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(Received 26 February 2018; accepted 22 June 2018; published online 9 July 2018)

We report on the experimental observation of period multiplication in parametrically driven

tunable superconducting resonators. We modulate the magnetic flux through a superconducting

quantum interference device, attached to a quarter-wavelength resonator, with frequencies nx close

to multiples, n¼ 2, 3, 4, and 5, of the resonator fundamental mode and observe intense output

radiation at x. The output field manifests n-fold degeneracy with respect to the phase, and the n
states are phase shifted by 2p/n with respect to each other. Our demonstration verifies the theoretical

prediction by Guo et al. [Phys. Rev. Lett. 111, 205303 (2013)] and paves the way for engineering

complex macroscopic quantum cat states with microwave photons. Published by AIP Publishing.
https://doi.org/10.1063/1.5026974

The technology of circuit quantum electrodynamics1,2

offers an excellent platform for observation and exploration

of parametric oscillation phenomena in the quantum domain.

By connecting Josephson elements to superconducting reso-

nators, one is able to induce the nonlinearity of the electro-

magnetic field and realise temporal high frequency control

of the resonator parameters.3–5 This in combination with

high quality factors of the superconducting resonators makes

the parametric oscillation regime, above the instability

threshold, easily accessible with relatively small modulation

intensities. Furthermore, low temperatures in the range of 10

mK allow us to investigate the quantum properties of the

oscillator states. Using this technique, both the degenerate6

(pumping at twice a resonator mode frequency) and non-

degenerate7 (pumping at the sum of two resonator mode fre-

quencies) parametric oscillations have been experimentally

investigated.

An inherent property of parametric oscillations is phase

degeneracy of the oscillator states. The non-degenerate oscilla-

tor has a continuous phase degeneracy,7–9 while the degenerate

oscillator exhibits a discrete, two-fold degeneracy, which is

manifested by two correlated p-shifted steady states.6,10 In the

quantum regime, these states form coherent superpositions of

optical coherent states, cat states,11,12 which can be used as

building blocks for a photonic quantum processor.13

Quantum properties of the degenerate parametric oscil-

lations motivate great interest in finding ways to engineer

more complex multiply degenerate oscillator states. The

period multiplication phenomenon in nonlinear oscilla-

tors14,15 offers an attractive approach to the problem. In

recent papers, an experimental demonstration of the period

tripling in a superconducting resonator was reported,16 and

quantum properties of the emerging three-fold degenerate

state were theoretically investigated.17 In that experiment,

the self-sustained oscillations of the resonator mode were

excited by injecting an external signal with a frequency close

to three times the fundamental mode frequency.

In this letter, we report an experimental demonstration

of a period multiplication phenomenon—generation of oscil-

lations with multiples, n¼ 2, 3, 4, and 5, of the pumping field

period. In this experiment, we employ a different method of

parametric excitation—temporal modulation of magnetic

flux through a superconducting quantum interference device

(SQUID) attached to the resonator. We modulate the flux

with frequencies nx, close to the multiples of the fundamen-

tal mode frequency, and observe emergence of n-fold phase

degenerate self-sustained oscillations with frequency x. A

similar method has been used earlier to demonstrate degener-

ate parametric oscillations6—the most known form of the

period multiplication with n¼ 2. However, for n> 2, the flux

modulation results in modulation of the resonator nonlinear-

ity rather than frequency, which leads to qualitatively differ-

ent properties of the oscillations.

Quantum effects under parametric modulation of a non-

linearity have been theoretically investigated in Ref. 18. Our

observations demonstrate a practical realization of the model

introduced there. The connection can be seen from the form

of the differential inductance to the SQUID that provides

tunability and nonlinearity of the resonator

LSQð/Þ ¼
LSQ;0

cos ðf=2Þ cos /� ðE�=EþÞ sin ðf=2Þ sin /
: (1)

Here, f(t) ¼ 2pU(t)/U0 is a normalized applied magnetic

flux, U0 ¼ h/2e is the flux quantum, E6 ¼ (EJ1 6 EJ2)/2 are

the combinations of Josephson energies of the two SQUID

junctions, and LSQ;0 ¼ ð�h=2eÞ2ð1=2EþÞ is the SQUID induc-

tance at zero flux. The modulation of the magnetic flux

affects not only the quadratic term in the Taylor expansion

of the inductance over the phase, /, i.e., the resonator fre-

quency, but also all the higher order nonlinear terms. By

choosing a proper modulation frequency, one can selectively

address any of these nonlinear terms, thus implementing the

period multiplication regime considered in Ref. 18.

