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Electromagnetic and Acoustic Waves Along
Waveguides

Medet Nursultanov and Andreas Rosén

Abstract. We study time-harmonic electromagnetic and acoustic waveg-
uides, modeled by an infinite cylinder with a non-smooth cross section.
We introduce an infinitesimal generator for the wave evolution along the
cylinder and prove estimates of the functional calculi of these first order
non-self adjoint differential operators with non-smooth coefficients. Ap-
plying our new functional calculus, we obtain a one-to-one correspon-
dence between polynomially bounded time-harmonic waves and func-
tions in appropriate spectral subspaces.
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1. Introduction

A linear partial differential equation, PDE, or a system of PDEs, is often
analyzed by studying the evolution of solutions u with respect to one of the
variables, say t. Recall that if the PDE is of second or higher order, then we
can rewrite it as a system of first order equations, so without loss of generality
we can assume that the PDE only contains first order derivatives in t. In this
way the PDE becomes a vector-valued ordinary differential equation, ODE,
like

∂tu(t, x) + Tu(t, x) = 0 (1.1)

in the homogeneous case. Here T , an infinitesimal generator, is a differential
operator acting in the remaining variables x only, for each fixed t.

Formally solutions to (1.1) are given by

u(t, x) = (exp(−tT )u(0, ·))(x). (1.2)
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However, since T is an unbounded operator, we need to be careful in the
definition and analysis of such a solution operator exp(−tT ). The heuristics
are as follows. For a parabolic equation, say the heat equation, T is the
positive Laplace operator, and exp(−tT ) is a well defined bounded operator
for any t ≥ 0 and any initial function. For a hyperbolic equation, say the
wave equation as a first order system, T is skew symmetric and exp(−tT ) is
unitary and well defined for any −∞ < t < ∞ and any initial function. For
an elliptic equation, say the Cauchy–Riemann system, T is symmetric but
with spectrum running from −∞ to +∞. In this case we need to split the
function space for initial data as a direct sum of two Hardy subspaces. Then
exp(−tT ) is well defined and bounded for t > 0 when the initial data is in
one of the Hardy subspaces, and for t < 0 when the initial data is in the
other Hardy subspace.

The aim of the present paper is to study infinitesimal generators T
arising as above in the elliptic case. Our motivation comes from the theory for
waveguides, and our results yield a powerful mathematical representation of
time-harmonic waves propagating along waveguides with general non-smooth
materials. The waveguide is modeled by the unbounded region R×Ω, where Ω
is a bounded domain in R2, or more generally in Rn. Note that we study time-
harmonic waves. Therefore the PDE is elliptic rather than hyperbolic, and t is
not time but rather the spatial variable along the waveguide. For an acoustic
waveguide, the PDE is of Helmholtz type, as in Sect. 2.1, with coefficients
which we allow to vary non-smoothly over the cross section Ω, but they are
homogeneous along the waveguide. For an electromagnetic waveguide, the
system of PDEs is Maxwell’s equations as we describe in Sect. 2.2.

We show in Sect. 2 that the infinitesimal generators T arising in this
way when studying waveguide propagation are of the form

T = (D1 + D0)B, (1.3)

where D1 is a self-adjoint first-order differential operator, D0 is a normal
bounded multiplication operator, and B is a bounded accretive operator de-
pending on the material properties of the cross section of the waveguide.
With such variable coefficients, the operator T will not be self-adjoint. Even
in the static case D0 = 0, T is only a bi-sectoral operator (see [3]), and L2(Ω)
bounds of exp(−tT ) and more general functions f(T ) of T , are non-trivial
matters. However, in the general non-smooth case, this is well understood
from the works of Axelsson et al. [5] and Auscher et al. [4]. In the present
paper we extend these results to the case D0 �= 0 which occurs in general
time-harmonic, but non-static, wave propagation in waveguides.

In Sect. 3 we study functional calculi of operators of the form (1.3),
which we show have L2(Ω) spectra contained in regions

Sω,τ := {x + iy ∈ C : |y| < |x| tan ω + τ}.

To have a theory for general frequencies of oscillation, encoded by the zero-
order term D0, it is essential to require the cross section Ω to be bounded,
which ensures that the spectrum is discrete. However, the compactness of
resolvents and the discreteness of spectrum only holds for T in the range of
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D1 +D0, which is invariant under T . Building on fundamental quadratic esti-
mates (see [1]) for operators T in the static case, we are able to construct and
prove L2(Ω) estimates of a generalised Riesz–Dunford functional calculus of
T . To yield a well defined and bounded operator f(T ), the symbol f(z) is re-
quired to be uniformly bounded and holomorphic on an open neighbourhood
of the spectrum of T except at ∞, where it is only required to be bounded
and holomorphic on a bi-sector |y| ≤ tan ω|x|, ω < π/2, in a neighbourhood
of ∞. Due to the deep quadratic estimates from harmonic analysis used in
Proposition 3.16, this suffices to bound f(T ) at ∞.

Another novelty in estimating f(T ), due to the non-self adjointness of
T , is that ‖f(T )‖ may depend not only on |f(λ)|, but also on a finite number
of derivatives f (k)(λ) at a given eigenvalue λ of T . In particular, an eigenvalue
of T on the imaginary axis with index/algebraic multiplicity greater than 1,
will result in propagating waves ut = exp(−tT )u0 which grow polynomially.

Note that since the spectrum is discrete, a symbol like

f(z) =

{
e−tz, if Rez > a,

0, if Rez ≤ a,

for t > 0, is admissible provided no eigenvalue lies on Rez = a, and will yield
an operator bounded on L2(Ω). In this sense the functional calculus that we
here construct is more general than that considered by Morris in [11].

