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Abstract. Rapid development in artificial intelligence and big data analytic 

applications have had a significant impact on knowledge mobilisation across 

industries including the shipping domain. This paper uses the practice of energy 

efficiency onboard ships as a case study to discuss how knowledge mobilisation 

should address this context change and uncovers how existing knowledge 

networks in the shipping industry would evolve in this emerging data-driven 

ecology. From a systems perspective, it suggests hallmarks associated with the 

knowledge mobilisation processes in the new technology landscape. This paper 

shapes a discussion intended to derive design and management implications of 

the system infrastructure contributing to a safe, efficient and sustainable 

shipping business model and provide insights on knowledge adaption in the 

emerging human-machine collaboration context.   
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1 Introduction 

There have been many significant technological advancements since the 20th century 

that are constantly shaping our human society [1-3]. One example to show the 

reciprocal relationship between human and automation is the rise in importance of 

industrial robots in the field of manufacturing. In the past, the robots were mainly 

designed as highly specialized machines to accomplish routine tasks using repetitive 

actions within a confined space to increase manufacturing efficiency. Their 

choreographed performance is a result of expensive and complicated programming. 

Human knowledge and experience is hardcoded into these robots in terms of strong 

demand in the precision of time and positioning. Although there were many workers 

being made redundant within the manufacturing sector, robots still could not 

undertake adaptive, dexterousness and non-routine tasks. That was yesterday, literally 

and figuratively, as automation is allowing robots to “learn” to become more capable 

and versatile. Modern robots have become more functional and practical. Industrial 

Perception, Inc. is a company in Silicon Valley that develops touch- and vision-based 

sensing solutions to enable robots to undertake more complicated industrial tasks. 
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Rethink Robotics is another well-known start-up based in Boston, Massachusetts that 

produces collaborative robots, such as the 3-foot tall two-armed Baxter robot with an 

animated face. The Baxter robots are equipped with enhanced robotic capabilities in 

visual perception, adaptive behaviour and knowledge acquisition and show human-

level potentials to interact with the environment [1]. Their performances are a result 

of a collaborative form of training by human workers instead of programming, 

changing the way the humans “infuse” knowledge into machines. In some cases, a 

machine’s knowledge is not even reinforced by the human. AlphaGo is the first 

program that employed deep neural networks to defeat a world champion in the game 

of Go (an ancient Chinese board game with extreme computational complexity [4] 

that has far more possible legal positions than the estimated number of atoms in the 

observable world). AlphaGo becomes its own teacher by relying on reinforcement 

learning without human data, guidance or domain knowledge beyond game rules [5]. 

Today machines are designed to attempt to take accountability and perform at more 

than the skill- or rule-based levels, i.e. invading the human’s long-standing territory of 

the knowledge-based level described in Rasmussen’s Skill-Rules-Knowledge 

Behaviour Model [6] .  

The technological innovation of artificial intelligence, business intelligence and big 

data analytics applications have certainly gone beyond the board game or the 

manufacturing sector. The maritime domain, which is one the most traditional and 

conservative of industries, is currently in the transition phase driven by this fast-

changing technology landscape. Many digitalized products, applications and services 

have been introduced into the shipping industry to provide maritime users a plethora 

of platforms and decision support tools to access information and maintain system 

control [7], such as energy-efficient fuel monitoring systems [8], unmanned cargo 

handling systems in the world's largest automated terminal [9], autonomous 

unmanned ships [10-12], etc. Intelligent systems are constantly shifting the human 

operators’ role. Traditional Human Machine Interaction is transforming to Human 

Machine Cooperation [13] with the operator’s role progressively shifting from a 

controller to a mission manager or supervisor of the system [14]. At the same time, 

technology keeps expanding its territory into a value-creating knowledge level with 

ubiquitous, mostly heterogeneous and distributed data to support and assist humans. 

The reciprocal relationship between human and advanced technology is shifting from 

master–slave servomechanisms towards collaboration and coordination [15]. This 

rapid technological advance inevitably changes the context in which humans 

conventionally learn knowledge that influences work, such as how humans discover 

new knowledge and operate with machines to be more adaptive in those unanticipated 

events. While all the technical advancements are shaping a new technology landscape, 

some crucial questions were given much less attention, i.e. how the process of 

creating, sharing and managing knowledge as well as the best use of knowledge 

would be impacted, and how this is pertinent to design issues.  

