
A splitting algorithm for simulation-based optimization problems with
categorical variables

Downloaded from: https://research.chalmers.se, 2024-03-13 08:04 UTC

Citation for the original published paper (version of record):
Nedelkova, Z., Cromvik, C., Lindroth, P. et al (2019). A splitting algorithm for simulation-based
optimization problems with categorical variables. Engineering Optimization, 51(5): 815-831.
http://dx.doi.org/10.1080/0305215X.2018.1495716

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology.
It covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004.
research.chalmers.se is administrated and maintained by Chalmers Library

(article starts on next page)

ENGINEERING OPTIMIZATION
2019, VOL. 51, NO. 5, 815–831
https://doi.org/10.1080/0305215X.2018.1495716

A splitting algorithm for simulation-based optimization problems
with categorical variables

Zuzana Nedělková a, Christoffer Cromvik b, Peter Lindroth c, Michael Patriksson a

and Ann-Brith Strömberg a

aDepartment of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg,
Gothenburg, Sweden; bFraunhofer–Chalmers Research Centre for Industrial Mathematics, Computational
Engineering and Design, Gothenburg, Sweden; cChassis & Vehicle Dynamics, Global Operations, Volvo Group Trucks
Technology, Gothenburg, Sweden

ABSTRACT
In the design of complex products, some product components can only be
chosen from a finite set of options. Each option then corresponds to a mul-
tidimensional point representing the specifications of the chosen compo-
nents. A splitting algorithm that explores the resultingdiscrete search space
and is suitable for optimization problems with simulation-based objective
functions is presented. The splitting rule is based on the representation of a
convex relaxation of the search space in terms of aminimum spanning tree
and adopts ideas from multilevel coordinate search. The objective func-
tion is underestimated on its domain by a convex quadratic function. The
main motivation is the aim to find—for a vehicle and environment specifi-
cation—a configuration of the tyres such that the energy losses caused by
them are minimized. Numerical tests on a set of optimization problems are
presented to compare the performance of the algorithm developed with
that of other existing algorithms.

ARTICLE HISTORY
Received 30 May 2017
Accepted 9 June 2018

KEYWORDS
Design optimization;
simulation-based
optimization; splitting;
categorical variables; tyres

1. Introduction

A new discrete search algorithm for solving design optimization problems with simulation-based
objective functions is proposed. The research leading to this article is motivated by the optimization
of truck tyres selection (see Lindroth 2012; Šabartová et al. 2014). The purpose is to enable—for each
combination of truck configuration and operating environment—the identification of a tyres config-
uration that minimizes the energy losses caused by the tyres. The tyres for the individual truck axles
are to be chosen from a tyre database. Each tyre is specified by the values of so-called tyre design vari-
ables and the truck tyres selection problem involves computationally expensive black-box simulations
(Nedělková et al. 2016).

A splitting algorithm to explore the multidimensional discrete search space of design points for
the tyres selection problem as well as other simulation-based optimization problems with categor-
ical variables is developed and presented. The splitting strategy used in the algorithm developed is
inspired by that presented by Fuchs and Neumaier (2010a); it uses only the objective function evalua-
tions and is therefore applicable to simulation-based optimization problems. The strategy exploits the
structure of a convex relaxation of the discrete search space, represented by aminimum spanning tree
among the edges of a complete graph defined on the design points (see Graham and Hell 1985). The
use of this knowledge may have significant advantages, since the objective function typically depends

CONTACT Zuzana Nedělková nedelkovazuzana@yahoo.com
© 2018 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License (http://
creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the
original work is properly cited, and is not altered, transformed, or built upon in any way.

http://www.tandfonline.com
http://crossmark.crossref.org/dialog/?doi=10.1080/0305215X.2018.1495716&domain=pdf
http://orcid.org/0000-0003-1551-9713
http://orcid.org/0000-0001-5421-7967
http://orcid.org/0000-0001-5344-3858
http://orcid.org/0000-0001-7675-7454
http://orcid.org/0000-0003-1962-7279
mailto:nedelkovazuzana@yahoo.com
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

816 Z. NEDĚLKOVÁ ET AL.

more on the selection of the design point rather than on the values of the integer choices stemming
from numbering of the design points and not representing any physical entity. The splitting strategy
is complemented by a global underestimation of the objective function in order to determine approx-
imate lower bounds along the search tree. The bounds are then used within a multilevel coordinate
search (see Huyer and Neumaier 1999) to decide on which node of the search tree to split. A pattern
search algorithm (see Audet and Dennis Jr 2004) is used to obtain a feasible solution from a relaxed
solution and also to improve the current smallest objective value.

Utilizing a variety of both artificial and real test problems, differing with respect to both math-
ematical properties and sizes, the performance of the algorithm developed is compared with that
of other existing algorithms that can be used to solve simulation-based optimization problems with
categorical variables. It is concluded that the algorithm developed outperforms the other algorithms
tested.

1.1. Previous work

In design optimization (see, e.g., Alexandrov and Hussaini 1997; Neumaier et al. 2007; Fuchs
et al. 2008) a design choice is typically modelled by a categorical variable, i.e. an integer variable
arising from reformulations of discrete multidimensional sets of design points. Depending on the
mathematical properties of the objective function and the constraints, the resulting problem falls
into one of several classes of mixed integer optimization problems. For each such class identified,
algorithms exist that employ splitting of the search space.

For studies of efficient search space splittingmethods, see Floudas (1995, Chap. 5) andNemhauser
and Wolsey (1999, Chap. II.4) for mixed integer linear optimization, and Leyffer (1993) and Tawar-
malani and Sahinidis (2004) for mixed integer nonlinear optimization. Splitting in simulation-based
optimization with continuous variables only is studied in Jones, Perttunen, and Stuckman (1993) and
Huyer and Neumaier (1999). For a survey on discrete optimization, including splitting methods, see
Parker and Rardin (2014, Chaps 1 and 5).

1.2. Motivation

The present sales tool at Volvo Group Trucks Technology (Volvo GTT) generates a large set of feasible
tyres for each truck; these tyres are suitable for their potential utilization and fit the truck dimension-
ally. The truck tyres selection process is then based on experience and customer input, which can be
improved further by means of scientific methodologies. A goal for Volvo GTT is to find an optimal
configuration of the tyres for each vehicle configuration and operating environment specification such
that the energy losses caused by the tyres are minimized. Each tyre is determined by specific values of
tyre design variables (tyre diameter, tyre width, tread depth , and inflation pressure) and an extensive
tyre database is available; see Šabartová (2015) for details.

To support the truck tyres selection process, an optimization model has been developed
by Nedělková, Lindroth, and Jacobson (2017) with the aim of determining an optimal set of tyres
for each vehicle and operation specification. A complex, interacting set of vehicle, tyres and oper-
ating environment was modelled in order to evaluate the fuel consumption. Each evaluation of the
objective function requires a significant computational effort. One can afford to evaluate the objec-
tive function and constraints only for a limited number of sample points (settings of tyre design
variables). Moreover, the tyres to be selected are described by a set of discrete variables. Therefore,
an efficient optimization algorithm to find the optimal tyres configuration—even for one customer
having a specific vehicle configuration and operating environment—is needed.

