
Superposition with Datatypes and Codatatypes

Downloaded from: https://research.chalmers.se, 2025-05-17 13:19 UTC

Citation for the original published paper (version of record):
Blanchette, J., Peltier, N., Robillard, S. (2018). Superposition with Datatypes and Codatatypes.
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), 10900 LNAI: 370-387.
http://dx.doi.org/10.1007/978-3-319-94205-6_25

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology. It
covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004. research.chalmers.se is
administrated and maintained by Chalmers Library

(article starts on next page)

Superposition with Datatypes and Codatatypes

Jasmin Christian Blanchette1,2, Nicolas Peltier3, and Simon Robillard4(�)

1 Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
2 Max-Planck-Institut für Informatik, Saarland Informatics Campus, Saarbrücken, Germany

3 Univ. Grenoble Alpes, CNRS, Grenoble INP, LIG, F-38000 Grenoble, France
4 Chalmers University of Technology, Gothenburg, Sweden

simon.robillard@chalmers.se

Abstract. The absence of a finite axiomatization of the first-order theory of data-
types and codatatypes represents a challenge for automatic theorem provers. We
propose two approaches to reason by saturation in this theory: one is a conser-
vative theory extension with a finite number of axioms; the other is an extension
of the superposition calculus, in conjunction with axioms. Both techniques are
refutationally complete with respect to nonstandard models of datatypes and non-
branching codatatypes. They take into account the acyclicity of datatype values
and the existence and uniqueness of cyclic codatatype values. We implemented
them in the first-order prover Vampire and compare them experimentally.

1 Introduction

The ability to reason about inductive and coinductive datatypes has many applications in
program verification, formalization of the metatheory of programming languages, and
even formalization of mathematics. Inductive datatypes, or simply datatypes, consist of
finite values freely generated from constructors. Coinductive datatypes, or codatatypes,
additionally support infinite values. Non-freely generated (co)datatypes are also useful.
All of these variants can be seen as members of a single unifying framework (Section 2).

It is well known that the first-order theory of datatypes cannot be finitely axioma-
tized. Distinctness, injectivity, and exhaustiveness of constructors are easy to axioma-
tize, but acyclicity is more subtle, and for induction we would need an axiom schema or
a second-order axiom. Codatatypes are also problematic: Besides a coinduction prin-
ciple that is dual to induction, they are characterized by the existence of all possible
infinite values, corresponding intuitively to infinite ground terms. Both datatypes and
codatatypes represent a challenge for automatic theorem provers.

Superposition [2] is a highly successful calculus for reasoning about first-order
clauses and equality. There has been some work on extending superposition with in-
duction [10, 24], including by Kersani and Peltier [11], and on the axiomatization of
datatypes, including by Kovács, Robillard, and Voronkov [12]. In this paper, we pro-
pose both axiomatizations and extensions of the superposition calculus to support freely
and non-freely generated datatypes as well as codatatypes.

We first focus on a conservative extension of the theory with a finite number of first-
order axioms that capture the basic properties of constructors, acyclicity of datatype val-
ues, uniqueness of cyclic (ω-regular) codatatype values, and existence of all codatatype
cyclic values (Section 3). These axioms admit nonstandard models; for example, for the

Peano-style natural numbers freely generated by zero : nat and suc : nat→ nat, we can-
not exclude the familiar nonstandard models of arithmetic, in which arbitrarily many
copies of Z may appear besides N. Similarly, the domains interpreting codatatypes are
not guaranteed to contain all infinite acyclic values.

The axiomatization of codatatypes up to a suitable notion of nonstandard models
constitutes the first theoretical contribution of this paper. Our second theoretical contri-
bution is an extension of superposition with inference rules to reason about datatypes
and codatatypes (Section 4). This is inspired by an acyclicity rule that Robillard pre-
sented at the Vampire 2017 workshop [22]. The main distinguishing feature of our rules
is that they are (in combination with a few axioms) refutationally complete and their
side conditions have some new order restrictions, helping prune the search space. On
the other hand, our approach also requires a relaxation of the side conditions of the su-
perposition rule: For clauses of the form c(s̄)≈ t ∨ C, where c is a constructor and the
first literal is maximal, inferences onto t must be performed, as in ordered paramodula-
tion [1]. In addition, we propose calculus extensions to reason about codatatypes.

Both the theory extension and the calculus extension are designed to be refuta-
tionally complete with respect to nonstandard models of datatypes and nonbranching
codatatypes—codatatypes whose constructors have at most one corecursive argument
(Section 5). Due to space restrictions, we can only briefly sketch the proof in this paper.
We refer to our technical report [8] for detailed justifications and further explanations.

The calculus extension can be integrated into the given clause algorithm that forms
the core of a prover’s saturation loop (Section 6). The inference partners for the acyclic-
ity and uniqueness rules can be located efficiently. We implemented both the axiomatic
and the calculus approaches in the first-order prover Vampire [13] and compare them
empirically on Isabelle/HOL [17] benchmarks and on crafted benchmarks (Section 7).

2 Syntax and Semantics

Our setting is a many-sorted first-order logic. We let τ,υ range over simple types (sorts),
s, t,u,v range over terms, a,b,c, . . . range over function symbols, x,y,z range over vari-
ables, and C,D,E range over clauses. Literals are atoms of the form s ≈ t or ¬ s ≈ t,
also written s 6≈ t. Clauses are finite disjunctions of literals, viewed as multisets. Sub-
stitutions are written in postfix notation, with sσθ = (sσ)θ. The notation x̄ represents a
tuple (x1, . . . , xm), and [m,n] denotes the set {m,m+1, . . . ,n}, where m≤ n+1.

A position p of type τ in t is a position in t such that t|p is of type τ. If s, t are
terms and P is a set of positions of the same type as s in t, then t[s]P denotes the term
obtained from t by replacing the subterms occurring at a position in P by s: t[s]P := s if
ε ∈ P; t[s]P := t if P =∅; and f(t1, . . . , tn)[s]P := f(ti[s]Pi)i∈[1,n], with Pi = {q | i.q ∈ P}
otherwise. Given two positions p and q, we write p < q if p is a proper prefix of q. Let
Ctr be a distinguished finite set of function symbols, called constructors. We reserve the
letters c,d,e for constructors. A constructor position in t is a position q in t such that
for every p < q, the head symbol of t|p is a constructor.

Definition 1. The set of constructor contexts of profile τ→ υ is defined inductively as
follows: (1) if t is a term of type υ, then t is a constructor context of profile τ→ υ;
(2) if Γ1, . . . ,Γn are constructor contexts of profile τ→ τi and c : τ1×·· ·× τn→ υ is a

2

constructor, then c(Γ1, . . . ,Γn) is a constructor context of profile τ→ υ; (3) the hole • is
a constructor context of profile υ→ υ.

