calculated by integrating the corresponding
probability over the impact parameter b,

σR =
∫

db (1 − |SPT (b)|2), (A1)

σel =
∫

db (|1 − SPT (b)|2). (A2)

The nucleon-target profile function is constructed using the
Glauber model as follows:

Sn(b) = exp

[
−

∫
drT ρ(rT ) �NN(−r⊥T + b)

]
. (A3)

The nucleon-nucleon profile function �NN is usually parame-
terized in the form

�NN(b) = 1 − iαNN

4πβ
σ tot

NN exp(−b2/2βNN), (A4)
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TABLE VII. The parameters of the nucleon-nucleon profile
function.

E beam αnn αnp βnn βnp σnn(mb) σnp(mb)

240 MeV/u 0.904 0.526 0.081 0.098 22.40 38.55
790 MeV/u 0.064 −0.210 0.197 0.112 46.69 38.15

where σ tot
NN is the total nucleon-nucleon cross section, αNN the

ratio of the real to the imaginary part of the NN scattering
amplitude, and βNN is the slope parameter of the NN elastic
differential cross section. The parameters of the NN profile
function are, in principle, subjects to fit, because they can differ
from their free values due to in-medium effects like the Pauli
blocking and the Fermi motion of nucleons in nuclei.

The density ρ(r) of the 12C target is parameterized using
harmonic oscillator wave functions with l = 0, 1:

χl(ri) =
√

2 rl
i exp

(−r2
i

/
2a2

i

)
√

a3+2l
i �(l + 3/2)

. (A5)

The proton density, normalized to the number of protons in the
target ZT , is

ρp(r) = 2ZT (αp (ZT − 2)(r/ap)2 + 2) exp
(−r2

/
a2

p

)
π3/2 a3

p (3ZT αp − 6αp + 4)
.

(A6)
The neutron density can be considered similarly. The parameter
αp,n =2/3 has been fixed. The parametersap andan are fitted to
reproduce the charge and matter radii of 12C. The experimental
charge radius 2.4829 ± 0.0019 fm [40], and the experimental
matter radius 2.35 ± 0.02 fm from Refs. [41,42] have been used
in our calculations, leading to ap = 1.6868 and an = 1.5008.

The Coulomb dissociation calculation needs the 208Pb
target parameters. The density ρ(r) of the 208Pb target is
parameterized by Wood-Saxon function, fitted to experimental
charge radius 5.5 fm:

ρp(r) = 0.06308

1 + exp[(r − 6.624)/0.549)]
. (A7)

The neutron density can be considered similarly. The proton
density is normalized to the number of protons in the target,
while the neutron density is normalized to the number of
neutrons.

The parameters of the nucleon-nucleon profile function �NN

are taken from the Refs. [43,44] and smoothly interpolated
to the energies of interest and shown in Table VII. Here we
distinguish between np- and nn-scattering data.

With the nucleon-nucleon profile function parameters from
Refs. [43,44] the n-12C reaction and elastic cross sections
at a beam energy of 277 MeV/nucleon are σR = 217 mb

and σel = 70 mb, which are in perfect agreement with the
experimental data [45]. At a beam energy 790 MeV/nucleon
we have σR = 261 mb and σel = 87 mb, which are also in good
agreement with the experiment [45].

The 20C-target profile function is constructed in the optical
limit approximation:

SC(b) = exp

[
−

∫
drT drP ρ(rP ) ρ(rT )

×�NN(r⊥P − r⊥T + b)

]
, (A8)

where the 20C core density ρ(rP ) is built on harmonic oscillator
basis with l = 0,1,2. Oscillator parameters ap = 2.025 fm and
an = 1.785 fm are fitted to reproduce the experimental matter
radius of 20C, Rmat = 2.98 fm [15,42], and experimental data
for the 20C–12C reaction cross section at 280 MeV/nucleon
beam energy [15], which is equal to 1111(29) mb. Now the
20C-target profile function is fixed and we can test it against
the experimental data.

The next step is to calculate all observed 22C–12C cross
sections and momentum distributions. The formulas for the
cross sections are given below:

σR =
∫

db (1 − |〈SC(bC) Sn(b1) Sn(b2)〉|2), (A9)

σdif =
∫

db (〈|SC(bC) Sn(b1) Sn(b2)|2〉

− |〈SC(bC)|2 Sn(b1) Sn(b2)〉), (A10)

σ1n =
∫

db 〈|SC(bC)|2(1 − |Sn(b1)|2)|Sn(b2)|2〉

+
∫

db 〈|SC(bC)|2|Sn(b1)|2(1 − |Sn(b2)|2)〉,

σ0n =
∫

db 〈|SC(bC)|2(1 − |Sn(b1)|2)

× (1 − |Sn(b2)|2)〉, (A11)

where 〈 〉 denotes the averaging over the 22C ground state
wave function, which is transformed from hyperspherical
coordinates ρ,�5 to cartesian ones x,y, and

b1 = b − x⊥√
2

−
√

5 y⊥√
11

,

b2 = b + x⊥√
2

−
√

5 y⊥√
11

,

bc = b +
√

1

220
y⊥.

Here x⊥ and y⊥ are the components of the vectors x and y in
the plane normal to the incident beam direction.
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