The algorithm presented in this article can be used to solve any simulation-based optimization
problem with categorical variables. Applications include the component selection problem (Carl-
son 1996), vehicle design (Alexandrov and Hussaini 1997, 3–21), optimal design of large engineering
systems in general (Alexandrov and Hussaini 1997, 209–226), surface structure determination for

ENGINEERING OPTIMIZATION 817

nanomaterials (Zhao, Meza, and Van Hove 2006), space system design (Fuchs et al. 2008) and the
optimization of thermal insulation systems (Abhishek, Leyffer, and Linderoth 2010).

1.3. Outline

This article is organized as follows. In Section 2, the design optimization problem with a simulation-
based objective function considered is described, as well as basic principles and terminology of
the splitting algorithm and a means to underestimate the objective function. The splitting strategy
is introduced in Section 3. The local search algorithm used along the search tree is explained in
Section 4. The resulting splitting algorithm is described in Section 5. Numerical tests of the suggested
algorithm and other competing algorithms are presented in Section 6. Section 7 provides conclusions
as well as topics for future research.

2. Design optimization

Design optimization problems typically involve categorical variables. The case when the discrete
choice modelled by the categorical variable has a natural ordering that can be associated with inte-
ger values is considered, because then a reformulation into an integer optimization problem can be
performed.

2.1. Problem formulation

Let x = (x1, . . . , xm) be a vector of discrete choice variables, where xi ∈ Xi := {1, . . . ,Ni}, i.e. Xi is
the choice domain1 of xi, i = 1, . . . ,m. Then, X := X1 × · · · × Xm is the discrete domain of pos-
sible choices of x. Each choice variable xi determines the values of the ni components of a vector
zi ∈ R

ni , where
∑m

i=1 ni = n. The composite vector z = (z1, . . . , zm) ∈ R
n denotes the argument

of the simulation-based function F : R
n �→ R. For each i = 1, . . . ,m, the so-called table mapping2

Zi : R �→ R
ni transforms the set Xi of discrete choices into the multivariate discrete design domain

{Zi(j) : j ∈ Xi}. The design optimization problem is now formulated as

minimize
x,z

F(z), (1a)

subject to zi = Zi(xi), i = 1, . . . ,m, (1b)

xi ∈ Xi, i = 1, . . . ,m. (1c)

Example: Consider a heavy vehicle withm= 2 axles; then X = X1 × X2. Each axle is equipped with
two identical tyres. For example, if ten tyres feasible for the front axle and five for the rear axle are
available, then x1 ∈ X1 := {1, . . . , 10} and x2 ∈ X2 := {1, . . . , 5}. The choice of x1 (x2) determines the
values of tyre width, tyre diameter, and inflation pressure for the tyres mounted on the front (rear)
axle. The resulting vector z with six components is the argument of the objective function F, which
represents the fuel consumption for the selected tyre configuration.

2.2. A splitting algorithm for design optimization

A widely used method to solve global optimization problems is branch-and-bound (Horst and
Tuy 1996, Chap. 4, and Locatelli and Schoen 2013, Chap. 5), where the idea is to split the feasible
region into smaller subregions and solve what is called a subproblem, i.e. a relaxed (simplified) prob-
lem in each subregion. The splitting stopswhen the best solution found is located in a sufficiently small
subregion, such that the prescribed solution accuracy is guaranteed. The splitting is accomplished by
adding constraints to the relaxed problem. In order to manage the extra constraints, a search tree
is created. This tree is defined by nodes representing subproblems and edges representing the con-
straints corresponding to the splitting added to define new subproblems. The very first node in the

818 Z. NEDĚLKOVÁ ET AL.

search tree is called the root node. See Nemhauser andWolsey (1999, Chap. I.3) and Žilinskas (2008)
for more details and examples.

In general branch-and-bound algorithms, a lower bound on the optimal value of the objective
function over a subregion may be used to indicate the subregions which can be discarded early in
the procedure, so that only part of the search tree has to be generated and processed. The bound-
ing procedures are only applicable if enough information about the mathematical properties of the
objective function is available, since generally tight and reliable underestimating functions have to
be computed. For the simulation-based optimization problems studied in this article, with no known
mathematical properties, the lower bounds on the approximation of the objective function can be
used only to guide the splitting.

Considering the optimization problem (1), a splitting algorithm is formulated in which a convex
relaxation of problem (1) is solved in each subregion. An iteration of the algorithm then processes a
node in the search tree, representing a not yet explored subregion of the feasible region. Each iteration
of the splitting algorithm corresponds to a node in the search tree and has six main steps, which are
detailed in Algorithm 1.

Algorithm 1 An iteration of the splitting algorithm for problem (1)
1: Select the tree node, s, to process
2: Perform a local search
3: Solve a convex relaxation of the problem at the subregion considered
4: Select a choice domain to split
5: Perform a split based on the solution from step 3
6: Branch the search tree at the selected node

The lower bounds on the objective function value in the subregions are used to choose the next
tree node to process. A local search is used to find a feasible design nearest to the solution from
step 3 of Algorithm 1 and also to improve it if possible. A feasible design is evaluated if the value of
F at that solution is already known. All evaluated feasible designs are stored in an auxiliary list. To
select the tree node to process, a multilevel coordinate search (Huyer and Neumaier 1999) is used. At
the selected node the search tree is branched into two child nodes. Nodes with no child nodes will
henceforth be called leaf nodes. The notation Xs

i ⊆ Xi to denote the restricted choice domain is also
introduced, i.e. the set of feasible choices, for node s.

2.3. A convex underestimation of the objective function

As part of formulating a convex relaxation of problem (1), its generally non-convex objective function
F is approximated andunderestimated by a convex quadratic underestimator3 F̄ : R

n �→ R, defined as
F̄(z) := zTAz + bTz + c, over a subset of R

n. Let Sn+ := {A ∈ R
n×n|A = AT,A � 0 } denote the set

of symmetric positive semi-definite matrices of dimension n × n. The coefficients A ∈ Sn+, b ∈ R
n,

and c ∈ R are computed through the solution of the SemiDefinite optimization Problem (SDP, see
Wolkowicz, Saigal, and Vandenberghe 2012) to

minimize
A∈Sn+, b∈Rn, c∈R

∑
z∈V̄

[F(z) − zTAz − bTz − c], (2a)

subject to F(z) ≥ zTAz + bTz + c, z ∈ V̄ , (2b)

F(z̄) = z̄TAz̄ + bTz̄ + c, (2c)

where V̄ ⊂ R
n is a set of sample points and z̄ ∈ V̄ is a reference point; see Figure 1. The function F̄

is called the underestimator of F even though it is guaranteed to underestimate F (i.e. F̄ has lower

ENGINEERING OPTIMIZATION 819

Figure 1. Illustration of the quadratic underestimating function F̄. The objective function F is evaluated at the set of sample points
V̄ (illustrated by the dots).

values than F) only on the sample set V̄ , on which the accuracy of fit and the degree of underestima-
tion is strongly dependent. To guarantee the existence of a solution to optimization problem (2), the
reference point is chosen as z̄ ∈ argminz∈V̄ F(z).