Various maritime stakeholders are likely to be influenced in the context of 

maritime energy efficiency (EE), such as the ship crews, management groups and 

designers of intellectual navigational/fuel-optimization systems. Knowledge and skills 

are likely the most essential factors in the ship’s crew’ energy optimization 

performance [16]. Current managerial practices do not necessarily provide sufficient 

support for learning and innovation within organizations [8, 17]. As automation is 



getting more functional and complicated while human operators remain the ultimate 

decision makers in the system, the necessity of employing appropriate design to 

support learning and educational purposes is becoming more important. 

Understanding of technology’s role in knowledge mobilisation is at the nexus of 

practitioners’ performance, organizational knowledge management and a heuristic 

perspective in design, yet it remains to be a prominent challenge [18]. Most previous 

research on learning and knowledge management focused on the social-cultural 

processes during which the knowledge was transferred between individuals to form 

various knowledge networks or the prerequisites for knowledge transfer regardless of 

the process used (i.e. knowledge transfer capacities) [19-23]. Confronted with the 

most radical context change driven by artificial intelligence, big data and the 

associated complexity, the impact on the development of knowledge networks and 

representations for effective knowledge transfer have not been sufficiently addressed. 

This paper uses the practice of energy efficiency (optimization) onboard ships as a 

case study to discuss how the process of creating, sharing and managing knowledge 

should address this context change. The aim is to shed light on design strategies for 

learning, decision-making support systems to facilitate knowledge transfer and 

management within the shipping industry in the landscape of Human-Machine 

Collaboration.  

2 Case Study 

In recent years, there have been increasing concerns about ships’ EE mainly due to 

economic (e.g. profitability in the shipping companies) and environmental factors 

(e.g. reduce greenhouse gas emission) [16]. The operational performance of ship’s 

crews can significantly and directly influence the fuel consumption [8, 17], such as 

how the navigators safely and efficiently conduct ship-handling and how the 

engineers can maintain the ship’s power and propulsion systems under different 

circumstances. 

Viktorelius and Lundh [8] did a study on a modern ferry vessel to investigate the 

gaps pertinent to EE. The authors visited the same ship multiple times to understand 

the ship crews’ EE practices and their deployment of EE monitoring systems. The 

shipping company introduced a fuel consumption monitoring system called ETA-pilot 

to assist the navigators to regulate the speed automatically, as speed is directly related 

to fuel consumption [24]. The voyage was divided into multiple legs so the ETA-pilot 

dynamically proposed an optimal speed for each leg based on multiple factors (e.g. 

ship trim/draft, depth of the water, weather information, distance to the destination 

and estimated time of arrival, etc.). The speed can also be automatically adjusted as 

the navigators may deviate the course or manually change the speed for collision 

avoidance purposes. The fuel consumption (kg per nautical miles) was displayed as a 

dynamic curve along with other output parameters in a complex chart in the bottom of 

the user interface to provide the navigators decision support for any potential 

navigational correction (see Fig. 1). 



 

Fig. 1. The true speed (17 knots/hour) and the consumption (123 kg/nautical mile) is presented 

left top in the user interface of the ETA-pilot.  

Although the ETA-pilot seemed to display a plethora of useful data, it was 

discovered that the tool failed to facilitate the crews’  understanding of the impact of 

their actions on EE [8]. For example, the ship’s crew considered it difficult to learn 

something out of the displayed numbers as nearly all the displayed information could 

hardly be integrated into the crews’ practices for optimal EE performance. Rather, 

they relied heavily on those traditional navigational instruments and their own 

navigational experience to manoeuvre the ship, thus leaving the majority of the 

information provided by the tool un-used. Once a journey was finished, the tool 

would become useless for both the ship’s crew and the management group onshore, 

though a considerable amount of data pertinent to ship performance had been 

collected, plotted and sent to the shipping company via the ETA-pilot. There were no 

evaluating activities. Learning based on reviewing historical EE performance was 

extremely difficult, but desired, for the ship’s crew due to the lack of analytical 

function of the system [8].  

Knowledge development of the ship’s crew plays a central role in their EE 

performance [25]. Different navigators have different understandings and knowledge 

of the tool, leading to different ways of using and corresponding EE performance. 

