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Abstract
The desired frequency is maintained in Smart Microgrid (SMG) when the generated power matches the grid load. Variability
of wind power and fluctuations of the load are the main obstacles for performance improvement of frequency regulation in
SMG. Active Power Control (APC) services provided by wind power generators is one of the main sources for performance
improvement in frequency regulation. New coordinated APC architecture, which involves simultaneous speed and pitch
control actions delivers desired power to the grid despite significant variations of the wind power. A tool-kit with discrete-
time input estimation algorithms, which estimate input quantity using output measurements is presented. Unmeasurable load
fluctuations are estimated with input estimation method using measurements of grid frequency deviation. Desired power for
APC is driven by estimated and a priori known loads. This observer-based control method reduces the risk of overshoots and
oscillations in frequency regulation loop compared to PID controllers driven directly by the frequency deviation. The stability
of the closed loop frequency control system is proved, and simulation results show that observer-based control architecture
provides significant improvement of the frequency regulation in SMG.

Keywords Smart microgrids · Frequency control · Active power control · Coordinated speed and pitch control of wind
turbine · Grid load estimation · Input estimation algorithms

1 Introduction

Traditional load frequency control concepts, which are suit-
able for large centralized power generation, are not suitable
for power systems with small decentralized renewable gen-
eration units in microgrids due to the lack of large inertias.
Frequency control challenges can be addressed within the
concept of future Smart Microgrid (SMG), which is a small-
scale version of the centralized electricity system (Farhangi
2010). SMG includes interconnection of power generators
such as wind turbines, PV units and others; storage devices
such as energy capacitors, batteries and others; loads (both
uncontrollable and controllable); communication channels
and control units, see Fig. 1 for benchmark SMG architec-
ture.

SMG has a number of benefits: (a) power is generated
and consumed locally (for islanded operation), and trans-
mission losses are reduced; (b) daily load profiles are usually
well known for microgrids and can be used as a priory infor-
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mation for frequency control systems; (c) information from
smart sensors (which measure frequency deviations, power
disturbances and other quantities) transmitted via local com-
munication system with minimal delay can also be used for
active control of power generators; (c) andmany others. Vari-
ability and uncertainty associated with (a) renewable energy
sources, such as wind and solar power; (b) load fluctuations
due to changing weather conditions, temperature, humidity,
economic factors like energy prices, disturbances from the
utility grid and others can significantly challenge the perfor-
mance of SMG. These disturbances usually result in voltage
and frequency variations (since the desired grid frequency is
maintained when the generated power matches the grid load)
in microgrids.

A number of known frequency control schemes in SMG
is based on the idea of compensation of power and load
deviations with energy storage, see Fig. 1. This solution is
expensive and ineffective when power fluctuations exceed
the capacity of the power banks. Another idea of load shed-
ding for minimizing frequency deviations has a significant
impact on the overall system operation and performance of
microgrids. Moreover, load side control requires installation
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of additional expensive hardware and has limited regulation
performance.

Notice that wind power plants may actively participate in
the frequency regulation via Active Power Control (APC)
(Undrill 2010; Aho 2012; Wang-Hansen et al. 2012; Flem-
ing 2016). Nevertheless, unpredictable load fluctuations and
variability of the wind, which is the main power source, are
again the major obstacles for the high-performance wind tur-
bine APC. However, these challenges can be addressed on
the wind turbine control system level (without installation of
additional hardware), which providesmore efficient solution.

This paper addresses an important issue of high-
performance frequency regulation in SMG via wind turbine
APC in the presence of unknown load fluctuations.

Notice that APC service from wind turbine may partic-
ipate in the grid frequency regulation together with other
energy sources such as diesel generators, PV units, power
banks, load side control units and others. The signal of the
frequency in SMG is available in the central control unit,
see Fig. 1, which calculates total desired generated power
required for minimization of the frequency deviation. The
total requested power is distributed by the control unit (tak-
ing into account environmental conditions, like wind speed,
sunlight and others) by sending appropriate commands to
power generators.

Maximization of power production, which is a traditional
strategy for turbine control systems, is not directly appli-
cable for APC. To achieve the desired turbine power two
approaches can be applied : pitch and torque control, see
Aho (2012), Wang-Hansen et al. (2012), Fleming (2016),
Yingcheng and Nengling (2011), Pao and Johnson (2009)
and references therein. The former reduces the rated speed
of the turbine and initiates pitch control at a lower power,
providing power reserve for frequency regulation. The latter
provides turbine operation govern by torque controller on a
suboptimal tip-speed ratio, again providing power reserve.
Notice that both loops can control turbine power and operate
approximately at the same frequency range. Straightforward
application of both control loops to turbine power control
may result in suboptimal or conflicting (and even unstable)
regulation.