The function F̄ is constructed using |V̄| = 2(n(n + 1)/2 + n + 1) sample points through the solu-
tion of optimization problem (2), havingn(n + 1)/2 + n + 1 variables. The sample points are selected
from the evaluated feasible designs. If not enough many feasible designs are available, then they are
extended with infeasible designs.

Optimization problem (2) is put into standard form by introducing the notation �(z) := zzT and
tr(·) denoting the trace of a squarematrix, and reaching the identity F̄(z) = tr(A�(z)) + bTz + c (see
Boyd and Vandenberghe 2004, Chap. 4.6.2]) and solved by a standard SDP solver. Furthermore, opti-
mization problem (2) can be restricted by utilizing a sparsity pattern for the Hessian of F̄ (Coleman,
Garbow, and Moré 1985). For the case of a diagonal Hessian, the conditions on positive definiteness
reduce to lower bounds on the coefficientsA, which means that SDP (2) is reduced to a separable lin-
ear optimization problem. Note that, even when the underlying objective function F has no sparsity
pattern, the use of the underestimator F̄ with a sparse Hessian can still be efficient, as illustrated by
the numerical results in Section 6.5.

If the objective function F is convex quadratic or linear, then the convex function F̄ is an exact
underestimator, thus providing lower bounds on the optimal objective value of problem (1). These
lower bounds can be used to eliminate portions of the feasible region, thus turning the suggested
splitting algorithm into a branch-and-bound algorithm.

3. A convex relaxation based splitting strategy

The splitting strategy for each node s in the search tree, whose feasible region is denotedXs, is derived
from Fuchs and Neumaier (2010b) and consists of the following three parts.

(a) A convex relaxation of optimization problem (1) is constructed, with the objective function F̄
(see Section 2.3) and the feasible region convXs, where ‘conv’ denotes convex hull and Xs :=
Xs
1 × · · · × Xs

m.
(b) One choice domain Xs

i is selected for splitting.
(c) In the design domain {Zi(j) : j ∈ Xs

i }, construct a complete graph4 on the designs feasible at node
s and itsminimum spanning tree. A split of the feasible region into two subregions is then defined
by this tree along with an optimal solution to the convex relaxation of problem (1).

Fuchs and Neumaier (2010b) approximate the objective function by a linear combination of the
function values evaluated and apply a splitting strategy, denoted balanced split and presented in
Section 3.1. They also add a penalty term (i.e. a regularization) to the objective function in order
to receive a selection of boundary solutions. In contrast, the algorithm developed in this article uses

820 Z. NEDĚLKOVÁ ET AL.

a quadratic approximation of the black-box objective function without any penalty parameters, and
a splitting method denoted nearest edge projection, described in Section 3.2.

The relaxation of problem (1), restricted to a node s, is

minimize
v,λ

F̄(v1, . . . , vm), (3a)

subject to vi =
∑
j∈Xs

i

λ
j
iZi(j), i = 1, . . . ,m, (3b)

∑
j∈Xs

i

λ
j
i = 1, i = 1, . . . ,m, (3c)

λ
j
i ≥ 0, j ∈ Xs

i , i = 1, . . . ,m, (3d)

where F̄ is the underestimator of F presented in Section 2.3. The solution to optimization problem (3),
in terms of vi ∈ R

ni , i = 1, . . . ,m, is a convex combination of the designs Zi(j), j ∈ Xs
i . The values

of the convex combination coefficients λ
j
i, j ∈ Xs

i , i = 1, . . . ,m, are further used to determine the
splitting of the choice domain Xs

i , where i is chosen to fulfil the inclusion

i ∈ argmax
k∈{1,...,m}

{|Xs
k|}. (4)

3.1. Balanced splitting strategy

The balanced splitting strategy by Fuchs and Neumaier (2010b) is stated next, for completeness.
For each i ∈ {1, . . . ,m}, consider the ith coordinate xi ∈ Xs

i . The minimum spanning tree corre-
sponding to the designs Zi(Xs

i) := {Zi(j) | j ∈ Xs
i } ⊂ R

ni is constructed. For any fixed edge k in the
graph of the tree corresponding to Zi(Xs

i), the set of all designs on the left (right) side of the edge
k is denoted by Zk1

i (Zk2
i). In Figure 2, let k be the edge (3–5), then Zk1

i = {Zi(1),Zi(2),Zi(3)}, and
Zk2
i = {Zi(4),Zi(5),Zi(6)}.
For every edge k in the minimum spanning tree corresponding to Zi(Xs

i), the sums wk1
i and wk2

i
of the weights of all designs in Zk1

i and Zk2
i , respectively, are computed as

wk1
i :=

∑
{j∈Xs

i |Zi(j)∈Zk1i }
λ
j
i and wk2

i :=
∑

{j∈Xs
i |Zi(j)∈Zk2i }

λ
j
i. (5)

In the balanced splitting strategy, the feasible region Xs
i is split into two subregions Xs1

i = {j ∈ Xs
i |

Zi(j) ∈ Zk1
i } and Xs2

i = {j ∈ Xs
i | Zi(j) ∈ Zk2

i } across the edge k, such that the weightswk1
i andwk2

i are
as close as possible to 1/2.

Figure 2. Illustration in R
2 of the nearest edge projection splitting strategy. The split is identified across the edge Zi(3)–Zi(5) of

the minimum spanning tree corresponding to the designs Zi(Xsi) = {Zi(1), . . . , Zi(6)} by projecting (illustrated by the dashed line)
the solution to (3), in terms of vi , onto the tree.

ENGINEERING OPTIMIZATION 821

3.2. Nearest edge projection splitting strategy

The optimal solution to optimization problem (3) is non-unique if the number of evaluated and fea-
sible designs is at least n+2, or if the evaluated designs span a space of dimension at most n. In such
a case, no unique edge exists for the balanced splitting strategy. Since it is not clear from Fuchs and
Neumaier (2010b) in what sense a balanced split provides an efficient splitting strategy, a more basic
splitting strategy is proposed.

The nearest edge projection splitting strategy starts with the construction of the minimum span-
ning tree corresponding to the designs Zi(Xs

i) := {Zi(j) | j ∈ Xs
i } ⊂ R

ni . The edge defining the split
is then identified by projecting the optimal solution to optimization problem (3) onto the minimum
spanning tree (in terms of Euclidean distance in the z-space); see Figure 2. In case of ties concerning
which edge is closest to the relaxed solution, the first edge in a list of the minimum spanning tree
edges is chosen.

