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ABSTRACT As vehicles become more complex and traffic increases, the associated mental workload
of driving should increase, potentially compromising driving safety. As mental workload increases
(asmeasured by the detection response time task), does how people drive (as assessed by driving performance
and eye fixations) change? How does driving experience impact on such response patterns? To address
those questions, data were collected in a motion-based driving simulator. Two driving scenarios were
examined, a stop-controlled intersection (high workload—16 participants, 320 trials) and speed-limited
highway (low workload—11 participants, 264 trials). In each scenario, in half of the trials, the participants
were required to complete or not to complete a distracting secondary task. Hierarchical cluster analysis was
used to identify driver response patterns. For highway driving, they are: 1) increased eye fixation variability
and unchanged driving performance and 2) unchanged fixation variability and increased mean speed. For
intersection driving, they are: 1) increased; 2) decreased fixation variability both with decreased speed (mean
and variance); and 3) increased fixation variability with increased speed. Eye fixation variability was more
strongly associated with increased mental workload than other driving performance statistics. Furthermore,
in contrast to prior research, changes in driving performance and eye fixations were not necessarily correlated
with each other as mental workload increased. Novice drivers exhibit higher gaze variability, and they are
more prone to maintain vehicle control than experienced drivers.

INDEX TERMS Driver distraction, driving performance, eye fixation, mental workload, multitask.

I. INTRODUCTION
Mental workload ‘‘is a multidimensional construct, gener-
ally defined as the level of attentional resources required
to meet both objective and subjective performance criteria’’
(chapter 39-1 [1]). Attentional resources are the amount of
attention available to perform cognitive tasks that require
effort [2]. Mental workload is widely recognized as one of
the most important human factors constructs; it is predictive
of driving performance and safety [3]. It has been found that
many traffic crashes are related to abnormalmental workload,
when it is either too low (boredom-caused drowsiness) or too
high (distraction) [4]. The mental workload can be inferred

from objective measures of task performance and subjective
ratings of mental effort [5].

Two common locations for crashes are highways and stop-
controlled intersections [4], [6]. There is concern that as
technology is added to vehicles, driver mental workload will
increase [7]–[10], in particular at those two locations [11].
On highways, speed limit signs are often encountered and
drivers should comply with those limits. An increase in
mental workload tends to lead to decreased awareness of
traffic signs, and therefore, low compliance with speed lim-
its [12]–[14]. In urban driving, stop-controlled intersec-
tions are commonly encountered. Driving at non-signalized
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intersections is a complex and highly interactive process,
whereby each driver makes individual decisions about when,
where, and how to complete the required maneuver [15].
Compared to highway driving scenarios, driving through
intersections often leads to greater mental workload due to
a presence of more traffic and the more complex process
of approaching, stopping at, and departing from intersec-
tions [16]. Driving through a stop-controlled intersection
imposes greater mental workload to drivers than complying
with varying speed limit signs. The mental workload of pri-
mary driving task differs between those two scenarios. Faced
with the increase of mental workload induced by a cognitive
secondary task, the response patterns would manifest them-
selves in different ways [17].

Prolonged high mental workload driving leads to degraded
situation awareness [18], but that does not mean that mental
workload should always be reduced to relieve drivers from
driving tasks. Studies show that decreased mental workload
can lead to a driver directing his/her attention away from the
primary driving task and thereby affecting his/her ability to
retain control of the vehicle in emergency situations [19].
The connection between high driving risk and the low mental
workload is complicated. Another mechanism is that bore-
dom (low workload) could also result in dangerous situations
due to driver’s sleepiness [20]. Thus, driver mental workload
should be controlled within an appropriate range to keep an
optimal level for safety [21].

Prior research on mental workload and driving [22] has
mainly focused on quantitative summaries of driving per-
formance and driver eye fixation statistics. Despite the
robust methods and meticulous analysis in prior research,
identifying the relationships between those driving perfor-
mance statistics and eye fixation statistics has not always
been insightful. For real-world applications, the detection of
driver’s increased mental workload has begun incorporating
various data sources into consideration [3], [23], enabling
new insights into the relationships between those driving
performance statistics and eye fixation statistics.