In the final Sect. 4, we apply our new functional calculus for operators
T to show how all polynomially bounded time-harmonic waves in the semi-
or bi-infinite waveguide can be represented like (1.2), with u0 in appropriate
spectral subspace for T .

2. Partial Differential Equations Expressed as Vector-Valued
Ordinary Differential Equations

In this section we consider the Helmholtz and Maxwell’s equations and ex-
press them as vector-valued ordinary differential equations in terms of oper-
ator DB, which is introduced later.

Throughout this paper Ω = Ω+ ⊂ Rn denotes a bounded open set,
separated from the exterior domain, Ω− = Rn\Ω, by a weakly Lipschitz
interface Γ = ∂Ω, defined as follows.

Definition 2.1. The interface Γ is weakly Lipschitz if, for all y ∈ Γ, there
exists a neighbourhood Vy 	 y and a global bilipschitz map ρy : Rn → Rn

such that

Ω± ∩ Vy = ρy

(
Rn

±
) ∩ Vy,

Γ ∩ Vy = ρy

(
Rn−1

) ∩ Vy,

where Rn
+ = Rn−1 × (0,+∞) and Rn

− = Rn−1 × (−∞, 0). In this case Ω is
called a weakly Lipschitz domain.

We will use the symbols D(·), N(·), and R(·) to denote the domain, null
space, and range of an operator, respectively.
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2.1. The Helmholtz Equation

Let Ω ⊂ Rn be a bounded weakly Lipschitz domain and A∈L∞
(
Ω;L (

Cn+2
))

be t-independent and pointwise strictly accretive in the sense that there exists
α > 0 such that

Re(A(x)v, v) ≥ α‖v‖2 (2.1)

for all x ∈ Rn and v ∈ Cn+2. For a complex number k �= 0, we consider the
equation [

div(t,x) k
]
A

[∇(t,x)

k

]
u = 0 (2.2)

in Ω × R with u ∈ H1
0 (Ω) for all t ∈ R.

Let us set

Hdiv(Ω;Cn) := {f ∈ L2(Ω;Cn) : divf ∈ L2(Ω)}.

By div and ∇0, we denote the divergence and gradient operators on Hdiv(Ω)
and H1

0 (Ω) respectively.
Splitting Cn+2 into C and Cn+1, we decompose the matrix A(x) in the

following way

A(x) =
[
A⊥⊥(x) A⊥‖(x)
A‖⊥(x) A‖‖(x)

]
.

Then we can write Eq. (2.2) in the form

[
∂t

[
div k

]] [A⊥⊥(x) A⊥‖(x)
A‖⊥(x) A‖‖(x)

]⎡⎣ ∂tu[∇0u
ku

]⎤⎦ = 0.

Hence

[
∂t

[
div k

]]
⎡
⎢⎢⎣

A⊥⊥∂tu + A⊥‖

[∇0u
ku

]

A‖⊥∂tu + A‖‖

[∇0u
ku

]
⎤
⎥⎥⎦ = 0. (2.3)

Next, we define f as

f =
[
f⊥
f‖

]
:=

⎡
⎢⎢⎣

A⊥⊥∂tu + A⊥‖

[∇0u
ku

]
[∇0u

ku

]
⎤
⎥⎥⎦ . (2.4)

Since A is pointwise strictly accretive, all diagonal blocks are pointwise strictly
accretive, and consequently invertible. In particular, A⊥⊥ is invertible. Hence,
due to (2.4), we obtain ∂tu = A−1

⊥⊥(f⊥ − A⊥‖f‖). Therefore we can write Eq.
(2.3) in terms of f[

∂t

[
div k

]] [A⊥⊥A−1
⊥⊥(f⊥ − A⊥‖f‖) + A⊥‖f‖

A‖⊥A−1
⊥⊥(f⊥ − A⊥‖f‖) + A‖‖f‖

]
= 0,

hence [
∂t

[
div k

]] [ f⊥
A‖⊥A−1

⊥⊥(f⊥ − A⊥‖f‖) + A‖‖f‖

]
= 0. (2.5)
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On the other hand, from definition of f‖, we obtain

∂tf‖ =
[∇0∂tu

k∂tu

]
=
[∇0

k

]
(A−1

⊥⊥(f⊥ − A⊥‖f‖)),

which, together with (2.5), gives us the system of equations⎧⎪⎪⎨
⎪⎪⎩

∂tf⊥ +
[
div k

]
(A‖⊥A−1

⊥⊥(f⊥ − A⊥‖f‖) + A‖‖f‖) = 0,

∂tf‖ −
[
∇0

k

]
A−1

⊥⊥(f⊥ − A⊥‖f‖) = 0.

In vector notation, we equivalently have

∂t

[
f⊥
f‖

]
+

⎡
⎣ 0

[
div k

]
−
[∇0

k

]
0

⎤
⎦[

A−1
⊥⊥ −A−1

⊥⊥A⊥‖
A‖⊥A−1

⊥⊥ A‖‖ − A‖⊥A−1
⊥⊥A⊥‖

] [
f⊥
f‖

]
= 0.

Define

B :=
[

A−1
⊥⊥ −A−1

⊥⊥A⊥‖
A‖⊥A−1

⊥⊥ A‖‖ − A‖⊥A−1
⊥⊥A⊥‖

]

and

D :=

⎡
⎣ 0

[
div k

]
−
[∇0

k

]
0

⎤
⎦

with domains D(B) = L2(Ω;Cn+2) and

D(D) =
{

f = (f1, f2, f3) ∈ L2(Ω;C2+n) : f1 ∈ H1
0 (Ω),

f2 ∈ Hdiv(Ω;Cn), f3 ∈ L2(Ω)
}

,

respectively. Then the equation becomes

∂tf + DBf = 0, (2.6)

together with the constraint that f ∈ R(D) for each fixed t ∈ R.
Since A is a pointwise strictly accretive operator, B is a strictly accretive

multiplication operator just like A, see [4, Proposition 3.2]. By the above
arguments, equation (2.2) for u implies that f , defined above, solves (2.6).
Moreover, the converse is also true, that is the following proposition holds.

