Evaluation of Steel Mills as Carbon Sinks

Max Biermann*, Alberto Alamia, Fredrik Normann, Filip Johnsson

Division of Energy Technology
Department of Space, Earth and Environment
Chalmers University of Technology

*presenter; max.biermann@chalmers.se
Aim & Scope

Aim:
• evaluate potential of BECCS concept in steel industry in terms of emission avoidance and cost.
• assess benefits of biomass introduction in steel industry regarding green products such as renewable electricity & carbon-neutral steel

Scope:
• BECCS concept as feasible near-term mitigation option: → Techno-economic assessment of pulverized bio-char injection (bio-PCI) into blast furnace + MEA capture from blast furnace gas with excess heat.
Background on biomass in steel industry

Method on carbon balance, avoided emissions & economics

Results on emission reductions & cost

Synergies & Challenges of BECCS on steel

Conclusions
- BECCS on steel is cost effective, near term option
- 100 % Bio-PCI + 84 % CO$_2$ capture from BFG reduce site emissions by 61 % @ ~100 €/t CO$_2$
- Biogenic carbon in blast furnace can be used multi-fold and generates green steel & energy
Background

- Iron & Steel industry emits ca. 7% of global CO₂ emissions
- >70 % of the world’s steel is produced in blast furnaces (BF-BOF route)

6 principle ways of introducing biomass into BF-BOF route

→ Replacing pulverized coal injection (PCI) most feasible

Background: Use of fossil carbon

Scope:
Bio-PCI + CO₂ capture from blast furnace gas with MEA using excess heat
Method: Carbon balance

• Reference plant: SSAB’s plant in Luleå, Sweden
• Carbon balance around BF & downstream units – assumptions:
 • Balance based on 2.26 Mt HM /yr (2006); Reference site emissions: 1574 kg CO₂/ t HM
 • The top gas composition does not change with biomass injection
 • No re-allocation of steel mill gases with CO₂ capture/biomass injection
 • Biogenic carbon from BF allocated to all downstream units in equal share
• Capture: 30 wt.% MEA absorption cycle – result from CO₂stCap project [1]
• 2 woody biomasses (carbon neutral) studied: from pyrolysis & torrefaction feasible injection amounts according to modelling work [2]*

* Considers top gas T, RAFT, oxygen enrichment;
Method: negative emissions

Avoided CO\(_2\) emissions – contribution of negative emissions:

\[
\text{CO}_2 \text{ avoided} = \text{Emissions}_{\text{Ref. PCI}} - \text{Emissions}_{\text{BioPCI+CCS}}
\]

\[
= \text{Emissions}_{\text{Ref. PCI}} - (\text{Fossil emissions} - \text{Captured biogenic CO}_2)_{\text{BioPCI+CCS}}
\]

adapted from [1]

Method: Economics

- "Nth of a kind" MEA capture plant
- Cost include excess heat recovery, necessary piping to capture site, compression → Choosing cost efficient capture rate of 84 % @ 26 €/t CO₂ captured [1]
- Transport & storage included @ 16 €/t CO₂ [2]
- Biomass enters system already upgraded: assumed 0 - 500 €/t [3]

Results: Carbon balance of bio-PCI + BFG capture

Valuable products:
- Negative emissions
- Carbon neutral steel 1.35 Mt/yr
- Renewable energy (CHP)
 - 0.60 kWh electricity/kg bio C
 - 0.77 kWh hot water/kg bio C

Tuyere injection 100 % biochar from pyrolysis + 84% BFG capture (excess heat)
Results: Avoided emissions

100% bio-char (pyrolysis) + 84% capture: avoided site emissions ~ 61%

34% bio-char (torrefaction) + 84% capture: avoided site emissions ~ 41%

→ We can’t reach net negative emissions with BECCS concept limited to bio-PCI (BF) + MEA capture (BFG)
Side note: How to reach net-zero after all?