Current analyses of driver’s distractions, assessed by either
driving performance or eye fixations, are fundamentally
stochastic [18]. Prior research concerning driver performance
has examined the effects of the mental workload primarily at
an aggregate level, by road category. Especially on highways,
increasedmental workload leads less smooth steering [24] but
better lane maintenance [22], [25]. However, different out-
comes can occur in complex traffic situations due to different
maneuver requirements [11], [26]. Accordingly, one would
expect that within road categories, the effect of mental work-
load on driving performance is maneuver specific. Moreover,
the interaction between mental workload imposed by certain
tasks and driver’s capability is complex where many factors
are involved [27]. For instance, one previous study observed
that drivers tend to reduce their level of engagement in self-
regulated mobile phone tasks to benefit driving performance,
and such a tendency is associated with individual differ-
ence, e.g., gender [28]. Other efforts have been devoted to

eye-related measures. Increased mental workload can lead
to significant increases in blink latency [29], fixation dura-
tion [30], [31], pupil dilation [32], and decreases in blink
duration [33]–[36] and fixation variability [36], [37].

Despite the abundance of research on either of the above-
mentioned aspects, there is a shortage of research that
provides a comprehensive understanding of driver response
patterns to increased mental workload [18], [38]–[41]. As the
driving of highways and at intersections are significantly
different from each other [16], [17], drivers’ response pat-
terns in these two traffic situations need to be determined.
Furthermore, as eye-fixation statistics and driving perfor-
mance statistics are affected by mental workload, they need
to be included in analyses of driver response patterns.

Driving experience, related to the individual differences,
presents great impacts on in the response to increased men-
tal workload. The youngest drivers had the highest rate of
involvement in all police-reported crashes [42], [43]. Given
this, and their greater use of technology, it is appropriate that
distracted driving research has focused on young drivers [44].
As shown by previous research [45], both novice drivers and
more experienced drivers attempt to regulate their behav-
ior in a risk-reducing direction when under added cogni-
tive demand. However, it remains an open question that the
extent to which such a self-regulation fully compensates for
the impact of added cognitive demand. The effect of risk
compensation has been widely observed in the cognitively
distracted driving [37], [46]. A comprehensive understanding
of underlying mechanisms behind those factors is imperative.

Thus, this paper addresses the following questions.
Q1: As mental workload increases, does how drivers

respond change (as assessed driving performance and eye
fixations)?

Q2: How does driving experience impact on such response
patterns?

We began by constructing highway and stop-controlled
intersection scenarios in a driving simulator to imitate real
driving situations. A total of 27 participants were recruited
to drive through the intersections and on highways with and
without a concurrent secondary task. Such a cognitive task
is applied to induce mental workload increase. Both driving
performance and eye fixation statistics were collected to
characterize drivers’ response patterns. To quantify a driver’s
mental workload, we collected driver response times to an
LED light, the Detection Response Task (DRT) [17], [26],
[47], [48], the standard method identified by ISO Techni-
cal Committee 22/Subcommittee 39 (Ergonomics of Road
Vehicles) for that purpose. The theory behind DRT is that
visual attention narrows as mental workload increases [48].
That method has been shown to be low-demand, mini-
mally intrusive, and reliable in assessing driving mental
workload [47], [48].

Driver response patterns to increasing mental workload
have two facets, the change of value regarding their driving
performance and eye fixations, and the correlations of such
changes across different types of statistics. Previous efforts
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focus on how the mean or variance of some performance
measure changes with the increased mental workload. In this
study, we explored drivers’ response patterns to two levels of
mental workload (non-distracted and cognitively distracted),
on highways and at intersections, as characterized by several
statistics of driving performance and eye fixation measures
examined using clustering analysis. Cluster analysis is a
descriptive data mining method that can produce new, non-
trivial information based on the available data set [49]. The
main objective of clustering analysis is to organize data into
sensible groups/patterns. We found two patterns for highway
and three patterns for stop-controlled intersection situations.
We then analyzed the correlation between indicators within
each pattern to reveal how driving performance, eye fixation
statistics, and mental workload relate to each other.