Proposition 2.2. If (f,∇0g, kg) ∈ R(D) solves Eq. (2.6), then g solves Eq.
(2.2).

Proof. Let (f,∇0g, kg) ∈ R(D) be a solution of Eq. (2.6), then⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂tf +
[
div k

](
A‖⊥A−1

⊥⊥

(
f − A⊥‖

[
∇0g

kg

])
+ A‖‖

[
∇0g

kg

])
= 0,

∂t

[
∇0g

kg

]
−
[
∇0

k

]
A−1

⊥⊥

(
f − A⊥‖

[
∇0g

kg

])
= 0.

(2.7)
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The first equation of (2.7) can be written in the form

[
∂t

[
div k

]] ⎡⎣ f

A‖⊥A−1
⊥⊥

(
f − A⊥‖

[∇0g
kg

])
+ A‖‖

[∇0g
kg

]⎤⎦ = 0. (2.8)

From the second equation of the system (2.7), we see

∂tg = A−1
⊥⊥

(
f − A⊥‖

[∇0g
kg

])
, (2.9)

thus

f = A⊥⊥∂tg + A⊥‖

[∇0g
kg

]
. (2.10)

Setting (2.9) and (2.10) into the formula (2.8), we get

[
∂t

[
div k

]]
⎡
⎢⎢⎣

A⊥⊥∂tg + A⊥‖

[∇0g
kg

]

A‖⊥∂tg + A‖‖

[∇0g
kg

]
⎤
⎥⎥⎦ = 0.

This shows that g solves Eq. (2.2). �

Let us define operators

D1 :=

⎡
⎣ 0 div 0

−∇0 0 0
0 0 0

⎤
⎦ , D0 :=

⎡
⎣ 0 0 k

0 0 0
−k 0 0

⎤
⎦

with domains D(D1) = D(D) and D(D0) = L2(Ω;Cn+2). Then

D = D1 + D0.

Remark 2.3. Note that D1 is a self-adjoint operator, see [9, Theorem 6.2],
and D0 is a bounded operator. Therefore D is a closed operator and

D∗ = D∗
1 + D∗

0 =

⎡
⎣ 0 div −k

−∇0 0 0
k 0 0

⎤
⎦ .

2.2. Maxwell’s Equation

Let Ω ⊂ R2 be a bounded weakly Lipschitz domain. By Rademacher’s Theo-
rem the surface ∂Ω has a tangent plane and an outward pointing unit normal
n(x) at almost every x ∈ ∂Ω. We introduce the Sobolev spaces

Hdiv(Ω;C2) := {f ∈ L2(Ω;C2) : divf ∈ L2(Ω)},

Hcurl(Ω;C2) := {f ∈ L2(Ω;C2) : curlf ∈ L2(Ω)},

H0
div(Ω;C2) := {f ∈ Hdiv(Ω;C2) : div(f̃) ∈ L2(R2)},

H0
curl(Ω;C2) := {f ∈ Hcurl(Ω;C2) : curl(f̃) ∈ L2(R2)},

where f̃ denotes the zero-extension of f to R2.
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The last two spaces have the following geometric meaning. Assume that
f ∈ H0

div(Ω;C2), then there exists a sequence {ψk}∞
k=1 ⊂ C∞

0 (Ω;C2) such
that ψk → f and divψk → divf . Hence, for φ ∈ C∞(R2), we obtain∫

Ω

(divf, φ) −
∫

Ω

(f,−∇φ) = lim
k→∞

(∫
Ω

(divψk, φ) −
∫

Ω

(ψk,−∇φ)
)

= 0.

Hence the Stokes’ theorem implies formally∫
∂Ω

(f · n, φ) =
∫

Ω

(divf, φ) −
∫

Ω

(f,−∇φ) = 0.

Therefore we interpret f ∈ H0
div(Ω;C2) to mean that divf ∈ L2(Ω), and

that f is tangential on the boundary in a weak sense. Similarly, the condition
f ∈ H0

curl(Ω;C2) means that curlf ∈ L2(Ω), and f is normal on the boundary
in a weak sense.

By ∇, ∇0, div and div0, we define the gradient and divergence operators
on H1(Ω), H1

0 (Ω), Hdiv(Ω;C2) and H0
div(Ω;C2) respectively.

Remark 2.4. For a bounded weakly Lipschitz domain Ω ⊂ R2 and function
f ∈ Hdiv(Ω;C2), we see

curlJf = divf, f · n = Jf × n

where

J =
[
0 −1
1 0

]
.

This gives

JHdiv(Ω;C2) = Hcurl(Ω;C2), JH0
div(Ω;C2) = H0

curl(Ω;C2).