The idea of splitting the feasible region Xs
i in the vicinity of the optimal solution of optimization

problem (3) ismotivated by the fact that the area of convex hull of the two resulting feasible subregions
Xs1
i and Xs2

i of child nodes will be significantly reduced at the split, which increases the probability of
the relaxed solution to optimization problem (3) being closer to the optimal solution to problem (1).

3.3. Selection of node to split

The choice of tree node to process in the search tree (i.e. step 1 of Algorithm 1) has an impact on the
performance of Algorithm 1. Instead of general depth-first or breadth-first strategies (e.g.Nemhauser
and Wolsey 1999, Chap. II.4]) the strategy presented below is based on the multilevel coordinate
search algorithm (Huyer and Neumaier 1999).

The idea is to generate a so-called record list (denoted by R) of tree nodes scheduled for future
selection of searching and splitting. Once a node is processed, it is removed from the list. When all
nodes are processed and the list is empty, a new list is created based on the updated search tree. The
record list is computed as follows.

Let N denote the set of all nodes in the tree that are created so far, and let J ⊆ N denote the set of
leaf nodes, i.e. the nodes that are not yet split. The level �j of node j ∈ N denotes the number of times
the node j has been split, where �j ∈ {0, . . . , �max} and �max + 1 is the maximum number of levels
in the tree. The root node, i.e. node 1, belongs to level �1 = 0 and the splitting of a node j results in
two child nodes at level �j + 1. Let L := ⋃

j∈J{�j} ⊆ {0, . . . , �max} denote the set of levels containing
at least one leaf node and let Il := { j ∈ J | �j = l } denote the set of leaf nodes at level l ∈ L.5 Letting
F̄i denote the optimal value of optimization problem (3) for leaf node i ∈ J, the record list is then
defined as

R :=
⋃
l∈L

{
argmin

i∈Il

{
F̄i

}}
. (6)

The fact that the leaf nodes at all levels in L are included in the record list ensures a mix of global
and local search: the selection of the nodes with the lowest levels constitutes the global search, while
the selection of the nodes with the lowest values of F̄i, i ∈ J, constitute the local search.

4. Local search

In Algorithm 1, a local search is performed when the feasible design that is nearest to the optimal
solution of problem (3) is to be found in each node being processed and also to improve the lowest
objective function value in each subproblem. The direct search algorithm pattern search, originating
from Box (1957) and described in detail by Audet and Dennis Jr (2004), was implemented because
of its simplicity. Within a certain neighbourhood of the current design, it searches for a design with
a lower objective value. The finite set of neighbouring design points is determined by a prefixed or

822 Z. NEDĚLKOVÁ ET AL.

random pattern. Pattern search does not require gradient information for the objective function, and
the algorithm is robust and flexible (Audet and Dennis Jr 2006).

5. Splitting algorithm for simulation-based optimization problems with categorical
variables: quadDS

The splitting algorithm for simulation-based optimization problems with categorical variables devel-
oped in this article is called ‘quadDS’ (quadratically underestimating discrete search). A flowchart of
the algorithm is provided in Figure 3. The terms used in the flowchart are interpreted below.

Initialize record list. For each node i ∈ R, store the optimal value of problem (3), denoted F̄i, i.e.
the approximate lower bound on the optimal value of problem (1), and the corresponding set of
feasible designs.
Select node to process. If the record list R = ∅, then create a new list as described in Section 3.3.
If R
= ∅, then select the first node in the list.
Find the design nearest to the relaxed solution. In each tree node an approximate lower bound on
the optimal value of F in (1a) is attained at the relaxed solution, the nearest feasible design of
which is then found using one iteration of pattern search.
Enough designs for underestimation evaluated? A certain number of designs has to be sampled in
order to form the underestimating function F̄. If not enough designs have been evaluated, then
pattern search and/or stochastic sampling are/is used to select additional designs to evaluate (see
Section 2.3).
Apply pattern search. The pattern search starts from the evaluated design with a minimum value
of F in (1a), among the set of feasible designs in the current node. TheM designs that are closest
to the starting design are evaluated; the one with the minimal value of F is chosen; repeat if
needed.
Evaluate more designs. Designs that are feasible in the processed node are evaluated through the
(computationally expensive) simulations of the objective function F. Form underestimator of F.
A quadratic convex approximate underestimating F̄ is formed based on the evaluated designs.
Minimize underestimator. The function F̄ is minimized over the convex hull of the feasible
designs of the processed node.
Split feasible region. The feasible region is split according to the convex relaxation-based splitting
strategy, with Xs

i selected according to (4).
Minimize underestimator on each subregion. The function F̄ is minimized over the convex hull
of the feasible designs of each child node of the processed node resulting in relaxed optimal
solutions to problems (3) in the corresponding child nodes.
Convergence. The algorithm is terminated based on a maximum number of evaluations of F.
Convergence is, however, guaranteed only when all feasible designs have been evaluated.

In each iteration of quadDS, one linear optimization problem (LP) (or semidefinite optimization
problem [SDP]) and three convex quadratic optimization problems (QPs) are solved. The algorithm
quadDS is particularly suitable when the magnitude of the time needed for objective function sim-
ulations substantially exceeds the magnitude of the time required to solve these four optimization
problems.

6. Computational experiments

This section describes the computational experiments conducted to assess the performance of
quadDS, measured by the number of objective function evaluations. The implementation of quadDS

ENGINEERING OPTIMIZATION 823

Figure 3. Flowchart of the algorithm quadDS.

is described in Section 6.1. The algorithms used for performance evaluation of quadDS are described
in Section 6.2. The test problems used to assess the performance of the algorithms tested are described
in Section 6.3. The assessment methodology chosen is introduced in Section 6.4, and the numerical
results are presented in Section 6.5.

6.1. Implementation

All experiments were carried out on a laptop computer equipped with Intel� CoreTM i7-5600U
2.60GHz CPU and 16GB of RAM, running 64-bit Windows� 7 Enterprise. The algorithm quadDS,
as described in this article, was implemented in MATLABő R2015b (The MathWorks 2015). To find
the convex underestimator F̄ through solving optimization problem (2), either the solver for lin-
ear and quadratic semi-definite optimization problems SDPT3-4.0 (Toh, Todd, and Tutuncu 1999)
was used, or the LP solver linprog (Coleman and Zhang 2015) from MATLAB’s R2015b Opti-
mization Toolbox for the case when the underestimator F̄ has a diagonal Hessian was utilized; see
Section 6.5. Quadratic optimization problem (3) was solved using the QP solver quadprog (Coleman
and Zhang 2015) fromMATLAB’s R2015b Optimization Toolbox. The implementation of quadDS is
available upon request.