II. METHODS
A. ETHICS STATEMENT
The experimental procedures were approved by Tsinghua
University’s institutional review board. The authors per-
formed these procedures in accordance with the approved
guidelines, obtaining informed consent from each participant
before conducting the experiments.

B. PARTICIPANTS
Twenty-six licensed drivers (17 male, 10 female) from
20 to 53 years old, participated in the experiment. Eleven
participated in the scenario of stop-controlled intersections;
6 ages 20 to 30 (4 male, 2 female) and 5 ages 46 to 53
(3 male, 2 female). Sixteen participated in the speed-limited
highway; 8 ages 20 to 30 (5 male, 3 female) and 8 ages
46 to 53 (5 male, 3 female). Within each scenario, there were
two age groups with a balanced gender distribution; a young
group (20-35 years old) and an older group (above 45 years
old). Driving experience, represented by license year, was
found significantly correlated with age (Pearson correlation
test, r = 0.68, p = 0.022) where p represents how significant
the test result is (p < 0.05 represents significant result,
same following). Between the two driving scenarios, there
was no significant differences in the age (Independent T-test,
t26 = 0.1, p = 0.9) or gender distribution (Chi-square test,
p = 1.000).

C. APPARATUS
A motion-based driving simulator was used in this study
(Figure 1). It consists of a visual simulation unit, an audio
simulation unit and a motion simulation unit [50]. The Visual
simulation consists of 5 screens, 3 for the front and 2 for
rear view, providing 200 degrees forward and 55 degrees
rear field of view. The motion simulation unit is a six
degree-of-freedom hexapod. The audio system provides sim-
ulated engine, road, and traffic sounds. The location of vehi-
cles and driving performance data (calculated from speed,
acceleration/deceleration, steering angle, etc.) were automat-
ically logged.

FIGURE 1. Motion-based simulator.

The location of vehicles in the scene, vehicle movement
parameters (e.g., speed, acceleration/deceleration) and driver
control actions, (e.g., steering angle) were automatically
recorded. A Smart Eye Pro 5.8 was adopted to collect and
process the eye fixation data. A Quality Indicator, between
0 (poor) and 1 (excellent), was provided by the eye tracker
software. To increase the data quality, a filtering process was
applied where each data point with quality indicator that was
less than or equal to 0.5 was replaced by the mean of two
other closest valid samples in the sequence that had quality
indicators greater than 0.5.

The cognitive secondary task was embedded in an in-
vehicle tablet located on the right side next to the dashboard.
The secondary taskwould be automatically triggered by serial
communication between the tablet and the simulator. All the
data were logged at 60Hz and synchronized with the driving
data.

Detection response task (DRT) was used to assess the
mental workload imposed by a concurrent task, with longer
response times indicated greater mental workload [51]. Based
on our previous studies [17], the DRT was implemented
using a head-mounted LED stimuli. In this study, DRT
was implemented in all the experiment trials. The mean
response time was used to quantify the mental workload of
drivers.

D. EXPERIMENT DESIGN
1) DRIVING SCENARIOS
a: SPEED-LIMITED HIGHWAY
See Figure 2 (right half). In this low-workload scenario,
participants were required to drive in the middle lane of
a straight, flat road. There was no turning, no change of
direction, and changing lanes was not permitted. Adjusting
their speed was the primary task in this scenario. Participants
were instructed to comply with varying posted speed lim-
its (minimum 60 kmh to 80 kmh, maximum speed 80 kmh
to 100 kmh). Participants were encouraged to save time,
driving from one location to another one within the encoun-
tered speed limit. The segment of the trial examined
was from 300 m before to 150 m after the speed limit
sign.
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FIGURE 2. Driving scenarios (left to right: stop-controlled intersection,
speed-limited highway).