Let μ, ε ∈ L∞
(
R2;L (

C3
))

be pointwise strictly accretive matrices, see
(2.1). For a complex number ω �= 0, we consider Maxwell’s system of equa-
tions ⎧⎪⎪⎪⎨

⎪⎪⎪⎩
div(t,x)μH = 0,

iωμH + curl(t,x)E = 0,

iωεE − curl(t,x)H = 0,

div(t,x)εE = 0

(2.11)

in R × Ω with

μH ∈ L2(Ω) × H0
div(Ω;C2),

E ∈ L2(Ω) × H0
curl(Ω;C2)

for any fixed t ∈ R.
According to the splitting of C3 into C and C2, we write

H =
[
H⊥
H‖

]
, E =

[
E⊥
E‖

]
,

μ =
[
μ⊥⊥ μ⊥‖
μ‖⊥ μ‖‖

]
, ε =

[
ε⊥⊥ ε⊥‖
ε‖⊥ ε‖‖

]
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and define auxiliary matrices

μ :=
[
μ⊥⊥ μ⊥‖

0 I

]
, μ :=

[
1 0

μ‖⊥ μ‖‖

]
,

ε :=
[
ε⊥⊥ ε⊥‖
0 I

]
, ε :=

[
1 0

ε‖⊥ ε‖‖

]
,

A =
[
μ 0
0 ε

]
, A :=

[
μ 0
0 ε

]
, A :=

[
μ 0
0 ε

]
.

Since μ, ε are pointwise strictly accretive, we conclude that μ⊥⊥, ε⊥⊥
are pointwise strictly accretive, and consequently μ, ε, and A are invertible.

Let I⊥ = {Ii,j
⊥ }6

i,j=1 be a 6 by 6 matrix such that I1,1
⊥ = I4,4

⊥ = 1, and
all other elements are zero. We set I‖ = I − I⊥. From the first and forth
equations of (2.11), we get

∂tI⊥AG +

⎡
⎢⎢⎣

0 div0 0 0
−∇ 0 0 0
0 0 0 div
0 0 −∇0 0

⎤
⎥⎥⎦ I‖AG = 0, where G :=

[
H
E

]
. (2.12)

From the second and third equations of (2.11), we obtain

∂tI‖G +

⎡
⎢⎢⎣

0 div0 0 0
−∇ 0 0 0
0 0 0 div
0 0 −∇0 0

⎤
⎥⎥⎦ I⊥G −

⎡
⎢⎢⎣

0 0 0 0
0 0 0 iωJ
0 0 0 0
0 −iωJ 0 0

⎤
⎥⎥⎦ I‖AG = 0. (2.13)

Since I⊥AG = I⊥AG, I‖AG = I‖AG, G‖ = I‖AG, and I⊥G = I⊥AG, we
can combine Eqs. (2.12) and (2.13) in the following way

∂tAG +

⎡
⎢⎢⎣

0 div0 0 0
−∇ 0 0 iωJ
0 0 0 div
0 −iωJ −∇0 0

⎤
⎥⎥⎦AG = 0. (2.14)

Define

D :=

⎡
⎢⎢⎣

0 div0 0 0
−∇ 0 0 iωJ
0 0 0 div
0 −iωJ −∇0 0

⎤
⎥⎥⎦

with domain

D(D) = {f = (f1, f2, f3, f4) ∈ L2(Ω) : f1 ∈ H1(Ω), f2 ∈ H0
div(Ω;C2),

f3 ∈ H1
0 (Ω), f4 ∈ Hdiv(Ω;C2)}.

Let B := AA
−1

, F := AG, so that Eq. (2.14) becomes

∂tF + DBF = 0 (2.15)

together with the constraint that F ∈ R(D) for each fixed t ∈ R.
To see that (2.11) and (2.15) are equivalent, we prove an analogue of

Proposition 2.2.
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Proposition 2.5. Let f(t, x) and g(t, x) be three dimensional vector-valued
functions such that (f, g) solves Eq. (2.15), and (f, g) ∈ R(D) ∩ D(DB) for
each fixed t ∈ R. Then the vector-valued functions

H = μ−1f, E = ε−1g (2.16)

solve the system of equations (2.11), and for any fixed t ∈ R,

μH ∈ L2(Ω) × H0
div(Ω;C2),

E ∈ L2(Ω) × H0
curl(Ω;C2).

Proof. Splitting C3 into C and C2, we write

f =
[
f⊥
f‖

]
, g =

[
g⊥
g‖

]
, H =

[
H⊥
H‖

]
, E =

[
E⊥
E‖

]
.

Since (f, g) is a solution for (2.15), we see

∂tA

[
H
E

]
+ DBA

[
H
E

]
= ∂tA

[
H
E

]
+ DA

[
H
E

]
= 0.

Thus ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂t

(
μ⊥⊥H⊥ + μ⊥‖H‖

)
+ div0

(
μ‖⊥H⊥ + μ‖‖H‖

)
= 0,

∂tH‖ − ∇H⊥ + iωJ
(
ε‖⊥E⊥ + ε‖‖E‖

)
= 0,

∂t

(
ε⊥⊥E⊥ + ε⊥‖E‖

)
+ div

(
ε‖⊥E⊥ + ε‖‖E‖

)
= 0,

∂tE‖ − ∇0E⊥ − iωJ
(
μ‖⊥H⊥ + μ‖‖H‖

)
= 0.

(2.17)

By the assumption, (f, g) ∈ R(D) for fixed t ∈ R, and hence Proposition 2.11
implies {

curlf‖ − iωg⊥ = 0,

curlg‖ + iωf⊥ = 0.

Therefore, in terms of H and E, we can write{
curlH‖ − iω

(
ε⊥⊥E⊥ + ε⊥‖E‖

)
= 0,

curlE‖ + iω
(
μ⊥⊥H⊥ + μ⊥‖H‖

)
= 0.

(2.18)

Combining (2.17) and (2.18), we conclude that H, E solve the system of
equations (2.11).

Since μH = f and f ∈ D(DB) for each fixed t ∈ R, it follows that

μH ∈ H1(Ω) × H0
div(Ω;C2).

Hence

μH ∈ L2(Ω) × H0
div(Ω;C2).