Some even claimed that by disconnecting ETA-pilot, navigating manually could 

contribute to improved fuel savings [8]. Furthermore, current social-cultural 

constrains onboard and organizational structures did not necessarily facilitate the 

practitioners’ learning. In today’s prevalent top-down management approach in the 

shipping domain [25], the practitioners were too far down to be included in the 

organizational decision making process [17]. With poor analytical support from the 

collected data, the management could hardly understand the real problems in the field 

and make appropriate managerial adaptations. Most likely the explicit managerial 

support about knowledge transfer was in a formal and salient professional manner that 

only benefited an individual, e.g. ‘crew members had been sent to a one day course 

for how to use the fuel management system’ [8]. Although the engineers might have 



many ideas pertinent to EE inspired by the communities of practice [22], they seldom 

spoke of it on the bridge due to the social/practice boundaries between the engine and 

bridge department [8, 26, 27].  

3 Discussion 

3.1 Data-Driven Systems  

Confronted with the aforementioned issues of the ETA-Pilot tool, gaps between the 

ship and shore, and deck and engine room personnel, there is potentially an 

opportunity for the intelligent systems to actually support collaborative learning 

activities and knowledge transfer. Much data was collected but it created little 

improved knowledge to the users. These large data sets could be used to train models 

using supervised or unsupervised machine learning techniques. The models, as the 

foundation of future services or applications, would be able to help the crews to 

understand and evaluate their EE performance in real time, providing opportunities of 

potential gains in energy saving. In a machine learning study targeting the same 

visited vessel, ship’s performance data covering more than a year’s span, combined 

with other data sources, were used to construct multiple machine learning models 

[28]. The GPS information and weather data sets were deeply explored and integrated 

into the models. The models take in the navigator’s input on lever and other 

parameters from onboard sensors (such as wind speed, direction and wave height etc.) 

in real time. The output was the predicted fuel consumption in the near future as well 

as the best and worst fuel consumption values from similar voyage (considering 

historical wind, wave, cargo data, etc.) benchmarks [28]. Once the voyage was 

finished, the performance could be automatically analysed to show which period of 

the voyage had significant increased/decreased fuel consumption, serving as a 

medium for the navigators and ship engineers to share ideas and reflect upon the EE 

performance. With the introduction of machine learning techniques, there would be 

many design opportunities for the development of a real-time decision support system 

during the voyage as well as a post-voyage analytical system to approach the 

aforementioned issues.  

3.2 Shift in Knowledge Networks  

The significant business value of data-driven systems is that they provide improved 

operational knowledge to the ship’s crew to understand the situation of fuel 

consumption and improve EE practices in ship-handling. For example, if an 

experienced navigator increases the speed at a given point in time, the system could 

help him to immediately foresee what would be the consequences in fuel consumption 

and how the rest of voyage plan would be influenced. When the voyage is completed, 

the engine room and bridge teams could continue collaborative learning as there is 

concrete and comparable information for them to review and discuss. This value is not 

only limited to the ship. The management group would also have better understanding 

of the field problems and a foundation to make more adaptive organizational 

decisions, such as how the optimal performance and expertise seen on one ship could 



be migrated to other ships, what resources or training opportunities the practitioners 

need so they can do a better job. Overall, the big data applications have huge 

potentials to influence the users’ learning process and social relationship [29, 30].  
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Fig. 2. The shift in knowledge management under the socio-technical impacts, adapted from the 

four types of knowledge-creating value network [20]. 

The original knowledge network framework introduces two dimensions. One 

dimension refers to the benefit level (i.e. individual or organizational benefits) and the 

other refers to the forms of networks (i.e. self-managed or supported by organizations) 

[20]. The emergent values in the new technology landscape suggest a significant shift 

of knowledge management mapped in the knowledge network framework (see Fig. 2). 

The current EE practice improvements are mainly based on personal interest and 

traditional organizational training that targets individual improvement. Therefore, the 

predominant knowledge networks are mainly the hobby network and professional 

learning networks. With the data-driven decision support/post-voyage analytical 

systems, the ship’s crew could have concrete platforms to better understand their EE 

practices and evaluate the performance in both real-time and post-voyage manners. 

They acquire knowledge from the system and from each other. This would create a 

shift of knowledge networks towards business opportunity networks that are more 

about the creation and sharing of new knowledge for organizational benefits. 