b: STOP-CONTROLLED INTERSECTION
See Figure 2 (left half). In this high-workload scenario, partic-
ipants were instructed to cross a stop-controlled intersection
along a straight, flat, and non-priority road. They maintained
a speed of approximately 40 km/h and complied with all
traffic rules. On the priority (intersecting) road, there were
4 crossing vehicles driving at a speed of 40 km/h. The time
headway [52] between each two vehicles varied randomly
from 1 s to 3 s. The appearance of these 4 vehicles was trig-
gered by the location of the host vehicle passing 60 m before
the center of intersection. The segment of the trial examined
was from 130 m before to 30 m after the intersection center.

FIGURE 3. Clock task. Upon hearing a clock time (e.g., 10:30),
a participant is required to visualize the location of the hour and minute
hands and say whether those hands form an acute angle.

2) COGNITIVE SECONDARY TASK
The clock task is applied to induce increased mental work-
load. The clock task involves the visualization of the clock
hands related to visuospatial working memory [53], [54]. See
Figure 3. When participants approach an intersection or a
speed limit sign, the secondary task was automatically trig-
gered. Participants were presented a series of 3 randomized
clock times (1:00-12:59) with 5 s between successive pre-
sentation. Two seconds before each intersection, participants
were given an auditory prompt [54]. They were required to
provide correct answers to the three clock times as quickly as
possible.

3) EXPERIMENT ARRANGEMENT
For both driving scenarios, the secondary task presence (clock
task = distracted/no clock task = not distracted) was treated
as a within-subject factor, and thus, the experiment was

a repeated-measure design. To minimize learning effects,
the order of the two scenarios was counterbalanced between
participants. Before data collection, participants practiced the
clock task and simulator driving until they were proficient.
For each participant, 24 trials were collected for the intersec-
tion scenarios and 20 for the limited highway scenario.

E. HIERARCHICAL CLUSTERING
In this study, the driving performance and eye fixation data
were regarded as an integrated output to characterize driver
response patterns to mental workload increase.

Hierarchical clustering was adopted with the data
of 7-dimensional feature vector. The clustering procedure
involved 1) data standardization, 2) distance calculation,
3) linkage establishment and 4) splitting the linkage into
clusters. For data standardization, the z-score method was
applied to all observations of each feature. For the distance
calculation, the squared Euclidean distance, widely adopted
in previous studies, was applied [55]. To establish cluster
linkages, Ward’s method was used where the decrease in
variance for the cluster being merged [56]. In that method,
sensible clustering is measured by the small sum of squares
of deviations within the same cluster. By limiting the cluster
number less than five, the final clusters of all collected feature
vectors were formulated.

F. STATISTICAL ANALYSIS
Through clustering, the patterns of those variance changes
can be extracted. As a typical multivariate data in this study,
Andrews’ Curves were used to code and represent multivari-
ate data by linear transformed curves displayable as 2D struc-
tures [57]. For every cluster, each multivariate observation
4Di = [4di,1,4di,2, . . . ,4di,n] (n = 7) is transformed into
a curve as follows:

fi(t) =
4di,1
√
2
+

n∑
k=2

4di,k{[mod(k/2)+ 1] · sin(bk/2c · 2π t)

+ mod(k/2) cos(bk/2c · 2π t)} (1)

such that the observation represents the coefficients of a
so-called Fourier series (t ∈ [0, 1]), where the fi(t) represents
the indicator by Fourier transform from a measure i.

The feature distributions within each cluster reveal how
driving performance and eye fixations change correspond-
ing with mental workload. Subsequently, the distributions
of feature’s value change can be interpreted and summa-
rized into patterns. Using the correlations between features
within each cluster, the interacting mechanisms of men-
tal workload, driving performance and eye fixations were
revealed.