Every constructor context can be written as Γ[•]P, where P is a set of constructor
positions of the same type in Γ, denoting the positions of • in Γ. It is empty if ε∈ P, and
constant if P =∅. We write Γ[•]p as an abbreviation for Γ[•]{p}, and we write Γ[t]P to
denote the term obtained by replacing every position of P by the term t in the context
Γ[•]P. Moreover, we write τ B υ (“υ depends on τ”) if there exists a constructor of
profile τ1×·· ·×τn→ υ, with τ= τi for some i ∈ [1,n], and τ∼ υ if τB∗ υ and υB∗ τ.

The axioms and rules in this paper are parameterized by the following sets. Let
Tind and Tcoind be disjoint sets of types, intended to model datatypes and codatatypes,
respectively, and assume that the codomain of every constructor is in Tind∪Tcoind. Let
Ctrinj ⊆ Ctr be a set of constructors, denoting injective constructors. Let ./ be a binary
symmetric and irreflexive relation among constructors; c ./ d indicates that terms with
head symbol c are always distinct from terms with head symbol d.

We introduce some properties of interpretations that are intended to capture some
of the properties of (co)datatypes. An interpretation I satisfies

• Exh (exhaustiveness) iff, for every type τ ∈ Tind∪Tcoind, I |=∨m
i=1∃x̄i. x≈ ci(x̄i),

where x is a variable of type τ, {c1, . . . ,cm} is the set of constructors of codomain τ,
and x̄i is a vector of pairwise distinct variables of the appropriate length and types;
• Inf (infiniteness) iff, for every type τ ∈ Tind∪Tcoind, the domain of τ is infinite;
• Acy (acyclicity, for datatypes) iff, for every type τ ∈ Tind and for every nonempty

constructor context Γ[•]p of profile τ→ τ, where p is a position, we have I |=
Γ[x]p 6≈ x, where x is a variable of type τ not occurring in Γ;
• FP (existence and uniqueness of fixpoints, for codatatypes) iff, for every type τ ∈
Tcoind, for every nonempty constructor context Γ[•]P : τ→ τ, I |= (∃x.Γ[x]P≈ x)
∧ (Γ[x]P ≈ x∧Γ[y]P ≈ y =�⇒ x≈ y), where x,y are fresh variables of type τ;
• Dst (distinctness of constructors) iff, for every pair of constructors c, d of the same

codomain such that c ./ d, I |= c(x̄) 6≈ d(ȳ) where x̄ and ȳ are disjoint vectors of
pairwise distinct variables of the appropriate length and types;
• Inj (injectivity) iff, for every n-ary constructor c ∈ Ctrinj and pairwise distinct vari-

ables x1, . . . , xn, y1, . . . ,yn of the appropriate types, I |= c(x1, . . . , xn)≈ c(y1, . . . ,yn)
=�⇒

∧n
i=1 xi ≈ yi.

Most datatypes occurring in practice are recursive, so condition Inf is usually satis-
fied. In particular, it is the case for any nonempty freely generated (co)datatype τ such
that τB+ τ. Conditions Dst and Inj are defined by finite sets of axioms, but not condi-
tions Acy and FP. In Section 3, we introduce conservative extensions of the considered
formula so that conditions Acy and FP are satisfied. Then in Section 4, we replace some
of these axioms by inference rules.

We assume that τ 6∼ υ whenever τ ∈ Tind and υ ∈ Tcoind. Intuitively, this condition
means that a datatype cannot be defined by mutual recursion with a codatatype, which
is a very natural restriction [7]. If this condition does not hold, it is easy to see that there
is no interpretation that satisfies both Acy and FP. On the other hand, we may have
τB+ υ or υB+ τ with τ∈ Tind and υ∈ Tcoind. There may also exist types not belonging
to Tind∪Tcoind, and the types in Tind∪Tcoind may depend on them. Finally, we assume
that for each type τ, there exists a ground term t of type τ.

3

3 Axioms

The axioms Exhaust for exhaustiveness, Dist for distinctness, and Inj for injectivity cor-
respond to the formulas used to express the properties Exh, Dst, and Inj in Section 2.
The other axioms are introduced below.

For all types τ∼ υ, we introduce a predicate symbol subτυ on τ×υ together with the
following axioms, where τ∼ υ∼ υ′ and c : · · ·×υ×·· · → υ′ is a constructor:

Sub1: subττ(x, x) Sub2: ¬ subτυ(x,y) ∨ subτυ′(x,c(z̄,y, z̄′))
NSub: ¬ subυ′τ (c(z̄, x, z̄′), x) if τ ∈ Tind

Let Sub = Sub1 ∧Sub2. The least fixpoint model of Sub is the usual subterm relation
for constructor terms. The axiom NSub states that no term of a type in Tind may occur
at a nonempty constructor position in itself.

Definition 2. An interpretation I is sub-minimal if, for all τ∼ υ, it satisfies the equiv-
alence subτυ(x,y)⇐⇒

∨
{∃z̄. y≈ Γ[x]p | Γ[•]p is a constructor context of profile τ→ υ},

where z̄ denotes the vector of variables in Γ that are distinct from x,y.

For every pair of types τ,υ ∈ Tcoind with τ ∼ υ, we introduce a type τ υ to denote
contexts Γ[•]P of profile υ→ τ. Let holeυ be a constant of type υ υ, denoting an empty
context. All constructors c : τ1×·· ·×τn→ τ and types υ such that ∃iυB∗ τi are asso-
ciated with new n-ary constructors c υ : υ1×·· ·×υn→ τ υ, where for every i ∈ [1,n],
υi = τi υ if υ B∗ τi and υi = τi otherwise. Let appτυ : τ υ×υ→ τ, cycυ : υ υ→ υ, and
cstτυ : τ→ τ υ be new function symbols. Intuitively, if y denotes the context Γ[•]P, then
app(y, x) denotes the term Γ[x]P, cyc(y) denotes the fixpoint of Γ[•]P, and cstτυ denotes
a constant context (i.e., a context Γ[•]P with P =∅).

We consider the following axioms, where υ ∈ Tcoind and x, y, xi, zi are pairwise
distinct variables of the appropriate types:

App1: appτυ(cst
τ
υ(x),y)≈ x App2: appυυ(holeυ,y)≈ y

App3: appτυ(c υ(x1, . . . , xn),y)≈ c(t1, . . . , tn)
if c : τ1×·· ·×τn→ τ is a constructor and ∃iυB∗ τi
with ti = appτi

υ (xi,y) if υB∗ τi and ti = xi otherwise
Uniq: x≈ holeυ ∨ y 6≈ appυυ(x,y) ∨ z 6≈ appυυ(x,z) ∨ y≈ z
Cycl: cycυ(x)≈ appυυ(x,cycυ(x))

Hole1: holeυ 6≈ cstυυ(x) Hole2: holeυ 6≈ c υ(x1, . . . , xn) if c : · · · → υ

Let App= App1∧App2∧App3 and Hole= Hole1∧Hole2.

