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ARTICLE

Long-haul optical transmission link using low-noise
phase-sensitive amplifiers
Samuel L.I. Olsson 1,3, Henrik Eliasson1, Egon Astra 2, Magnus Karlsson 1 & Peter A. Andrekson 1

The capacity and reach of long-haul fiber optical communication systems is limited by in-line

amplifier noise and fiber nonlinearities. Phase-sensitive amplifiers add 6 dB less noise than

conventional phase-insensitive amplifiers, such as erbium-doped fiber amplifiers, and they

can provide nonlinearity mitigation after each span. Realizing a long-haul transmission link

with in-line phase-sensitive amplifiers providing simultaneous low-noise amplification and

nonlinearity mitigation is challenging and to date no such transmission link has been

demonstrated. Here, we demonstrate a multi-channel-compatible and modulation-format-

independent long-haul transmission link with in-line phase-sensitive amplifiers. Compared to

a link amplified by conventional erbium-doped fiber amplifiers, we demonstrate a reach

improvement of 5.6 times at optimal launch powers with the phase-sensitively amplified link

operating at a total accumulated nonlinear phase shift of 6.2 rad. The phase-sensitively

amplified link transmits two data-carrying waves, thus occupying twice the bandwidth and

propagating twice the total power compared to the phase-insensitively amplified link.
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The achievable transmission performance of fiber optical
transmission systems is limited by amplifier noise and fiber
nonlinearities degrading the signal1–3. Phase-sensitive

amplifiers (PSAs) can provide low-noise amplification, because
at high gains their noise figure (NF) is 3 dB lower than that of
even ideal phase-insensitive amplifiers (PIAs)4,5. Using an alter-
native NF definition where only the signal power is accounted for
(idler power is neglected), the NF difference between PSAs and
PIAs increases to 6 dB5. PSAs are also capable of all-optical
mitigation of nonlinear transmission distortions6–8. Using PSAs
low-noise amplification and nonlinearity mitigation capabilities,
PSAs can potentially improve the transmission performance of
fiber optical transmission systems9,10.

PSAs can be realized, for example using, parametric gain in χ(2)

nonlinear materials through three-wave mixing (TWM)11, or χ(3)

nonlinear materials through four-wave mixing (FWM)12. Typi-
cally, two weak waves, called signal and idler, are amplified by one
or two high-power waves, called pumps. Depending on how the
frequencies of the interacting waves are chosen, different ampli-
fication schemes are possible. Two common schemes are the one-
mode PSAs in which signal and idler are frequency degenerate
and the two-mode PSAs in which signal and idler are frequency
non-degenerate.

In one-mode PSAs, one quadrature is amplified while the other
quadrature is deamplified, squeezing the signal phase along the
direction of the amplified quadrature4. If the PSA is operated in
unsaturated regime, phase noise in the squeezed quadrature will
be converted into amplitude noise in the amplified quadrature. If,
however, the PSA is operated in saturation both phase and
amplitude noise can be suppressed thus making this scheme
suitable for simultaneous phase and amplitude regeneration of
binary phase-shift keying (BPSK) signals13–15. Using this scheme,
a two times reach extension, originating from phase and ampli-
tude regeneration, not low-noise amplification, has been
demonstrated16,17. Two severe drawbacks of the one-mode PSA
scheme is that it is inherently single-channel and that it is only
suitable for BPSK signals. Using other PSA-based schemes,
regeneration of more advanced modulation formats such as
quadrature phase-shift keying (QPSK)18,19, and star 8-quadrature
amplitude modulation (QAM)20, have been demonstrated as well
as simultaneous regeneration of more than one channel21,22.

