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1. INTRODUCTION

The present article adjoins the paper [18] by the authors. In the latter paper the
asymptotics of the eigenvalues of weakly polar integral operators on Lipschitz surfaces
in the Euclidean space was studied. Now we consider integral operators on Lipschitz
submanifolds of an arbitrary co-dimension.

Potential type operators play an important part in the theory of partial differential
equations and mathematical physics from rather early stages. They can be used to
reduce boundary value problems to integral equations on the boundary, thus decreasing
the dimension of the problem. The spectral theory of such operators is also important,
both in theoretical analysis and in the calculations in electrodynamics, diffraction and
quantum physics, see, e.g., [1,2,4,19], and references therein. For the case of a smooth
surface, the potential type operators are operators with kernels, smooth everywhere
on the surface outside the diagonal and having a weak homogeneous singularity at
the diagonal. Therefore they can be represented as pseudodifferential operators (not
necessarily elliptic) on the surface, and this reduction takes care of the main spectral
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properties, such like estimates and asymptotics of eigenvalues, convergence and summa-
bility of spectral expansions etc. Such reduction encounters considerable obstacles
when the surface is not sufficiently smooth. The kernels, expressed in local co-ordinates,
are not smooth any more outside the diagonal, and no theory of pseudodifferential
operators can take care of them. The critical case here are Lipschitz surfaces, where
lots of facts of general theory, valid for more smooth cases, break down, while many
interesting cases involve Lipschitz surfaces, which cannot be reduced to more smooth
ones. This is one of the reasons why the theory of boundary problems in Lipschitz
domains required a considerable effort in its development.

In the paper [18] we addressed the question on the eigenvalue asymptotics for
potential type operators on Lipschitz surfaces. For general integral operators with
weakly polar kernels, the fundamental results were obtained in the paper [5]; they
have been further generalized in [16, 17]. These results, being applied to potential
type operators, cease to be valid for Lipschitz surfaces. A crucial development in this
problem was made in the paper [3] where an upper estimate for eigenvalues, having
the same order as in the smooth case, was proved. This result was further used in the
study of a number of spectral problems for elliptic operators and systems in [1]. It was
noticed in [3] that although the kernel of the operator, restricted to the surface, is not
smooth in the local coordinates on this surface, one still can use the fact that it is
a restriction of a smooth function. However, this study reached a little bit short of
the eigenvalue asymptotics. The asymptotic formula for eigenvalues was justified in
[3] only for a special subclass of Lipschitz surfaces, the almost smooth ones, i.e. those
that are smooth outside a closed set of measure zero. The question on the eigenvalue
asymptotics for Lipschitz surfaces without additional conditions was formulated in [2].
In [18] we answered this question and found the asymptotics of eigenvalues of potential
type operators on arbitrary compact Lipschitz surfaces. To do this we implemented the
approach, mentioned as possible but not used in [3], of approximating the Lipschitz
surface by smooth ones and studying the convergence of the corresponding operators.
For the latter task we needed a certain improvement of the existing methods for
obtaining eigenvalue estimates.

In the present paper we extend the results of [18] to the case of potential type
integral operators acting on Lipschitz surfaces of dimension d in Rd+d (or, equivalently,
of co-dimension d > 1; the case d = 1 corresponds to the usual surfaces.) In certain
aspects, the reasoning follows the pattern of [3,18], and in these places we mostly point
out which changes one needs to make (the authors strongly recommend the readers
who are interested in details, to study [3], [18] before this paper.) In some steps of the
construction, certain additional considerations are required, and they are explained in
more detail.

In Section 2 we describe the setting of our problem and introduce important
quantities entering in the main formulas in the paper. We also describe the crucial
procedure of approximation of a Lipschitz surface of codimension d > 1 by smooth
ones and study the rate of convergence of measure densities under this approximation.
Next, in Section 3, we start studying the spectral distribution for integral operators
on Lipschitz surfaces. Here we demonstrate the piecewise polynomial approximation
procedure, extending the one used in the codimension 1 case, leading to order sharp
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spectral estimates. The next two sections deal with the study how the approximation
of surfaces leads to the closeness of the corresponding operators in local patches. First,
we consider the contribution of the strip near the diagonal, where the kernel has
a singularity, and then the contribution of the region away from the diagonal, where
the kernel is nice. Finally, in Section 6, we collect the spectral estimates and prove the
eigenvalue asymptotics formula.

2. SETTING OF THE PROBLEM. APPROXIMATION

Our initial setting follows the pattern of [3]. We, however, need some formulas, not of
a common usage. Let A be a classical Hermitian pseudodifferential operator in Rd+d,
having the negative order l − d, l < 0 (not necessarily integer). The symbol of A is
a function

a(X,Ξ) ∼
∞∑

ν=0
aν(X,Ξ), (2.1)

where aν(X,Ξ) is a function, smooth in (X,Ξ) ∈ Rd+d × (Rd+d \ {0}) and
positive-homogeneous of order l − d − ν < 0 in Ξ. We will also suppose that the
symbol (i.e., all terms in (2.1)) have support in some compact set K ⊂ Rd+d. The sum
is understood, as usual, in the sense of asymptotic expansions as Ξ → ∞. We will
study the restriction of this operator to a compact Lipschitz submanifold S ⊂ Rd+d of
codimension d, i.e., of dimension d.

It is well known that such operator A (up to an infinitely smoothing term) acts
on functions with compact support as an integral operator with kernel H(X,Y ) =
K(X,Y ;X − Y ), X,Y ∈ Rd+d. It is convenient to cite [14], Section 7, especially,
Section 7.1.4, where the relations between the symbol and the the kernel are presented
in a comprehensive way. In particular,

H(X,Y ) = (2π)−d−d
∫

Rd+d

a(X,Ξ)ei(X−Y )ΞdΞ. (2.2)

The kernel H(X,Y ) is smooth for X 6= Y but has a singularity at the diagonal X = Y :
written as K(X,Y ;X − Y ), it is polyhomogeneous in the last variable. This means
that K(X,Y ;X − Y ) can be represented as an asymptotic sum

H(X,Y ) = K(X,Y ;X − Y ) ∼
∞∑

ν=0
(Kν(X,Y ;X − Y ) +′ Kν,log(X,Y ;X − Y )). (2.3)

Functions Kν(X,Y ;Z) in (2.3) are positively homogeneous of degree −l−d+ν = m+ν
in Z variable. So, in the leading term with ν = 0 the homogeneity order ism = −d−l >
−d. If, for some ν, the expression Kν(X,Y ;Z) is a polynomial in Z (this may happen
only if l is a negative integer), the extra term Kν,log(X,Y ;X − Y ) may be present,
having the form Kν,log(X,Y ;Z) = Qν(X,Y ;Z) log |Z| with Qν being a homogeneous
polynomial of order l+ν in Z. This optional presence of logarithmic terms is expressed
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by writing +′ in (2.3). Note that in this case the first term, Kν,log(X,Y ;X − Y ),
produces an operator with smooth kernel, and therefore does not influence the leading
term in eigenvalue asymptotics, at least in the power scale.

The expansion (2.3) is understood in the sense of asymptotics in smoothness: the
difference between the kernel K and the partial sum of the series in (2.3) becomes
arbitrarily smooth in all variables, as the number of terms in the partial sum grows:

K(X,Y ;X − Y )−
M∑

ν=0
(Kν(X,Y ;X − Y )

+′ Kν,log(X,Y ;X − Y )) ∈ Cm+M/2(Rd+δ × Rd+δ × (Rd+δ \ {0}).
(2.4)

Having this in mind, we can re-arrange the terms in (2.3). For each term there, we
can write its Taylor expansion in the second variable at Y = X, so such term expands
into an asymptotic series. We collect the terms of the same homogeneity degree (and
log-homogeneity, if these are present) in this sum, arriving at

H(X,Y ) = K(X,Y ;X − Y ) ∼
∞∑

ν=0
(K̃ν(X;X − Y ) +′ K̃ν,log(X;X − Y )), (2.5)

where all the dependence on Y variable is absorbed by the dependence on X − Y .
This, equivalent, expansion of the kernel is somewhat more convenient, and we will
use it further on. For the sake of the simplicity of notation, we will dispose of the tilde
sign.