Example 3. Let c : τ0× υ→ τ be a constructor, with υ B∗ τ0. Then the profile of c υ
is τ0 υ× υ υ→ τ υ. The term t := c υ(cst

τ0
υ (x),holeυ) encodes the constructor context

c(x,•). If a : υ, then appτυ(t,a) =App c(x,a), where =App denotes equality modulo App
(i.e., s =App t⇐⇒ App |= s≈ t).

Lemma 4 (Soundness of the Axioms). If interpretation I satisfies Acy and FP, there
exists a sub-minimal extension of I validating Sub, NSub, App, Uniq, Cycl, and Hole.

Lemma 5 (Completeness of the Axioms). Any model of the set of axioms {Sub,NSub,
App,Uniq,Cycl,Hole} fulfills Acy and FP.

4

Lemma 6 (Completeness of the Theory). Let T be the theory of free constructors, as
defined by the properties Exh, Inf, Acy, FP, Dst, and Inj, with Ctrinj = Ctr and c ./ d for
all distinct constructors c and d. If S is a first-order sentence in which the only symbols
occurring are constructors and equality (≈), then either T |= S or T |= ¬S.

Comon and Lescanne [9] provide a decision procedure for equational formulas over
finite and infinite trees, which correspond respectively to freely generated datatypes and
codatatypes. It is based on a collection of equivalence-preserving transformation rules
for eliminating quantifiers and normalizing the formulas. The set of formulas T = {Dist,
Inj,Exhaust,Sub,NSub,App,Uniq,Cycl,Hole} forms the axiomatization of a conserva-
tive extension of the theory of (co)datatypes. We can thus derive a decision procedure
for testing satisfiability of first-order sentences S containing only constructors symbols
and the equality predicate in the above theory. By interleaving the steps of two fair satu-
ration procedures of the superposition calculus, the first over S∪T and the second over
¬S∪T , one of the two attempts is guaranteed to derive a refutation in finite time.

4 Inference Rules

As an alternative to the above axiomatization, we propose an extension of the superpo-
sition calculus [2] with dedicated rules. Unless otherwise noted, the usual conventions
of superposition apply. The standard notion of redundancy is used, with respect to the
theory of equality. The notation s 6≈ t indicates that the literal is selected, or that it is
maximal in its clause, after the substitution σ has been applied, and nothing is selected,
whereas s≈ t indicates that the literal is strictly maximal in its clause, after σ, and no
literal is selected. We let [¬] s≈ t stand for either s≈ t or s 6≈ t.

Superposition. We denote by SP the usual rules of the superposition calculus with a
slight relaxation: Superposition inside the nonmaximal term of an equation is allowed
if the head of the maximal term is a constructor. This ensures that in the rewrite system
built from saturated clause sets for defining a model, the right-hand side of every rule
is irreducible if the head of the left-hand side is a constructor. Thus, our superposition
rule is as follows:

u≈ v ∨D [¬] s[u′]≈ t ∨ C
Sup

σ([¬] s[v]≈ t ∨D ∨ C)
where σ = mgu{u ?

= u′}, u′ is not a variable, and σ(u) 6� σ(v); moreover, σ(s[u′]) 6�
σ(t) if [¬] is ¬ or if the head symbol of t is not a constructor. The equality resolution
and equality factoring rules are the standard ones.

Infiniteness. The next rule captures infiniteness of (co)datatypes:(∨n
i=1 x≈ ti

)
∨ C

Inf
C

if x is a variable of a type τ ∈ Tind∪Tcoind and does not occur in C or t1, . . . , tn.

Lemma 7 (Soundness of Inf). Let N be a clause set, and let I be a model of N satis-
fying Inf. If C is derived from N by Inf, then I |= C.

5

Distinctness. The distinctness property of constructors takes the form of two rules:

c(s̄)≈ t ∨ C
Dist1Cσ

if σ= mgu{t ?
= d(x̄)}, where c ./ d and x̄ are fresh pairwise distinct variables; and

d(t̄)≈ u′ ∨D c(s̄)≈ u ∨ C
Dist2

(C ∨D)σ

if c ./ d, σ= mgu{u ?
= u′}, c(s̄)σ 6� uσ, and d(t̄)σ 6� u′σ.

Proposition 8 (Soundness of Dist1 and Dist2). Let N be a clause set, and let I be a
model of N satisfying Dst. If a clause C is derived from N by Dist1 or Dist2, then I |= C.

Remark 9. If t is not a variable, the premise of Dist1 is redundant after the rule is ap-
plied. Unifying t with c(x̄) can be useful when t is a variable. For example, from the
clause c(x)≈ x, we can derive � by unifying x with d(ȳ), where d ./ c.

Injectivity. The injectivity property of constructors is also captured by two rules:

c(s1, . . . , sm)≈ t ∨ C
Inj1

(si ≈ xi ∨ C)σ

if i ∈ [1,m], c ∈ Ctrinj, σ= mgu{t ?
= c(x1, . . . , xm)}, and x1, . . . , xm are fresh; and

c(s1, . . . , sm)≈ u′ ∨D c(t1, . . . , tm)≈ u ∨ C
Inj2

(si ≈ ti ∨ C ∨D)σ

if i ∈ [1,m], c ∈ Ctrinj, σ= mgu{u ?
= u′}, uσ 6� c(s̄)σ, and u′σ 6� c(t̄)σ.

Proposition 10 (Soundness of Inj1 and Inj2). Let N be a clause set, and let I be a
model of N satisfying Inj. If a clause C is derived from N by Inj1 or Inj2, then I |= C.

Remark 11. If Inj1 is applied on every argument i ∈ [1,m] and t is not a variable, the
premise becomes redundant and can be removed. Unifying t with the term c(x1, . . . , xm)
is useful when t is a variable. For example, given the clause c(x,a) ≈ x, we can derive
a≈ x2 by Inj1, from which � can be derived by Inf.