This paper provides new and easy-to-implement control
architecture for APC in SMG, driven by estimated load,
which combines pitch and torque control. Turbine pitch con-
troller is used as a main tool for turbine power control and
torque control loop maximizes the turbine power along the
trajectory of turbine pitch angle. Conflicting regulation is
absolutely excluded in this scheme due to proper coordi-
nation of the control loops. Moreover, this observer-based
controlmethod reduces the risk of overshoots andoscillations
in the frequency regulation loop due to accurate estima-
tion of the load (since the controller asks for desired power,
which matches exactly grid load), compared to other control

schemes (PID controls for example), driven directly by the
frequency deviation (Wang-Hansen et al. 2012; Yingcheng
and Nengling 2011). These controllers may provide high-
gain frequency control actions, which result in frequency
overshoots and even oscillations.

The stability of proposed closed loop frequency con-
trol system is proved, and simulation results show that
the observer-based control architecture provides significant
improvement of the frequency regulation in microgrid.

Moreover, a tool-kit associatedwith input estimation algo-
rithms is proposed in this paper for estimation of unknown
load fluctuations using measurements of the frequency devi-
ation only.

2 Wind Turbine Power and Grid Frequency
Modeling

2.1 Turbine Power Modeling

The wind turbine converts energy from the wind to the rotor
shaft that rotates at a speed ω, (Pao and Johnson 2009). The
power of the wind Pwind = 1

2ρAV 3 depends on the wind

speed V , the air density ρ, and the swept area A = πR2,
where R is the rotor radius. From the available power in the
swept area, the power on the rotor P is given based on the
power coefficient Cp(λ, β) = P

Pwind
, which in turn depends

on the pitch angle of the blades β and the tip-speed ratio
λ = ωR

V :

P = Pwind Cp(λ, β) = AρV 3Cp(λ, β)

2
(1)

Simplified model for blade pitch angle with rate and range
constraints and for turbine speed can be presented as follows:

β̇ = −1

τ
β + 1

τ
βd, 0 ≤ β ≤ βm, |β̇| ≤ Cβ̇ (2)

J ω̇ = P

Nω
− Tg (3)

where τ is pitch actuator time constant, βm is maximal angle
for pitch actuation, Cβ̇ is constant associated with the rate
constraint, J is lumped rotational inertia, N is gear ratio, and
Tg is generator torque.

2.2 Model of the Frequency Deviation in the Grid

The deviation from nominal frequency in microgrid can be
described by well-known swing equation (Berkel 2013):

Δ ḟ = −agΔ f + bg(Ps − Pl) (4)
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Fig. 1 Benchmark microgrid topology

where Δ f is the frequency deviation, Ps = Pg − Pla is a
difference between generated power Pg and a priory known
load Pla, and Pl is unknown load. The parameters ag and bg
in (4) are positive and depend on SMG topology.

Detailed modeling of the inertial response of microgrid,
derivation of aggregated swing equation and definition of the
parameters ag and bg are presented for example inUlbig et al.
(2014) and Fan (2017).

The frequency deviation Δ f in (4) is controlled via gen-
erated power Pg. Known load Pla [which can also be seen
as a feedforward part of the model (4)] represents integrated
consumption profile of different customers (industrial and
residential) in SMG (Pipattanasomporn 2014). The shape of
this curve is associated with daily and weekly periodicity.
This profile is modified from day to day and from week to
week, taking into account changes in consumption, weather
conditions and others. Typically, daily load profiles are clas-
sified into week days and weekend days. Four normalized
load profiles1 for week days are presented in Fig. 2. Known
load profile can even be used for load forecast (together with
weather forecast) to enhance the performance of frequency
regulation.

Unknown load profile Pl represents unpredictable part
and includes all the variations, which are not modeled in
the known load profile Pla. This component consists usually
of two parts: slowly varying component associated with the
errors in estimation of known load profile Pla, and random
component due to accidental causes.

Notice that in addition to wind turbine many energy
sources can contribute to the generated power Pg, and hence
to frequency regulation in SMG, see Fig. 1. The frequency
signal is available in the central control unit,which distributes

1 https://www.uez.de/Lastprofile.html.
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Fig. 2 Microgrid load profiles for four week days

the power required for minimization of the frequency devia-
tion Δ f among power generators.