In our conditions, it is only the behavior of the kernels when approaching the diag-
onal that determine the asymptotic character of eigenvalues. Moreover, the terms with
ν > 0 have a weaker singularity than the leading term, the one with ν = 0, with homo-
geneity order m > −d, or, for m being a nonnegative integer, the term K0,log, having
the order Q(X;Z) log |Z|, with Q being a polynomial of degree m. And, therefore, it
is only the leading term that determines the eigenvalue asymptotics. This fact, well
known for the smooth submanifolds, was established for Lipschitz ones in [3] for the
case d = 1, see Proposition 2.7 there, and it is extended easily to the general case (see
Section 3).

We suppose that the initial symbol a(X,Ξ) in (2.1) is infinitely smooth in X,Ξ,
which leads to the smoothness of the kernel H(X;Z) away from the diagonal. Our
results can be carried over to the case of considerably weaker regularity conditions
imposed on the kernel concerning its smoothness in X,Z, and this may be important
for applications. However, some more advanced machinery is needed here, and we are
going to deal with this topic on some other occasion.

In the opposite direction, any integral operator with smooth weakly polar kernel
having the form (2.3) or (2.5), can be represented as a pseudodifferential operator with
certain symbol (2.1). There exist formulas enabling one to re-calculate the components
of the symbol from the homogeneous (or log-homogeneous) components of the kernel.
One cannot derive these formulas directly by inverting the Fourier transform in (2.2),
because, for a positive homogeneity order, these formulas would involve integrals
of functions growing at infinity. Applying the Fourier transform in the sense of
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distributions would lead to a pseudodifferential operator with distributional symbol,
which is highly inconvenient. The “correct” transformation formulas can be found,
for example, in [14, Section 7.1.4], where the “finite part of the divergent integral”
in the Cauchy sense is used. An alternative approach was applied by M. Birman
and M. Solomyak in [5], by means of the Riesz summation method, which disposes
of singularities in divergent integrals of this kind. In order to avoid these technical
complications, we follow the approach of [3], where the pseudodifferential operator
A is the primary object and the recalculation from the kernel to the symbol is not
needed. This is also convenient because the characteristics of eigenvalue asymptotics
are much more comfortably expressed in the term of the symbol, and not in the terms
of the kernel, compare with [5].

In Rd+d we consider a compact Lipschitz submanifold S of dimension d, i.e., of
codimension d (later on we will (mis)use the word “surface” for S). This means that
there exists a finite collection of local co-ordinate patches Ωj in Rd+d, covering S, such
that in each of them, with a proper choice of local co-ordinatesX = (x, z) ∈ Ωj ⊂ Rd+d,
x ∈ Dj ⊂ Rd, z ∈ Rd, the submanifold is described in this patch by the equation
z = φj(x) with a Lipschitz vector-function φj : Dj → Rd; to be more precise, the
surface is locally the graph in Rd+d of the mapping φj , so we can define the continuous
mapping φφφj : Dj → S, φφφj(x) = (x, φj(x)). We recall now that due to the Rademacher
theorem, see, e.g., [10, Section 3.1.2], each of the mappings φj is differentiable almost
everywhere with respect to the Lebesgue measure on Rd; the points in Rd, where
all components of φj are differentiable, will be called regular. So, at any regular
point x ∈ Dj , the mapping φφφj is differentiable, with differential, a linear mapping
D(x) ≡ Dφφφj(x) : Rd → Rd+d. This linear mapping, a matrix of the size d × (d + d)
has the unit matrix in its first d rows and ∇φj(x) in the remaining d rows.

The surface S is equipped with an intrinsic d-dimensional Hausdorff measure dµ,
induced by the Lebesgue measure in Rd+d. This measure is absolutely continuous
with respect to the push-forward φφφ∗j (dx) of the Lebesgue measure dx on Rd under the
mapping φφφj . The density of dµ with respect to dx equals σj(x) =

√
det(D(x)∗D(x))

(see, e.g., Theorem 3, Section 3.3.2 in [10]). We recall the structure of the differential
D(x), to obtain
Proposition 2.1. If S ⊂ Rd+d is a d-dimensional Lipschitz surface then

dµ = σj(x)dx;σj(x) = [det(1 + (∇φj(x))∗(∇φj(x))] 1
2 . (2.6)

in the piece of the submanifold S parametrized by the mapping φj on Dj.
Further on, as long as our considerations are local, we will usually omit the subscript

j in the above and similar notations, provided this does not create confusion.
We consider the restriction of the operator A to the surface S. This restriction is

the operator K : L2(S)→ L2(S) acting, locally, on the functions U ∈ L2(S) as

(KU) (X) =
∫

S

K(X;X − Y )U(Y )dµ(Y ), X ∈ S. (2.7)

If d = 1, such operators arise, for example, as single, double, and multiple layer po-
tentials corresponding to elliptic differential operators. In particular, if A is the inverse



738 Grigori Rozenblum and Grigory Tashchiyan

for the polyharmonic operator (−∆)N in Rd+1, K(X, ;X − Y ) is the Green kernel for
(−∆)N and then it equals Cd,l|X − Y |−d−1+2N log |X − Y | for a non-negative even
integer −d− 1 + 2N and equals Cd,l|X − Y |−d−1+2N otherwise. A potential theory
for a fractional Laplacian was investigated, for example, in [7], where potential type
integral operators with fractional singularity order arise. For an arbitrary d, such
operators appear in the study of potentials corresponding to electric or magnetic
densities located on submanifolds, such as in the Aharonov-Bohm type magnetic field.

For a smooth surface S, the standard considerations in local co-ordinates, see, e.g.,
[1], show that K is a classical pseudodifferential operator on S of order l = −d−m < 0.
One can find an explicit expression of the principal symbol a0 of this operator in the
local coordinates at a point X = (x, z) ∈ S. This expression, for d = 1, is derived, e.g.,
in [3, Proposition 3.5]:

a0(X, ξ) = (2π)−1
∞∫

−∞

a0(X, ξ, ζ)dζ, (2.8)

where (X, ξ) ∈ T ∗(S) and a0 is the principal symbol of the operator A, expressed in
the co-ordinates (X; ξ, ζ) in T ∗(Rd+1), such that the co-vector (0, ζ) is orthogonal to
the tangent space to S at X.

For an arbitrary codimension d > 1, the formula looks similarly.

Proposition 2.2. Let S be a smooth surface of codimension d, (x, z) be the local
orthogonal co-ordinate system near the point X0 ∈ S, such that x lies in the tangent
plane to S at X0 and the z−co-ordinate is orthogonal to this plane, so that X0 = (0, 0)
in these co-ordinates; (ξ, ζ) are the dual co-ordinates to (x, z). Then for the operator
K the principal symbol at this point equals

a0(X0, ξ) = (2π)−d
∫

Rd

a0(X0; ξ, ζ)dζ. (2.9)

where a0 is the principal symbol of the operator A in (2.1) expressed in the co-ordinates
(x, z; ξ, ζ).

Proof. The proof follows mainly the reasoning in Proposition 3.5 in [3], with natural
modifications caused by the change in the codimension. First, note that the integral
in (2.9) converges for ξ 6= 0, due to the limitation on the order of A – it is l− d, l < 0.
Since all considerations are local, we can, without losing in generality, suppose that
the symbol a0 vanishes outside some small neighborhood of the point X ∈ S. The
operator K can be written as K = ΓAΓ∗, where Γ is the operator of restriction to S of
a function in Rd+d, i.e., Γ : u(x, z) 7→ u(x, φ(x)), Γ∗ is its adjoint operator, assigning
to a function on S its extension by zero. Since Γ in the Fourier representation acts as
ΓF : û(ξ, ζ) 7→ (2π)−d

∫
Rd ûdζ, we arrive at (2.9).

The above local co-ordinate system rotates in Rd+d when the point X0 is moving
along S, smoothly, provided the surface is smooth. However, if the surface is only
Lipschitz, the expression in (2.9) is, generally, no longer even continuous in X0 ∈ S,
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and even if it happens to be regular, it is not a “symbol” for the operator K, because
the latter fails to be a pseudodifferential operator on S in any reasonable sense.
Nevertheless, the expression (2.8) makes sense almost everywhere on S and, as we
prove it later, it determines the eigenvalue asymptotics.

