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and spruce biomass
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and Lisbeth Olsson1* 

Abstract 

A shift towards a sustainable and green society is vital to reduce the negative effects of climate change associated 
with increased  CO2 emissions. Lignocellulosic biomass is both renewable and abundant, but is recalcitrant to decon-
struction. Among the methods of pretreatment available, organosolv (OS) delignifies cellulose efficiently, significantly 
improving its digestibility by enzymes. We have assessed the hydrolysability of the cellulose-rich solid fractions from 
OS-pretreated spruce and birch at 2% w/v loading (dry matter). Almost complete saccharification of birch was pos-
sible with 80 mg enzyme preparation/gsolids (12 FPU/gsolids), while the saccharification yield for spruce was only 70%, 
even when applying 60 FPU/gsolids. As the cellulose content is enriched by OS, the yield of glucose was higher than in 
their steam-exploded counterparts. The hydrolysate was a transparent liquid due to the absence of phenolics and was 
also free from inhibitors. OS pretreatment holds potential for use in a large-scale, closed-loop biorefinery producing 
fuels from the cellulose fraction and platform chemicals from the hemicellulose and lignin fractions respectively.
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Introduction
There is an urgent need to produce fuels and chemi-
cals from renewable resources, and drastic actions are 
required to combat the emissions of greenhouse gases, 
as underlined in the report by the Intergovernmental 
Panel on Climate Change (Houghton 2009; IPCC 2014). 
The increase in population and the transition to an urban 
lifestyle, with its concomitant dependency on technology 
and increase in economic growth, will place/is already 
placing enormous pressure on the global demand for 
energy (Smil 2004) and food (The World Bank 2014). 
The chemical industry contributes about 5.2 trillion USD 
per annum to the global economy, and the transition 
to bio-based processes is imperative if we are to reduce 

our dependence on petrochemical feedstocks (Tan et al. 
2016; Robertson et al. 2017; Lange 2017).

Biomass is an abundant renewable feedstock (Perlack 
and Stokes (Leads) 2011; Limayem and Ricke 2012; Kluts 
et al. 2017). However, it requires pretreatment (McCann 
and Carpita 2015) to release sugars that can be utilized by 
microorganisms to produce the products of interest. Sev-
eral pretreatment methods, such as acid/alkaline hydrol-
ysis, dilute ammonia, liquid hot water, sulfur dioxide, 
are available for biomass deconstruction (Mosier et  al. 
2005), but these processes produce compounds such as 
hydroxyl methyl furfural (HMF), furfural and acetic acid, 
which are inhibitory to the microorganisms used for fer-
mentation (Piotrowski et  al. 2014, 2015), or to the sac-
charification enzymes (Ximenes et al. 2011). Organosolv 
(OS) pretreatment—proposed as early as 1931 (Kleinert 
and v. Tayenthal 1931) for delignification (Johansson 
et al. 1987; Sannigrahi and Ragauskas 2013; Brosse et al. 
2017), has gained much interest recently (Pan et al. 2005; 
Nguyen et  al. 2015; Guragain et  al. 2016; Katsimpouras 
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et  al. 2017a, b). OS pretreatment provides three dis-
tinct streams: a solids stream enriched in cellulose, thus 
offering better digestibility by cellulases; a hemicellulose 
stream containing xylose and xylans (that can be used by 
pentose-utilizing yeasts or chemically converted to plat-
form chemicals such as HMF); and finally, a lignin stream 
offering valorization through chemical and thermal con-
version, thereby providing added value to the process.

Nitsos and coworkers (2016) recently demonstrated 
the efficient dissolution of lignin combined with exten-
sive hemicellulose removal for spruce and birch, using 
batch OS (with ethanol as the solvent and sulfuric acid 
as the catalyst). In the present study, we used these OS-
pretreated, cellulose-rich solid fractions to assess their 
hydrolysability using a commercial enzyme solution. 
We also carried out enzyme dosage studies on the OS-
isolated/pretreated cellulose fractions that performed 
best during hydrolysis, to compare the yields with their 
steam-pretreated counterparts.

Materials and methods
Pretreatment
Figure 1 shows a schematic of the batch OS pretreatment 
process used in our recently presented work on birch 
and spruce biomass fractionation (Nitsos et  al. 2016). 
A total of 24 cellulose-enriched biomass samples were 
obtained by varying the concentration of the acid catalyst 

(0 or 1 wt%  H2SO4), the duration of pretreatment (60 or 
103 min), the ethanol concentration (50 or 60 wt%), and 
the particle size (< 1 or < 4 mm). Table 1 gives the condi-
tions employed for biomass fractionation and the com-
position of the enriched biomass (Nitsos et  al. 2016). 
Steam-exploded (SE) birch (200 °C, 5 min and 0.14 wt% 
 H2SO4) and spruce (225  °C, 5  min and 0.5 wt%  H2SO4) 
solids were used as controls.