To explore how the mental workload of the primary driv-
ing task affects driver response patterns to increased mental
workload, the quantified mental workload for non-distracted
driving serves as an independent variable. The patterns are
assumed as dependent on the mental workload of driving
environment.
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III. RESULTS
One event sample refers to crossing a speed limit sign
and stop-controlled intersection respectively in the two sce-
narios; speed-limited highway and stop-controlled inter-
section. We collected 20 speed limit sign encounters and
24 intersection crossings for each participant. Therefore,
we collected 320 samples from the speed-limited highway
(16 participants) and 264 samples from the stop-controlled
intersection (11 participants). The number of distracted driv-
ing episodes and non-distracted driving episodes was equal
for every participant in each scenario.

Four driving performance statistics, three eye-fixation
statistics, and mental workload determined using the DRT
task were analyzed (Table 1). Previously, we found that
eye fixation statistics predict of cognitive distraction in both
scenarios. Furthermore, we found that for the stop con-
trolled intersections, use both eye fixation and driving per-
formance data led to the best workload predictions whereas
for the speed-limited highway, using both sets of statis-
tics did not lead to significantly better predictions than
just using the eye-fixation data alone [17]. So, in this
study, we (1) added the standard deviation of head head-
ing angle and eye fixation, and (2) modified the selec-
tion of driving performance statistics based on our further
research.

All the calculated statistics as denoted by d were regarded
as paired data; non-distracted driving (dn) and distracted
driving (ds) within each participant. As the only difference
was the mental workload associated with cognitive distrac-
tion, their differences, 4d (4d = ds − dn) were adopted
as the features to characterize the driver response patterns.
Therefore, for speed-limited highway, the number of obser-
vations involved into clustering is 160. For stop-controlled
intersection, the number of observations involved into clus-
tering is 132. The analysis target in our study is the response
effects, in terms of defined features, caused by the increased
mental workload in comparison with the baseline driving
(non-distracted driving).

As shown in Table 1, the changes of driving performance
and eye fixation statistics in response to increased mental
workload are defined as ‘‘patterns.’’ Driving performance and
eye fixation statistics form the feature set of driver response
pattern to mental workload [4], [17], [26]. RT (response time)
was used to directly quantify the driver mental workload
during distracted driving and non-distracted driving, as an
explanatory variable for the observed driver response pat-
terns. The driving performance was decomposed into lateral
control (steering) assessed by Sstd and Lstd , and longitudinal
control (speed) assessed by Vstd and Vm, whereas the eye
fixations consisted of two directions, vertical and horizontal.
For instance, some drivers may display more abrupt steering
control but smoother speed control with increased fixation
variability along vertical direction but decreased along the
horizontal direction.

TABLE 1. Definitions of applied measures and statistics.

TABLE 2. Clustering results: cluster center and RT . N represents number
of observations within each cluster; one cluster of the stop-controlled
intersection is removed due to its size being below 10. ∗∗ denotes
significance at 95% confidence interval. ∗ denotes significance at 90%
confidence interval.

A. CLUSTER ANALYSIS TO CHARACTERIZE DRIVER
RESPONSE PATTERNS
For each driving scenario, there are a couple of clusters
with a different number of observations (Table 2). To find
whether a cluster feature displays significant value change
affected by mental workload increase, the Single T test was
adopted on the value difference (i.e., 4d) to test if there is
a significant difference between distracted driving and non-
distracted driving. Response time (RT ,ms) is also reported as
a reference quantifying driver mental workload.

The stop-controlled intersection has higher mental work-
load, which is confirmed by the measured mental work-
load of non-distracted (baseline) driving (RTB). However,
within each driving scenario, the mental workload of either
non-distracted driving or distracted driving, varies between
clusters. associate with the cognitive distraction is 4RT ,
the increase above the baseline.