824 Z. NEDĚLKOVÁ ET AL.

6.2. Tested algorithms

The considered class of design optimization problem with simulation-based objective functions is
in engineering practice often solved using genetic algorithms (Dhingra and Rao 1992; Atiqullah
and Rao 2000; Ryoo and Hajela 2004). An alternative is to use a nonlinear optimization algorithm,
designed for non-convex optimization problems or simulation-based objective functions, and which
can also handle discrete variables. The performance of three variants of quadDS is comparedwith one
genetic algorithm (MATLAB GA)—which is often used and is readily available—and one algorithm
developed for simulation-based optimization (NOMAD [nonlinear optimization with the mesh
aaptive search algorithm])—which is easy to use.

quadDS
Three variants of quadDS are considered, denoted quadDSLP, quadDSSDP and quadDSFN, respec-
tively. The variants quadDSLP and quadDSSDPboth use the nearest edge projection splittingmethod,
but differ in the approach to determining the quadratic underestimator F̄ by solving optimization
problem (2). In quadDSLP, the Hessian of F̄ is diagonal, thus reducing the SDP (2) to a separable LP.
In quadDSSDP, no assumption on the sparsity of the Hessian of F̄ is made. A complete algorithm has
been defined from the techniques described by Fuchs and Neumaier (2010b): quadDSFN, in which
the objective function is approximated by a linear combination of the function values at the evaluated
designs and the balanced split method is used.

Genetic algorithm solver
The genetic algorithm solver is part of the MATLAB Optimization Toolbox (Coleman and
Zhang 2015; TheMathWorks 2015) and solves optimization problems bymimicking the principles of
biological evolution, repeatedlymodifying a population of individual points using rules based on gene
combinations in biological reproduction. The solver contains algorithms for a large variety of opti-
mization problem with continuous, integer or mixed variables. The algorithms within the solver can
to some extent be customized to simulation-based optimization problems with categorical variables.

NOMAD
The software application for simulation-based optimization, NOMAD, is based on the Mesh Adap-
tive Direct Search (MADS) algorithm (Audet and Dennis Jr 2006). MADS is an iterative method in
which the simulation-based functions are evaluated at trial points lying on a mesh. It can explore a
design space efficiently in the search for better solutions for a large spectrum of optimization problem
types. Recent implementations of NOMAD can also handle categorical and mixed variables (Audet,
Le Digabel, and Tribes 2009). To be able to incorporate categorical variables, a definition of neigh-
bourhood has to be supplied. This definition then determines the behaviour of the algorithm. The
approach suggested is to solve a reformulation of the problem in which the categorical variables are
transformed into discrete variables. NOMADwas allowed to use built-in Latin-hypercube search and
variable neighbourhood search in order to improve its performance.

6.3. Test problems

An artificial problem
A set of problem instances with cubic objective functions was randomized, according to

minimize
x,z

1
2
zTQz + pTz + (diag(z)z)TSz, (7a)

subject to zi = Zi(xi), i = 1, . . . ,m, (7b)

xi ∈ Xi, i = 1, . . . ,m, (7c)

ENGINEERING OPTIMIZATION 825

Figure 4. A stepped cantilever beam withm= 5 segments.

where S is a diagonal matrix and the coefficients Sii ∈ [−3, 3] and pi ∈ [−1, 1] are uniformly dis-
tributed. Two sets with 120 instances, each corresponding to two variants of problem (7), were
generated. In (i) the sparse artificial problem, Q is a diagonal matrix with the elements Qii ∈
[−3, 3] uniformly randomly generated. In (ii) fully artificial problem, Q is a full matrix with the
elementsQij ∈ [−3, 3] uniformly randomly generated. The feasible designs are generated using Latin-
hypercube sampling (Sóbester et al. 2014) with zi ∈ [−1, 1]ni , where ni ∈ { 2, . . . , 8 }. The numberNi
of feasible designs in each choice domain Xi, and the number m of choice domains, are randomized
from the integer uniform distribution on the intervals [10, 50] and [2, 8], respectively.

A beam design problem
The second test problem is a relaxation of the stepped beam example in Thanedar and Vander-
plaats (1995). A cantilever beam, consisting of five segments with rectangular cross sections, is
subjected to an end shear force; see Figure 4. The height and width of the cross sections constitute
the design variables, and in the original setting the optimization problem is to minimize the volume
of the beam with constraints on the maximum bending stress and tip displacement. In the relaxation
considered, these constraints are dropped and the tip displacement is minimized while penalizing the
volume. The beam is modelled using the finite element method utilizing Timoshenko beam theory
(Timoshenko and Gere 1972, Chap. 5). The beam is subdivided into a set of connected elements with
nodes at the ends of the beam. The displacement is assumed to be a piecewise linear function on
[0, L].

Let k denote the number of elements and q= k+1 the number of nodes. The number of segments
corresponds to the length of the vector m of discrete choice variables in Section 2.1. Each segment
is composed of p elements, i.e. k=mp. The choices of xi ∈ Xi = {1, . . . ,Ni}, i = 1, . . . ,m, determine
the composite vector z of widths and heights of the cross sections. Furthermore let K(z) ∈ R

q×q and
f ∈ R

q denote the stiffness matrix and load vector, respectively, and let d ∈ R
q denote the vertical

displacements of the beam. With a force P applied to the end tip resulting in the end displacement
dn, it follows that fk+1 = P and fi = 0 for i ≤ k, and the optimization problem is formulated as

minimize
x,z

dn + κV(z), (8a)

subject to K(z)d = f , (8b)

zi = Zi(xi), i = 1, . . . ,m, (8c)

xi ∈ Xi, i = 1, . . . ,m, (8d)

where κ ∈ R+ denotes the penalty parameter and V(z) is the volume of the beam. The length, the
material properties and the load are set according to Thanedar and Vanderplaats (1995).

The number of segments m ∈ { 2, . . . , 10 } and the number of cross sections available for each
segment Ni ∈ {10, . . . , 50}, i = 1, 2, are randomly uniformly generated. For each segment, the cross

826 Z. NEDĚLKOVÁ ET AL.

sections are selected from a discrete set Zi(j) := H × W, j ∈ Xi, with heights H ∈ {h | h = 0.45 +
0.15j/N1, j = 0, . . . ,N1 − 1 } andwidthsW ∈ {w |w = 0.02 + 0.03j/N2, ȷ = 0, . . . ,N2 − 1 }. For the
numerical tests, to receive a problem with a known optimal solution, κ := 0 is set, which implies that
the optimal solution can be found by choosing the cross section with both the largest height and the
largest width on each segment.

The tyres selection problem
Vehicles with two and three axles, respectively, are considered for the instances of the tyres selection
problem introduced in Section 1.2. The operation of the vehicle is varied in order to obtain different
optimal tyre configurations, i.e. the optimal tyres to be mounted on the individual axles.

For a vehicle with two axles, i.e. X = X1 × X2, 35 feasible tyres are available for each axle, resulting
in 352 = 1225 feasible tyre designs. The choice of the tyre x1 (x2) determines the values of the three
design parameters tyre width, tyre diameter, and inflation pressure for the tyres mounted on the front
(rear) axle. The resulting vector z thus has six components. For a vehicle with three axles, i.e. X =
X1 × X2 × X3, and 35 feasible tyres per axle, the vector z has nine components and there are 353 =
42,875 feasible tyre designs.