Acyclicity. The acyclicity rule attempts to detect constraints that would force a datatype
value to be cyclic. The simplest example is a clause of the form Γ[s] ≈ s, where Γ is a
nonempty constructor context. More generally, the clauses

s1 ≈ Γ1[s2] s2 ≈ Γ2[s3] · · · sn−1 ≈ Γn−1[sn] sn ≈ Γn[s1]

entail a constraint s1 ≈ Γ1[Γ2[· · · [Γn−1[Γn[s1]]] · · ·]]. Moreover, the rule must support
variables and nonunit clauses, and it should be finitely branching if we want to incorpo-
rate it in saturation-based provers—i.e., the set of clauses derivable from a given finite
set of premises by a single rule should be finite. Finally, clauses of the form Γ[x]≈ s∨ C,
where x occurs in C, are problematic, because there are infinitely many instantiations
of x that can result in a cyclic constraint: s, c(s), c(c(s)), etc. To cope with all these
subtleties, we first need to develop a considerable theoretical apparatus.

6

Definition 12. A chain built on a nonempty sequence of clauses (C1, . . . ,Cn) under con-
dition D is a sequence (t1, . . . , tn+1) of terms satisfying the following conditions:

1. for every i ∈ [1,n], Ci is of the form si ≈ Γi[s′i+1]pi ∨ C ′i , where pi is a nonempty
constructor position in Γi;

2. there exists a substitution σ such that either σ is an mgu of E = {s′i
?
= si | i ∈ [2,n]}

or σ is an mgu of {s′n+1
?
= s1} ∪ E;

3. ti = siσ for i ∈ [1,n] and tn+1 = s′n+1σ;
4. D =

∨n
i=1 C ′iσ;

5. type(t1)∼ ·· · ∼ type(tn+1);
6. (Γi[s′i+1]pi ≈ si)σ is strictly maximal in Ciσ, and no literal is selected in Ciσ;
7. siσ 6� Γi[s′i+1]p1σ, for i ∈ [1,n];
8. for every i ∈ [2,n], s′i is not a variable.

The expression Γ1[· · · [Γn[•]pn] · · ·]p1σ is the chain’s constructor context, σ is its mgu,
and p1. · · · .pn is its constructor position. If t1 = tn+1, the sequence is called a cycle.
A chain is direct if ti 6= tj for all i, j ∈ [1,n+ 1] with i 6= j and {i, j} 6= {1,n+ 1}, and
variable-ended if s′n+1 is a variable.

Remark 13. Conditions 5 to 8 are optional. They help prune the search space.

Definition 14. A chain (t1, . . . , tn+1) built on a clause sequence (C1, . . . ,Cn) is an exten-
sion of an acyclic chain (s1, . . . , sm+1) if n≥ m, the latter chain is built on (C1, . . . ,Cm),
and the same literals and positions are considered in each clause Ci in both chains.

Since chains can be arbitrarily long, we need to impose some additional conditions
to prune them and ensure that the rules are finitely branching. Let Keep be a property
of chains that fulfills the following requirements:

(i) if a chain t̄ does not satisfy Keep, no extension of t̄ satisfies Keep;
(ii) for every finite clause set N, the set of chains built on a sequence of renamings of

clauses in N and satisfying Keep is finite;
(iii) for every cycle (t1, . . . , tn, t1), there exists a chain (s1, . . . , sm) with m≤ n satisfying

Keep such that for some k, the cycle (t1+k, . . . , tn+k, t1+k) (with ti := ti−n if i > n) is
an extension of (s1, . . . , sm).

For example, Keep can be defined as the set of chains built on clauses Ci that are pair-
wise distinct modulo renaming and such that C1 is the most recently processed clause.
This is the definition we use in our description of the extended saturation loop (Sec-
tion 6) and in the implementation in Vampire.

Remark 15. Condition (i) is essential in practice, to ensure that the chains can be incre-
mentally constructed in an efficient way, because it ensures that the construction can be
stopped when a prefix not satisfying Keep is obtained. Condition (ii) ensures that the
rule is finitely branching. Condition (iii) is essential for completeness.

Definition 16. A chain of length n is eligible if it is variable-ended and n = 1, or if it is
not variable-ended, it satisfies Keep, and either it is a cycle or there exists an extension
of length n+1 that does not satisfy Keep.

7

Remark 17. The conditions on eligible chains are the strongest ones preserving com-
pleteness, but they are not necessary for soundness.

The acyclicity rule follows:
C1 · · · Cn

Acycl
D ∨ E

if there exists a direct, eligible chain (t1, . . . , tn+1) built on (C1, . . . ,Cn) under condition
D and either t1 = tn+1 and E =∅ or t1 6= tn+1 and E = ¬sub(t1, tn+1)

Intuitively, the existence of the chain guarantees (if D is false) that there exists a
nonempty constructor context Γ[•]p such that t1 ≈ Γ[tn+1]p holds. If t1 = tn+1, this con-
tradicts acyclicity. Otherwise, we deduce that t1 cannot occur at a constructor position
inside the constructor term corresponding to tn+1; hence sub(t1, tn+1) is false.

Lemma 18 (Soundness of Acycl). Let N be a clause set, and let I be a sub-minimal
model of N satisfying Acy. If C is derived from N by Acycl, then I |= C.

Uniqueness of Fixpoints. The uniqueness rule also depends on the notion of chain:

C1 · · · Cn
Uniq

D ∨
(∨

p∈P u|p 6≈ app(sp, t1)
)
∨ u′ 6≈ z ∨ z≈ t1

if there exists an eligible chain (t1, . . . , tn+1) of constructor context Γ[•]q built on (C1,
. . . ,Cn) under condition D and the following requirements are met:

1. u = Γ[tn+1]q;
2. P is the set of prefix-minimal positions p of some type τ∼ type(t1) in u with p 6< q;
3. for every p ∈ P, sp is a fresh variable of the appropriate context type;
4. u′ is obtained from u by replacing all terms at a position p ∈ P by app(sp,z).

Intuitively, the existence of the chain ensures (if D is false) that t1 ≈ Γ[tn+1]q. If
t1 = tn+1, we could derive y 6≈ Γ[y]q ∨ y ≈ t1 by uniqueness. However, this would
not be sufficient for completeness. First, t1 may be distinct from tn+1, but we may
have tn+1 = ∆[t1]Q, for some constructor context ∆, in which case we should derive
y 6≈ Γ[∆[y]Q]q ∨ y ≈ t1 instead. Second, t1 may also occur at other positions in Γ. To
capture all these cases using a finitely branching rule, we introduce new variables sp
whose purpose is to denote the context Γp such that Γp[t1] = u|p. (If t1 does not occur
inside u|p, then Γp is constant.)

Example 19. From the clause a ≈ c(b, x), using the chain (a, x), with the constructor
context c(b,•), we derive

b 6≈ app(x1,a) ∨ x 6≈ app(x2,a) ∨ z 6≈ c(app(x1,z),app(x2,z)) ∨ z≈ a

Then u = c(b, x) and P = {1,2}.
From the clauses a≈ c(b,a) and b≈ d(a,a), using the chain (a,b,a), with the con-

structor context c(d(a,•),a), we derive

a 6≈ app(x1.1,a) ∨ a 6≈ app(x1.2,a) ∨ a 6≈ app(x2,a)
∨ z 6≈ c(c(app(x1.1,z),app(x1.2,z)),app(x2,z)) ∨ z≈ a

In this case, u = c(d(a,a), x) and P = {1.1,1.2,2}.