In our experiment, we use a frequency-tunable, quarter-

wavelength coplanar waveguide microwave resonator.3–5

The resonator is capacitively coupled to a transmission line
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at one end and grounded at the other end via a SQUID. The

frequency spectrum of such a resonator is non-equidistant,

which allows selective parametric excitation of individual

modes. Several devices have been investigated, and all of

them exhibit a qualitatively similar behavior. Technical data

for the three samples used to produce the data are presented

in Table I. Although the SQUIDs are designed to be symmet-

ric, i.e., equal junctions, there can be variations in the fabri-

cation process. Up to a few percent variation in critical

current can appear.

The samples are fabricated using standard micro-

fabrication techniques. The circuits are etched in a thin nio-

bium film on c-plane sapphire substrates. The SQUIDs are

made of aluminium and fabricated using two-angle evapora-

tion. The measurements are performed at low temperatures,

�hx� kBT, in a dilution cryostat, where the base temperature

is around 12 mK. Our measurement setup is sketched in Fig. 1.

We use two input lines, one for an external probe signal and

one for flux modulation. Both are attenuated to reduce thermal

noise. A static magnetic field is applied using a superconduct-

ing coil, mounted close to the sample.

The sample is measured using a reflection setup. A

directional coupler is employed to route the signal, and two

isolators protect the resonator from amplifier noise. The

output signal is amplified by a cryogenic amplifier and then

further boosted by a room temperature amplifier. The signal

undergoes heterodyne down-conversion, and the in- and

out-of-phase quadrature voltages, I(t) and Q(t), are then sam-

pled in a digitizer.

Our measurement frequency is placed close to the fun-

damental mode, x¼x1þ d, and a microwave tone is applied

to the flux pump line at a frequency nx, n¼ 2, 3, 4, and 5.

For a small pump intensity, we only detect noise, while

when the pump intensity exceeds a certain threshold, a

strong output signal emerges indicating excitation of the

parametric oscillator, Fig. 2. The oscillations are observed in

a wide range of the biasing flux controlling the mode fre-

quency, including zero flux for odd multiples, for even multi-

ples no period multiplication is observed at zero flux. The

regions of the pump power and frequency, where the oscilla-

tions are observed, strongly vary with n. As a rule, excitation

of odd multiples requires smaller power than the even ones.

The oscillations appear at small red detuning from resonance

and reach far into the low frequency region, similar to the

parametric oscillations7 and the period tripling oscillations

under current injection.16 The histograms in Fig. 2 were

measured at detunings of between �1.5 and �18 MHz, 3–40

times the resonator bandwidth.

We analyze the output by sampling the quadratures and

produce the histograms shown in Fig. 2. The bright spots in

the histograms correspond to steady states of the oscillator;

they indicate a discrete degeneracy of the oscillator states.

The plots in the right column of Fig. 2 show spots that are

symmetrically displaced from the origin, i.e., have equal

intensities, P ¼ I2 þ Q2, phase shifted by 2p/n with respect

to each other. Overall orientations of the multiplets are

defined by the pump signal phase, which we do not control

in this experiment. Hence, the orientations of different histo-

grams are random.

The right column histograms of Fig. 2 were measured in

the well-established oscillator regime far away from the

boundaries of the oscillation visibility. Those to the left were

measured closer to the boundaries, and here, we also see a

central spot representing the oscillator ground state. This is a

multistability region, which is typical for microwave para-

metric oscillations, as explained theoretically10,16 and

observed experimentally for the degenerate parametric oscil-

lator6 and for the period-tripling oscillator.16 The multistabil-

ity is explained by the coexistence of the stable excited

states of the oscillator and the oscillator ground state. In his-

tograms (a) and (e), the excited states are not well resolved.