6.4. Assessmentmethodology

The measures performance profile and data profile introduced by Moré and Wild (2009) have been
utilized to assess the performance of quadDS, the MATLAB GA and NOMAD on the three sets
of test problems described in Section 6.3. While performance profiles are used to compare differ-
ent algorithms, data profiles provide—for each specific algorithm—the average number of function
simulations required to solve the test problems.

The following convergence test, commonly used to assess derivative-free solvers (Moré and
Wild 2009), is employed: a feasible design z fulfils the convergence test if

F(z(0)) − F(z) ≥ (1 − τ)(F(z(0)) − FL) (9)

holds, where τ ∈ [0, 1] is a tolerance parameter that represents decrease from the starting value
F(z(0)), z(0) is the initial feasible design, and FL is the smallest value of F in (1a) obtained by any
solver within a given number of function evaluations for a given problem, or the optimal value of F
if available. The convergence test requires that the reduction F(z(0)) − F(z) achieved by z be at least
(1 − τ) times the reduction F(z(0)) − FL.

Performance profile
The performance profile for an algorithm originally introduced by Dolan andMoré (2002) is defined
in terms of a performance measure; here it is represented by the number of evaluations of the
objective function F required to satisfy the convergence test in (9). Assuming a set A of algo-
rithms applied to a set P of problems, tpa is for each p ∈ P and a ∈ A defined as the number of
function evaluations required to satisfy the convergence test (9). The performance ratio, defined as
tpa(minb∈A{tpb})−1, p ∈ P , a ∈ A, relates the performance of algorithm a as applied to the problem
p to the best performance of any of the algorithms in the setA. If algorithm a fails to satisfy the con-
vergence test on problem p, then by convention tpa := ∞. An overall assessment of the performance
of algorithm a is obtained by defining the probability that the performance ratio is at most α, where
α ∈ [0, 1], that is,

ρa(α) := |P|−1
∣∣∣∣
{
p ∈ P : tpa ≤ α · min

b∈A
{tpb}

}∣∣∣∣ .
The function ρa : [1,∞) �→ [0, 1] is the cumulative distribution function of the performance ratio.
A plot of the performance profile for the set of tested algorithms A reveals the major performance

ENGINEERING OPTIMIZATION 827

Figure 5. Data profiles da(β) and performance profiles ρa(α) for three variants of quadDS, the MATLAB GA and NOMAD applied
to 120 instances of the sparse artificial problem with τ = 0.1.

characteristics of the algorithms (the relative performance of each solver, the probability of successful
solution, and the percentages of problems on which the algorithms perform the best).

Data profile
While performance profiles provide an accurate view of the relative performance of solvers within
a given number of function evaluations, they do not provide sufficient information in the case of
computationally expensive objective functions, when a more relevant measure is the performance of
a solver as a function of the number of expensive function evaluations. The data profile of an algorithm
a ∈ A is thus employed, introduced by Moré and Wild (2009) and defined by

da(β) := |P|−1|{p ∈ P : tpa ≤ β}|,
which is the proportion of problems that are solved within β function evaluations.

Performance profiles are used to compare different algorithms, while data profiles provide the
number of function simulations required to solve any of the problems by each specific algorithm.

6.5. Results

The numerical results are evaluated using the performance measures introduced in Section 6.4. The
algorithm set A consists of quadDSLP, quadDSSDP, quadDSFN, the MATLAB GA and NOMAD.
As benchmark problems, 120 randomly generated instances of each of the four test problems (sparse
artificial, fully artificial, beam design and tyres selection) described in Section 6.3 are considered. The
tolerance τ = 0.1 is used in the inequality (9) used for the convergence test for the artificial and beam
problems, and τ = 0.01 for the tyres selection problem.

Figures 5–8 show the data and performance profiles (Moré and Wild 2009) of quadDS (three
variants), the MATLAB GA and NOMAD. The three variants of quadDS outperform the competing
algorithms, the MATLAB GA and NOMAD, on all the benchmark problems. The variant quadDSLP
performs the best on all sets of problems, except for the fully artificial problems. For these problems,
quadDSSDP and quadDSFN perform nearly equally well, and significantly better than quadDSLP.

For the instances of the sparse artificial problem, quadDSLP performs substantially better than the
other algorithms tested, see Figure 5. The performance of the other algorithms tested improves when
the maximum number of allowed objective function evaluations is increased.

When the fully artificial problem is considered, both quadDSSDP and quadDSFN outperform the
other algorithms tested, as can be seen in Figure 6. The underestimator with a sparse Hessian as used
within quadDSLP forms an inaccurate approximation of the objective function of the fully artificial

828 Z. NEDĚLKOVÁ ET AL.

Figure 6. Data profiles da(β) and performance profiles ρa(α) for three variants of quadDS, the MATLAB GA and NOMAD applied
to 120 instances of the fully artificial problem with τ = 0.1.

Figure 7. Data profiles da(β) and performance profiles ρa(α) for three variants of quadDS, the MATLAB GA and NOMAD applied
to 120 instances of the beam problem with τ = 0.1.

problem, resulting in the worse performance of quadDSLP. The performance of NOMAD and the
MATLAB GA are almost the same and improve when the maximal number of objective function
evaluations is increased.

For the beam problem, quadDSLP outperforms the other algorithms when the maximum num-
ber of allowed objective function evaluations exceeds the number of evaluated designs required to
form the underestimator, as Figure 7 shows. For fewer evaluated designs, NOMADwould be the best
choice.

When the tyre problem is considered, all three variants of quadDS clearly outperform NOMAD
and theMATLABGA, see Figure 8. The performance of theMATLABGA improveswhen the allowed
number of function evaluations increases. NOMAD did not solve any of the instances of the tyres
selection problem within the maximum allowed number of objective function evaluations.

The number of evaluated designs required to form the underestimator in each of the variants of
quadDS influences the performance for low values of β ; quadDSLP requires substantially fewer eval-
uated designs than quadDSSDP to start to iterate (see Enough designs for underestimation evaluated
in Figure 3). In quadDSFN, no underestimator is created. It is observed that quadDSLP performs
better than quadDSSDP on test problems having an objective function with a sparse or even diag-
onal Hessian. The reason is that the underestimator with a diagonal Hessian formed in quadDSLP

ENGINEERING OPTIMIZATION 829

Figure 8. Data profiles da(β) and performance profiles ρa(α) for three variants of quadDS, the MATLAB GA and NOMAD applied
to 120 instances of the tyres selection problem with τ = 0.001. Note that dNOMAD(β) = 0 for all values of β and ρNOMAD(α) = 0.5
for all values of α, because NOMAD did not solve any of the instances of the tyres selection problem within the maximum allowed
number of objective function evaluations.

approximates the objective function better and requires substantially fewer function evaluations to
be formed than an underestimator with a full Hessian (quadDSSDP). Subsequently, more iterations
of quadDSLP can also be performed. The objective function of the sparse artificial problem is con-
structed to have a diagonal Hessian. It is observed that the Hessian of the objective function of the
beam problem is indeed sparse and nearly diagonal. The objective function of the tyres selection
problem is almost separable with respect to choice domains, resulting in an almost block-diagonal
Hessian. For a general optimization problem, forwhichno information about the sparsity of the objec-
tive function can be obtained, quadDSSDP is recommended if sufficiently many function evaluations
can be performed, since this algorithm provides tighter lower bounds. If the number of function eval-
uations allowed is very low, then quadDSLP should be preferred since it requires substantially fewer
function evaluations to form the underestimator of the objective function.