In the course of the proof of the main asymptotic formula, we will only work with
local pieces of the surface and the corresponding pieces of operators in co-ordinate
patches; only on the last stage, in Section 6, we will glue these pieces together. So,
since we are going to approximate the Lipschitz surface by smooth ones, in order to be
able to compare operators acting on different surfaces, it is convenient to pass locally
to operators acting on functions defined in D ⊂ Rd (where D is one of the domains
Dj in the local representations of the surface S). Let Sφ be the piece of the surface
S, the graph of the function φ over D. We include two bounded measurable weight
functions ϕ,ψ defined in D and consider the operator in L2(S),

Kϕ,ψ : U(x, φ(x)) 7→ ϕ(x)(K[ψ(y)U(y, φ(y))])(x), x, y ∈ D,

which is unitarily equivalent to the operator

ϕKψ : u(x) 7→
∫

D

σ(x)ϕ(x)K(x,φ(x);x−y, φ(x)−φ(y))ψ(y)u(y)σ(y)dy (2.10)

in L2(D) with Lebesgue measure (here σ(x) is the density in Proposition 2.1,
u(x) = U(x, φ(x)), with the subscript j dropped).

We will observe the following font convention henceforth (in fact, we have already
started to do this): operators and symbols on surfaces in Rd+d will be denoted by the
Fraktur font, the corresponding unitarily equivalent operators in a domain in Rd are
denoted by the same symbol, but in boldface, and the regular font will be used to
denote operators and symbols in the whole Rd+d.

For a smooth surface S defined by the equation z = φ(x), x ∈ D, and for functions
ϕ,ψ ∈ C∞0 (D) the operator ϕKψ is a pseudodifferential operator in D and the
expression for its principal symbol a0(x, ξ) observes the general transformation rules
for principal symbols of pseudodifferential operators,

a0(x, ξ) = ϕ(x)ψ(x)a0(x, J(x, φ)−1ξ), (x, ξ) ∈ D × Rd, (2.11)

where a0 is the symbol defined in (2.8) and J(x, φ) is the differential of the projection
(x, φ(x)) 7→ (x, 0) of the surface S to Rd. For a smooth surface S, the expression (2.8),
(2.11) depends smoothly on x and the general theory of pseudodifferential operators
applies. If the surface is only Lipschitz, the tangent space to S still exists almost
everywhere in S, so one can stil write the expression (2.8), (2.11) however, again,
it will generally be discontinuous in x and the operator ϕKψ will not fit into any
reasonable pseudodifferential theory.

We conclude this preparatory section by discussing the approximation topic. It
is well known (see, e.g., [21]) that a Lipschitz submanifold S of co-dimension 1 (i.e.,
the one which is traditionally called “surface”) can be rather well approximated by
smooth surfaces. In the language of functions, if φ is a Lipschitz function (a scalar one,
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here) on an arbitrarily domain D ⊆ Rd, then for any ε > 0 it can be approximated by
a smooth (say, C∞) function φε, so that ‖φ− φε‖L∞(D) < ε, and, for a fixed q <∞,
‖∇φ−∇φε‖Lq(M) < ε on any bounded measurable setM⊂ Rd. This function φε can
be constructed in the following way. First, it is possible to extend the function φ from
D to the whole of Rd, as, again, a Lipschitz function φ̃, with Lipschitz constant not
greater than

√
d times the one for φ; this construction is presented, for example, in

[10], Theorem 1 in Section 3.1. Thus, in particular, the function φ̃ is bounded on any
bounded set in Rd, and its gradient ∇φ̃, existing by the Rademacher theorem almost
everywhere, is bounded in Rd, on the set where it exists. Now, we fix a smooth function
ω(x) with compact support, satisfying

∫
ω(x)dx = 1, and set ωε(x) = ε−dω(x/ε). Then

the convolution φε = φ̃ ∗ ωε is smooth and tends to φ̃ as ε → 0, uniformly on Rd,
because φ̃ is uniformly continuous. Since ∇φ̃ ∈ L∞(Rd), we have ∇φ̃ ∈ Lq on any
bounded set, for any q <∞. Therefore, this (vector-)function is uniformly continuous
in the Lq sense on any bounded set. Since the gradient ∇φε equals (∇φ̃) ∗ ωε, ∇φε
converges to ∇φ̃ in Lq in any bounded set, as ε→ 0. (Note that we needed to extend
our function φ to the whole of Rd in order to be able to use the relation between the
convolution and the derivative.)

Now we return to our surface of codimension d, defined locally by a Lipschitz
vector-function φ(x), x ∈ D ⊂ Rd with values in Rd. We can apply the procedure
described above to each component of the vector-function φ(x). Each such component
can be extended to a Lipschitz function on Rd, with a controllable Lipschitz constant.
Then, by the Rademacher theorem, this extended component is differentiable on some
subset of full measure in Rd, so, on the intersection of these subsets, which again is of
full measure, all components of φ̃(x) are differentiable. We now apply the convolution
as above, to obtain a family of vector-functions φε converging in C(Rd) to φ̃, with
gradients converging to grad φ̃ in Lq on any bounded set. This produces the required
local approximation of our Lipschitz surface S by smooth ones.

Remark 2.3. Note that, geometrically, the approximation of a Lipschitz surface by
smooth ones, described above, is only local. By some additional tedious geometrical
work, it is possible to arrange gluing together these local approximations, thus obtaining
a globally approximating smooth surface. We do not need such construction since
local considerations are sufficient for our needs.

We note finally here that the possibility of choosing the exponent q above to be
arbitrarily large plays a crucial role in our considerations. Here we note just one
important fact. For a family of approximating surfaces Sε over D, parametrized by
the functions φε, we consider the measure densities σε, defined similar to σ(x) = σj(x)
in (2.6), i.e.,

σε(x) = [det(1 + (∇φε)∗(∇φε))]
1
2 . (2.12)

Proposition 2.4. In the above approximation, the densities σε(x) converge to σ(x)
in Lq(D) for any q <∞.
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Proof. The determinant in (2.12), fully expanded, is the sum of finitely many terms,
each being a product of no more than 2d first order partial derivatives of components
of the mapping φε. For a given q < ∞, we can take q̂ = 2dq < ∞, and the con-
vergence of gradφε to gradφ in Lq̂ implies the convergence of det(1 + (∇φε)∗(∇φε))
to det(1 + (∇φ)∗(∇φ)) in Lq. Finally, since σε(x) > 1, this convergence is preserved
under taking the square root. Quantitatively, this convergence can be expressed
as the inequality

‖σε − σ‖Lq ≤ C min(1, ‖∇φε −∇φ‖Lq̂ ). (2.13)

3. SPECTRAL ESTIMATES

In establishing eigenvalue asymptotics, it is highly important to prove first the eigenval-
ues (or s-numbers) estimates of correct order. The perturbation approach, developed
by M. Birman and M. Solomyak, consists in finding the spectral asymptotics first
for a certain class of nice operators, where this task may be rather simple, and then
extending the formulas to a more general class performing a kind of “closure”. This
latter step requires having spectral estimates of correct order, under rather weak
regularity conditions. This approach has been used for various problems, including, of
course, weakly polar integral operators (see, especially, [3,5,6,16,17], and later [9,13]).
In this section we discuss eigenvalue estimates in our setting.

Having a surface of dimension d, the expected asymptotics of decay of s-numbers
is sn ∼ Cn−γ , γ = 1 +m/d > 0, where m > −d is the homogeneity order of the kernel
of the operator. In the smooth case this asymptotics was established, e.g., in [5, 6].
Note that the order of asymptotics does not involve the codimension of the surface.
For ‘almost smooth’ Lipschitz, and then for general Lipschits surfaces of codimension
d = 1, such asymptotic formulas with the same order were proved in [3] and [18].
We expect that the eigenvalue asymptotics is of the same order n−γ , γ = 1 + m/d
for general Lipschitz surfaces with d > 1; to justify these expectation, we need order
sharp spectral estimates.

In the task of finding spectral estimates for integral operators, the following two
cases are naturally distinguished. For operators in the Hilbert-Schmidt class S2 and
worse, no smoothness is required for the kernel, and order sharp eigenvalue estimates
are obtained usually from pointwise estimates for the kernel. This case, the one with
rather strong singularity, corresponds to γ < 1

2 , or, in other terms, −d < m < −d/2.
Eigenvalue estimates are proved here in a rather simple way, since the pointwise
estimates survive under the restriction to Lipschitz surfaces. The opposite case deals
with a weaker singularity of the kernel and, correspondingly, with operators with
a faster decay of s-numbers, γ ≥ 1

2 . Here the spectral estimates require a more advanced
machinery, because the smoothness of the kernel is not preserved under passing to the
local representation.