Meanwhile the performance data collected from the ships would help the high-level 

management groups in the shipping companies to have a deeper awareness of the field 

situations and form a better decision-making base, so that the tacit knowledge about 

eco-driving on one ship could become institutionalized knowledge across the whole 

company. The data-driven intelligence is mostly valued not because of the data itself, 

but because of the close monitoring mechanism it introduces and adaptations of 

management it suggests. Local knowledge also can be institutionalized with proper 

organizational support. With the focus moved to organizational efficiency and 



institutionalization of existing knowledge, the knowledge networks are also shifted 

towards best practice networks.  

3.3 Towards Systems Thinking 

Rapid advances in technologies can lead to system instability and more dynamics in 

both system structures and interactions among system components [31]. Currently the 

shipping industry is heading to an ecology characterized by increasing complexity of 

system dynamics in which a huge amount of information would be created, integrated 

and shared. The relationship among agents or system components in the network 

would be interdependent. Systems thinking is a way of engaging the world by 

describing, understanding, and reconfiguring such relationships [21]. This shift in 

knowledge networks (impact side) must be able to address this complexity associated 

with the radically changing context. This is one main reason for us to abstract the 

horizontal dimension “benefit level” to “inter-relationship” compared to the original 

knowledge networks [20], so that we can highlight the impact of this shift from the 

system perspective. In the shipping domain, the impact transition of knowledge 

mobilization from an individual level to collective level manifests this development 

trend towards a tightly-coupled system where organizational efficiency highly 

depends on the extent of interactivity and connectivity. Therefore, collaborative 

learning, information coordination between ship and shore, engine room and deck 

would become more crucial than the traditional individual knowledge acquisition. The 

support of information sharing and collaborative learning should be an essential 

demand for the future design of data-driven intelligent decision-making support 

systems.  

The agents in the networks are not only humans but also machines. Many advanced 

systems have been introduced to solve technical problems arising from the 

management of high complexity [32]. To some extent, the machines are affording 

more than aids but play a role as a “teammate” to coordinate information. One 

instance is that if the supportive tool is more functional and transparent in terms of 

situation assessment and performance prediction for the goals of safety (e.g. collision 

avoidance) and efficiency (e.g. fuel consumption), then the whole system would likely 

have more adaptive and improved performance. This is because the ultimate decision 

makers in the system, the navigators, would have better opportunities to understand 

the world to perform adaptively and proactively, e.g. the constantly evolving 

situation, consequences and meanings of system behaviours, etc. In the new 

technology landscape, intelligent systems and human operators are more unlikely to 

be two separate parts as the traditions of automation design describe – what machines 

do and what humans do [15]. Rather, they need to increasingly collaborate with each 

other to be able to amplify success and/or recover from failure, to achieve the 

common goal of safety and efficiency. Applying the perspective of a network of 

interconnected elements address the question about “what is connected” and may be 

more effective in coping with complexities than “who does what” [33].  

Intelligent machines may already inspire humans to play the game of Go today, but 

they would likely have more potential if the system is situated in a highly dynamic 

and complex context. The shift of knowledge management in the framework of the 

knowledge networks and the emergent properties of human-machine collaboration in 



complex systems suggest several important hallmarks of knowledge mobilization in 

the new technology landscape:  

1. Knowledge mobilization shall not be conceptualized as unidirectional flow from 

one to the other. The user can programme the machine but the machine may also 

create knowledge and values that can contribute to the task goal and the user’s 

expertise. Knowledge transfer is conceptualized as a dynamic by-product of 

interactions among agents in the network [21]. It implies the emergence of human-

machine cooperative approach or human-machine partnership, which can 

significantly influence the system design. For example, if the data is associated 

with the user’s behaviour or preferences, then automation could be shaped to afford 

a more customized learning approach. Machine and human are jointly controlling 

the domain or environment thus the desired system outcome could hardly be 

achieved with the absence of any agent.  

2. Knowledge mobilization within the dynamic situations characterized of high 

temporal and spatial constraints is highly context-sensitive. This transcends the 

notion of knowledge transfer in the traditional human-computer interaction 

framework, where information is transmitted as objects (e.g. commands or 

displayed messages) from one to the other regardless of the situated context. 

Applying knowledge is about adaptation from one context to another, so a system 

that aims to support knowledge mobilization should never ignore the context.   