For the sake of simplicity, but without loss of generality,
it is assumed that the turbine power is sufficiently large for
participation of the wind turbine only (without other power
generators) in the frequency regulation.

2.3 Problem Statement: Frequency Regulation

The problem is to find two turbine control variables (a) gen-
erator torque Tg and (b) blade pitch angle βd to regulate the
frequency deviation Δ f so that:

lim
t→∞ Δ f = 0 (5)

in the presence of unknown load Pl in SMG.
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3 Active Power Control via Pitch Regulation
with Maximization of Turbine Power

3.1 Problem Statement: Active Power Control

The frequency regulation control aim (5) can be achieved
via a proper choice of desired turbine power Pd and APC
service, which regulates the turbine power P to the desired
power Pd. The turbine power P in turn can be controlled via
turbine speed and blade pitch angle. Therefore, the aim (5)
can be developed in two main control aims (6) and (7):

lim
t→∞ β − βd = 0 (6)

lim
t→∞ ω − ωd = 0 (7)

lim
t→∞ P − Pd = 0 (8)

which correspond to pitch and speed regulation, respectively,
with desired trajectories βd and ωd, and the secondary aim
(8) whose achievement is associated with achievement of the
main aims.

3.2 Simplification of Nonlinear Turbine Model for
APC

Simplification of (1) for control purposes is necessary due to
highly nonlinear relation between the turbine power P and
turbine speed and pitch angle.

Define (a) optimal tip-speed ratio λ∗(β) as a function of
a pitch angle, see Fig. 3, and (b) optimal turbine speed ω∗
as a function of optimal tip-speed ratio and wind speed that
maximize power output as follows:

λ∗(β) = max
λ

Cp(λ, β) (9)

ω∗ = λ∗(β)V

R
(10)

Relations (9), (10) can be seen as a constraint that reduces
the number of independent variables. Indeed, Fig. 3 shows
that λ∗(β) and ω∗ define trajectories as a function of one
independent variable β only for a fixed wind speed.

Assume that the turbine speed is controlled via generator
torque Tg and deviation between actual turbine speed and
desired one are minor i.e., ω ≈ ω∗ and λ ≈ λ∗ for any blade
pitch angle β. In other words, the turbine is operating around
optimal trajectory λ∗(β), see Fig. 3, and this operation is
guaranteed by the turbine speed controller. This assumption
is reasonable and verified with measurement data, see for
example Figure 5 in Stotsky (2014).

Then, the turbine power can be presented as a function
of two independent variables only V and β for a given air
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Fig. 3 Optimal tip-speed ratio λ∗(β) = max
λ

Cp(λ, β), plotted with a

red line is a function of a pitch angle β
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Fig. 4 Normalized turbine power surface as a function of wind speed

and blade pitch angle, P = AρV 3Cp(λ∗(β), β)
2 = f (V , β)

density:

P = AρV 3Cp(λ∗(β), β)

2
= f (V , β) (11)

which shows that the turbine power can be controlled via
blade pitch angle only. Normalized turbine power surface as
function of wind speed and blade pitch angle is plotted in
Fig. 4.

Introducing inverse function f −1, the pitch angle can be
defined as β = f −1(V , P), see Fig. 5, such that P =
f (V , β) = f (V , f −1(V , P)) = P .
Then the turbine power can be controlled via blade pitch

angle as follows:

βd = f −1(V , Pd) (12)
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Fig. 5 Inverse surface β = f −1(V , P), where pitch angle is a function
of wind speed and turbine power

where Pd is the desired turbine power, which belongs to some
admissible region.

The turbine may provide requested power Pd, if the range
constraints (2) for requested pitch angle βd are not violated
at a given wind speed. Preview wind speed information (pro-
vided by the LIDAR) and load preview (provided by a priory
load profile, see Fig. 2, and/or by load measurement system)
may be used for prediction of desired pitch profile and veri-
fication of power provision on a short time scale.

Figure 5 shows that the turbine power is controllable via
blade pitch angle in a given wind speed range.