Proposition 2.11 and (2.16) lead to E‖ ∈ H0
curl(Ω;C2). Therefore, for any

fixed t ∈ R,

E ∈ L2(Ω) × H0
curl(Ω;C2). �
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Let us define operators

D1 :=

⎡
⎢⎢⎣

0 div0 0 0
−∇ 0 0 0
0 0 0 div
0 0 −∇0 0

⎤
⎥⎥⎦ , D0 :=

⎡
⎢⎢⎣

0 0 0 0
0 0 0 iωJ
0 0 0 0
0 −iωJ 0 0

⎤
⎥⎥⎦

with domains D(D1) = D(D) and D(D0) = L2(Ω;C6). Then

D = D1 + D0.

Remark 2.6. Note that D1 is a self-adjoint operator, see [9, Theorem 6.2],
and D0 is a bounded operator. Therefore D is a closed operator and

D∗ = D∗
1 + D∗

0 =

⎡
⎢⎢⎣

0 div0 0 0
−∇ 0 0 iωJ
0 0 0 div
0 −iωJ −∇0 0

⎤
⎥⎥⎦ .

2.3. Properties of D

Here we prove that the operators defined in Sects. 2.1 and 2.2 have closed
range and compact resolvents. We will use the symbols σ(·) and ρ(·) to denote
the spectrum and resolvent sets of an operator, respectively.

Let us start by considering the operator D defined in Sect. 2.1. First,
we prove that R(D) is closed.

Proposition 2.7. Let Ω ⊂ Rn be a bounded, weakly Lipschitz domain, and
D be the operator defined in Sect. 2.1. Then R(D) is a closed subspace of
L2

(
Ω;Cn+2

)
.

Proof. According to [8, Theorem 5.2], it suffices to prove that γ(D) > 0,
where γ(D) is the reduced minimum modulus of D, that is the greatest
number γ such that

‖Du‖ ≥ γ inf
v∈N(D)

‖u − v‖ for all u ∈ D(D).

Let h = (h1, h2, h3) ∈ D(D), then g =
(
0, h2,− 1

kdivh2

) ∈ N(D), and there-
fore

inf
v∈N(D)

‖h − v‖ ≤ ‖h − g‖ =
1
|k| ‖kh1‖ +

1
|k| ‖kh3 + divh2‖ ≤ 1

|k| ‖Dh‖.

This implies that γ(D) ≥ |k| > 0, and consequently that R(D) is closed. �

To prove Proposition 2.7 we used that k �= 0. However, by applying the
Poincaré inequality, one can prove that Proposition 2.7 also holds for k = 0.

Next, we find the exact expression for R(D).

Proposition 2.8. Let Ω ⊂ Rn be a bounded, weakly Lipschitz domain, and D
be the operator defined in Sect. 2.1. Then R(D) = H, where

H :=
{

f = (f1, f2, f3) ∈ L2(Ω;C2+n) : f3 ∈ H1
0 (Ω), f2 =

1
k

∇0f3

}
.
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Proof. By definition of operator D, we obtain R(D) ⊂ H. Conversely, assume
that f = (f1, f2, f3) ∈ H. Since

L2(Ω) = N(∇0) ⊕ R(div),

there exists a function h ∈ N(∇0) and sequence {gl}∞
l=1 ⊂ Hdiv(Ω;Cn) such

that h + divgl → f1 in the L2 norm. Therefore

D

⎡
⎣− 1

kf3

gl

h

⎤
⎦ →

⎡
⎣f1

f2

f3

⎤
⎦

in the L2 norm. This, by Proposition 2.7, implies that f ∈ R(D). �

Finally, we prove that the resolvent operators are compact. This im-
plies that the spectrum σ(D|R(D)) contains only the eigenvalues of D|R(D),
and each eigenvalue has finite geometric multiplicity. In fact, we prove in
Proposition 3.14 that the indexes/algebraic multiplicities are finite.

Proposition 2.9. Let Ω ⊂ Rn be a bounded, weakly Lipschitz domain, and D
be the operator defined in Sect. 2.1. Assume λ ∈ ρ(D|R(D)), then

(λ − D|R(D))
−1 : R(D) → R(D)

is a compact operator.

Proof. Since

D|R(D) (λ − D|R(D))
−1 : R(D) → R(D)

is a bounded operator, it suffices to show that the embedding(
D(D) ∩ R(D), ‖ · ‖D(D)∩R(D)

)
↪→ (R(D), ‖ · ‖L2)

is compact, where

‖f‖D(D)∩R(D) = ‖Df‖ + ‖f‖.

Let {(f l,∇gl, kgl)}+∞
l=1 be a sequence in

(
D(D) ∩ R(D), ‖ · ‖D(D)∩R(D)

)
such that ∥∥∥∥∥∥

f l

∇0g
l

kgl

∥∥∥∥∥∥ +

∥∥∥∥∥∥D

⎡
⎣ f l

∇0g
l

kgl

⎤
⎦
∥∥∥∥∥∥ < C (2.19)

for some C > 0. In particular, we get

‖f l‖ + ‖∇0f
l‖ ≤ C.