In application to our setting, the first case is resolved by the direct reference to
the theorem that already exists.
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Theorem 3.1. Let the kernel K(X;Z) (defined for X in a neighborhood of S) of the
operator K on a compact Lipschitz surface S is smooth in X and in Z ∈ Rd+d \ {0}
and is positive-homogeneous in Z of order m ∈ (−d,−d/2). Let ϕ,ψ be L2 functions
on S with compact support, with L∞ norm not exceeding 1. Then the singular numbers
sn(ϕKψ) of the operator ϕKψ satisfy

sn(ϕKψ) ≤ Cn−γ max(‖ϕ‖, ‖ϕ‖γ) max(‖ψ‖, ‖ψ‖γ), γ = 1 + m

d
,

with constant C not depending on the functions ϕ,ψ. (‖ · ‖ denotes the L2 norm.)

Proof. Theorem 4.1 in [3] establishes this estimate for operators, acting on a surface
S1 of codimension 1, having (in our notations) the form

K1u(X) =
∫

S1

ϕ(X)χ(X,Y )|X − Y |mψ(Y )U(Y )dµ1(Y ), (3.1)

with bounded function χ(X,Y ). (Here µ1 is the surface measure on S1.)
We will show that for the case of a surface S of codimension d, the operator

ϕKψ can be represented in the form (3.1). We choose a local co-ordinate system
where a piece of the surface S is represented as z = φ(x), x ∈ D. We separate one
of z-coordinates, z = (z1, z

′), φ(x) = (φ1(x), φ′(x)). Now consider the projection of
Rd+d to the subspace Rd+1, (x, z1, z

′) 7→ (x, z1). Under this projection, the surface S
projects, in bi-Lipschitzian way, onto the surface S1 : z1 = φ1(x); the surface S1 is,
again, Lipschitz. Note also that the distance between points cannot increase under
the projection, therefore |(x, φ(x))− (y, φ(y))|m ≤ |(x, φ1(x))− (y, φ1(y))|m for close
points x, y, and therefore, the kernel of the projected operator can be written in the
form (3.1) with bounded χ(X,Y ). It remains to apply Theorem 4.1 in [3].

It is important to note that in this, easy, case, we, in fact, used only the properties
of the restriction of the kernel to the surface S. In this way, we sacrificed the assumed
smoothness of the initial kernel K in Rd+d, since the restriction of a smooth function
to a nonsmooth surface is not smooth in local co-ordinates.

The opposite case, the one of a weak singularity, m ≥ −d2 leads to operators with
a faster rate of decay of s-numbers, as n−γ , γ ≥ 1

2 , i.e., to operators in some narrower
Schatten classes than S2. It is known that the membership to such classes requires,
generally, certain smoothness of the kernel; the higher smoothness corresponding to
a narrower class of operators, with a faster eigenvalue decay. Here, it is insufficient
to consider the restriction of the kernel to the surface due to the loss of smoothness
under such restriction. The approach elaborated in [3] and developed further in [18]
enables us to exploit the intrinsic smoothness of the kernel in the whole of Rd+d, or,
more exactly, in the neighborhood of S.

In [3] the following result on the singular numbers estimate for potential type
operators on surfaces (d = 1) was proved (see Proposition 2.3 in [3]). We describe it in
our present notations.
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Theorem 3.2. Let d = 1 and suppose that the kernel K(X;Z) of the operator
K on a compact Lipschitz surface S is smooth in X and in Z for Z 6= 0 and is
positive-homogeneous in Z of order m ≥ −d/2. Let ϕ,ψ be bounded functions on D
with compact support. Then the singular numbers sn(ϕKψ) of the operator ϕKψ satisfy

lim sup
n→∞

nγsn(ϕKψ) ≤ C min(µγϕ, µ
γ
ψ), (3.2)

where γ = 1 + m
d and µϕ, µψ are measures of the supports of the functions ϕ,ψ. The

constant C is determined by the surface S and the homogeneity order of the kernel K
but is independent of the cut-off functions ϕ and ψ.

Our generalization of this statement to operators on surfaces of co-dimension d is
the following.

Theorem 3.3. Let the kernel K(X;Z) of the operator K on a compact Lipschitz
surface S of codimension d in Rd+d is smooth in a neighborhood of S in X variable,
smooth in Z for Z 6= 0 and positive-homogeneous in Z order m ≥ −d/2. Suppose that
ϕ,ψ are bounded functions on S with compact support. Then the singular numbers
sn(ϕKψ) of the operator ϕKψ satisfy (3.2), again with γ = 1 + m

d .

So, the order of decay in the singular numbers estimate is determined by the
dimension of the surface and the homogeneity order, but not by the codimension d.

Proof. The reasoning goes similar to the one in [3]. The spectral estimates follow for
the operator H = ϕKψ from the variational principle via Lemma 2.1 in [3], which, being
a version of the variational description of the singular numbers, states the following.

If HN is a family of finite-rank operators such that rankHN ≤ c1N
θ and

‖H −HN‖ ≤ c2N−α for sufficiently large N , then

lim sup sn(H)nα/θ ≤ c2cα/θ1 .

We apply this Lemma, with H being the piece of our operator ϕKψ in the local chart
of S over D, and the operator HN taken as the integral operator with degenerate
kernel ϕ(X)KN (X,Y )ψ(Y ) constructed in the following way. Let us write the kernel
K(X;X − Y ) as KKK(X,Y ). Suppose, for simplicity of notation, that the piece of
surface (we still call it S) is contained in a unit cube Q0 ⊂ Rd+d. For a fixed N ,
set h = N−1 and cut the cube Q0 into Nd+d equal small cubes V α with edge h,
with multiindex α = (α1, . . . , αd+d), α ∈ (1, . . . , N)d+d, numerating these small cubes.
Some of these cubes intersect S, others do not. Denote by ΥN the set of cubes V α that
have a nontrivial intersection with S. The Lipschitz condition implies that, for a certain
constant c0, at least one point of the cube V α ∈ ΥN lies further than c0h from S. We
denote this point Xα. We fix some nonnegative integer r, and for any cube V α ∈ ΥN ,
construct for X ∈ V α the kernel

KKKN (X,Y ;V α) =
∑

|β|≤r
κκκα,β(Y )(X −Xα)β , X ∈ V α, Y ∈ S, (3.3)
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where κκκα,β are the Taylor coefficients of the function KKK(X,Y ) with respect to X
variable, calculated at the point Xα. These coefficients depend on Y and may grow as
Y approaches Xα, but in a controlled way:

|κκκα,β(Y )| ≤ Cdist (Xα,S)m−|β| ≤ C(c0h)m−|β|.

Now we compose the kernel KKKN (X,Y ) using the kernels KKKN (X,Y ;V α), by setting

KKKN (X,Y ) = KKKN (X,Y ;V α), X ∈ V α; KKKN (X,Y ) = 0, X 6∈
⋃

V α∈ΥN

V α.

Actually, we do not need to define the kernel KKKN (X,Y ) for X outside
⋃
V α∈ΥN V

α,
since such X are not present in the action of our integral operators on the surface S.

We take as the approximation HN the integral operator with kernel
ϕ(X)KKKN (X,Y )ψ(Y ). This kernel is the sum of kernels of the form (3.3), supported
on the sets V α × Q, the sum being spread over the cubes V α ∈ ΥN . Each of these
operators has rank not greater than the dimension of the space of polynomials in
d+ d variables with degree ≤ r. We denote this rank by r = r(d+ d, r). Therefore, the
rank of the whole approximating operator HN is not greater than r|ΥN |. Based upon
this formula and the rate of approximation of a function by the starting fragment of
its Taylor expansion, the estimate for the norm of the H −HN was evaluated in [3],
in the proof of Lemma 2.1, with the reasoning in the key Lemma 2.3 not depending
on the codimension of S. What, actually, might depend on the codimension d, is the
quantity |ΥN |, entering into the expression for the rank of the approximating operator.
Recall that |ΥN | is defined above as the number of cubes V α with edge h = N−1,
which have nontrivial intersection with S. We will show now that, actually, the order of
growth of |ΥN | as N →∞ is the same for any codimension d > 0. Having established
this property, we can repeat all other reasoning in [3], arriving at the same result.