Another way to benefit from PSAs is to utilize their capabilities
of low-noise amplification and nonlinearity mitigation. This can
be done using two-mode PSAs implemented with the so-called
copier-PSA scheme23. Using the copier-PSA scheme, all signal
phase states will experience low-noise amplification thus pro-
viding modulation-format transparency24. Moreover, two-mode
PSAs are multi-channel compatible and can be used for ampli-
fication of wavelength division multiplexing (WDM) signals25. In
ref.26, it was shown that two-mode PSAs potentially can be
combined with multi-channel amplitude regenerators for multi-
channel regeneration of advanced modulation formats. For details
on the requirements regarding the tracking and alignment of
polarization in PSA links see ref.27

Mitigation of fiber nonlinearities to extend transmission reach
is a vivid research area currently28, and many different schemes
have been proposed, e.g., phase conjugated twin waves29 or
conjugate data repetition30, which are based on the idea that the
signal and the conjugate signal are co-propagated through the
same medium and coherently superposed to suppress the
nonlinear-induced phase distortion. Cancellation of nonlinear
distortion by digital signal processing31 in the receiver32 or
transmitter33 has also been demonstrated, as has optical phase
conjugation (OPC)34. Typically, a doubling or at most a tripling
of the system reach have been reported by these schemes, at the
expense of spectral efficiency and/or complexity. A way to further

enhance performance could be to distribute the compensation,
which is attractive for all-optical schemes such as PSAs or OPC,
and for OPCs that was recently demonstrated35,36, although
relatively moderate Q-factor improvements over single OPCs
were reported.

Here we present experimental evidence that in-line PSAs, can
provide an unprecedented nonlinear tolerance and transmission
reach extension9,10. In this demonstration of a recirculating loop
(i.e., long-haul) transmission experiment with in-line PSAs, we
benefit from the inherent simultaneous low-noise amplification
and nonlinearity mitigation. This scheme, which is both mod-
ulation format-independent and multi-channel compatible5, is
shown experimentally to have a 5.6 times reach improvement
compared to a transmission link using conventional in-line
erbium-doped fiber amplifiers (EDFAs) when transmitting a 10
GBd QPSK signal. The accumulated nonlinear phase shift in the
PSA link is 6.2 rad, which we believe is the highest nonlinear
tolerance ever reported in a lumped-amplifier system. These
results demonstrate not only the feasibility of realizing long-haul
transmission links using low-noise PSAs but also significant
improvement over conventional approaches. The concept of
amplification using cascaded PSAs might also find applications in
the field of quantum information science, where generation and
processing of quantum states are of interest.

Results
Basic principle. The amplifier implementation we consider in
this work is the degenerate pump, two-mode PSA. It consists of
three waves, an intense pump surrounded by a signal and an idler.
The input–output relation for the signal and idler is given by

us
u�i

� �
out

¼ μ ν

ν� μ�

� �
us þ ns
u�i þ n�i

� �
in

ð1Þ

where us,i are the signal and idler wave amplitudes, ns,i represents
vacuum noise present at the input, and the amplifier is char-
acterized via the scalar coefficients μ and ν, where μj j2� νj j2¼ 1
ensures photon-number conservation, i.e., two pump photons are
converted into one signal and one idler photon. If the input idler
wave is absent, ui,in= 0 then the output signal is amplified phase
insensitively with gain GPIA ¼ μj j2� νj j2, where the approximate
equality holds in the limit of high gain.

In our experiment, we employ a sequence of these amplifiers
with intermediate fiber losses that are compensated for by the
provided gain. The first amplifier has ui,in= 0, so it copies the
conjugate incoming signal to the output idler wave. The
generated signal-idler pair then propagates through all subse-
quent amplifiers, while achieving a phase-sensitive gain GPSA of
approximately 4GPIA due to coherent addition of signal and idler
conjugate.