3. Whether to have managerial support in the original knowledge networks [20] is 

essentially a question of how to manage the assets that create knowledge in a 

specific social environment. With rapid development in technologies, knowledge 

management is embodied in human-machine configurations within a certain 

context, thus the mobilization could be on a local or global scale. If we consider the 

Dynamic Knowledge Transfer Capacity Model [21] to describe the prerequisite 

capacities important for knowledge translation (i.e. generative capacity, 

disseminate capacity, absorptive capacity and adaptive capacity), then the 

representation associated with the human-machine configurations can be 

exemplified at different levels in the social-technical systems, e.g. at the 

departmental, organizational, industrial and social levels (see Table 1). The aim to 

provide the representation is never meant to address the traditional issue of “who 

does what”, but to shed light on the possibilities for knowledge mobilization on 

multiple scales and suggest the importance of having human and automation 

coordinated [15] to form a synergy in this age of human-technology interaction.  

From a systems perspective, knowledge mobilization transferring from entity or 

component level to a system level, from self-management to managerial support 

suggests that organizational efficiency is a joint effort by the practitioners, the 

management and the technical systems. Organisational decision-making and 

governmental policy-making grounded on the data is essentially a bottom-up 

management approach to involve the end-users in the development process of a 

sustainable social and technical infrastructure. With the shifts of knowledge networks, 

we hope to derive design and management implications of the system infrastructure 

contributing to knowledge mobilisation across the shipping industry as well as a safe, 

efficient and sustainable shipping business model.  



Table 1.  Prerequisite capacities’ representation associated with the human-machine 

configurations at various levels.  

 Department Organisation Industry Society 

Generative 

Capacity 

Navigators monitor 

fuel consumption in 

real time; 

automation uses 

historical data to 

describe EE 

performance and 

provide prediction. 

Management 

monitor EE 

performance for 

the whole fleet; 

automation 

synthesizes EE 

performance data 

from each vessel. 

Classification 

society can 

monitor trends in 

the shipping 

industry; 

automation 

synthesizes EE 

performance from 

each sectors.  

IMO can 

monitor 

dynamics in the 

industry; 

automation 

synthesizes 

performance 

reports. 

Disseminative 

Capacity 

Communicate with 

other practitioners; 

automation displays 

information and 

forwards signals to 

system components. 

Set up 

organisational 

communication 

channels to 

understand needs; 

automation 

provides 

monitoring loops. 

Set up networks to 

discuss standards 

for construction 

and operation of 

ships; automation 

provides 

monitoring loops. 

Facilitate 

development of 

social and 

technological 

infrastructure 

(e.g. E-nav 

[34]). 

Absorptive 

Capacity 

Apply the 

knowledge to eco-

driving; automation 

constantly evolves 

the model. 

Locate problems 

and tailor the 

training 

programmes for 

each vessel / 

route. 

Optimize rules and 

regulations, 

support 

management; 

automation adapts 

to new rules. 

Adjust existing 

regulations and 

develop new 

policy 

frameworks.  

Adaptive 

Capacity 

Continuous 

learning in eco-

driving; automation 

adjusts speed based 

on machine 

learning. 

Allocate resources 

to transfer tacit 

knowledge to 

institutionalized 

knowledge. 

Create conditions 

to motivate better 

EE performance of 

the whole industry. 

Monitor 

feedback loops 

and ensure 

contribution to 

sustainability of 

the society. 

4 Summary 

The paper describes how the existing knowledge networks in the shipping industry 

could evolve in this emerging data-driven ecology. It uses challenges and barriers 

discovered in a case study about ship EE to address how knowledge mobilisation 

should address the context change and proposes a focus of knowledge networks 

shifting towards a collective level with data-driven managerial support. The study also 

discusses the characteristics associated with such knowledge mobilisation from a 

systems perspective and exemplifies how the prerequisite capacities important for 

knowledge translation could be represented on multiple levels.  

Absorbing and applying knowledge is not about transferring knowledge as an 

object but about adaptation from one context to another. The evolution of knowledge 

networks and the representation of human-machine partnerships is in sharp contrast to 

the traditional way of learning by self-managing, institutionalised training or solely 

from human-generated knowledge. In the emerging data-driven ecology, intellectual 



systems have great potentials to "learn" without being explicitly programmed. More 

importantly, they can create new paths for the human counterpart to develop 

knowledge of the domain in an adaptive manner and shape the way humans 

understand the world. This paper provides insights on knowledge adaptation from the 

traditional human-machine interaction context to human-machine collaboration 

context and thus shapes a discussion intended to derive design and management 

implications of the system infrastructure contributing to a safe, efficient and 

sustainable shipping business model.  
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