3.3 Calculation of Desired Trajectories nd
Coordination of Speed and Pitch Control Loops

The chain of calculations of desired trajectories starts with
calculation of the desired pitch angle trajectory βd using rela-
tion (12) with desired power profile and wind speed as input
variables. Then desired turbine speed profile is calculated
according to the following relation:

ωd = λ∗(βd)V

R
(13)

where λ∗(·) is defined in Fig. 3.
Taylor series expansion of the power coefficient Cp(λ, β)

around operating points λd = ωdR

V
and βd yields:

P = AρV 3Cp(λ, β)

2
︸ ︷︷ ︸

actual power

= Pd
︸︷︷︸

desired power

+ AρV 3

2

{

Cpβ(λd, βd)(β − βd) + 1

2

[

Cpλλ(λd, βd)(λ − λd)
2

+ 2 Cpλβ(λd, βd)(λ − λd)(β − βd)

+Cpββ(λd, βd)(β − βd)
2]

+ · · · + high order terms

}

(14)

where Pd = AρV 3Cp(λd, βd)

2
is the desired power, and

Cpλ(·) and Cpβ(·) are partial derivatives of the power coef-
ficient with respect to λ and β respectively.

Equation (14) shows that the convergence of the turbine
power P to the desired power Pd can be achieved if the terms
in braces are vanishing terms, whichmeans that the tip-speed
ratio and pitch angle converge to the desired values. In other
words the achievement of the control aim (8) follows imme-
diately from the achievement of the aims (6) and (7).

4 Estimation of Unknown Load

Calculation of the desired turbine power Pd is impossi-
ble without knowing grid load, which contains unknown
component Pl. Unknown load Pl can be recovered using
measurements of the frequency deviation. The load is more
convenient to estimate in discrete-time domain, taking into
account discrete nature of the frequency measurements. Dis-
cretization of Eq. (4) yields:

Δ fk = aΔ fk−1 + (Psk−1 − Plk−1) + ξk−1 (15)

where Δ fk is measured frequency deviation, 0 < a < 1, ξk
is the load measurement noise, k = 1, 2, ....

Algorithm (27) described in Appendix 1 can be applied
for estimation of unknown load in the model (15) as follows:

P̂lk =
⎧

⎨

⎩

akΔ f0 +
k−1
∑

j=0

ak− j−1Psj − Δ fk

⎫

⎬

⎭

(1 − a)

(1 − ak)
(16)

Observer (16) estimates the mismatch between generated
power Pg and a priory known load Pla (both variables are
included in the observer) using measurements of the fre-
quency deviation Δ fk .

Introduction of this observer in the control loop is sim-
ilar in some sense to introduction of the integral term,
which compensates for unknown, but constant disturbances.
Observer-based frequency control schemes, which take into
account the topology of microgrid provide better perfor-
mance compared to integral terms in the controllers, which
are difficult to calibrate for all the working points.

Notice that load estimation performance can be improved
in some cases when applying other types of observers,
described for example in Appendix 1.

Notice also that reliable frequency measurements are nec-
essary for high-performance frequency control as well as for
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system protection. Errors in frequency measurements will
result in erroneous control action and even in frequency
oscillations. Fast frequency variations and uncertainties asso-
ciated with unknown harmonics are the main obstacles
to performance improvement of frequency estimation with
classical zero crossing method. A novel grid frequency esti-
mation method based on multiple model, which overcomes
these difficulties, was proposed recently in Stotsky (2016a).

5 Summary of the Frequency Control
Strategy, Stability Analysis and Simulation
Results

Simple and easy-to-implement observer-based frequency
control strategy can be summarized as follows:

P̂lk =
⎧

⎨

⎩

akΔ f0 +
k−1
∑

j=0

ak− j−1Psj − Δ fk

⎫

⎬

⎭

(1 − a)

(1 − ak)
(17)

Pd = Pla + P̂l (18)

βd = f −1(V , Pd) (19)

ωd = λ∗(βd)V

R
(20)

Tg = P

Nωd
(21)

The strategy starts with estimation of unknown load Pl in
discrete time, using frequency deviation Δ f , see equation
(17). Estimated load P̂l together with a priory known load
Pla forms the turbine power request Pd in (18). Set-points
for blade pitch angle and turbine speed are defined in (19)
(see also Fig. 5) and (20), respectively. Finally, generator
torque control action is defined in (21).

Substitution of (19), (20) and (18) in (2), (3), and (14),
respectively, results in the error model (22) - (24). The error
equation (25) is obtained via substitution of (17) and (18) in
(4).