In contrast to the signal, for which the gain is 6 dB higher in
phase-sensitive (PS) mode than in phase-insensitive (PI) mode,
the gain for the vacuum noise is always 2GPIA since the noise is
uncorrelated between signal and idler and will thus not add
coherently. By comparing PI- and PS-operation at the same signal
gain the difference between PIA and PSA amplification can be
stated as that a PSA will add 6 dB less noise than a PIA. The first
3 dB of this improvement comes from the phase-sensitive nature
of the gain, which releases the PSA from being constrained by the
3 dB quantum limit on PIA NF4, at the expense of using half of
the available bandwidth for propagating the idler37. This NF
improvement has been characterized in detail in refs.38,39 The
second 3 dB of the improvement comes from the fact that the
data in the two-mode-PSA-amplified link are carried by two
beams (signal and idler) of equal powers, which makes the
effective total data-carrying power in the PSA link twice that of
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the PIA link37. Described above is the so-called copier-PSA
scheme, and its linear link properties were analyzed in refs.40,41

and experimentally verified for a single-span link in refs.5,42 A
conceptual schematic of a multi-span implementation of the
copier-PSA scheme is shown in Fig. 1.

Experimental set-up. The experimental set-up used to demon-
strate long-haul transmission with in-line PSAs is illustrated in
Fig. 2. A signal modulated with 10 GBd QPSK data were launched
into a recirculating loop. During the first round trip (N= 1), only
one wave, the signal, was present at the input of the polarization
tuning and pump recovery stage and a pump wave was generated
using a laser. After combining the signal with the pump using a
WDM coupler, the two waves were launched into a fiber optical
parametric amplifier (FOPA) where a conjugated copy of the
signal, the idler, was generated. During the first round trip, the
FOPA thus operated as a copier. The three waves were then
passed through a power tuning stage where an optical processor
(OP) was used to filter the signal and idler as well as adjust their
powers. Following the OP, the signal and idler were passed
through an EDFA followed by a variable optical attenuator
(VOA) for launch power tuning. The pump was passed through a
separate path and was attenuated using a VOA. The transmission
link consisted of two tunable fiber Bragg-grating dispersion
compensating modules (DCMs) and an 80 km standard single-
mode fiber (SSMF) transmission span. The combined loss of the
SSMF span and the second DCM was 21.5 dB.

During the second and the following round trips (N ≥ 2), the
pump was regenerated in the polarization tuning and pump
recovery stage by injection-locking it to the pump laser and

subsequently amplifying it with an EDFA. The process of self-
injection-locking enabled stable injection-locking over many
circulations. The signal and idler were split into two separate
paths and the delay between them introduced by the SSMF was
compensated for. A phase-locked loop based on a piezoelectric
transducer (PZT) fiber stretcher was used to compensate for any
dynamic phase drifts between the arms introduced by tempera-
ture and acoustic influence. After the polarization tuning and
pump recovery stage, the waves were launched into the FOPA,
which now operated as a PSA with 22 dB net gain providing low-
noise amplification and nonlinearity mitigation. To compensate
for the fact that the copier operated as a PIA, adding 6 dB more
noise to the signal than the following PSAs, the signal power
launched into the loop was 6 dB higher than the power present at
the point of the loop input after the first round trip. The received
power was measured at point Prec and the loss from point Pin to
point Prec was 39 dB. In each round trip, part of the light was
coupled out of the recirculating loop and detected using a
coherent receiver. A more detailed description of the experi-
mental set-up is presented in the Methods section.

Constellation diagrams. To benchmark the performance of the
PSA-amplified link, measurements were also performed on an
EDFA-amplified link and a FOPA-PIA-amplified link. The
FOPA-PIA-amplified link was obtained by blocking the idler in
the OP and fully attenuating the pump in the power tuning stage.
The EDFA link was obtained by replacing the FOPA with an
EDFA and turning off the pump laser as well as the pump booster
EDFA. The three cases were compared both by studying con-
stellation diagrams and by measuring bit error rate (BER).
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Pump recovery and
phase-locked loop