8

Lemma 20 (Soundness of Uniq). Let N be a clause set, and let I be a model of N ∪
{App,Hole} satisfying FP. If C is derived from N by Uniq, then I |= C.

We also introduce the following optional simplification rule:

Γn[· · · [Γ1[s′]P] · · ·]P ≈ s ∨ C
Compr

(Γ1[s]P ≈ s ∨ C)σ

where s and s′ are terms of the same type τ∈ Tcoind and P is a nonempty set of construc-
tor positions in Γi, for i ∈ [1,n], such that ε 6∈ P, and σ= mgu{s ?

= s′, Γ1
?
= · · · ?

= Γn}.

Proposition 21 (Soundness of Compr). Let N be a clause set, and let I be a model of
N satisfying FP. If D is derived from N by Compr, then I |=D.

5 Refutational Completeness

We establish the refutational completeness of the calculus presented in Section 4. This
result ensures that the axioms for distinctness, injectivity, and acyclicity (NSub) may be
omitted. The axiom Uniq may also be omitted in some cases, formally defined below.
The axiom Sub is still needed since it is used in the completeness proof for Acycl.

If N 63 � is a clause set saturated under SP , then RN denotes the set of rewrite
rules constructed as usual from N and →RN denotes the (one-step) reduction relation.
We refer to the literature [2, 16] for details about the construction of RN . The notation
MN denotes the model of N defined by the congruence ∗←→RN on ground terms.

We first establish some results about the form of the rules in RN .

Proposition 22. Let N be a clause set saturated under SP and Inf. Let u≈ v ∨ C ∈ N,
and let θ be a substitution such that uθ� vθ, (u≈ v)θ� Cθ, andMN 6|= Cθ. If type(u)∈
Tind∪Tcoind, then u is not a variable.

Corollary 23. Let N be a clause set saturated under SP and Inf. For every rule c(t̄)
→RN s in RN , where c is a constructor, s is RN-irreducible.

Lemma 24 (Infiniteness). Let N be a clause set saturated under SP and Inf. If � /∈ N,
thenMN satisfies Inf.

Lemma 25 (Distinctness). Let N be a clause set saturated under SP , Dist1, Dist2, and
Inf. For all ground terms a = c(ā) and b = d(b̄) such that c ./ d, we have a 6 ∗←→RN b.

Lemma 26 (Injectivity). Let N be a clause set saturated under SP , Inf, Inj1, and Inj2.
For all ground terms a = c(a1, . . . ,an) and b = c(b1, . . . ,bn) with c∈ Ctrinj and such that
ai 6
∗←→RN bi for some i ∈ [1,n], we have a 6 ∗←→RN b.

The completeness proof for acyclicity requires further definitions and results.

Definition 27. Let I be an interpretation and t be a term. A constructor context Γ[•]p
is a minimal cyclicity witness for t and I if it is of the same type as t, p is a position
of the same type as t in Γ, I |= t ≈ Γ[t]p, and |q| ≥ |p| for every position q 6= ε and
constructor context ∆[•]q such that I |= t ≈ ∆[t]q.

9

Proposition 28. Let (t1, . . . , tn, t1) be a cycle of constructor context Γ[•]p for a clause
set N under condition D. If I |= N ∪{¬Dσ}, and Γ[•]p is a minimal cyclicity witness
for t1σ and I , then (t1, . . . , tn, t1) is direct.

Lemma 29. Let t : τ and s : υ be ground terms with τ ∼ υ. Let Γ[•]p be a ground
constructor context of type τ, where p is a position of type υ in Γ. Let N be a clause
set saturated under SP and Inf. Assume that t, s, and Γ|p′ are RN-irreducible, for every
position p′ 6≤ p. If MN |= Γ[s]p ≈ t, then RN contains n rules Γi[ai+1]pi →RN ai, for
i ∈ [1,n], with Γ[s]p = Γ0[Γ1[· · · [Γn[an+1]pn] · · ·]p1]p0 , p0.p1. · · · .pn = p, an+1 = s, and
t = Γ0[a1]p0 .

Lemma 30 (Acyclicity). If Sub⊆ N and N 63 � is saturated under SP , Acycl, and Inf,
thenMN satisfies condition Acy.

Remark 31. The Inf rule is needed for completeness. For example, it is clear that the
clause x≈ a ∨ x≈ b contradicts acyclicity, but no contradiction can be derived without
using Inf. The relaxation of the application conditions of Sup is also essential. Consider
the set N = {a1≈ c(a2), a2≈ a3, a3≈ c(a1)}, with c(. . .)� ai+1� ai. It is clear that N is
saturated without the relaxation, and N contradicts acyclicity, since N |= a1 ≈ c(c(a1)).
With the relaxation, Sup derives the clause a2 ≈ c(a1); then Acycl exploits the cycle
(a1,a2,a1) to derive �.

For the Uniq rule, we provide a restricted completeness result, under the assumption
that the considered constructor context contains at most one occurrence of •.
Lemma 32 (Uniqueness of Fixpoints). If App⊆ N and N 63� is saturated under SP ,
Uniq, and Inf, thenMN |= x ≈ Γ[x]r ∧ y ≈ Γ[y]r ⇒ x ≈ y for every constructor context
of the form Γ[•]r of type τ ∈ Tcoind, where r is a nonempty position of type τ in Γ.

Definition 33. A signature is coinductively nonbranching if for every constructor c :
τ1×·· ·×τn→ τ such that τ ∈ Tcoind, there exists at most one i ∈ [1,n] such that τi ∼ τ.

For example, the signature is coinductively nonbranching for infinite streams and pos-
sibly infinite lists, but not for infinite binary trees.

Corollary 34 (Fixpoints). Assume that the signature is coinductively nonbranching. If
Cycl∪App ⊆ N and N 63 � is saturated under SP , Uniq, and Inf, then MN satisfies
condition FP.

Example 35. Corollary 34 does not hold for arbitrary signatures. The clause set {a ≈
c(d(a,b)), b≈ e(d(a,b)), a′ ≈ c(d(a′,b′)), b′ ≈ e(d(a′,b′)), d(a,b) 6≈ d(a′,b′)} contra-
dicts FP, because d(a,b) and d(a′,b′) are both solutions of x≈ d(c(x),e(x)). However,
the Uniq rule applies only with constructor contexts of head symbol c (if the chain starts
with a or a′) or e (if it starts with b or b′).