According to the change in descriptive statistics for each
cluster, we can name each cluster based on their driving per-
formance (control) and eye fixation (scan) change in response
to the mental workload increase (Table 3). The fixation
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TABLE 3. Explanations of cluster name.

variability refers to 4Gxstd and 4Gystd , and the driving
performance refers to the main tasks in the two scenar-
ios, i.e., speed control (adjusting speed in the speed-limited
highway and the slowing down in the stop-controlled inter-
section). The speed control performance consists of its
mean value and variance during the time history of each
trial (4Vstd , 4Vm).
To illustrate how those clusters/patterns differ with each

other, the clustering results are further presented through
Andrew’s Curves [58], an approach of dimension-reducing
visualization. Multiple variables are fed into a Fourier trans-
form to be represented with one variable. More details can be
found in section Statistical Analysis. See Figure 4.

FIGURE 4. Andrews’ curves of clusters’ observations (standardized,
25%-75% data range). It is observed that different clusters/patterns differ
with each other significantly in their profiles for both scenarios.

1) SPEED-LIMITED HIGHWAY
In this scenario, the eye fixations along the vertical direction
are associated with frequently glancing at the speed limit
sign. The gaze along horizontal direction is focused on lane
keeping when steering is needed.

The extracted two clusters on highways could be
summarized as overscan-control (OSC) and neutral-scan-
control (NSI) (Figure 5, left). Cluster OSC shows signif-
icantly increased abruptness of lateral control, increased
vertical fixation variability with unchanged longitudinal con-
trol. As for cluster NSI, its observations show smoother
longitudinal control (with increased speed), more abrupt

FIGURE 5. The normalized value of cluster centers. The marker ’x’
represents the value of measure change that is not significantly different
with zero as shown in Table 2.

lateral control and decreased fixation variability. Regard-
ing the mental workload for non-distracted driving, cluster
NSI is significantly larger than cluster OSC (ANOVA test,
F(1, 158) = 9.37, p = 0.003) where the larger the F
statistic, the more significant difference (same following).
However, the mental workload increase of two clusters are
similar according to RTB.

2) STOP-CONTROLLED INTERSECTION
In this scenario, the safe execution of the major task is to slow
down to avoid conflict with the traffic on priority road. Eye
fixations along the vertical axis (looking ahead) are the most
relevant. Similarly, with the speed-limited highway, the gaze
along horizontal direction is focused on lane keeping.

The extracted three clusters at stop-controlled intersections
could be summarized as overscan-control (OSC), under-scan-
control (USC), and overscan-inability (OSI). All clusters
have a similar number of observations. See Figure 5 (right).
Cluster OSC is characterized by increased vertical and
decreased horizontal eye fixation variability with improved
vehicle control; speed is lower and control abruptness is
decreased. Cluster USC has decreased fixation variability
vertically and horizontally, similarly existing improved vehi-
cle control. Cluster OSI is far different with the other clus-
ters; it displays increased fixation variability and impaired
vehicle control indicated by increased speed, more abrupt
speed control (larger standard deviation). Except for cluster
OSC and OSI, the mental workload of all clusters differ
from each other (multi-variable paired T-test, corrected using
LSD, p < 0.01). Unlike the speed-limited highway, all the
patterns with decreased speed also show improved lateral
control (less abrupt steering).

B. INTERACTION MECHANISMS BETWEEN MENTAL
WORKLOAD, EYE FIXATION, AND
DRIVING PERFORMANCE
After describing the extracted patterns, in this section,
we present within-cluster correlation analysis between those
value changes to explore the interaction mechanism between
mental workload, eye fixations, and driving performance
statistics. See Figure 6. All correlations are statistically
significant (p < 0.05).
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FIGURE 6. Results of within-cluster correlation analysis. Each node represents the value change of a certain
statistic including driving performance, gaze variability, and quantified mental workload. The connection
between a pair of nodes represents a significant correlation, either negative or positive, where the width of
connection is proportional to the absolute value of correlation coefficient.