Polarization tuning
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Fig. 1 Long-haul PSA-amplified link. Conceptual schematic of a long-haul PSA-amplified link implemented using the copier-PSA scheme
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Fig. 2 Experimental set-up. Recirculating loop set-up used to demonstrate long-haul transmission with in-line PSA-based amplification. Option with in-line
EDFA- and PIA-based amplification used for benchmarking is also shown. Colored arrows indicating waves represent PSA case for the second and the
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Figure 3 shows constellation diagrams at various launch
powers (measured at point Pin) for the three investigated
amplification schemes. The constellations in columns one, two,
and four correspond to a measured BER of 10−3 while the third
column shows the constellations for the FOPA-PSA case at the
closest available number of round trips to the EDFA case. The
variable N indicates the number of round trips. The accumulated
nonlinear phase shift was calculated using ϕNL= γPinLeff, where γ
is the nonlinear coefficient, Pin is the launch power, and Leff is the
effective length defined as Leff= [1− exp(−αL)]/α with α being
the fiber attenuation and L the link length, and is shown in
parenthesis above each constellation. When calculating ϕNL we
used γ= 1.5W−1 km−1, α= 0.2 dB km−1, and L= 80 km.

It is clear from Fig. 3 that EDFA- and FOPA-PIA-based
amplification provide similar performance from −2 dBm launch
power, where the reach is limited by amplifier noise, up to 8 dBm
launch power, where reach is limited by nonlinear distortions. We
can also see that PSA-based amplification significantly reduces the
accumulated amplifier noise as well as the impact of fiber
nonlinearities, thus allowing for improved reach at all launch powers.

Bit error rate measurements. Measured BER versus number of
round trips and transmission distance at various launch powers is
presented in Fig. 4a. It can be seen that the EDFA case and
FOPA-PIA case are close to indistinguishable while the PSA case
shows significantly improved reach. The reach improvement as
well as the maximum number of round trips (for a BER of 10−3)
versus launch power is presented in Fig. 4b. From the figure we
note that the optimal launch power for the PSA case is 6 dBm
while the optimal launch power in the EDFA- and FOPA-PIA
cases is 4 dBm. At 6 dBm launch power, the reach improvement
using PSA-based amplification is about six times while if the
comparison is made at optimal launch powers, the reach
improvement is 5.6 times.

Discussion
Our demonstration of long-haul PSA-amplified transmission was
performed using a signal with 10 GBd QPSK data. However, in
principle any modulation format and symbol rate can be used
with the copier-PSA scheme. Increasing the symbol rate will
make it more challenging to achieve good enough temporal
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Fig. 3 Signal constellation diagrams. Constellation diagrams at various launch powers using EDFA-based amplification, FOPA-PIA-based amplification, and
FOPA-PSA-based amplification. Constellations in column one, two, and four corresponds to a BER of 10−3. The variable N indicates the number of round
trips where each round trip include an 80 km dispersion compensated SSMF span and ϕNL denotes the accumulated nonlinear phase shift
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alignment of the waves but by using high precision delay lines this
should be possible. The copier-PSA performance in linear regime
is not expected to depend on either symbol rate or modulation
format. However, the ability to mitigate nonlinearities might
depend on both symbol rate and modulation format and will
require further investigation. Approaches that have been sug-
gested as means to improve nonlinearity mitigation at, e.g., higher
symbol rates in PSA-amplified links are addition of distributed
Raman amplification43 or multi-span dispersion map optimiza-
tion44. In our demonstration, we transmitted a single channel but
with the copier-PSA scheme multi-channel transmission is pos-
sible although with increased complexity due to required polar-
ization, delay, and phase alignment of each channel.

Using a recirculating loop to demonstrate long-haul PSA-
amplified transmission is a good approach to demonstrate the
possible performance improvements that can be gained using in-
line PSAs. However, using a recirculating loop simplifies certain
aspects of the implementation and in order to realize a real
transmission link with in-line PSAs a few challenges remain to be
solved. One such challenge is the pump recovery. The injection-
locking-based pump recovery is sensitive to frequency differences
between the incoming pump wave and the free-running pump
laser frequency. In our recirculating loop set-up, this frequency
difference could be kept small since it was dictated by the pump
laser wavelength drift during the measurement time which was
24 ms for 60 round trips. In a real transmission link, a feedback
system would be required to tune the frequency of the slave lasers
to match the frequency of the incoming pump wave. Another
aspect that will be more challenging in a real transmission link is
the polarization alignment of the involved waves. In our recir-
culating loop set-up, this alignment could be done manually.
However, in a real transmission-link polarization tracking would
be required to align the waves and to keep them aligned over
time.