6 Saturation Procedure

The inference rules of the calculus presented in Section 4 are all finitely branching,
provided that the eligibility criterion is applied for the Acycl and Uniq rules. As a result,
saturation of a clause set can be carried out using standard saturation procedures. These
generally work by maintaining a set of passive clauses that initially contains all the

10

clauses to saturate and a set of active clauses that is initially empty. The algorithm
heuristically chooses a passive clause that becomes the given clause, moves it to the
active clauses, and performs all possible inferences between it and the active clauses.
Conclusions are added to the set of passive clauses, and the procedure is iterated until
� is derived, or until the set of passive clauses is empty.

To improve search, it is useful to distinguish between simplifying rules and gener-
ating rules. In simplifying rules, at least one of the premises is redundant with respect
to the conclusion. The Inf rule is simplifying, as well as the Dist1 and Inj1 rules when the
term t is not a variable, and the Acycl rule when there is only one premise and t1 = tn.

In addition to the calculus, we propose the following simplifying rules to eliminate
theory tautologies:

c(s̄) 6≈ d(t̄) ∨ C
Dist−∅

s 6≈ Γ[s] ∨ C
Acycl−

∅

where c ./ d, Γ[•] is a nonempty constructor context, and type(s) ∈ Tind. Moreover, the
following rule applies injectivity of c ∈ Ctrinj to simplify literals:

c(s1, . . . , sn) 6≈ c(t1, . . . , tn) ∨ C
Inj−(∨n

i=1 si 6≈ ti
)
∨ C

The soundness of Inj− follows from c’s being a function symbol, but since it is also
injective, the premise is redundant with respect to the theory. We conjecture that the
addition of these simplification rules preserves refutational completeness.

If all constructors are free (i.e., Ctrinj = Ctr and c ./ d holds for all distinct con-
structors c and d), by applying the above rules eagerly, we also guarantee that in any
literal [¬]s≈ t in an active clause, at most one of s or t has a constructor for head sym-
bol, as (dis)equalities between constructor terms will have been simplified directly after
clause generation. This invariant enables a few optimizations in the implementation of
the generating rules, notably during the detection of chains.

The relaxation of the application conditions of the Sup rule increases the number
of clauses it must generate and may hence be detrimental to the search. We can reduce
the incidence of this scenario by choosing a term order that considers constructors as
smaller than non-constructors. For path orders, we can choose a symbol precedence �
such that f � c for all non-constructor symbols f and constructors c.

To implement the Acycl and Uniq rules, we must be able to efficiently detect eligi-
ble chains among the set of active clauses. Testing all subsets of the active clauses is
impractical, and the detection of a chain requires the computation of an mgu over a set
of equations, instead of a single equation. We present a procedure that takes the given
clause C1 as input and applies the two rules to all subsets of clauses containing C1 and
upon which an eligible chain can be built. There are three cases in which the rules must
be applied: when the chain is a cycle, when it is variable-ended and has length 1, and
when there exists an extension of the chain that violates Keep. The procedure relies on
a data structure that provides a nextLinks(s′) operation, where s′ is a term. For each
literal s≈ t in an active clause C such that s is unifiable with s′ under an mgu σ and
sσ 6� tσ, the operation returns the tuple (C,σ,T), where T is the set of terms under

11

nonempty constructor positions in t. This operation can be implemented using term
indexing techniques already found in state-of-the-art provers [22, Section 5.1].

The procedure considerGiven(C1) applies the rule Acycl or Uniq to all subsets of
actives clauses that contain the given clause C1 and form an eligible chain:

Procedure considerGiven(C1) is
for s′2 such that C1 = s1 ≈ Γ[s′2] ∨D1 do

extendChain(s1, s′2,{},{C1})

Procedure extendChain(s1, s′i, θ,Ch) is
if s1θ = s′iθ then

apply rule Acycl or Uniq to chain Ch under mgu θ
else if s′i is a variable then

if |Ch|= 1 then
apply rule Acycl or Uniq to chain Ch under mgu θ

else if exists (Ci,σ,T) ∈ nextLinks(s′iθ) such that Ci ∈ Ch then
apply rule Acycl or Uniq to chain Ch under mgu θ

else
for (Ci,σ,T) ∈ nextLinks(s′iθ) do

for s′i+1 ∈ T do
extendChain(s1, s′i+1,σθ,Ch] {Ci})

7 Evaluation

We implemented the calculus presented above in the first-order theorem prover Vam-
pire [13]. Our source code is publicly available.1 The new rules are added to the existing
calculus, which includes other sound rules and a sophisticated redundancy elimination
mechanism. Vampire can process input files in SMT-LIB [4] format and recognizes
both the declare-datatypes command and the nonstandard declare-codatatypes

command. These commands trigger the addition of relevant axioms or the activation of
inference rules, according to user-specified options. This implementation is an exten-
sion of previous work done in Vampire [12]. The behavior of this older implementation
can be replicated by enabling only the simplification rules of the calculus and adding
the axioms Dist, Inj, Exhaust, Sub, and NSub to the initial clause set.

We evaluated the implementation on 4170 problems that were used previously by
Reynolds and Blanchette [20] to evaluate CVC4. These were generated by translating
Isabelle problems to SMT-LIB using the Sledgehammer bridge [18]. We also used syn-
thetic problems that exercise the properties of cyclic values. Both benchmark sets and
detailed results are available online.2

All the experiments in this section were carried out on a cluster on which each node
is equipped with two quad-core Intel processors running at 2.4 GHz, with 24 GiB of
memory. A 60 s time limit per problem was enforced. We used a single basic saturation
strategy relying on the DISCOUNT saturation algorithm. The calculus was parame-
terized by a Knuth–Bendix term order, unless otherwise noted. This simple approach

1 http://github.com/vprover/vampire/releases/tag/ijcar2018-data
2 http://matryoshka.gforge.inria.fr/pubs/supdata_data.tar.gz

12

http://github.com/vprover/vampire/releases/tag/ijcar2018-data
http://matryoshka.gforge.inria.fr/pubs/supdata_data.tar.gz

provides a homogeneous basis on which to compare the performance of the different
procedures. It typically solves fewer problems than the portfolio approach commonly
used with Vampire, in which several different strategies are tried in short time slices.

We first compare the performance of three configurations of the prover on the Isa-
belle problems. The first configuration corresponds to the axiomatic approach presented
in Section 3: the axioms Dist, Inj, Exhaust, Sub, NSub, App, Uniq, Cycl, and Hole are
added to the set of clauses to saturate, and only standard inferences rules are used by
the prover. Superposition need not rewrite the nonmaximal side of an equation.