Therefore, the sequence {f l}∞
l=1 is bounded in H1(Ω). Since Ω ⊂ Rn is

bounded, the Sobolev Embedding Theorem gives that H1(Ω) ↪→ L2(Ω) is
compact. Hence, the sequence {f l}∞

l=1 contains a Cauchy subsequence in
L2(Ω). The same conclusion can be drawn for {gl}∞

l=1.
From estimate (2.19), we obtain

‖div∇0g
l + k2gl‖ + ‖gl‖ ≤ C,

and hence ‖div∇0g
l‖ ≤ C. Next, since {gl}∞

l=1 ⊂ H1
0 (Ω) and curl∇0g

l = 0,
we see that {∇0g

l}∞
l=1 is a bounded sequence in H0

curl(Ω;Cn) ∩ Hdiv(Ω;Cn).
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Consequently, the sequence {∇0g
l}∞

l=1 contains a Cauchy subsequence in
L2(Ω;Cn), because the embedding

H0
curl(Ω;Cn) ∩ Hdiv(Ω;Cn) ↪→ L2(Ω;Cn)

is compact, see [6] or [12].
Finally, after passing to subsequences three times, we conclude that

{(f l,∇0g
l, kgl)}∞

l=1 contains a Cauchy subsequence in (R(D), ‖ · ‖L2). �
We next derive similar results for the operator D defined in Sect. 2.2.

Proposition 2.10. Let Ω ⊂ R2 be a bounded, weakly Lipschitz domain, and
D be the operator defined in Sect. 2.2. Then R(D) is a closed subspace of
L2(Ω;C6).

Proof. As in Proposition 2.7, it suffices to show that γ(D) > 0. Let us choose
any h = (h1, h2, h3, h4) ∈ D(D). In particular, h1 ∈ H1(Ω), h3 ∈ H1

0 (Ω), and
hence ∇h1 ∈ Hcurl(Ω;C2) and ∇0h3 ∈ H0

curl(Ω;C2). By Remark 2.4,
1
iω

J−1∇h1 ∈ Hdiv(Ω;C2),
1
iω

J−1∇0h3 ∈ H0
div(Ω;C2).

Hence

g =
(

h1,
1
iω

J−1∇0h1, h3,
1
iω

J−1∇h1

)
∈ D(D).

Moreover, straightforward calculations show that g ∈ N(D). Therefore

inf
v∈N(D)

‖h − v‖ ≤ ‖h − g‖ = ‖h2 +
1
iω

J−1∇0h3‖ + ‖h4 − 1
iω

J−1∇h1‖

=
1

|ω| ‖iωJh2 + ∇0h3‖ +
1

|ω| ‖iωJh4 − ∇h1‖

≤ 1
|ω| ‖Dh‖.

This implies that γ(D) ≥ |ω| > 0, and consequently that R(D) is closed. �
The following proposition gives the exact expression for R(D).

Proposition 2.11. Let Ω ⊂ R2 be a bounded, weakly Lipschitz domain, and D
be the operator defined in Sect. 2.2. Then R(D) = H, where

H :=
{
(f⊥, f‖, g⊥, g‖) ∈ L2(Ω;C6) : f‖ ∈ Hcurl(Ω;C2), g‖ ∈ H0

curl(Ω;C2)

and curlf‖ − iωg⊥ = 0, curlg‖ + iωf⊥ = 0
}

.

Proof. Assume (f, g) ∈ R(D). Then there exists (F,G) ∈ D(D) such that⎡
⎢⎢⎣

f⊥
f‖
g⊥
g‖

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

div0F‖
−∇F⊥ + iωJG‖

divG‖
−∇0G⊥ − iωJF‖

⎤
⎥⎥⎦ .

Since F‖ ∈ H0
div(Ω;C2), G‖ ∈ Hdiv(Ω;C2), we see that f⊥, g⊥ ∈ L2(Ω). From

Remark 2.4, we conclude that JF‖ ∈ H0
curl(Ω;C2) and JG‖ ∈ Hcurl(Ω;C2).

Therefore, since F⊥ ∈ H1(Ω) and G⊥ ∈ H1
0 (Ω), we obtain f‖ ∈ Hcurl(Ω;C2)

and g ∈ H0
curl(Ω;C2).
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Next, we compute

curlf‖ = −curl∇F⊥ + iωcurlJG‖ = iωdivG‖ = iωg⊥

and similarly

curlg‖ = −iωf⊥.

From the arguments above, we can assert that R(D) ⊂ H.
Conversely, assume (f, g) ∈ H. Let us set

F‖ =
1
iω

Jg‖, G‖ =
1
iω

Jf‖.

Then, from Remark 2.4, we obtain

F‖ ∈ H0
div(Ω;C2), G‖ ∈ Hdiv(Ω;C2),

and

f⊥ = div0F‖, g⊥ = divG‖.

Next, since

curl
(
f‖ − iωJG‖

)
= curlf‖ − iωdivG‖ = curlf‖ − iωg⊥ = 0

and f‖ − iωJG‖ ∈ Hcurl(Ω;C2), there exists a function F⊥ ∈ H1(Ω) such
that −∇F⊥ = f‖ − iωJG‖.

Likewise, since curl
(
g‖ + iωJF‖

)
= 0 and g‖ + iωJF‖ ∈ H0

curl(Ω;C2),
there exists a function G⊥ ∈ H1

0 (Ω) such that −∇0G⊥ = g‖ + iωJF‖.
Combining all relations between (f, g) and (F,G), we conclude that

(F,G) ∈ D(D), and

D

[
F
G

]
=
[
f
g

]
.

This implies that H ⊂ R(D), hence that H = R(D). �

There is also the following analogue of Proposition 2.9.

Proposition 2.12. Let Ω ⊂ R2 be a bounded, weakly Lipschitz domain, and D
be the operator defined in Sect. 2.2. Assume that λ ∈ ρ(D|R(D)), then

(λ − D|R(D))
−1 : R(D) → R(D)

is a compact operator.