Enzymatic hydrolysis
Hydrolysis of the 24 samples with a dry matter content 
of 2% (w/v) was performed in cotton stoppered (and 
aluminum covered) 100  mL flasks, in a final volume of 
40 mL. Citrate buffer at pH 4.8 and 50 mM final concen-
tration was used to maintain the pH during hydrolysis. A 
stock solution of Cellic CTec2 (provided by Novozymes, 
Bagsværd, Denmark) was prepared, and appropriate 
volumes of the enzyme solution were used according 
to the dosages given in Table  1. A low enzyme loading 
of 20  mg enzyme preparation/gsolids (corresponding to 
3 FPU/gsolids) and an incubation time of 48  h was used 
during the initial screening experiments. Subsequently, 
dosages of 40, 80, 150, 300 and 400 mg enzyme prepara-
tion/gsolids were investigated. This preparation has a spe-
cific activity of 150 FPU/g (Wang et  al. 2014), and thus 
1  mg of enzyme preparation corresponds to 0.15 FPU. 
The flasks were incubated in a shaking water bath (OLS 

Fig. 1 Schematic illustration of the pretreatment of birch and spruce using the organosolv method to obtain cellulose-rich biomass
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200, Grant Instruments, Cambridge, UK), at 120  rpm 
(using an orbital arm of 9 mm radius) for 48 h at 50 °C. 
All experiments were performed in duplicate. The Analy-
sis ToolPak in Microsoft Excel was used to determine the 
p-values using the student’s t test (two samples assuming 
equal variances, with a significance level of probability 
set at p < 0.05).

Analytical determination
Samples obtained before and after hydrolysis (at 0 and 
48  h) were filtered through 0.2  µm nylon syringe filters 
and stored at − 20 °C until further analysis. The glucose 
released was determined using HPLC at 80  °C with a 
Rezex column and a refractive index detector. The eluent 
was 5 mM  H2SO4 and the flow rate 0.8 mL/min.

Calculation of saccharification yield
The saccharification yield is defined as:

where Cglucose is the concentration of glucose obtained by 
HPLC, in g/L, Vliquid is the volume of the liquid used in 
hydrolysis; 0.90 is the correction factor for the addition 
of a molecule of water during the hydrolytic reaction; 
xcellulose is the mass fraction of cellulose in the pretreated 
solids, and msolids is the mass of pretreated solids in the 
experiment. All the masses used in the calculations were 
on a dry basis.

η = 100 ∗

(

Cglucose ∗ Vliquid ∗ 0.90

msolids ∗ xcellulose

)

Results
Enzymatic hydrolysis of OS pretreated birch and spruce 
biomass
Nitsos and co-workers (2016) did an extensive charac-
terization of batch OS treated birch and spruce biomass 
including the hemicellulose and lignin fraction. Here we 
screened the pretreated biomass from such a process for 
their hydrolysability aiming to study their potential for 
further use in microbial conversion processes. The sac-
charification yield of OS pretreated birch and spruce are 
shown in Fig.  2. No statistically significant differences 
were found between samples of the same wood type with 
and without the acid catalyst, or between various parti-
cle sizes, or ethanol concentration, although the use of 
the acid catalyst led to somewhat higher saccharifica-
tion yields. However, differences between the wood types 
were statistically significant (p-value 0.00002 without 
acid, Fig. 2a and c; p-value 0.00032 with acid Fig. 2b and 
d). The maximum glucose concentration obtained after 
48 h was 3.1 g/L (i.e. a yield of 0.14  gglucose/gsolids) for birch 
and 1.6 g/L (0.076  gglucose/gsolids) for spruce.