We have demonstrated the possibilities and potential of using
cascaded PSAs in the context of high-speed optical communica-
tions. However, our results might also find applications in
quantum informatics and related fields where generation and
processing of quantum states are of interest.

Methods
Recirculating loop experiment. A continuous wave (CW) laser (Keysight
N7711A) at 1550.104 nm with <100 kHz linewidth, −145 dBHz−1 relative inten-
sity noise (RIN), and 30 mW output power was modulated with 10 GBd QPSK data
(pseudorandom bit sequence (PRBS) of length 215–1) using a LiNbO3-based single
polarization I/Q modulator. The electrical signals driving the I/Q modulator were
generated using a bit pattern generator (SHF 12103A) followed by electrical
amplifiers (SHF 804 TL). After passing a VOA, VOA1, for loop launch power
tuning the signal was passed into a recirculating loop that was controlled using a

loop controller (Brimrose AMM-55-8-70-C-RLS(nfs)-RM) containing two
acousto-optic modulators (AOMs).

During the first round trip only the signal was present at the input of the
polarization tuning and pump recovery stage and a CW pump wave at 1554.096
nm was generated using a distributed feedback (DFB) laser without isolator (EM4
AA1406-192900-100) with <1MHz linewidth, −150 dB Hz−1 RIN, and 100 mW
output power. The pump wave was subsequently amplified using a 3W fanless
high-power EDFA (IPG EUA-3K-C-CHM) and attenuated to obtain 1W at the
FOPA input. The signal was combined with the pump before the FOPA using a
WDM coupler and the signal and pump state of polarizations (SOPs) were aligned
using PC1 and PC2 for maximum FOPA gain. With only signal and pump present
at the FOPA input, the FOPA operated as a PIA with 16 dB net gain. The FOPA
consisted of four cascaded spools of strained highly nonlinear fiber (HNLF) (OFS
HNLF-SPINE with zerodispersion wavelength (ZDW) at 1543 nm) of lengths 101,
124, 156, and 205 m, with in-line isolators placed between the individual spools for
stimulated Brillouin scattering (SBS) suppression45. During the first round trip, the
FOPA generated a conjugated copy of the signal, frequency- and phase-locked to
the signal and pump, at the idler wavelength through FWM.

After the in-line amplifier, the waves were led to a power tuning stage where the
high-power pump was separated from the signal and idler waves. The signal and idler
were amplified using an EDFA (Nortel) and then passed into an OP (Finisar
WaveShaper 1000S) for filtering (0.4 nm bandpass filters) and power tuning such that
they were balanced in power at point Pin, just before the transmission fiber. The two
waves were then led into a custom built EDFA with 3.1 dB NF and 25 dBm output
power followed by VOA2 for launch power tuning. PC4 was tuned so that the
polarization dependent loss (PDL) experienced by the signal over the transmission
stage was minimized. The pump was attenuated using VOA3 to obtain −5 dBm at
point Pin and PC5 was tuned such that the SOP of the pump launched into the pump
laser in the second round trip was aligned with the free-running pump laser SOP.