So, suppose that a cube V α of the size N−1 intersects S. This means that the whole
cube lies inside the δN = N−1√d+ d-neighborhood of some point in S. Therefore, all
the cubes in ΥN lie inside the δN - neighborhood of S in Rd+d. We denote the volume
of this neighborhood by v(δN ) and thus |ΥN | ≤ δ−(d+d)

N v(δN ). For a Lipschitz surface,
this volume satisfies

lim sup
δN→0

(δ−dN v(δN )) ≤ Cµd(S),

where µd(S) is the d-dimensional Hausdorff measure of S and the constant C depends
on the Lipschitz constant of the surface S. Therefore, the number of cubes in ΥN

satisfies

lim sup
N→∞

(N−d|ΥN |) ≤ lim sup
N→∞

((N−dδ−(d+d)
N v(δN ))

≤ C lim sup
N→∞

(δ−dN v(δN )) ≤ Cµd(S).
(3.4)

And this is the estimate we need.
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The same reasoning establishes singular numbers estimates for integral operators
with smooth kernel. These estimates were, in fact, already used in Section 2, when
we declared that the smooth remainder term in the expansion (2.4) of the kernel has
s-numbers, decaying faster than the ones for the leading term. Such statement, for
operators acting on Lipschitz surfaces of codimension 1, was established, by means of
the above piecewise-polynomial approximation procedure, in [3, Proposition 2.7]. In
our case, the same reasoning applies, with the above crucial remark on the growth order
of |ΥN | in (3.4), showing that the rank of the approximating operator asymptotically,
as N →∞, does not depend on the codimension of the surface.

4. ESTIMATES AT THE DIAGONAL

The spectral properties of the operator K are determined by the properties of its
localizations to smaller parts of the surface. The main contribution to the spectral
behavior for the latter operators is made by the neighborhood of the diagonal X = Y ,
where the singularities lie. In the present section we study the rate of operator
approximation near the diagonal when the Lipschitz surface is approximated by
smooth ones. While following mostly the reasoning in [18], we indicate the places
where this reasoning should be modified due to the change in codimension.

We consider a part S = Sφ ⊂ Rd+d of the Lipschitz surface, the graph of a Lipschitz
(vector-)function φ on a bounded domain D ⊂ Rd and its smooth approximation Sε
parametrized by the smooth function φε.

Let K(X;Z), (X;Z) ∈ Rd+d×(Rd+d\{0}) be, as before, a kernel with homogeneity
m, m > −d in Z variable, smooth in all variables. Thus, the differentiation in X leads
to a function with the same homogeneity order, and each differentiation in Z lowers the
homogeneity order by 1, i.e., increases the singularity at the diagonal. We fix bounded
measurable functions ϕ,ψ on D with compact support in D, ‖ϕ‖L∞ , ‖ψ‖L∞ ≤ 1, and
consider the operators ϕKψ and ϕKεψ defined on the surfaces S, Sε, the graphs of the
functions φ, φε over D, by the kernel ϕ(x)K(X;Z)ψ(Y ), as in (2.7). In what follows,
we need to compare the eigenvalues of these two operators. However, these operators
act on different surfaces, this means, in different spaces. Therefore, to make them
comparable, acting in the same space, we consider operators, unitary equivalent to
ϕKψ and ϕKεψ, but written in the coordinates in D, as in (2.10), with

(ϕKψu)(x) =
∫

D

ϕ(x)ψ(y)σ(x)K(x, φ(x);x− y, φ(x)− φ(y))σ(y)u(y)dy,

with u(y) denoting U(y, ϕ(y)), y ∈ D, and

(ϕKεψu)(x) =
∫

D

ϕ(x)ψ(y)σε(x)K(x, φε(x);x− y, φε(x)− φε(y))σε(y)u(y)dy;

this time, with u(y) denoting U(y, φε(y)), y ∈ D. Here σ(x), σε(x) are defined in
(2.6), (2.12). These two operators are unitary equivalent to ϕKψ resp., ϕKεψ, but
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they act now in one and the same space, just what we need. For a fixed h > 0, let
ρh(x, x − y) = ρ(x, x − y) (the subscript h will be omitted here, provided this does
not cause a misunderstanding) be a bounded function, |ρ(x, x− y)| ≤ 1, vanishing for
|x− y| > h. We define the kernel

Kh = ϕ(x)K(X;X − Y )ρ(x, x− y)ψ(y).

The corresponding operators in L2(D) are

Khu(x) =
∫

D

σ(x)Kh(x, φ(x);x− y, φ(x)− φ(y))σ(y)u(y)dy (4.1)

and
Kh
ε u(x) =

∫

D

σε(x)Kh(x, φε(x);x− y, φε(x)− φε(y))σε(x)u(y)dy. (4.2)

In this section we are interested in estimating the singular numbers (s-numbers) of
the difference Kh −Kh

ε . We recall that a compact operator T with s-numbers sn(T)
belongs to the Schatten ideal Sq, 0 < q < ∞, if the sum in ‖T‖q = (

∑
sn(T)q)1/q

converges. For q ≥ 1 the latter expression defines the norm in Sq; and ‖T‖qq is a metric
in Sq, q < 1. For p < 2 a convenient sufficient condition for the integral operator T
with kernel T (x, y) to belong to Sp′ (as usual, p′ = p

p−1 ) was found by G. Karadzhov
[15], see also [20].
Lemma 4.1. Let T (x, y) be the kernel of the operator T, T ∗(x, y) = T (y, x), and
‖T ‖p,p′ denote the expression

‖T ‖p,p′ =
((∫

|T (x, y)|pdx
)p′/p

dy

)1/p′

.

Suppose that both ‖T ‖p,p′ and ‖T ∗‖p,p′ are finite for some p ∈ (1, 2). Then T ∈ Sp′

and
‖T‖Sp′ ≤ C(‖T ‖p,p′‖T ∗‖p,p′)1/2. (4.3)

Lemma 4.1 was established in [15] with some value of the constant C in (4.3).
In [20] it was found that, actually, it is possible to take C = 1 as this constant, but
the additional condition T (x, y) ∈ L2 was imposed; one can easily dispose of it (see,
e.g., [11]).
Proposition 4.2. For pm < d, 1 < p < 2, the operator Kε −Kh

ε belongs to Sp′ , and

‖Kε −Kh
ε ‖Sp′ ≤ Ch

−m+ d
p (min(1, ‖∇φ−∇φε‖Lp′ ) + ‖φ− φε‖L∞).

Proof. In a rather lengthy proof, there is just one difference compared with Proposition
3.2 in [18]: due to the change of the codimension, the factors 〈gradφ(x)〉, 〈gradφε(x)〉
should pe replaced by σ(x), resp., σε(x) in all formulas. However, by our Proposition
2.4, the functions σε converge to σ in any Lq, q < ∞, as ε → 0, and it is this
convergence that is, actually, used in the proof of the estimate in [18].
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As it is explained in Section 2, we must take care of one more case, the
log-homogeneous kernels having the form

K(X;X − Y ) = Q(X;X − Y ) log |X − Y |, (4.4)

where Q(X;Z) a homogeneous polynomial in Z of degree m, for an nonnegative integer
m. For a fixed h and some τ > 0 to be chosen later, we introduce the kernel

Kh(X;X − Y ) = ρ(x, |x− y|)Q(X;X − Y )(log |X − Y | − log(τh)) (4.5)

and two operators Kh, Kh
ε defined by the formulas (4.1) and (4.2), with the kernels

Kh, given now by the expression (4.5).

Proposition 4.3. Let ν < d/p, p ∈ (1, 2). Then

‖Kh
ε −Kh‖Sp′ ≤ Ch

−ν+ d
p (min(1, ‖σ − σε‖Lp′ )(1 + | log τ |) + ‖φ− ψ‖L∞). (4.6)

The proof, again, follows the proof of Proposition 3.3 in [18], with the remark
concerning the change of the form of density, made in the previous proof. In [18],
a special attention was given to the extra logarithmical term, which is treated now in
the same way.

5. OPERATOR APPROXIMATION

The considerations to follow deal with the approximation of the kernels under study
by degenerate kernels outside the h− neighborhood of the diagonal X = Y (note that
h is still to be determined). We will modify somewhat the construction of finite rank
approximating kernels, used in Theorems 3.1, 3.5 in [18], improving the estimates
obtained there. We will apply the estimates obtained above in Section 3, however,
now, to estimate the spectrum of the difference K −Kh, i.e., of operators on the
projection of S,Sε to Rd, having kernels vanishing near the diagonal x = y. We need
also to introduce a scaling parameter κ; further on, optimizing in κ, h will produce
the eigenvalue estimates we need.