Additional file  1: Figure S1 shows the effects of each 
pretreatment variable on the saccharification yield. In 
general, increasing the concentration of ethanol in OS 
pretreatment reduced the saccharification yield for birch 
(p-value 0.0061), but not for spruce. The acid catalyst had 
a positive effect on the saccharification yield of both OS-
pretreated birch and spruce. Particle size did not influ-
ence the saccharification yield for pretreated birch, but 
a reduction from < 4 to < 1 mm had a positive effect on 

Table 1 The conditions used in organosolv (OS) and steam explosion (SE) pretreatment together with the composition 
of the biomass obtained. From Nitsos et al. (2016)

Composition of untreated birch (by wt%): 34.7% cellulose, 31.2% hemicellulose, and 18.7% lignin; composition of untreated spruce: 37.6% cellulose, 27.4% 
hemicellulose, and 32.6% lignin; composition of steam exploded birch: 57.2% cellulose, 12.1% hemicellulose, and 27.1% lignin (Matsakas et al. 2018); composition of 
steam exploded spruce: 38.2% cellulose, 53.1% lignin

Biomass extracted with 50% (v/v) ethanol Biomass extracted with 60% (v/v) 
ethanol

Time 60 min, 182 °C 103 min, 182 °C 60 min, 182 °C

Particle size 1 mm 4 mm 1 mm 4 mm 1 mm 4 mm

H2SO4 (w/v) 0% 1% 0% 1% 0% 1% 0% 1% 0% 1% 0% 1%

Birch

 Cellulose 62.2 59.6 61.4 57.6 63.7 57.8 61.4 62.4 59.0 60.7 62.1 63.8

 Hemicellulose 3.0 0.5 4.6 0.3 2.6 0.4 2.7 0.2 3.3 1.1 4.3 1.1

 Lignin 16.0 24.1 14.6 21.8 17.5 25.9 15.8 23.7 16.8 15.7 13.8 16.0

 Total (wt%) 81.2 84.1 80.6 79.8 83.8 84.2 79.9 86.3 79.0 77.5 80.2 80.9

Spruce

 Cellulose 52.5 56.1 53.8 58.0 54.5 55.9 56.1 55.2 50.3 69.1 49.1 67.3

 Hemicellulose 5.0 2.0 6.4 2.4 5.6 3.5 7.3 2.8 13.2 1.2 14.5 2.8

 Lignin 29.9 31.7 26.3 29.8 28.4 37.8 25.8 40.9 23.7 25.0 26.0 24.2

 Total (wt%) 87.4 89.8 86.5 90.1 88.5 97.2 89.2 98.9 87.2 95.3 89.6 94.3



Page 4 of 8Raghavendran et al. AMB Expr  (2018) 8:114 

pretreated spruce. The pretreatment time did not seem to 
affect the saccharification yields significantly. An average 
saccharification yield of 18% (20% with SE) was obtained 
with OS-pretreated birch, and 6% (5% with SE) with 
spruce.

Enzyme dosage studies
The effect of varying the enzyme dosage on the enzymatic 
saccharification of selected samples of OS-pretreated 
birch and spruce was also studied. The pretreatment con-
ditions that gave the highest yield in the screening pro-
cess were employed, i.e. 50% ethanol, 1% acid, for birch, 
and 60% ethanol and 1% acid for spruce, both at a particle 
size of < 1 mm. The results of these studies are shown in 
Fig.  3a. Doubling the enzyme dosage more than tripled 
the saccharification yield for pretreated birch, while pre-
treated spruce exhibited a modest 2.4-fold increase in 
yield. Almost 100% saccharification was achieved for 
birch when applying 150  mg enzyme preparation/gsol-

ids whereas the highest saccharification yield obtained 
for spruce was 70%, when applying 400  mg enzyme 
preparation/gsolids. The highest glucose concentrations 

achieved were 16 and 8  g/L for pretreated birch and 
spruce, respectively. The saccharification yields from the 
batch OS-pretreated samples were compared with those 
from samples pretreated with SE (Fig. 3b). Doubling the 
enzyme dosage lead to a 2.3-fold increase in saccharifica-
tion yield for SE-pretreated birch and a 3.2-fold increase 
for SE-pretreated spruce. The maximum saccharifica-
tion yields obtained were 91% for SE-pretreated birch 
and 66% for SE-pretreated spruce, when applying 300 mg 
enzyme preparation/gsolids (45 FPU/gsolids).

Discussion
As forest-based industries play a vital role in the Swed-
ish economy, we focused on two woody raw materials: 
birch and spruce. Birch is a hardwood (angiosperm), 
widespread in the Northern Hemisphere. The lignin con-
tent varies between 18 and 25%, and consists of guaia-
cyl–syringyl units formed by the co-polymerization of 
coniferyl and sinapyl alcohols. Spruce, a softwood (gym-
nosperm), has a lignin content of more than 25%, and 
consists of guaiacyl units with a smaller proportion of 
unmethoxylated p-hydroxyphenyl units (Campbell and 