7. Conclusions and future research

A discrete search algorithm for design optimization, quadDS, has been developed and imple-
mented. The algorithm is suitable for optimization problems with computationally expensive
simulation-based objective functions and categorical variables.

The algorithm has been tested utilizing a variety of both artificial and real test problems, and com-
pared with other existing algorithms that can be used to solve the described class of optimization
problems. The performance of the algorithms has been assessed using so-called performance and data
profiles. The algorithm quadDS outperforms the competing algorithms considered on the selected
benchmark problems.

The proposed algorithm enables the efficient solution of the true tyres selection problem for a
limited number of customers corresponding to a specific vehicle configuration and operating environ-
ment. A technique for finding approximately optimal tyre configurations for many other customers
is being developed, based on the forthcoming work by Nedělková et al. (2018).

The algorithm quadDS can be extended to include simple constraints on the discrete choice vari-
ables except for those already included. Separable constraints can be handled through a preprocessing
of the search domain. Linear constraints can be included in the convex relaxation of the original
problem used by the algorithm. To handle more complicated constraints, such as nonlinear and/or
simulation-based ones, will require further development. The variant of quadDS presented here is
developed for purely categorical variables; continuous and discrete variables can, however, be handled
by a simple adjustment of the splitting method.

830 Z. NEDĚLKOVÁ ET AL.

Notes

1. Note that the integer values 1, 2, . . . ,Ni do not represent any physical entities.
2. The values Zi(j), j = 1, . . . ,Ni, are usually provided in an Ni × ni table, i = 1, . . . ,m.
3. A more accurate underestimation would be computationally more expensive to construct and minimize (Nowak

and Vigerske 2008).
4. The costs of edges are determined by their lengths in terms of Euclidean distance in the z-space.
5. It holds that

⋃
l∈L Il = J.

Disclosure statement
No potential conflict of interest was reported by the authors.

Funding
The work leading to this article was supported by the Swedish Energy Agency [project number P34882-1]; Chalmers
University of Technology and University of Gothenburg; and Volvo Group Trucks Technology .

ORCID
Zuzana Nedělková http://orcid.org/0000-0003-1551-9713
Christoffer Cromvik http://orcid.org/0000-0001-5421-7967
Peter Lindroth http://orcid.org/0000-0001-5344-3858
Michael Patriksson http://orcid.org/0000-0001-7675-7454
Ann-Brith Strömberg http://orcid.org/0000-0003-1962-7279

References
Abhishek, K., S. Leyffer, and J. T. Linderoth. 2010. “Modelingwithout Categorical Variables: AMixed-IntegerNonlinear

Program for the Optimization of Thermal Insulation Systems.” Optimization and Engineering 11 (2): 185–212.
Alexandrov, N. M., and M. Y. Hussaini, eds. 1997.Multidisciplinary Design Optimization: State of the Art. Philadelphia,

PA: SIAM.
Atiqullah, M. M., and S. S. Rao. 2000. “Simulated Annealing and Parallel Processing: An Implementation for Con-

strained Global Design Optimization.” Engineering Optimization 32 (5): 659–685.
Audet, C., and J. E. Dennis Jr. 2004. “A Pattern Search Filter Method for Nonlinear Programming without Derivatives.”

SIAM Journal on Optimization 14 (4): 980–1010.
Audet, C., and J. E. Dennis Jr. 2006. “Mesh Adaptive Direct Search Algorithms for Constrained Optimization.” SIAM

Journal on Optimization 17 (1): 188–217.
Audet, C., S. Le Digabel, and C. Tribes. 2009. NOMAD User Guide. Tech. Rep. G-2009-37. Montréal, QC, Canada: Les

cahiers du GERAD.
Box, G. E. P. 1957. “Evolutionary Operation: A Method for Increasing Industrial Productivity.” Journal of the Royal

Statistical Society. Series C (Applied Statistics) 6 (2): 81–101.
Boyd, S., and L. Vandenberghe. 2004. Convex Optimization. Cambridge, UK: Cambridge University Press.
Carlson, S. E. 1996. “Genetic Algorithm Attributes for Component Selection.” Research in Engineering Design 8 (1):

33–51.
Coleman, T. F., B. S. Garbow, and J. J.Moré. 1985. “Software for Estimating SparseHessianMatrices.”ACMTransactions

on Mathematical Software 11 (4): 363–377.
Coleman, T. F., and Y. Zhang. 2015. Optimization Toolbox User’s Guide, Revised for Version 7.3 (Release 2015b). Natick,

MA: The MathWorks, Inc.
Dhingra, A. K., and S. S. Rao. 1992. “A Neural Network Based Approach to Mechanical Design Optimization.”

Engineering Optimization 20 (3): 187–203.
Dolan, E. D., and J. J. Moré. 2002. “Benchmarking Optimization Software with Performance Profiles.” Mathematical

Programming 91 (2): 201–213.
Floudas, Christodoulos A. 1995. Nonlinear and Mixed-Integer Optimization: Fundamentals and Applications. 1st ed.

OUP Series on Topics in Chemical Engineering. Don Mills, ON, Canada: Oxford University Press.
Fuchs, M., D. Girimonte, D. Izzo, and A. Neumaier. 2008. “Robust and Automated Space System Design.” In Robust

Intelligent Systems, edited by A. Schuster, 251–272. New York: Springer Science & Businees Media.
Fuchs, M., and A. Neumaier. 2010a. “A Splitting Technique for Discrete Search Based on Convex Relaxation.” Journal

of Uncertain Systems 4 (1): 14–21.

http://orcid.org/0000-0003-1551-9713
http://orcid.org/0000-0001-5421-7967
http://orcid.org/0000-0001-5344-3858
http://orcid.org/0000-0001-7675-7454
http://orcid.org/0000-0003-1962-7279

ENGINEERING OPTIMIZATION 831

Fuchs, M., and A. Neumaier. 2010b. “Discrete Search in Design Optimization.” In Complex Systems Design &
Management, edited by M. Aiguier, F. Bretaudeau, and D. Krob, 113–122. Berlin-Heidelberg: Springer.

Graham, R. L., and P. Hell. 1985. “On the History of the Minimum Spanning Tree Problem.” Annals of the History of
Computing 7 (1): 43–57.

Horst, R., and H. Tuy. 1996. Global Optimization: Deterministic Approaches. New York: Springer.
Huyer, W., and A. Neumaier. 1999. “Global Optimization by Multilevel Coordinate Search.” Journal of Global Opti-

mization 14 (4): 331–355.
Jones, D. R., C. D. Perttunen, and B. E. Stuckman. 1993. “Lipschitzian Optimization without the Lipschitz Constant.”