TABLE I. Resonator parameters for the samples used to produce the datasets presented in this paper. d is the resonator length, x1(0) is the resonance frequency

of the first mode at zero flux, Ic is the SQUID critical current, CSQ is the SQUID capacitance, c0 ¼ LSQ;0=L0d is the inductive participation ratio, L0 and C0 are

the inductance and capacitance per unit length of the coplanar waveguide transmission line, respectively, 3x1(0) � x2(0) is the spectrum anharmonicity, 2C1

is the resonator damping rate at zero flux, and Qc,1(0) and Ql,1(0) are the coupling and loaded quality factors for the first mode at zero flux. Sample #3 has not

been fully characterized but has a very similar design except a slightly lower c0 due to the longer length.

Sample d (mm) x1/2p (GHz) Ic (lA) CSQ (fF) c0 (%) L0 (lH/m) C0 (nF/m) [3x1(0)�x2(0)]/2p (MHz) 2C1(0)/2p (MHz) Qc,1(0) (103) Ql,1(0) (103)

#1 5.2 5.225 1.47 63 10.7 0.41 0.17 86 0.49 11.4 10.7

#2 5.2 5.504 1.90 86 7.7 0.44 0.16 136 0.38 19 14.5

#3 6.8 4.035 21

FIG. 1. Schematic of the measurement setup. The resonator can be excited

via an external probe or via the flux pump line. The chip is mounted in a

sample box at the mixing chamber stage of a dilution cryostat with a base

temperature of 12 mK. Measurements are done using heterodyne detection.

022602-2 Svensson et al. Appl. Phys. Lett. 113, 022602 (2018)



This can be explained by large critical fluctuations around

emerging coherent oscillations having a small intensity. In his-

togram (f), faint lines between the bright spots are visible.

These lines reveal the existence of jumps, i.e., switching

between the oscillator steady states. Indeed, the data points

represent the quadrature values averaged over the measure-

ment time intervals. If no jump occurs during the measure-

ment, the result falls in one of the steady state spots; however,

if a jump occurs during the measurement, the averaging places

the point between the spots. Thus, the presence of the lines in

histogram (f) indicates a switching rate exceeding the measure-

ment sampling rate, which in this particular case was 100 kHz.

This is the sampling rate used for all the datasets except those

in Figs. 2(a) and 2(b), which are sampled at 50 kHz.

To explain our observations, we analyze the multimode

quantum Hamiltonian of the resonator10

H ¼
X

n

�hxnâ†
nân þ Vð/̂; tÞ ; (2)

where xn is the frequency of the n-th eigenmode, ân and â†
n

are the mode annihilation and creation operators, and the

sum goes over all resonator modes. The variable /̂ðtÞ refers

to a dynamic deviation from the static value, tan /0

¼ �ðE�=EþÞ tan ðF=2Þ, of the phase at the SQUID-

terminated edge of the resonator, /̂ðx ¼ d; tÞ ¼ /0 þ /̂ðtÞ.
Here, F ¼ 2pUdc=U0 indicates a normalized static magnetic

flux, and d denotes the resonator length. An expansion of /̂
over the cavity modes reads

/̂ ¼
X

n

bn ðân þ â†
nÞ; bn ¼ c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8pZ0knd

RK

r
; (3)

where Z0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
L0=C0

p
; RK ¼ h=e2, and kn ¼ xn=v is the

mode eigenvector defined by the spectral equation,10

knd tan ðkndÞ ¼ 1=c, where c ¼ EL;cav=ð2Eþ cos ðF=2ÞÞ � 1

is the participation ratio of the SQUID inductance versus the

cavity inductance. Here, L0 and C0 are the inductance and

capacitance per unit length of the coplanar waveguide trans-

mission line, respectively. Together they define the phase

velocity in the waveguide resonator, v ¼ 1=
ffiffiffiffiffiffiffiffiffiffi
L0C0

p
. The

potential energy Vð/̂; tÞ in Eq. (2) represents the nonlinear

part of the inductive energy of the SQUID and has the form

for an asymmetric SQUID,

Vð/̂; tÞ��Eþ cosðF=2Þ cos /̂þ /̂
2

2

 !