The second configuration implements part of the calculus presented in Section 4.
Only the axioms Exhaust, Sub, NSub, App, Uniq, Cycl, and Hole are added to the
clauses, and the rules Dist1, Dist2, Inj1, and Inj2 are used during the search, in addi-
tion to the simplification rules described in Section 6. The side conditions of Sup are
also relaxed. The rules Acycl and Uniq are not used; instead, reasoning on the properties
of cyclic terms is based on axioms.

The third configuration uses all the rules described in Section 4. Only the axioms
Sub and App are added, on which the Acycl and Uniq rules depend, and the axioms
Cycl and Exhaust. This configuration is the only one which does not ensure refutational
completeness, since Uniq is incomplete with respect to the uniqueness of fixpoints for
branching codatatypes.

The first two configurations both solved 1114 problems and the third one solved
1113 problems; 1116 problems are solved by at least one configuration. These homo-
geneous results do not reveal significant differences between the approaches. To assess
the role of the acyclicity property of datatypes and the properties of codatatype fixpoints
in the benchmarks, we also tested a system that did not include any axioms and rules
related to these properties. With such an incomplete system, we found that 12 problems
could not be solved. This is roughly in line with the results of Reynolds and Blanchette
using CVC4 on the same problems [20]. No new problems were solved by this configu-
ration, suggesting that reasoning about properties of cyclic terms does not lead to worse
performance even when these properties are not needed for refutation.

We also tested variants of the last two configurations in which the calculus was
parameterized by a lexicographic path order, to assess whether this term order could
improve the performance when used with the relaxed superposition rule. These config-
urations solved a total of 1104 problems, including 5 new problems.

Since properties of cyclic values are seldom used in the Isabelle benchmarks, we
crafted a set of (refutable) problems to assess the performance of the rules Acycl and
Uniq. For a term s and a nonconstant context Γ[•], let exchain(s,Γ[•]) denote any sen-
tence ∃s2, . . . sn∀t1, . . . tm. s≈ Γ1[s2]∧·· ·∧ sn ≈ Γn[s], where t1, . . . , tm all occur in Γ and
such that Γ1[. . . [Γn[•]] . . .] = Γ[•]. The formula ∃s. exchain(s,Γ[•]), where type(s) ∈
Tind, forms an acyclicity problem. The set of acyclicity problems used in our experi-
ments is denoted AC. If m= 0, the clausified form of this problem is ground (ACG). The
formula ∃s1, s2.exchain(s1,Γ[•])∧ exchain(s2,Γ[•])∧ s1 6≈ s2, where type(s1)∈ Tcoind,
forms a uniqueness problem (U). Note that in such a problem, the two chains may not
be formed upon the same equalities, although they build the same constructor context.
Similarly, if m = 0, we obtain a ground uniqueness problem (UG). Finally, the sentence
∀s. ¬exchain(s,Γ[•]), for type(s) ∈ Tcoind, forms an existence problem (EX).

13

We generated 100 instances of each type of problem. The number of problems
solved by Vampire (V) on these problems are presented in the following table, along
with the results obtained using CVC4’s [3] and Z3’s [15] native support for datatypes
and, in CVC4’s case, for codatatypes:

AC ACG U UG EX
V CVC4 Z3 V CVC4 Z3 V CVC4 V CVC4 V CVC4

Axioms 65 – – 100 – – 14 – 10 – 40 –
Calculus 82 100 59 100 100 100 14 12 13 100 35 0

The number of problems solved shows that the Acycl rule performs better than the ax-
ioms for acyclicity problems with variables. Only one of these problems could be solved
by the axiomatic approach and not by the Acycl rule. Both approaches managed to solve
all of the ground acyclicity problems. Z3 solved all of the ground problems, performing
slightly less well on those featuring universal quantifiers. CVC4 was able to solve all of
the acyclicity problems, including those with universal quantifiers, a notable improve-
ment over previous results obtained on similar problems [22, Section 6].

On uniqueness problems, the Uniq rule solved a superset of the ground problems
solved by the axiomatic approach, whereas on nonground problems each approach
uniquely solved 3 problems, for a total of 17 problems solved. Again, CVC4 performed
remarkably well on ground problems, while the presence of variables in the problem
led to a marked degradation of its performance. Finally, for existence problems, the
refutation relies mostly on the Cycl axiom, which is included in the clause set in both
Vampire configurations. Yet, the purely axiomatic approach was able to solve 6 prob-
lems that could not be solved when the Uniq rule was activated, indicating that the rule
might lead the search in a suboptimal direction. The theory solver in CVC4 does not
take into account the existence of fixpoints for codatatypes, which is a nonground prop-
erty. Consequently, none of the existence problems were solved by CVC4.

From the results, it appears that the calculus supersedes the axiomatic approach for
problems with datatypes. For codatatypes, both approaches solve different problems,
suggesting that they should both be included in a strategy portfolio. However, the con-
ceptual simplicity and easy implementation of the axiomatic approach may outweigh
these differences in performance.

8 Related Work

The potential of (co)datatypes for automated reasoning has been studied mostly in the
context of satisfiability modulo theories (SMT). Datatypes are parts of the SMT-LIB 2.6
standard [4]. They were implemented in CVC3 by Barrett et al. [5], in Z3 [15] by de
Moura, and in CVC4 by Reynolds and Blanchette [20]. The CVC4 work also includes
a decision procedure for the ground theory of codatatypes. Moreover, CVC4 supports
automatic structural induction [21] and dedicated reasoning support for selectors.

Structural induction has also been added to superposition by Kersani and Peltier
[11], Cruanes [10], and Wand [24]. In unpublished work, Wand implemented incom-
plete inference rules for datatypes, including acyclicity, in his superposition prover
Pirate. Robillard’s earlier Acycl rule [22] has inspired our Acycl rule, but it suffered

14

from many forms of incompleteness. For example, given the unsatisfiable clause set
{a≈ c(x) ∨ p(x), ¬p(c(a))}, the old Acycl rule derived only p(a) before reaching sat-
uration. Another issue concerned cycles built from multiple copies of the same premise.

In the context of program verification, Bjørner [6] introduced a decision procedure
for (co)datatypes in STeP, the Stanford Temporal Prover. The program verification tool
Dafny provides both a syntax for defining (co)datatypes and some support for automatic
(co)induction proofs [14]. Other verification tools such as Leon [23] and RADA [19]
also include (semi-)decision procedures for datatypes. We refer to Barrett et al. [5] and
Reynolds and Blanchette [20] for further discussions of related work.

9 Conclusion

We presented two approaches to reason about datatypes and codatatypes in first-order
logic: an axiomatization and an extension of the superposition calculus. We established
completeness results about both. We also showed how to integrate the new inference
rules in a saturation prover’s main loop and implemented them in the Vampire prover.
The empirical results look promising, although it is not clear from our benchmarks how
often the most difficult properties—acyclicity for datatypes, existence and uniqueness
of fixpoints for codatatypes—are useful in practice.