Finally, the error model can be summarized as follows:

˙̃
β = −1

τ
β̃ (22)

J ˙̃ω = − P

Nωωd
ω̃ (23)

P̃ = AρV 3

2

{

Cpβ(λd, βd)β̃ + 1

2

[

R2

V 2Cpλλ(λd, βd)ω̃
2

+ 2R

V
Cpλβ(λd, βd)ω̃β̃ + Cpββ(λd, βd)β̃

2
]

+ · · · + high order terms

}

(24)

Δ ḟ = −agΔ f + bg P̃ + εt (25)

where β̃ = β−βd, ω̃ = ω−ωd, λ−λd = R

V
ω̃, P̃ = P−Pd,

andΔ f are tracking errors for pitch angle, turbine speed, tip-
speed ratio, turbine power and grid frequency respectively.

The error model (22)–(25) is valid for constant βd and
ωd, defined in (12) and (13), respectively. These quantities
are constants, if the wind speed and loads Pla and Pl are
constants.

Error model (22)–(25) represents a cascade system, where
the deviation of the turbine power from the desired one in (24)
is driven by the blade pitch angle and turbine speed tracking
errors, defined in (22) and (23), respectively.

The turbine power converges to the desired one and the
control aim (8) is reached provided that the tracking errors
for blade pitch angle and turbine speed defined in (22), (23)
converge to zero. Both equations (22) and (23) represent
exponentially stable dynamics and the control aims (6) and
(7) are reached.

Finally, the equation for frequency deviation (25) repre-
sents a stable dynamics since ag > 0 driven by exponentially
convergent input P̃ +εt , where εt is exponentially vanishing
term, and the frequency regulation aim (5) is reached.

The stability can be proved and the transient bound on the
tracking errors can be obtained using the followingLyapunov

function Q = 1

2
β̃2 + J

2
ω̃2 + 1

2
Δ f 2.

Notice that implementation of the controller (17)–(21)
requires measurements of the frequency deviation Δ f and
wind speedV . The convergence rate of the feedforward speed
control loop can be improved via introduction of the propor-
tional feedback term driven by the mismatch ω̃ in (21). This
results in additional negative term in the error model (23)
which improves the convergence rate.

Notice that classical feedforward Kω2 controller, which
does not require wind speed measurements can also be
applied to the generator torque control action Tg in (21),
see for example Fleming (2016). Slower convergence is
expected at lower wind speeds and for larger pitch angles
due to wind speed dependent and restricted region of attrac-
tion in the speed control loop (Stotsky 2016b). This in turn
results in larger tracking errors and deterioration of the per-
formance in the coordinated APC service, since the desired
power is delivered by the turbine when both quantities tur-
bine speed and blade pitch angle converge to the desired
values.

5.1 Simulation Results

Validated model of the wind turbine, described in Stotsky
(2014) is used for simulations.

Time chart of the turbine active power control is pre-
sented in Fig. 6, where measured wind speed is plotted in
the first subplot. The load estimated via algorithm (16) is
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Fig. 6 Time chart of turbine active power control. The first subplot
shows measured wind speed. The second subplot shows grid load esti-
mation, where actual and estimated load are plotted with black and
red lines, respectively. The third subplot shows normalized desired and
actual turbine power (plotted with black and red lines, respectively).
Desired and actual tip-speed ratio are plotted in the fourth subplot with
black and red lines, respectively. Finally, the blade pitch angle is plotted
in the fifth subplot (Color figure online)

plotted with a red line in the second subplot, where actual
load is plotted with a black line. Requested and actual tur-
bine power are plotted with black and red lines, respectively,
in the third subplot. Requested and actual tip-speed ratio are
plotted with black and red lines, respectively, in the fourth
subplot. Finally, blade pitch angle is plotted in the fifth sub-
plot. Frequency variations in SMG associated with APC are
plotted with a red line in Fig. 7, where a black line represents
time chart of the frequency without control with correspond-
ing load trajectory plotted with a black line in the second
subplot of Fig. 6.

6 Conclusion

This paper describes new robust wind turbine function-
ality, which reduces the effects of wind power and load
variability in the frequency regulation. Namely, new wind
turbine control architecture is developed is this paper for
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Fig. 7 Time chart of the grid frequency is plotted with a red line for
Active Power Control shown in Fig. 6. The black line represents time
chart of the frequency without control, where load trajectory is plotted
with a black line in the second subplot of Fig. 6 (Color figure online)

high-performance frequency regulation in SMG. Proper
coordination of pitch and speed control loops delivers desired
power from wind turbine to the grid compensating for wind
power variations in the frequency control loop. The impact
of load variations is reduced via integration of the load
observer driven by the frequency deviation in the wind tur-
bine APC.

The performance of the frequency regulation can be
further improved by adding anticipatory capability in the
frequency control loop, taking into account LIDAR preview
wind speed and direction (Stotsky et al. 2013) as well as load
and weather forecast information (Berkel 2013).