Let again S ≡ Sφ ⊂ Rd+d be a piece of a Lipschitz surface, defined over the
bounded domain D ⊂ Rd as the graph of a Lipschitz function φ. Let D lie in the unit
cube Q0 = [0, 1]d ⊂ Rd having edges parallel to the co-ordinate axes in Rd. We cover
D by Nd small cubes

Qα = [(α1 − 1)b, α1b)× · · · × [(αd − 1)b, αdb)

with edge b = 1/N , α = (α1, . . . , αd). We denote by Nג the set of cubes Qα
intersecting D.

For any cube Q = Qα ∈ Nג we consider the “tower” of cubes of the form
Q = Q× (lb, (l + 1)b), l ∈ Zd, in Rd+d, over Q. Due to the Lipschitz property, for some
constant C0, there are no more than C0 cubes in this tower intersecting the surface S.
Also, for any ε > 0, there are no more than C0 cubes in this tower intersecting
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Sε ≡ Sφε . We denote by ΘQ the set of these two types of d + d-dimensional cubes,
|ΘQ| ≤ 2C0, and by Θ the union Θ =

⋃
Q ΘQ. Note that even for a fixed N , the set Θ

may depend on ε, however the size of this set satisfies always the estimate

|Θ| ≤ 2C0N
d.

We will denote the d+ d-dimensional cubes in Θ by boldface, Q ∈ Θ, marking, if this
is necessary, the dependence on N .

Again, due to the Lipschitz property, in each cube Q ∈ Θ there exists a point lying
controllably far away from S, at least on the distance c0N−1, with some constant c0
depending only on the Lipschitz constant for S. We denote this point XQ, and by xQ
we denote its projection on Rd.

LetKKK(X,Y ) = K(X;X−Y ) be a homogeneous kernel of degreem > −d. For Q ∈ Θ
we define the polynomial in X variable:

PQ(X,Y ) =
∑

|β|≤r
kQ,β(Y )(X −XQ)β , (5.1)

where the sum is the starting segment of the Taylor expansion ofKKK(X,Y ) in X variable
at the point (XQ, Y )

kQ,β(Y ) = β!−1∂βXKKK(X;Y ) �X=XQ . (5.2)

For any Q ∈ Nג we denote by Q̃ the concentric cube with edge κb, where κ > 1 is
a number to be specified later. Now we define the approximating degenerate kernel
on S

PN (X,Y ) =
{
PQ(x, φ(x), y, φ(y)), x ∈ Q, y 6∈ Q̃
0, x ∈ Q, y ∈ Q̃ , Q ∈ ΥN , (5.3)

X = (x, φ(x)), Y = (y, φ(y)), Q is the projection of Q. The kernel PN (X,Y ) is
a polynomial in X variable in each set of the form Q×Q0 therefore it is degenerate, its
rank is not greater that CNd. This kernel vanishes for (x, y) in the set ΣN = ∪(Q× Q̃),
which contains the κb(d + d)− 1

2 -neighborhood of the diagonal x = y (of course, for
small N and large κ this set may cover the whole of D × D, and then PN vanishes
everywhere). Similar to PN , we denote by KKKN the restricted kernel

KKKN (X,Y ) =
{
KKK(x, φ(x), y, φ(y)), (x, y) 6∈ ΣN ,
0, (x, y) ∈ ΣN .

(5.4)

Proposition 5.1. Denote by PN ,KN the operators in L2(S) with kernels, resp.,
ϕPNψ,ϕKKKNψ. Then for r > d+m,

‖PN − KN‖ ≤ Cκm−r+dN−m−d. (5.5)

(Recall that r is the order of the approximating Taylor polynomial in (5.2).)
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Proof. Our construction differs only slightly from the one in [3], and the reasoning
is similar to the proof of Proposition 2.5 there; we need however to trace down
the dependence on the parameter κ. We pass to operators PN , KN on D. The
difference of the kernels PN (x, φ(x), y, φ(y)) −KKKN (x, φ(x); y − x, φ(y)− φ(x)) is zero
in ΣN , and outside ΣN it is the remainder in the Taylor expansion (5.1) of KKK, so, by
homogeneity, we have

∣∣PN (X,Y )−KKKN (X,Y )
∣∣ ≤ C|X − Y |m−rN−r.

Thus, the norm of the difference of the operators PN −KN is estimated as

‖PN −KN‖ ≤ CN−r sup
y∈Q

∫

D∩{|x−y|>κb}

|x− y|m−rdx. (5.6)

The latter integral is bounded by

CN−l(κb)m−r+d � Cκm−r+dNm−d, (5.7)

which proves (5.5).

We can also apply this estimate to the kernels KKKNε and PNε defined similarly to
KKKN and PN , with the function φ replaced by φε.

Now we are ready for the main result on eigenvalue estimates for localized operators.

Proposition 5.2. Let φ be a Lipschitz function and φε be its smooth approximation
on D, defining surfaces S,Sε so that

‖φ− φε‖L∞ ≤ ε, ‖∇φ−∇φε‖Lp′ ≤ ε, ‖σ − σε‖p′ < ε, (5.8)

for some p′ > 2, pm > −d. The kernel ϕKKKψ defines operators K on S and Kε on Sε.
Let K and Kε be the corresponding operators in L2(D), under the unitary equivalence
induced by projecting of S,Sε to D ⊂ Rd. Then for the s-numbers of the difference
K−Kε, for the following estimate holds

sn(K−Kε) ≤ Cελnm/d−1, λ = −m+ d/p, (5.9)

with constant,probably, depending on p but independent on ε, n.

Proof. We start by choosing an integer r ≥ 0 such that r −m− d is positive. With
some κ, to be chosen later, we fix N and construct the approximating degenerate
kernels PN as in (5.3) and PNε in the same way, with φ replaced by φε. These kernels,
restricted to the surfaces S and Sε, define finite rank operators PN and PN

ε in L2(D).
Consider the cut-off operators KN and KN

ε , the kernel of the latter defined as in
the formula (5.4), with φ replaced by φε. This construction generates the following
decomposition of the difference K−Kε:

K−Kε = [(KN −PN )− (KN
ε −PN

ε )] + [PN −PN
ε ]

+ [(K−KN )− (Kε −KN
ε )] = T1 + T2 + T3.

(5.10)
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For both terms in T1, Proposition 5.1 can be applied, so the norm of T1 is estimated by

‖T1‖ ≤ Cκ−m−r+dN−m−d. (5.11)

The operator T2 has finite rank,

rank T2 ≤ CNd. (5.12)

The last term, the operator T3 has kernel vanishing for (x, y) outside ΣN , i.e., outside
some neighborhood of the diagonal, and we can apply Proposition 4.2 with the function
ρ(x, x− y) being the characteristic function of ΣN and with h = κN−1. As a result,
T3 belongs to the Shatten class Sp′ and ‖T3‖Sp′ ≤ Cε(κN−1)m+d/p. This inequality
implies

sn(T3) ≤ Cε(κN−1)m+d/pn−1/p′ . (5.13)

By Weyl’s inequality (see, e.g., [12]), we have the following estimate for the
s-numbers:

sn+k+1(T1 + T2 + T3) ≤ ‖T1‖+ sk+1(T2) + sn+1(T3), (5.14)

for any k, n ≥ 0. If we set here k = CNd, where C is the constant in (5.12), then
sk+1(T2) becomes zero. After substituting (5.11) and (5.13) into (5.14) we arrive at

sn+CNd+1(T1 + T2 + T3) ≤ Cκm−k+dNm−d + Cε(κN−1)m+d/pn−1/p′ . (5.15)

We set now n = Nd. Then (5.15) gives

s(C+1)Nd+1(T1 + T2 + T3) ≤ Cκm−k+dN−m−d + Cε(κN−1)m+d/pN−d/p
′

≤ C(κm−k+d + εκm+d/p)N−m−d.

Now we can adapt the value of κ so that the coefficient in front of N−m−d minimizes;
we set κ = ε(r+d/p

′)−1 , and then this coefficient becomes Cεm+d/p. The resulting
inequality is equivalent to (5.9).

A slight modification of the reasoning in the last two propositions takes care of
the log-homogeneous kernels considered in Proposition 4.3.