This work is part of a wider research program that aims at bridging the gap between
automatic theorem provers and their applications to program verification and interactive
theorem proving. In future work, we want to reconstruct the new proof rules in Isabelle,
to make it possible to enable datatype reasoning in Sledgehammer. We also believe that
further tuning and evaluations could help improve the calculus and the heuristics.

Acknowledgment. We thank Alexander Bentkamp, Simon Cruanes, Uwe Waldmann, Daniel
Wand, and Christoph Weidenbach for fruitful discussions that led to this work. We also thank
Mark Summerfield and the anonymous reviewers for suggesting textual improvements.

Blanchette has received funding from the European Research Council (ERC) under the Euro-
pean Union’s Horizon 2020 research and innovation program (grant agreement No. 713999, Ma-
tryoshka). Robillard has received funding from the ERC Starting Grant 2014 SYMCAR 639270,
the Wallenberg Academy Fellowship 2014 TheProSE, the Swedish Research Council grant Gen-
Pro D0497701, and the Austrian FWF research project RiSE S11409-N23.

References

[1] Bachmair, L., Dershowitz, N., Hsiang, J.: Orderings for equational proofs. In: LICS ’86.
pp. 346–357. IEEE Computer Society (1986)

[2] Bachmair, L., Ganzinger, H.: Rewrite-based equational theorem proving with selection and
simplification. J. Log. Comput. 4(3), 217–247 (1994)

[3] Barrett, C., Conway, C.L., Deters, M., Hadarean, L., Jovanović, D., King, T., Reynolds, A.,
Tinelli, C.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806,
pp. 171–177. Springer (2011)

[4] Barrett, C., Fontaine, P., Tinelli, C.: The SMT-LIB standard: Version 2.7. Tech. rep., Uni-
versity of Iowa (2017), http://smt-lib.org/

15

http://smt-lib.org/

[5] Barrett, C., Shikanian, I., Tinelli, C.: An abstract decision procedure for satisfiability in the
theory of inductive data types. J. Satisf. Boolean Model. Comput. 3, 21–46 (2007)

[6] Bjørner, N.S.: Integrating Decision Procedures for Temporal Verification. Ph.D. thesis,
Stanford University (1998)

[7] Blanchette, J.C., Hölzl, J., Lochbihler, A., Panny, L., Popescu, A., Traytel, D.: Truly modu-
lar (co)datatypes for Isabelle/HOL. In: Klein, G., Gamboa, R. (eds.) ITP 2014. LNCS, vol.
8558, pp. 93–110. Springer (2014)

[8] Blanchette, J.C., Peltier, N., Robillard, S.: Superposition with datatypes and codata-
types. Technical report (2018), http://matryoshka.gforge.inria.fr/pubs/supdata_
report.pdf

[9] Comon, H., Lescanne, P.: Equational problems and disunification. J. Symb. Comput 7(3–4),
371–425 (1989)

[10] Cruanes, S.: Superposition with structural induction. In: Dixon, C., Finger, M. (eds.) Fro-
CoS 2017. LNCS, vol. 10483, pp. 172–188. Springer (2017)

[11] Kersani, A., Peltier, N.: Combining superposition and induction: A practical realization.
In: Fontaine, P., Ringeissen, C., Schmidt, R.A. (eds.) FroCoS 2013. LNCS, vol. 8152, pp.
7–22. Springer (2013)

[12] Kovács, L., Robillard, S., Voronkov, A.: Coming to terms with quantified reasoning. In:
Castagna, G., Gordon, A.D. (eds.) POPL 2017. pp. 260–270. ACM (2017)

[13] Kovács, L., Voronkov, A.: First-order theorem proving and Vampire. In: Sharygina, N.,
Veith, H. (eds.) Computer Aided Verification (CAV 2013). LNCS, vol. 8044, pp. 1–35.
Springer (2013)

[14] Leino, K.R.M., Moskal, M.: Co-induction simply—Automatic co-inductive proofs in a pro-
gram verifier. In: Jones, C.B., Pihlajasaari, P., Sun, J. (eds.) FM 2014. LNCS, vol. 8442, pp.
382–398. Springer (2014)

[15] de Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J.
(eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer (2008)

[16] Nieuwenhuis, R., Rubio, A.: Paramodulation-based theorem proving. In: Robinson, J.A.,
Voronkov, A. (eds.) Handbook of Automated Reasoning, vol. I, pp. 371–443. Elsevier and
MIT Press (2001)

[17] Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL: A Proof Assistant for Higher-Order
Logic, LNCS, vol. 2283. Springer (2002)

[18] Paulson, L.C., Blanchette, J.C.: Three years of experience with Sledgehammer, a practi-
cal link between automatic and interactive theorem provers. In: Sutcliffe, G., Schulz, S.,
Ternovska, E. (eds.) IWIL-2010. EPiC, vol. 2, pp. 1–11. EasyChair (2012)

[19] Pham, T., Whalen, M.W.: RADA: A tool for reasoning about algebraic data types with
abstractions. In: Meyer, B., Baresi, L., Mezini, M. (eds.) ESEC/FSE ’13. pp. 611–614.
ACM (2013)

[20] Reynolds, A., Blanchette, J.C.: A decision procedure for (co)datatypes in SMT solvers. J.
Autom. Reason. 58(3), 341–362 (2017)

[21] Reynolds, A., Kuncak, V.: Induction for SMT solvers. In: D’Souza, D., Lal, A., Larsen,
K.G. (eds.) VMCAI 2015. LNCS, vol. 8931, pp. 80–98. Springer (2014)

[22] Robillard, S.: An inference rule for the acyclicity property of term algebras. In: Kovács, L.,
Voronkov, A. (eds.) Vampire 2017. EPiC, EasyChair, to appear

[23] Suter, P., Köksal, A.S., Kuncak, V.: Satisfiability modulo recursive programs. In: Yahav, E.
(ed.) SAS 2011. LNCS, vol. 6887, pp. 298–315. Springer (2011)

[24] Wand, D.: Superposition: Types and Polymorphism. Ph.D. thesis, Universität des Saarlan-
des (2017)

16

http://matryoshka.gforge.inria.fr/pubs/supdata_report.pdf
http://matryoshka.gforge.inria.fr/pubs/supdata_report.pdf

	Superposition with Datatypes and Codatatypes
	1 Introduction
	2 Syntax and Semantics
	3 Axioms
	4 Inference Rules
	5 Refutational Completeness
	6 Saturation Procedure
	7 Evaluation
	8 Related Work
	9 Conclusion