1) SPEED-LIMITED HIGHWAY
For cluster OSC, RTB has a significant effect on the change
of horizontal fixation variability and the change of steer-
ing angle variance. For such OSC pattern, higher mental
workload during non-distracted driving indicates less change
in the latter two indicators in response to cognitively dis-
tracted driving. For cluster NSI, the change of horizontal
fixation variability and the change of steering angle variance
have a significant positive correlation. Cluster NSI displayed
higher mental workload than cluster OSC. In cluster NSI,
the increased fixation variability did not improve lateral con-
trol as the steering angle variance tends to increase.

2) STOP-CONTROLLED INTERSECTION
Compared to a low-workload speed-limited highway, more
correlations within each cluster are observed for the stop-
controlled intersection. Increased mental workload (4RT )
due to the clock task is correlated with the mental workload
of the primary driving task (RTB). When RTB increases,
4RT decreases, although sometimes it does not change sig-
nificantly. Similarly, longitudinal control; the change of Vm
and Vstd due to cognitive distraction change in the same
direction.

Response time, as the measured mental workload can
explain the change of eye fixation variability and driving
performance. For cluster OSC, RTB has a negative correlation
with the change of both steering variance and horizontal
fixation variability. The similar effect of the mental work-
load of the primary driving task can be found within cluster
USC; higher mental workload for non-distracted driving is
correlated to improved driving performance, in particular,
longitudinal control (decreased speed). For cluster OSI, there
is no correlation found between mental workload and driving
performance. For the overscan- patterns, a higher mental
workload of the primary driving task is associated with the
decreased change of fixation variability. For control patterns
alone, correlations between the change of fixation variability
and the change of driving performance are found; larger
change of vehicle control is associated with a smaller change
of fixation variability.

C. IMPACTS OF DRIVING EXPERIENCE
The cluster distribution explained by age group for two driv-
ing scenarios is shown in Table 4. Indicated by Chi-square
test, the distribution between novice group and experi-
enced group significantly differ with each other for both
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TABLE 4. Cluster distribution of observations across two age groups.
Chi-square test (two-sided) for the impact of age group on the frequency
distribution of clusters: Speed-limited highway has χ2

1 = 21.962,
p < 0.001, and Stop-controlled intersection has χ2

2 = 15.903, p = 0.001.

driving scenarios. For speed-limited highway, experienced
drivers have more observations belonging to NSI. While for
stop-controlled intersection, experienced drivers have most
observations that are categorized into cluster USC contrary
to which, most observations of novice drivers belong to OSC
and OSI.

IV. DISCUSSION
Primary driving task affects drivers’ response patterns to
increased mental workload imposed by cognitive secondary
task. In this study, speed adjustment (longitudinal control)
is the major task, either changing speed to a regulated
range in speed-limited highway or slowing down at the stop-
controlled intersection. The stop-controlled intersection has a
higher mental workload of the primary driving task. Among
identified six clusters, response time (RTB) is widely cor-
related with driving performance and eye fixation statistics.
One implication here is the importance of doing task analysis
for different driving scenarios to create red lines of mental
workload.

The change of driving performance and eye fixation statis-
tics for characterizing driver response patterns to increased
mental workload were found to occasionally correlate with
each other.Many previous studies suggests decreased fixation
variability tends to impair driving safety [36], [59]. In the
cluster IN-USC, decreased fixation variability was associ-
ated with increased mental workload. However, that decrease
was not always linked to degraded driving performance.
Therefore, driving performance indicators are not sufficient
to predict potential risk imposed by a mental workload
increase, which is more consistently associated with mini-
mized fixation variability. In the stop-controlled intersection
scenario, Cluster USC has observations of a high mental
workload for non-distracted driving. The mental workload
imposed by the cognitive secondary task is not detected by
DRT (no significant change on 4RT ). When the resource
supply is reaching the upper limit due to increased mental
workload, the supplying efficiency decreases [18]. In the
Cluster USC of the stop-controlled intersection, the driver
chooses to dramatically slow down in advance to compen-
sate for the decreased supply of attention resources. In that
case, driving performance is consequently improved as the
main task of passing through a stop-controlled intersection
is to efficiently slowing down to avoid a collision. However,
considering the equivalent real-world scenario, what if there
is rear traffic queue behind the subject vehicle where slowing

down too early is not advisable or not socially accepted? It is
more likely to obtain accurate prediction by combining eye
fixation statistics with driving contexts. It is also suggested
that directly monitoring driver eye fixation is promising as
compared to the highly diversified driving behavior of com-
pensation for the decrease supplying of attention, increased
mental workload is more consistently associated with the
change of fixation variability.