Proposition 5.3. Let φ be a Lipschitz function and φε be its smooth approximation,
so that (5.8) holds for some p′ > 2, pm > −d and the surfaces S and Sε in Rd+d

be the graphs of φ and φε over D ∈ Rd. Let the operators K and Kε be defined by
a log-homogeneous kernel ϕ(X)K(X;X − Y )ψ(Y ) described in (4.4), on the surfaces
S,Sε, moreover Q(X;X − Y ) in (4.4) is a homogeneous polynomial of degree m. Let
K, Kε be the corresponding operators in L2(D). Fix some integer r > m+ d. Then
for the s-numbers of the difference K−Kε the following estimate holds

sn(K−Kε) ≤ C(ελ(1 + | log ε|)nm/d−1 + n−r/d), λ = m+ d/p. (5.16)
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Proof. The proof follows the lines of the reasoning in Propositions 5.1 and 5.2, however
the construction of the approximating kernels KKKN , KKKNε is slightly different. As it was
proposed in [3], we set, similar to (5.1), (5.3),

PN (X,Y ) = Q(X;X − Y )TQl−1(X,Y ), X ∈ Q, Y /∈ Q̃, Q ∈ ΘN ,

where TQ
l−1(X,X − Y ) is the Taylor polynomial of degree r − 1 with respect to X for

the function log |X − Y | with center point at XQ. For (X,Y ) close to the diagonal,
(x, y) ∈ ΣN , we set

PN (X,Y ) = −Q(X,X − Y ) logN, X ∈ Q, Y ∈ Q̃, Q 6∈ ΘN .

Since Q(X;X − Y ) is a polynomial in the second variable, the kernel PN (X,Y ) is
degenerate, with rank not greater than CNd. The same construction, with φε replacing
φ, defines the degenerate kernel PNε . Let the kernel KKKN coincide with KKK for x outside
the set ΣN and be equal to PN in ΣN , i.e. in the neighborhood of the diagonal. Similarly
constructed, the kernel KKKNε coincides with KKKε outside ΣN and with PNε in ΣN . We
denote by KN ,KN

ε the operators defined on D by the kernels KKKN ,KKKNε restricted to
S,Sε and by PN , PN

ε , respectively, the operators defined by the approximating kernels
PN ,PNε restricted to these surfaces. Again, as in Proposition 5.2, we estimate the norm
of KN − PN . The kernel of this operator vanishes for (x, y) outside ΣN . In the set
ΣN , so for |X − Y | > κN−1, we can use the estimate found in [3], see the formula
(2.30) there,

|K(X;X − Y )− PN (X,Y )| ≤ C
(
N−r logN + |X − Y |m−rN−r

)

with r large enough, so that −r + m + d < 0. Then the norm of KN − PN can be
estimated as

‖KN −PN‖ ≤ C
(
N−l logN +N−l sup

y∈D

∫

{|x−y|>κb}

|x− y|m−ldx
)
.

We evaluate the last integral as in (5.6), (5.7) and arrive at

‖PN −KN‖ ≤ C(N−l logN + κm−r+dN−m−d).

The same estimate holds for the difference KN
ε −PN

ε .
We pass now to the study of the operator K−Kε. We represent it as

K−Kε = [(KN −PN )− (KN
ε −PN

ε )] + [PN −PN
ε )]

+ [(K−KN )− (Kε −KN
ε )] = T1 + T2 + T3

(5.17)

For the operator T1 we have just found the norm estimate,

‖T1‖ ≤ C(N−r logN + κ−m−r+dN−m−d). (5.18)
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The operator T2 has finite rank, rank T2 ≤ CNd. The operator T3 has exactly the
form required by Proposition 4.3, see (4.5), with the function ρ being the characteristic
function of ΣN , h =

√
d+ dκN−1, and τ = (

√
d+ dκ)−1. Applying (4.6), we obtain

‖T3‖Sp′ ≤ Cε(1 + | log κ|)(κN−1)m+d/p,

that implies
sn(T3) ≤ Cε(1 + | log κ|)(κN−1)m+d/pn−1/p′ . (5.19)

Now the reasoning goes exactly as in the proof of Proposition 5.2, we only have to take
care of the extra logarithm factor that spoils our estimates just slightly. We set again
j = CNd in the Weyl inequality (5.14) written for the decomposition (5.17), and the
term sk+1(T2) vanishes. After this, we substitute there the estimates (5.18), (5.19)
and set κ = ε(−r+d/p)

−1 , arriving at (5.16).

6. EIGENVALUE ASYMPTOTICS

In this final section we will establish the asymptotic formula for eigenvalues of potential
type operators on Lipschitz surfaces. Such formulas are well-known in the smooth
case, see, e.g., [2] and references therein. The proof goes mostly in the same way as in
the codimension 1 case in [18]. Therefore we just indicate the main steps, showing,
of course, technical differences, as soon as they appear.

The starting point will be the known asymptotic formula for eigenvalues of a weakly
polar integral operator on a smooth manifold. We will rewrite it in a form that does
not involve a smooth structure on the manifold. Further on, we apply the asymptotic
perturbation theorem by Birman-Solomyak, which enables one to pass to the limit in
an asymptotic eigenvalue formula as soon as sufficiently general eigenvalue estimates
are obtained. We show that under the approximation procedure described in this paper,
the convergence of operators localized to a co-ordinate patch satisfies the conditions
of this theorem, while it is also possible to pass to the limit in the expressions for the
asymptotic coefficient. Finally, we show that it is possible to delocalize the problem,
gluing together operators and asymptotic formulas in different co-ordinate patches to
arrive at the final result, the asymptotic eigenvalue formula on the Lipschitz surface
of an arbitrary codimension.

If a0(x, ξ), (x, ξ) ∈ T ∗S, is the principal symbol of the classical self-adjoint pseu-
dodifferential operator K of order l = −(m+ d) < 0 on a smooth d-dimensional surface
S and f is a real bounded measurable function on S, then the positive (negative)
eigenvalues λ±n of fKf satisfy

lim
n→∞

λ±n n
1+m

d = C±, (6.1)

with the coefficients C± expressed in the terms of the function f and the principal
symbol of the operator K.
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There are different ways to write down the expression for the coefficients C±
in (6.1). We need a form which would make sense also for a Lipschitz surface S. Our
starting point will be the standard expression,

(C±) d
m+d = (2π)−dvol {(x, ξ) ∈ T ∗S : ±|f(x)|2a0(x, ξ) > 1}. (6.2)

Here vol denotes the invariant measure on the cotangent bundle T ∗S which is a smooth
manifold. The eigenvalue asymptotics with coefficient (6.2) was proved in [6], for
operators in a domain in the Euclidean space; the possibility of carrying over to
manifolds was mentioned there as well. A detailed presentation for the case of manifolds
appeared first in [13], and an alternative proof was given in [9] (without the weight
function f).

The expression (6.2) for the coefficient in the asymptotics makes no sense for
a Lipschitz surface since here the cotangent bundle does not possess a manifold structure
and no reasonable measure on T ∗S is defined. Therefore we need a modification of
the formula (6.2) that would involve only the measure µ on S ⊂ Rd+d induced by
the Lebesgue measure in Rd+d; this measure is discussed in Section 2. For a point
X0 ∈ Rd+d, X0 ∈ S, we denote by NX0 the normal plane to S at X0, i.e., the subspace
of ζ ∈ Rd+d orthogonal to the tangent space to S at X0.

Let S be locally the graph of a (still smooth) function φ. Then the tangent space
TX0(S), can be identified with the cotangent space T ∗X0

(S) via the standard Euclidean
structure in Rd+d. We consider the Euclidean structure on TX0(S) together with
the measure dξ, induced on TX0(S) by the Lebesgue measure in Rd+d. Then in the
expression for the coefficient in (6.2) we can perform the integration in ξ variable for
X fixed, in polar co-ordinates in each cotangent space T ∗X(S), and then in X over S
which gives

(C±)d/(d+m) = (2π)−d
∫

S

dµ(X)
∫

TX(S)∩{±|f(x)|2a0(x,ξ)>1}

1dξ

= (2π)−dd−1
∫

S

w±(X)dµ(X),
(6.3)

with
w±(X) =

∫

SX0 (S)

(|f(x)|2(a0(X,ω))±)d/(m+d)dω, (6.4)

where the integration is performed over the (d − 1-dimensional) tangent sphere to
the surface S at the point X0. We need another expression for the latter integral. To
derive it, we represent the above tangent sphere as Sd+d−1 ∩ (NX0(S))⊥, i.e., as the
set of unit tangent vectors which are orthogonal to the normal plane at X0; this gives

w±(X) =
∫

Sd+d−1∩NX0 (S)⊥

(|f(x)|2(a0(X,ω))±)d/(m+d)dω, (6.5)

where dω is the measure on Sd+d−1 ∩ (NX0(S))⊥ induced from Rd+d.
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The expression (6.3), (6.5) makes now sense for any Lipschitz surface, because the
normal plane NX0(S) and the tangent space TX0(S) exist almost everywhere on S
and the symbol a0(X,ω) makes also sense almost everywhere, being not related to
any pseudodifferential operator on S any more. The direction of the normal plane
NX0 is involved into (6.5) because it defines the integration set. Additionally, as it
was explained in Section 2, this normal plane determines the symbol a0(X,ω) by (2.8).
We emphasize here that the expression in (6.5) depends on NX0 and thus on ∇φ(x0)
continuously.