Journal of Optimization Theory and Applications 79 (1): 157–181.
Leyffer, S. 1993. “DeterministicMethods forMixed Integer Nonlinear Programming.” PhD diss., University of Dundee,

UK.
Lindroth, P. 2012. “TyreOpt—FuelConsumptionReduction byTyreDragOptimisation.” [In Swedish]. Project number:

P34882-1. SwedishEnergyAgency, Stockholm.Accessed 14April 2017. http://www.energimyndigheten.se/forskning-
och-innovation/projektdatabas/.

Locatelli, M., and F. Schoen. 2013. Global Optimization: Theory, Algorithms, and Applications. Philadelphia, PA: SIAM.
Moré, J. J., and S. M. Wild. 2009. “Benchmarking Derivative-Free Optimization Algorithms.” SIAM Journal on

Optimization 20 (1): 172–191.
Nedělková, Z., P. Lindroth, and B. Jacobson. 2017. “Modelling of Optimal Tyres Selection for a Certain Truck and

Transport Application.” International Journal of Vehicle Systems Modelling and Testing 12 (3–4): 284–303.
Nedělková, Z., P. Lindroth, M. Patriksson, and A.-B. Strömberg. 2018. “Efficient Solution of Many Instances of a

Simulation-Based Optimization ProblemUtilizing a Partition of the Decision Space.” Annals of Operations Research
265 (1): 93–118. doi:10.1007/s10479-017-2721-y.

Nedělková, Z., P. Lindroth, A.-B. Strömberg, and M. Patriksson. 2016. “Integration of Expert Knowledge into Radial
Basis Function Surrogate Models.” Optimization and Engineering 17 (3): 577–603.

Nemhauser, G. L., and L. A. Wolsey. 1999. Integer and Combinatorial Optimization. 1st ed. Vol. 55 of the Wiley Series
Discrete Mathematics and Optimization. Hoboken, NJ: Wiley.

Neumaier, A., M. Fuchs, E. Dolejsi, T. Csendes, J. Dombi, B. Bánhelyi, Z. Gera, and D. Girimonte. 2007. Application of
Clouds for Modeling Uncertainties in Robust Space System Design, Final Report. Tech. Rep. ACT Ariadna Research
ACT-RPT-05-5201, European SpaceAgency. http://www.esa.int/gsp/ACT/doc/ARI/ARI%20Study%20Report/ACT-
RPT-INF-ARI-055201-Clouds.pdf.

Nowak, I., and S. Vigerske. 2008. “LaGO: A (Heuristic) Branch and Cut Algorithm for Nonconvex MINLPs.” Central
European Journal of Operations Research 16 (2): 127–138.

Parker, R. G., and R. L. Rardin. 2014. Discrete Optimization. 2nd ed. Elsevier Series on Computer Science and Scientific
Computing. Cambridge, MA: Elsevier.

Ryoo, J., and P. Hajela. 2004. “Decomposition-Based Design Optimization Method Using Genetic Co-Evolution.”
Engineering Optimization 36 (3): 361–378.

Šabartová, Z. 2015. “Mathematical Modelling for Optimization of Truck Tyres Selection.” Lic. thesis, Chalmers
University of Technology and Department of Mathematical Sciences, University of Gothenburg.

Šabartová, Z., A.-B. Strömberg, M. Patriksson, and P. Lindroth. 2014. “An Optimization Model for Truck Tyres Selec-
tion.” In Engineering Optimization IV. Proceedings of the International Conference on Engineering Optimization
(ENGOPT 2014), edited by H. C. Rodrigues, José Herskovits, C. M. Mota Soares, J. M. Guedes, Aurelio L. Araújo, J.
O. Folgado, F. Moleiro, and J. F. A. Madeira, 561–566. Leiden, The Netherlands: CRC Press/Balkema.

Sóbester, A., A. I. J. Forrester, D. J. J. Toal, E. Tresidder, and S. Tucker. 2014. “Enginering Design Applications of
Surrogate-Assisted Optimization Techniques.” Optimization and Engineering 15 (1): 243–265.

Tawarmalani,M., andN.V. Sahinidis. 2004. “GlobalOptimization ofMixed-IntegerNonlinear Programs: ATheoretical
and Computational Study.”Mathematical Programming 99 (3): 563–591.

Thanedar, P. B., andG.N.Vanderplaats. 1995. “Survey ofDiscreteVariableOptimization for Structural Design.” Journal
of Structural Engineering 121 (2): 301–306.

The MathWorks. 2015.MATLABő Release 2015b. Natick, MA: The MathWorks, Inc.
Timoshenko, Stephen, and James M. Gere. 1972.Mechanics of Materials. Boston, MA: Van Nostrand Reinhold.
Toh, K. C., M. J. Todd, and R. H. Tutuncu. 1999. “SDPT3—A MATLAB Software Package for Semidefinite Program-

ming.” Optimization Methods and Software 11 (1-4): 545–581. doi:10.1080/10556789908805762.
Wolkowicz, H., R. Saigal, and L. Vandenberghe. 2012. Handbook of Semidefinite Programming: Theory, Algorithms,

and Applications. Springer International Series on Operations Research & Management Science. New York: Springer
Science & Business Media.

Zhao, Z., J. C. Meza, and M. Van Hove. 2006. “Using Pattern Search Methods for Surface Structure Determination of
Nanomaterials.” Journal of Physics: Condensed Matter 18 (39): 86–93.

Žilinskas, J. 2008. “Branch and Boundwith Simplicial Partitions for Global Optimization.”MathematicalModelling and
Analysis 13 (1): 145–159.

http://www.energimyndigheten.se/forskning-och-innovation/projektdatabas/
http://https://doi.org/10.1007/s10479-017-2721-y
http://www.esa.int/gsp/ACT/doc/ARI/ARI{%}20Study{%}20Report/ACT-RPT-INF-ARI-055201-Clouds.pdf
http://https://doi.org/10.1080/10556789908805762

	1. Introduction
	1.1. Previous work
	1.2. Motivation
	1.3. Outline

	2. Design optimization
	2.1. Problem formulation
	2.2. A splitting algorithm for design optimization
	2.3. A convex underestimation of the objective function

	3. A convex relaxation based splitting strategy
	3.1. Balanced splitting strategy
	3.2. Nearest edge projection splitting strategy
	3.3. Selection of node to split

	4. Local search
	5. Splitting algorithm for simulation-based optimization problems with categorical variables: quadDS
	6. Computational experiments
	6.1. Implementation
	6.2. Tested algorithms
	6.3. Test problems
	6.4. Assessment methodology
	6.5. Results

	7. Conclusions and future research
	Notes
	Disclosure statement
	Funding
	ORCID
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /PageByPage
 /Binding /Left
 /CalGrayProfile ()
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings false
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.90
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.90
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Average
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [493.483 703.304]
>> setpagedevice