The transmission link constituted of two 100 GHz channel grid tunable fiber
Bragg-grating DCMs (TeraXion TDCMX-C100-(−80 km/+5 km)), DCM1 for
dispersion pre-compensation and DCM2 for post-compensation, and an 80 km
SSMF transmission span. The dispersion map was experimentally optimized for
longest reach in a strongly nonlinear regime (6 dBm launch power). In the PSA
case, the optimum dispersion map was 289 ps nm−1 pre-compensation and 986 ps
nm−1 post-compensation. In both the EDFA- and the FOPA-PIA case, the
optimum dispersion map was 68 ps nm−1 pre-compensation and 1207 ps nm−1

post-compensation. The amount of per span residual dispersion was
experimentally optimized for longest reach in a nonlinear transmission regime for
the PSA case and was <35 ps nm−1. This amount of residual dispersion had a
negligible impact on the performance in linear transmission regime both for the
PSA and PIA cases as well as for the PIA cases in nonlinear transmission regime
due to the low symbol rate and few round trips. The launch power was measured as
signal power at point Pin. PC6 was adjusted so that the signal SOP at the beginning
of the second round trip was the same as the SOP of the signal launched into the
transmission loop. The round trip time was 0.4 ms.

During the second and the following round trips both signal, idler, and pump
were present at the input of the polarization tuning and pump recovery stage. The
pump was separated from the signal and idler and injection-locked to the pump
laser. This process of self-injection-locking enabled stable locking over many
circulations. The signal and idler were also separated, and the delay between them
introduced by the transmission fiber was compensated for using a variable delay
line (VDL) with a 1 dB insertion loss. The idler was attenuated such that the signal
and idler had equal power going into the FOPA and their SOPs were aligned using
PC1 and PC3 so that the FOPA gain was maximized. A phase-locked loop (PLL)
based on a PZT fiber stretcher was used to compensate for any dynamic phase
drifts between the arms introduced by temperature and acoustic influence. The
FOPA-PSA net gain was 22 dB. For simplicity the PSA-amplified link was
implemented such that the same FOPA was used both for the copier and the PSA.
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As a consequence of this, the first and last in-line amplifiers in the PSA-amplified
link were PIAs. In order to compensate for the extra signal degradation caused by
the first in-line PIA, the signal power launched into the loop was 6 dB higher than
the power present at the point of the loop input after the first round trip. The
absence of nonlinearity mitigation in the last in-line amplifier in the link was not
compensated for. Due to the placement of the loop output coupler, the loss of the
final span was lower than the other spans by ~2 dB. For the EDFA case and the
FOPA-PIA case, this resulted in slightly better performance compared to what
would have been achieved in a link in which all spans had the same loss. For the
PSA case, the performance was still worse then it would have been if the last
amplifier in the link was a PSA. Note, however that the impact of having slightly
lower loss in the last span is negligible after many circulations.

In each round trip, part of the light was coupled out of the recirculating loop and
amplified by an EDFA (JDS Uniphase OAB optical amplifier) followed by an optical
filter (OTF-30M-12S2) with a 3 dB bandwidth of 0.9 nm centered at the signal
wavelength. The amplified and filtered signal was then coupled into a coherent
receiver (NeoPhotonics Integrated PBS ICR) along with a local oscillator wave
generated by a CW laser (IDPhotonics CBDX1-1-C-H01-FA) at the signal wavelength
with <100 kHz linewidth, −145 dBHz−1 RIN, and 40mW output power. The signal
was sampled at 50 GS s−1 using a real-time sampling oscilloscope (Tektronix
DPO73304SX) with 33 GHz analog bandwidth. For each round trip, 2.5 × 106 samples
(corresponding to 50 μs at 50 GS s−1) were taken in the middle of the 0.4ms long
burst and then post processed off-line using conventional DD-LMS-based digital
signal processing (DSP). The back-to-back signal-to-noise ratio (SNR) penalty of the
transmitter and receiver was 0.5 dB at a BER of 10−3.

For the EDFA case, the pump laser was turned off and the FOPA was
substituted with a custom built EDFA with 3.1 dB NF and 25 dBm output power
followed by a VOA tuned such that the net gain of the EDFA and VOA was 22 dB.
For the FOPA-PIA case, the idler was blocked in the OP and the pump was fully
attenuated before the transmission stage using VOA3. The in-line FOPA-PIA net
gain was 16 dB.

Data availability. The data that support the findings of this study are available
from the corresponding author upon reasonable request.
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