þ df ðtÞ Eþ sinðF=2Þcos /̂þ E�
cosðF=2Þsin /̂

� �
; (4)

where df ðtÞ ¼ 2pUacðtÞ=U0 describes the pump, i.e., a

small-amplitude temporal modulation of the applied mag-

netic flux, here considered in the linear approximation. Other

adopted approximations in Eq. (4) include the assumption of

a small SQUID asymmetry, E� � Eþ, and a negligibly

small effect of the SQUID capacitance.

It is appropriate to make the following comments to Eq.

(4): (i) the symmetric part of the potential, / Eþ, contains

only even powers of /̂, which implies that only even order

subharmonics can be excited by the flux pump if the SQUID

is perfectly symmetric. (ii) The asymmetric part, / E�, is

responsible for the excitation of odd order subharmonics;

this part, however, also contains a linear term, / /̂, which

implies that the nonstationary magnetic flux directly gener-

ates a field inside the resonator. The effect of this field is

similar to the one created by externally applied current drive

investigated in Ref. 16. Thus, the flux modulation method

allows for excitation of both even and odd subharmonics. In

the latter case, a secondary current drive effect complements

the flux pump [see below in Eq. (7)]. We note that the excita-

tion of even order period multiples is not possible by current

driving due to symmetry constraint.

Suppose the magnetic flux is modulated with a fre-

quency nx ¼ nðx1 þ dÞ and df ðtÞ ¼ df0 cos nxt. Then, we

assume, focusing on the resonant response of the fundamen-

tal resonator mode n¼ 1, the field in the cavity to be a super-

position of two harmonics,

/̂ðtÞ ¼ b1â1ðtÞe�ixt þ bnânðtÞe�inxt þ H:c:; (5)

FIG. 2. Quadrature histograms of period multiplication oscillations gener-

ated by applying a microwave signal to the flux pump line at multiples n of

the fundamental mode frequency. (a) and (b) Sample # 1, n¼ 2, U ¼ 0.1 U0

and detuning d/2p ¼ �2 and �1.5 MHz; (c), (d) sample #1, n¼ 3, U ¼ 0.17

U0 and detuning d/2p ¼ �7 and �9 MHz; (e) and (f) sample #3, n¼ 4, U
¼ 0.07 U0 and detuning d/2p ¼ �9 and �18 MHz; (g) and (h) sample #1,

n¼ 5, U ¼ 0.1 U0 and detuning d/2p ¼ �7 and �4 MHz. The output signals

correspond to around 60 photons.
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where ân is the response of a mode with a frequency close to

the pump frequency (the term is only needed for odd n).

Following the method of Refs. 10 and 16, we derive a

shortened dynamical equation for a slowly varying ampli-

tude â1ðtÞ in the rotating wave approximation. This equation

has a universal form for all integers n,

i _̂a1 þ ðdþ iC1 þ a â†
1â1Þâ1 þ �nðâ†

1Þ
n�1 ¼

ffiffiffiffiffiffiffiffi
2C1

p
âin

1 (6)

and essentially coincides with the model equation introduced

in Ref. 18. Here, C1 is the resonator damping, âin
1 indicates

the environmental noise, and the coefficients, a ¼ ðEþ=�hÞ
cos ðF=2Þb4

1 and �2 ¼ ðEþ=�hÞ cos ðF=2Þb2
1df0, are familiar

from the study of degenerate parametric resonance.10 The

pump coefficient for period quadrupling, �4, is expressed

through �2 and has the form �4 ¼ ��2ðb2
1=2Þ. Similar scaling

holds for higher even-order coefficients, �2k / �2b
2k�2
1 . The

pump coefficient for period tripling consists of two

contributions,

�3 ¼
E�
2�h

b3
1df0

cos ðF=2Þ þ
Eþ
�h

cos ðF=2Þb2
1b3a3 : (7)

The first term is the direct flux pump effect, and the second

term describes the secondary, current-drive effect. The latter

term may also include some spurious external field effects,

e.g., due to a cross talk between the flux line and the resona-

tor. All higher odd-order coefficients have a similar structure

with the overall scaling factor b2k�2
1 .