Zero-net emissions reachable, if:

- All 6 biomass technologies for BF-BOF applied
 → ca. 55 % of all fossil-C on site replaceable;
 → then 45 % C need to be captured
 → increased capture rate from BFG (99% CO₂)
 (requires additional heat supply)
- Also: shifting CO to CO₂ (less power production)
Results: Mitigation cost

- BECCS cost sensitive to price & substitution rate (24 – 103 €/t CO₂)

- Similar cost for torrefied biomass and charcoal from pyrolysis; torrefaction slightly cheaper yet less impact

- BECCS more economic than use of biomass alone (70 – 180 €/t CO₂)

- Low-cost biomass (e.g. waste wood) can reduce avoidance cost compared to CCS alone

Practically feasible substitution?
Synergies & Challenges to consider when combining CCS and biomass introduction

Synergies:

• green products: new markets for carbon-neutral steel? green power certificates?
 → dependent on allocation of biogenic C (negative emissions vs green power)
• Advantages in energy efficiency (off-gas re-allocation in steel mill)
• Possible heat integration: Excess heat from biomass upgrading; reboiler condensate

Challenges:

• Substitution rate of bio-PCI
• Biomass availability -100% PCI replacement requires ~ 0.45 t dry biomass/t steel
• Biomass treatment scale-up (~ 200 - 400 kt produced biochar/a)
Conclusions

• **Net-zero possible?**

 Carbon neutrality or net-negative emissions are possible, however considerable process changes required (all 6 BF-BOF technologies + high capture rates/shift)

• **what emission avoidance can be reached & at what cost?**

 100 % Bio-PCI + CCS can avoid site emissions by 61 % @ ~100 €/t CO₂ compared to 35 % with CCS only @ 43 €/t CO₂;

• **Benefits besides emission reduction for steel industry?**

 Biogenic carbon introduced into a blast furnace can be used multi-fold and generates green products in a steel mill: carbon-neutral steel and renewable electricity & heat

→ **Bio-PCI + CCS is a promising near-term and cost-effective option for CO₂ mitigation**
Thank you for your attention!

Evaluation of Steel Mills as Carbon Sinks

Maximilian Biermann*, Alberto Alamia, Fredrik Normann, Filip Johnsson
*presenter; max.biermann@chalmers.se

PhD work part of CO$_2$stCap project ”Cutting Cost of CO2 Capture in Process Industry” funded by Swedish Energy Agency, Gassnova (CLIMIT programme) and industrial partners
<table>
<thead>
<tr>
<th>Reductant type/feedstock</th>
<th>coke</th>
<th>PCI-coal</th>
<th>charcoal</th>
<th>torrefied biomass</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>metallurgic coking coal</td>
<td>Non-coking coal</td>
<td>pyrolysed softwood</td>
<td>forest residue</td>
</tr>
<tr>
<td>C</td>
<td>wt.%_{db}</td>
<td>88.3</td>
<td>85.0</td>
<td>84.7</td>
</tr>
<tr>
<td>H</td>
<td>wt.%_{db}</td>
<td>n.a.</td>
<td>03.9</td>
<td>3.35</td>
</tr>
<tr>
<td>N</td>
<td>wt.%_{db}</td>
<td>n.a.</td>
<td>2.1</td>
<td>0.13</td>
</tr>
<tr>
<td>O</td>
<td>wt.%_{db}</td>
<td>n.a.</td>
<td>2.1</td>
<td>10.6</td>
</tr>
<tr>
<td>S</td>
<td>wt.%_{db}</td>
<td>0.58</td>
<td>0.4</td>
<td>0.02</td>
</tr>
<tr>
<td>Ash</td>
<td>wt.%_{db}</td>
<td>10.9</td>
<td>7.8</td>
<td>1.9</td>
</tr>
<tr>
<td>moisture</td>
<td>wt.%</td>
<td>3.5</td>
<td>1.0</td>
<td>4.5</td>
</tr>
<tr>
<td>LHV</td>
<td>MJ/kg</td>
<td>n.a.</td>
<td>33.5</td>
<td>31.6</td>
</tr>
</tbody>
</table>