Fig. 2 Saccharification yields of batch OS-pretreated birch and spruce biomass at 2% solids loading using 20 mg of the enzyme preparation/gsolids; 
a, b Birch [without and with 1%  H2SO4 catalyst pretreated with 50 or 60% ethanol at 60 or 103 min for a particle size of < 1 or < 4 mm;]. c, d Spruce 
[without and with 1%  H2SO4 catalyst pretreated with 50 or 60% ethanol at 60 or 103 min for a particle size of < 1 or < 4 mm;]. See Table 1 for details 
of the pretreatment conditions. The results shown are the average of two experiments. Columns with dots indicate OS with acid catalyst
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Sederoff 1996). It is well documented that OS pretreat-
ment reduces the crystallinity of cellulose and enriches 
the cellulose fraction in the biomass through efficient 
delignification (Zhang et  al. 2009; Zhao et  al. 2009; Ju 
et al. 2014). High methane titers have been obtained by 
anaerobic digestion of OS-pretreated biomass (Matsakas 
et al. 2017). The superior quality of OS lignin, i.e. lower 
molecular weight and increased phenolic OH content 
(Nitsos et al. 2016), offers valorization through the pro-
duction of biochemicals or as green phenol substitutes 
(Benar et al. 1999; Ruiz-Dueñas and Martínez 2009).

High saccharification yield of pretreated biomass is 
a prerequisite for subsequent bioconversion processes. 
Lignin present in the pretreated biomass is known to 
interfere with the enzymatic hydrolysis by forming a 
lignin-carbohydrate complex (Berlin et al. 2006). Nitsos 
and co-workers (2016) showed that their OS pretreat-
ment resulted in a lignin removal efficiency of 69 and 

62% for birch and spruce respectively. In the present 
work, we extended the work of Nitsos and co-workers 
to correlate the pretreatment variables with the sac-
charification yield. OS pretreatment enhanced the 
enzymatic digestibility of birch more efficiently than 
spruce; 95% saccharification was achieved with birch 
with 80 mg (12 FPU) enzyme preparation/gsolids, while 
70% was attained in spruce with 400 mg enzyme prepa-
ration/gsolids (60 FPU) (Fig.  3a). To compare, Obama 
and co-workers (Obama et al. 2012) used OS pretreat-
ment of miscanthus, at a temperature of 170  °C, for 
60 min using 80% (v/v) ethanol + 1% (w/w)  H2SO4 and 
report a saccharification yield of ~ 55% at 40 IFPU of 
 Celluclast® 1.5 L/g of cellulose at a solids loading of 2% 
(w/v). It is likely that the high ethanol concentration 
they have used employed in the pretreatment prevented 
the complete hydrolysis of the biomass (compared 
to 95% for birch at 12 FPU and 56% for spruce at 45 

Fig. 3 Results of the enzyme dosage studies on birch and spruce biomass at 2% w/v loadings pretreated with a OS and b SE [composition of SE 
birch samples and the saccharification yields taken from Matsakas et al. (2018)]
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FPU at 2% solids loading in our study). Smit and Hui-
jgen (2017) used acetone–water (50% w/w) containing 
40 mM  H2SO4 at 140 °C and 120 min and report a sac-
charification yield of 78 and 16% for birch and spruce 
respectively at an enzyme loading of 10 FPU/gsolids 
(Accellerase TRIO) at 10% (w/v) solids loading (com-
pared to a saccharification yield of 95 and 34% for birch 
and spruce at 12 FPU/gsolids at 2% solids loading in our 
study). As the saccharification yield is affected by the 
OS pretreatment process conditions, the type of solvent 
used in the OS, the type of enzyme cocktail used, as 
well as the consistency of solids during the hydrolysis 
process in small scale, it is harder to make a direct com-
parison with values reported in the literature.

As the hemicellulose fraction contains higher lev-
els of glucuronoxylan (birch) or galactoglucomannan 
(spruce), the release of sugars of hemicellulosic origin 
was observed in birch and spruce respectively, during 
the saccharification process in samples not treated with 
the acid catalyst. This is an indication that the solubiliza-
tion of hemicellulose was incomplete, and that treatment 
with an acid catalyst is needed for the efficient removal 
of hemicellulose. Thus, acid catalyst results in increased 
hemicellulose solubilization, decreased lignin—by cleav-
ing the aryl-ether bonds (Sturgeon et  al. 2014), result-
ing in increased cellulose content and saccharification 
yields. A decrease in saccharification yield observed with 
increasing amounts of ethanol indicates that there is an 
optimal ethanol concentration that offers the highest 
saccharification yield. Contrarily, low ethanol concen-
trations result in increased water activity, which creates 
more acidic conditions and promotes the cleavage of the 
α and β linkages in lignin (McDonough 1993). The dif-
ference in the saccharification yields seen in spruce and 
birch is due to differences in the lignin chemistry (dif-
ferent composition) and the non-productive interac-
tion between the enzymes and lignin (Berlin et al. 2006). 
Few data are available on the effect of pretreatment time 
on the saccharification yield, but there is evidence that 
shorter pretreatment is favorable as the carbohydrate sol-
ubilization was not significantly increased when longer 
times were employed (Nitsos et al. 2016). In spruce, with-
out the acid catalyst, increasing the duration of pretreat-
ment decreases the saccharification yield, but the effect is 
reversed in the presence of the acid catalyst—increased 
saccharification yield with increased pretreatment time 
(Fig.  2c, d). Prolonged pretreatment might result in the 
formation of pseudo-lignin that could lead to an over-
estimation of lignin content and affect the accessibility 
of enzymes during enzymatic hydrolysis (Kumar et  al. 
2013). A retro-techno-economic analysis of the pretreat-
ment, hydrolysis and fermentation process would be 
able to ascertain the process boundaries for economic 