Proof. Since

D|R(D) (λ − D|R(D))
−1 : R(D) → R(D)

is a bounded operator, it remains to verify that the embedding(
D(D) ∩ R(D), ‖ · ‖R(D)

)
↪→ (R(D), ‖ · ‖L2)

is compact.
Let {hl}∞

l=1 ⊂ D(D) be a sequence such that {Dhl}∞
l=1 ⊂ D(D)∩R(D)

and

‖Dhl‖ + ‖DDhl‖ < C (2.20)
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for some constant C > 0. In particular,

‖div0h
l
2‖ + ‖ − ∇div0h

l
2 + iωJ(−∇0h

l
3 − iωJhl

2)‖ < C,

‖ − ∇0h
l
3 − iωJhl

2‖ < C.

Therefore

‖∇div0h
l
2‖ + ‖div0h

l
2‖ < C. (2.21)

As in Proposition 2.9, (2.21) implies that {div0h
l
2}∞

l=1 contains a Cauchy
subsequence in L2(Ω). Similarly, this statement holds for {divhl

4}∞
l=1.

Since ‖DDhl‖ ≤ C, we obtain

‖div(−∇0h
l
3 − iωJhl

2)‖ ≤ C

and

‖ − curl∇0h
l
3 − iωcurlJhl

2)‖ = ‖iωcurlJhl
2)‖ = ‖iωdivhl

2‖ ≤ C.

Therefore {−∇0h
l
3−iωJhl

2}∞
l=1 is bounded in H0

curl(Ω;C2)∩Hdiv(Ω;C2).
From the compact embedding (see [6] or [12])

H0
curl(Ω;C2) ∩ Hdiv(Ω;C2) ↪→ L2(Ω;C2),

we conclude that {−∇0h
l
3 − iωJhl

2}∞
l=1 contains a Cauchy subsequence in

L2(Ω;C2).
Likewise, {−∇hl

1 + iωJhl
4}∞

l=1 is bounded in Hcurl(Ω;C2)∩H0
div(Ω;C2).

Since Hcurl(Ω;C2) ∩ H0
div(Ω;C2) is also compactly embedded into L2(Ω;C2),

{−∇hl
1 + iωJhl

4}∞
l=1 contains a convergent subsequence in L2(Ω;C2).

From the arguments above, we conclude that {Dhl}∞
l=1 contains a

Cauchy subsequence in L2(Ω;C6). �

3. Spectral Projections and Functional Calculus for DB

In this section we modify the functional calculus designed by McIntosh in
[10], for the operators described below.

Let Ω ⊂ Rn be a bounded, weakly Lipschitz domain. From now on we
consider a pointwise accretive multiplication operator B ∈ L∞(Ω;CM ×CM )
on L2(Ω;CM ) and a closed range operator

D : L2(Ω;CM ) → L2(Ω;CM )

satisfying the following conditions
1. There exists a bounded operator D0 and a self-adjoint homogeneous

first order differential operator D1 with constant coefficients and local
boundary conditions so that

D = D1 + D0.

2. The operator (λ − D|R(D))
−1 is compact for some, and therefore for all

λ belonging to the resolvent set ρ(D|R(D)).

Remark 3.1. In both the Helmholtz and the Maxwell’s cases, the operators
B and D satisfy the conditions above. Moreover, D0 is a normal operator,
and hence D is normal as well, in particular D(D) = D(D∗).
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3.1. Preliminary for Functional Calculus

Here we consider basic properties of the operator DB in order to construct
a functional calculus in the next subsections. We begin with a well known
result and give its proof for the sake of completeness.

Proposition 3.2. We have topological splittings for L2(Ω;CM ),

L2(Ω;CM ) = N(D∗B) ⊕ R(D),

L2(Ω;CM ) = N(D∗) ⊕ BR(D).

Proof. Since N(B∗D∗) = N(D∗), R(DB) = R(D), and B∗D∗ = (DB)∗, we
obtain the following orthogonal splitting

L2(Ω;CM ) = R(DB) ⊕ N(B∗D∗) = R(D) ⊕ N(D∗).

For any non-zero g ∈ N(D∗), (B−1g, g) �= 0. Thus

R(DB) ∩ BN(D∗) = {0}.

Since B∗ is an accretive operator, for g ∈ R(D) and h ∈ N(D∗), we obtain

C−1‖g‖2 + 0 ≤ Re(B∗g, g) + Re(g, h) = Re(B∗g, g) + Re(B∗g,B−1h)(3.1)

= Re(B∗g, g + B−1h) ≤ C‖g‖‖g + B−1h‖
for some constant C > 0. Similarly,

C−1‖B−1h‖2 ≤ Re(B∗B−1h,B−1h) = Re(B−1h, h)
= Re(B−1h + g, h) ≤ C‖B−1h + g‖‖h‖ (3.2)

for some constant C > 0. Therefore B−1N(D∗) ⊕ R(D) is a Hilbert space.
Assume that f ∈ (B−1N(D∗) ⊕ R(D))⊥. In particular, f ∈ N(D∗) and
f ⊥ R(D). Since B is an accretive operator, we see that f = 0. Therefore

L2(Ω;CM ) = B−1N(D∗) ⊕ R(D) = N(D∗B) ⊕ R(D).

One can prove the second splitting similarly. �

Proposition 3.3. The operator

DB|R(D) : R(D) → R(D)

is a closed and densely defined operator.

Proof. Note that N(D∗B) ⊂ D(DB). Therefore, from Proposition 3.2, we
obtain

D(DB) = [D(DB) ∩ R(D)] ⊕ N(D∗B). (3.3)

Let us fix ε > 0 and f ∈ R(D). Since B is an invertible bounded operator,
and D(D) is a dense set in L2(Ω;CM ), we deduce that D(DB) = B−1D(D)
is dense in L2(Ω;CM ). Therefore, from (3.3), we can find g ∈ D(DB)∩R(D)
and h ∈ N(D∗B) such that ‖g+h−f‖ ≤ ε. On the other hand, Proposition 3.2
gives

‖g + h − f‖ ≥ C(‖g − f‖ + ‖h‖).