Period multiplying oscillations have large amplitude far

from the thresholds and are described with quasiclassical sol-

utions to Eq. (6). The stationary solution for a given n has

the form a1;n ¼ rneihn , with sin ðnhn � arg �nÞ ¼ C1=j�jrn�2
n .

Such solution has an n-fold degeneracy, as seen in Fig. 2,

with phases hn ¼ hn;0 þ 2pm=n ðm ¼ 0;…; n� 1Þ. The ref-

erence phase hn,0 depends on the phase of the pump and the

parameters of the working point.

The outlined calculation qualitatively explains our

experimental observations—the period multiplication effect,

degeneracy, and phase symmetry of the oscillations, includ-

ing the dependence of effective pump strength on n. It also

relates the heuristic coefficients of the model18 to the device

parameters. A detailed quantitative analysis of the data is

beyond the scope of this paper since it requires a theoretical

advance in construction and stability analysis of the oscilla-

tory solutions.

The nonlinear parametrically driven resonator has

indeed a very rich behavior. Further insight into the proper-

ties of period multiplication can be gained by exploring

regimes beyond the observed steady-state multiplets. In Fig.

3, we present a histogram of the period-tripling oscillations

measured at larger red detuning, where the oscillation inten-

sity is substantially stronger than in Fig. 2. Here, we detect

coexistence of two triplet states, with different amplitudes

and different orientations, presumably corresponding to a

higher order nonlinearity.

Injection of a weak probe signal into the resonator is

known to produce a phase-locking effect, observed, for

example, in the degenerate parametric oscillator.19,20 There,

the effect was manifested by a gradual disappearance of one

of the doublet states and explained by a symmetry break-

down under on-resonance injection. Similarly, in the period

tripling regime, we observe a gradual disappearance of the

triplet components when an on-resonance probe signal is

applied, see Figs. 4(a) and 4(b). Phase locking has also been

observed in a non-degenerate parametric oscillator7,8 mani-

fested by a suppressed phase diffusion. The phase locking is

a common effect in oscillators with phase degeneracy, and it

can be visualized as a tilt of a quasiclassical metapotential of

the oscillator by a driving term, �F�aþ Fa†.

Furthermore, injection of a probe signal slightly

detuned, by 1 Hz, produces a completely different, dramatic

effect on the period tripling oscillations, see Figs. 4(c) and

4(d). Instead of breaking the symmetry of the overall triplet

pattern, the individual round spots deform into crescents

whose size increases with increasing probe intensity. The

behavior resembles the phase locking effect observed in non-

degenerate parametric oscillators,7,9 where the oscillator

state possesses continuous phase degeneracy. This resem-

blance leads us to interpret our observation as a result of a

deformation of each stable stationary state of the triplet into

a stable cycle with simultaneous phase locking. A further

theoretical investigation is required to quantitatively explain

these observations.

FIG. 3. Histograms of period-tripling oscillations at larger output signal lev-

els, revealing an additional triplet of excited states with amplitude and orien-

tation different from the main triplet. The difference between panels (a) and

(b) is that the latter is measured at 1 dB higher pump power. Sample #1 was

used.

FIG. 4. Histograms of output oscillations affected by a probe signal. (a) and

(b) Phase locking effect of an on-resonance probe, 20 dB stronger in (b) than

in (a). (c) and (d) Effect of a 1 Hz detuned probe signal, 10 dB stronger in

(d) than in (c). Sample #2 was used.
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In conclusion, we observed the period-multiplication

phenomena in parametrically driven superconducting resona-

tors. We observed robust output radiation at a frequency

close to the fundamental resonator mode, with n¼ 2, 3, 4,

and 5 evenly shifted phase components under an applied

pump signal with frequencies n times the detection fre-

quency. Our qualitative analysis of the resonator dynamics

agrees with the observations and corroborates the model pro-

posed in Ref. 18. Demonstration of multiply degenerate clas-

sical states under period multiplication suggests a possibility,

in analogy with the double degeneracy of parametric oscilla-

tions,12 of engineering of multicomponent quantum superpo-

sitions of macroscopic coherent states—multicomponent cat

states.13 Our observations call for further exploration of the

quantum properties of the period-multiplication and a search

for engineering methods of macroscopic quantum states in

this regime.
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