Appendix: A Tool-Kit for Discrete-Time Input
Estimation Algorithms

Problem Statement

Consider the following system :

xk = axk−1 + zk−1
︸︷︷︸

known input

− d + ξk−1
︸ ︷︷ ︸

unknown input

(26)

where xk is measurable output of the system, zk is known
input, d is unknown constant input to be estimated, ξk is
unmeasurable zero mean white Gaussian noise, k = 1, 2, ....
The system parameter 0 < a < 1 is known.

The problem is to find estimator for unknown constant
input d, using measurements of the system output xk .
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A Simple Data-Driven Estimator

Data-driven estimator d̂ for unknown input d can be written
as follows:

d̂k =
⎧

⎨

⎩

akx0 +
k−1
∑

j=0

ak− j−1z j − xk

⎫

⎬

⎭

(1 − a)

(1 − ak)
(27)

This estimator is suitable for tracking of unknown time vary-
ing input dk . Accuracy of estimation is associated with the
following estimation error

d̂k − d = − (1 − a)

(1 − ak)

k−1
∑

j=0

ak− j−1ξ j (28)

which is sufficiently small if a is close to one.
Notice that the estimator (27) provides better performance

compared to the performance of the simplest estimation tech-
nique, which follows directly from (26) d̂k = zk−1+axk−1−
xk .

Notice also that estimator (27) is a discrete-time counter-
part of continuous time estimator proposed in Stotsky and
Kolmanovsky (2002), which is widely used in automotive
applications.Discrete-time estimators similar to (27) can also
be found in Ljung (1999).

Least Squares Estimator

Description of the Estimator

Equation (26) can be written in the following form:

yk = ϕk d + ζk (29)

where yk = xk−akx0−
k−1
∑

j=0

ak− j−1z j is the synthetic output,

ϕk = − (1 − ak)

(1 − a)
is the regressor, d is unknown parameter,

and ζk is input noise associated with the noise ξk .
Introduction of the following model

ŷk = ϕk θk (30)

for system (29) together with minimization of the following

performance index Ek =
k

∑

j=1

w j (y j − ŷ j )
2 with respect to

the parameter θk yields:

θk =
⎡

⎣

k
∑

j=1

w jϕ
2
j

⎤

⎦

−1
k

∑

j=1

w jϕ j y j (31)

wherew j is a weighting sequence. Assigning weighting fac-
tor to one in step k and to λ0 in the previous steps the least
squares estimate (31) is written in the following recursive
form:

γk = γk−1

λ0 + γk−1ϕ
2
k

, γ0 > 0 (32)

θk = θk−1 + γk ϕk (yk − θk−1ϕk) (33)

where 0 < λ0 < 1 is a forgetting factor. Notice that stability
of the system (29), (30), (32) and (33) is proved in Stotsky
(2013) for general case.

Limiting Form of the Estimator

Least squares estimator (32), (33) can be simplified for imple-
mentation via substitution the limiting form of the gain
γ∞ = (1 − λ0)(1 − a)2 in (33) as follows :

θk = θk−1 − (1 − λ0)(1 − a) (1 − ak) (yk − θk−1ϕk) (34)

The estimator is driven by the synthetic output yk = xk −
akx0 −

k−1
∑

j=0

ak− j−1z j associated with the system (26).

Substituting regressor in (34) and neglecting for simplicity
the transient component associated with ak the error model
is presented in the following form:

θ̃k = λk0θ̃0 − (1 − λ0) (1 − a)

k
∑

j=1

λ
j−1
0 ζk− j+1 (35)

where θ̃k = θk − d is estimation error, k = 1, 2.... Accuracy
of estimation is determined (after some transient) by the sec-
ond term in Eq. (35), which is associated with the noise. This
term can be made sufficiently small, if forgetting factor λ0 is
close to one. The same factor λ0 determines the convergence
rate of estimated parameter θk to its true value d, and the
convergence is slow, if λ0 is close to one. In other words the
choice of the forgetting factor represents a tradeoff between
the tracking performance of fast varying dk and accuracy of
estimation associated with amplification of input noise.

The estimator (34) may provide better performance com-
pared to simple estimator (27) provided that the parameter
λ0 is chosen properly.

Notice that algorithm (34) is a discrete-time counterpart
of the continuous time turbine inertia moment estimation
algorithm described in Stotsky et al. (2013), see also Stotsky
and Egardt (2013).
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