Yet, knowing mental workload status is the first step for
effective risk reduction. In a previous review [37], of mobile
phone distraction, although engaging in phone use increased
mental workload, the effects on crash involvement were not
consistent, indicating either an increase in crash involve-
ment or negligible effects. Such an inconsistency is partly due
to the complexity of how drivers react on the increasedmental
workload, which is intermediated by many factors, such as
driving scenario and driving experience that are explored in
the present study. Although the causal relationship between
mental workload and driving safety is not fully established in
the present study, we do get some implications. For instance,
the primary driving task can explain those extracted patterns
to some degree. Therefore, the current study implies a more
context-aware way of providing feedback to guide appro-
priate driving behavior. For example, the detected increased
mental workload could be integrated based on specific driv-
ing environment considering historical records of compensa-
tion capability.

Previous research indicates that it remains an open question
that the extent to which such self-regulation fully compen-
sates for the impact of added cognitive demand [45]. In the
present study, the results imply that in response to increased
mental workload, novice drivers exhibit higher gaze vari-
ability and they are more prone to maintain vehicle control
than experienced drivers. More observations from experi-
enced drivers present insufficient compensation to increased
mental workload. Consistent with that previous study, the age
group where drivers were in their 40s exhibited higher
tendency of risk-taking. Over-confidence and awareness of
accumulated driving experience might lead to low willing-
ness and less self-regulation in response to higher-workload
driving.

There are two major ways to produce driver cognitive
distraction: real-world secondary task and surrogate task [60].
Compared to real-world secondary tasks, those surrogate
secondary tasks have advantages in easy implementation,
repetition, andmeasurable and scalable workload production.
The focus of current study is driver’s response patterns to
increased mental workload. Therefore, we chose to use sur-
rogate secondary tasks. One way to generalize or extend the
findings to various cognitive distractions is to apply DRT to
measure mental workload and to apply metrics of driving
performance and eye fixation as we did in the present study.
However, real-world secondary tasks (e.g., mobile phone
use) may make differences on drivers’ behaviour [28], [37].
In further studies, real-world secondary tasks need to be
considered.
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V. CONCLUSION
We found 2 response patterns in the highway driving, and
3 response patterns in the urban driving. The patterns defined
in this study were interpreted by the cluster centers in terms
of the change direction of eye fixation and driving perfor-
mance. In speed-limited highway (lower demand on mental
workload), the two patterns are overscan-control and neutral-
scan-inability. In stop-controlled intersection (higher demand
on mental workload), the three patterns are overscan-control,
under-scan-control and overscan-inability. Results indicate
that unlike many previous studies, the tendencies of driving
performance and eye fixation are actually not necessarily
correlated with each other with increased mental workload.
Compared to highly diversified driving performance, mental
workload is more consistently associated with the change
of eye fixation variability. Regarding the impact of driving
experience, in response to increased mental workload, novice
drivers exhibit higher gaze variability and they aremore prone
to maintain vehicle control than experienced drivers.

There are two main limitations of this study in terms of
sample size and real-world verification. The sample size of
this paper was relatively small; 27 participants were included.
Observations of different drivers were mixed and fed to clus-
tering process and followed analysis. However, given small
sample size carefully considered, rigorous analysis methods
were applied to avoid over-interpretation of obtained data
sets. All the data were collected based on a driving simulator,
the simulator was motion based with high fidelity scenes.
Accordingly, further verification of those findings is needed
in real-world traffic.
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