As soon as the eigenvalue estimates for the approximation of the potential type
operators are obtained, proving the eigenvalue asymptotic formulas is now a routine
matter. The general approach to this kind of problems originated in [5] and since then it
has been the main (probably, the only) way for proving eigenvalue asymptotic formulas
for non-smooth problems. The approach is based upon the following perturbation
lemma, see [5].
Lemma 6.1. Let the self-adjoint compact operator T admit a decomposition for
every ε:

T = Tε + T′ε,
so that for some q > 0, the positive and negative eigenvalues λ±n (Tε) of the operator
Tε follow the asymptotical law

λ±n (Tε) ∼ C±ε n−γ , n→∞, (6.6)

and the term T′ε is small in the sense

lim sup
ν→∞

sn(T′ε)nγ ≤ ϕ(ε); ϕ(ε)→ 0 as ε→ 0. (6.7)

Then the coefficients C±ε have limits C± as ε→ 0 and

λ±n (T) ∼ C±n−γ , n→∞. (6.8)

We will apply Lemma 6.1 twice, first to justify the eigenvalue asymptotics for
localized operators and then to pass from localized to global operators on the surface.
Proposition 6.2. Let S be a Lipschitz surface in Rd+d, S ≡ Sφ = {(x, φ(x)) : x ∈ D},
where D is a bounded domain in Rd and φ is a Lipschitz function φ : D → Rd. Let A
be a classical self-adjoint pseudodifferential operator of order l − d, l < 0 in Rd+d with
principal symbol a0(X,Ξ). For a bounded measurable function f on D, supported in
a compact in D, we consider the potential type operator fKf in L2(D), where K is the
operator generated by A on Sφ. Then the eigenvalues λ±n (fKf) satisfy the asymptotic
formula

lim
n→∞

λ±n (fKf)nγ = C±, (6.9)

where C± is defined in (6.3), the density w±(X) is given by (6.5), and the symbol
a0(X,ω) is expressed via A0(X,Ξ) as

a0(X,ω) = (2π)−d
∫

NX(S)

a0(X,ω + ζ)dζ. (6.10)
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Proof. We are going to apply Lemma 6.1. In our case the role of the operator T
will be played by fKf and the approximations Tε will be the operators fKεf in
L2(D) corresponding to the smooth functions φε approximating φ, ‖φ− φε‖L∞ < ε,
‖∇φ − ∇φε‖Lp′ < ε, 1 < p < 2, p < d/(d + m), ‖σ − σε‖Lp′ < ε. For the operators
fKεf the spectral asymptotics of the form (6.6) is known from [6,13]. The coefficients
C±ε in (6.6) are given by

(C±ε )−
1
γ = (2π)−dd−1

∫

Sε

w±ε (X)dµε(X), (6.11)

where the integration is performed over the surface Sε, the graph of φε over D, with
the corresponding measure dµε. The density w±ε is defined as in (6.5) with φ replaced
by φε and the normal plane NX(S) replaced by NX(Sε).

We consider the difference T′ε = T − Tε. Fix some M , large enough. Due to
the representation (2.4), we split the integral kernel H(X,Y ) = K(X;X − Y ) of the
operator A as

H(X,Y ) = H0(X,Y ) +H1(X,Y ) +RM (X,Y ), (6.12)

where H0(X,Y ) = K0(X;X − Y ) (or K0,log(X;X − Y ) log |X − Y |) is the leading
term in (2.4), H1(X,Y ) is the sum of the terms in (2.4) with d + m − 1 ≤ ν ≤ M
and RM (X,Y ) is the remainder term in (2.4). With accordance to this decomposition,
operators T and Tε also split into three terms each, which produces the representation
of T′ε,

T′ε = S0 + S1 + R. (6.13)

The operator R is the difference of operators generated by CM - continuous kernels on
S, Sε. As explained in Section 3, operators with such kernels have s-numbers decaying
faster than n−M/d, so, faster than n−γ , if M is chosen large enough. The second term
in (6.13) is the sum of a finite number of operators with kernels having the order of
homogeneity higher thanm+d. By Theorems 3.1, 3.3, the s-numbers of these operators
decay, again, faster than n−γ . Finally, the main term S0 in (6.13), is the difference
of operators generated by the kernel with homogeneity (or log-homogeneity) of order
m on surfaces S, Sε. By Propositions 5.2, 5.3, the s-numbers of this difference are
estimated by n−γ with a small constant, tending to zero together with ε. By Lemma 6.1,
these estimates imply the asymptotics (6.8), with coefficients C± which are limits of
C±ε as ε → 0. It remains to notice that the densities wε(X) = w(x, φε(x)) entering
in the formula (6.11) as well as the densities of the measures dµε = σε(x)dx converge
respectively to the densities w(x, φ(x)) and σ(x) at all points x ∈ D where ∇ψε(x)
converges to ∇φ(x), moreover, converge in any Lq, q < ∞, i.e., almost everywhere
in D. Since the gradients of φε are uniformly bounded, the dominated convergence
theorem implies that one can pass to the limit under the integral in (6.11), obtaining
the expression (6.3), (6.5) for the asymptotical coefficients in (6.9).

In order to prove the global asymptotic formula, we need one more, rather simple,
spectral estimate showing a sort of locality property for potential type operators.
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Proposition 6.3. Let S be a compact Lipschitz surface in Rd+d, K a potential type
operator on S and ϕ,ψ be bounded measurable functions on S such that the distance
δ between supports of ϕ and ψ is positive. Then the s-numbers of the operator ϕKψ
satisfy

sn(ϕKψ) = o(n−k) for any k. (6.14)

The property is established very similar to the one in [3] or [18], where the case of
codimension 1 was considered. In the same way as in Theorems 3.1, 3.3, a piecewise
polynomial finite rank approximation to the operator ϕKψ is constructed, however,
this time, since the distance between the supports of ϕ,ψ is positive, the support of
the integral kernel of the operator lies on the positive distance from the diagonal, and
therefore, the blow-up of the derivatives at the diagonal does not happen.

Now we can establish our global theorem on the spectral asymptotics.

Theorem 6.4. Let A be a pseudodifferential operator of order l − d, l < 0, with
principal symbol a0(X,Ξ) and S be a compact Lipschitz surface in Rd+d. For a bounded
measurable function f defined on S we consider the potential type operator fKf . Then
the eigenvalues of fKf satisfy the asymptotic formula

lim
n→∞

λ±n n
−γ = C±, γ = d+m

d
= − l

d
(6.15)

with coefficients C± given by (6.3), (6.5), (6.10).

Proof. As soon as the local version of the Theorem and the locality property are
established, the proof is rather standard. Consider a covering of S by co-ordinate
patches Ωj so that each part Sj = S ∩ Ωj is the graph of a Lipschitz function φj in
proper local co-ordinates in Ωj . For any fixed ε we can find closed sets Ωεj ⊂ Ωj so
that Ωεj are disjoint, mutual distances are all positive and the measure of S \ ∪Ωj is
smaller than ε. Let ϕj be the characteristic function of Ωεj , F =

∑
ϕj , G = 1 − F .

Consider the operator
Tε =

∑

j

fϕjKϕjf =
∑

T(j). (6.16)

Since the functions ϕj have disjoint supports, the operator Tε in representation (6.16)
is the direct sum of operators T(j). We can consider each T(j) as the local operator on
the piece Sj of the surface and apply Proposition 6.2, thus obtaining an asymptotic
formula for the eigenvalues of each T(j). Since the spectrum of the direct sum of
operators is the union of the spectra of summands, this gives the asymptotic formula
for the eigenvalues of Tε. Next we consider the difference, the operator

T′ε = fKf − Tε.

We represent it as

T′ε =
∑

i 6=j
fifKfjf +GfKfF + FfKfG+GfKfG. (6.17)
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The s-numbers of the first term in (6.17) decay fast by Proposition 6.3. For three re-
maining terms the s-numbers satisfy the condition of the form (6.7), as was established
in [3], see Lemma 2.3 there. These two facts, via Lemma 6.1, produce our result.
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