feasibility (Longati et  al. 2018) for further research and 
development.

In the final part of this study, OS pretreatment was 
compared with the traditional SE. Although the sacchari-
fication yield was at a comparable level for both SE and 
OS at the lower enzyme dosage (20 mg of enzyme prepa-
ration/gsolids) for birch, significant differences could be 
observed at 80 mg of enzyme preparation/gsolids (69% for 
SE vs. 93% with OS) as seen in Fig. 3a and b. In the case 
of spruce, the differences were less prominent. However, 
due to the differences in cellulose content between OS- 
and SE-pretreated woody biomass, the yield of glucose 
was higher following OS than SE (0.74 vs. 0.53, and 0.37 
vs. 0.24  gglucose/gsolids, with 150 mg enzyme preparation/
gsolids for birch and spruce, respectively). Thus, more glu-
cose can be released per gram of OS-pretreated birch 
biomass upon hydrolysis. For example, with 20 wt% of 
OS-pretreated birch, the amount of glucose released 
would be ~ 150  g/L (compared to ~ 106  g/L with SE). 
Upon fermentation by yeast, this would give a theoretical 
ethanol yield of ~ 77 g/L (54 g/L with SE), demonstrating 
the potential for OS pretreatment over SE. Even though 
the cellulose conversion yields are similar between OS 
and SE, OS has the added advantage that the hemicellu-
lose and lignin fraction can be collected as pure streams 
and could be utilized to produce other high-added value 
products, through chemical and biochemical routes.

In the present study, we used 2% w/v dry matter in the 
hydrolysis experiments, hence the theoretical amount 
of glucose that could be released is ~ 22 g/L. To achieve 
economically feasible titers of ethanol in a fermentation 
process (> 100 g/L), it is necessary to use high dry mat-
ter concentrations. As the aim of this study was to screen 
the pretreatment conditions, a low enzyme dosage and 
a low dry matter loading of 2% w/v were used as these 
are easier to handle and mix, leading to less experimental 
variation. Based on the maximum glucose concentration 
of 16 g/L (equivalent to 0.8  gglucose/gsolids) observed after 
the hydrolysis of OS-pretreated birch, we suggest that 
similar hydrolytic yields could be attained at higher con-
sistency using a free-fall mixer (Matsakas and Christa-
kopoulos 2013; Katsimpouras et  al. 2017b). However, 
spruce appears to be more recalcitrant, as the highest 
glucose concentration observed was 13 g/L (equivalent to 
0.52  gglucose/gsolids), and a saccharification yield of 70% at 
an enzyme dosage of 400 mg enzyme preparation/gsolids.

One of the main drawbacks of the current batch OS 
process is the downtime between the runs. Thus, we 
are currently developing a continuous mode process 
that combines batch OS with explosive decompression 
of the biomass, which we hope will decrease the resi-
dence time and open the cellulose structure to improve 
enzyme access (Seidel et al. 2017). Life cycle assessment 
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studies comparing the various pretreatment processes 
(Prasad et al. 2016) have shown that OS has no signifi-
cant negative impact on the environment compared 
to SE, although the  CO2 emission is higher due to the 
need to produce ethanol for the OS process (the etha-
nol can be distilled and recirculated, greatly reducing 
the net emission). Thus, OS appears to offer a promis-
ing method of pretreatment as the hydrolysate obtained 
is free from inhibitors, while simultaneously offering 
valorization of the hemicellulose and lignin stream. 
Retrofitting existing first-generation ethanol plants 
with the OS process to supply the sugar stream may 
help second-generation ethanol to become a commer-
cial reality.
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