Hence ‖g − f‖ ≤ ε
C , and consequently D(DB) ∩ R(D) is dense in R(D).
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The operator

DB : L2(Ω;CM ) → L2(Ω;CM )

is closed, and R(D) is closed in L2(Ω;CM ). Hence, the operator DB|R(D) is
closed. �

To state the next proposition let us set

Sα,τ := {x + iy ∈ C : |y| < |x| tan α + τ}
for α ∈ [0, π

2 ) and τ ≥ 0. Define the angle and constant of accretivity of B to
be

ω := sup
v∈CM

| arg(Bv, v)| <
π

2
, β := inf

v∈CM

Re(Bv, v)
‖v‖2

,

respectively.

Proposition 3.4. There exist constants τ, C > 0, depending only on ‖D0B‖,
‖B‖, and β such that σ(DB) ⊂ Sω,τ and

‖(λ − DB)−1‖ ≤ C

dist(λ, Sω,0)
(3.4)

for any λ /∈ Sω,τ .

Proof. Since D1 is self-adjoint, D1B is bisectorial, see [4, Proposition 3.3].
Therefore, for any λ /∈ Sω,0 and u ∈ D(DB),

‖(λ − DB)u‖ ≥ ‖(λ − D1B)u‖ − ‖D0Bu‖ ≥ Cdist(λ, Sω,0)‖u‖ − ‖D0B‖‖u‖.

Thus, for sufficiently large τ > 0 and any λ /∈ Sω,τ ,

C

2
dist(λ, Sω,0)‖u‖ ≥ ‖D0B‖‖u‖,

and therefore

‖(λ − DB)u‖ ≥ C

2
dist(λ, Sω,0)‖u‖. (3.5)

Hence λ−DB is an injective operator with closed range. Next, let us consider
the adjoint operator

(λ − DB)∗ = λ − B∗D∗ = B∗(λ − D∗B∗)B∗−1.

Similarly, we see that λ −D∗B∗ is injective. Consequently, (λ −DB)∗ is also
injective. Hence λ−DB is a surjective operator. Thus, λ /∈ Sω,τ is contained
in the resolvent set, and (3.5) implies (3.4). �

Let PR(D) and PN(D∗) be the orthogonal projections to R(D) and
N(D∗) corresponding to the splitting

L2(Ω;CM ) = R(D) ⊕ N(D∗). (3.6)

Lemma 3.5. The operator

PR(D)

∣∣
BR(D)

: BR(D) → R(D)

is bounded and invertible.
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Proof. If PR(D)BDf = 0, then (BDf,Df) = 0. This implies that Df = 0,
and hence that PR(D)

∣∣
BR(D)

is an injective operator. The second splitting in

Proposition 3.2 implies that PR(D)

∣∣
BR(D)

is surjective. Thus, by the bounded
inverse theorem, we get the statement of the lemma. �

Proposition 3.6. Let λ ∈ ρ(DB|R(D)), then

(λ − DB|R(D))
−1 : R(D) → R(D)

is a compact operator.

Proof. As in Propositions 2.9 and 2.12, it suffices to prove that the embed-
ding (

D(DB) ∩ R(D), ‖ · ‖D(DB)∩R(DB)

)
↪→ (R(D), ‖ · ‖L2)

is compact.
Let {f l}∞

l=1 ⊂ (
D(DB) ∩ R(D), ‖ · ‖D(DB)∩R(DB)

)
be a sequence such

that

‖f l‖ + ‖DBf l‖ ≤ C

for some C > 0. Since D|N(D∗) is bounded, splitting (3.6) implies

‖f l‖ + ‖DPR(D)Bf l‖ ≤ C,

and therefore

‖PR(D)Bf l‖ + ‖DPR(D)Bf l‖ ≤ C

for some C > 0. Since (λ − D|R(D))
−1 is a compact operator, we see that(

D(D) ∩ R(D), ‖ · ‖D(D)∩R(D)

)
↪→ (R(D), ‖ · ‖L2)

is a compact embedding. Hence the sequence {PR(D)Bf l}∞
l=1 contains a

Cauchy subsequence, and therefore Lemma 3.5 implies that the sequence
{f l}∞

l=1 contains a Cauchy subsequence in L2(Ω;CM ) as well. �

We conclude this preliminary subsection by introducing the following
setup. We fix a constant τ > 0 from Proposition 3.4 and define

H := R(D), T := DB|H , T1 := D1B|H , T0 := D0B|H .

By summarizing Propositions 3.3, 3.4, and 3.6, we conclude that T is a closed
densely defined operator with σ(T ) ⊂ Sω,τ . Moreover, for each λ /∈ Sω,τ , the
operator (λ − T )−1 is compact, and hence there may be only a finite number
of eigenvalues of T on the imaginary axis. We denote them by {λ0

i }N
i=1. We

fix positive constants a and R such that R < a and

σ(T ) ∩ {ζ ∈ C : |Reζ| ≤ a} = {λ0
i }N

i=1, (3.7)

{ζ ∈ C : |ζ − λ0
i | ≤ R} ∩ {ζ ∈ C : |ζ − λ0

j | ≤ R} = ∅, (3.8)

{ζ ∈ C : |ζ − λ0
i | ≤ R} ⊂ Sω,τ

for 1 ≤ i < j ≤ N .



 53 Page 18 of 32 M. Nursultanov, A. Rosén IEOT

Figure 1. N=2

For μ ∈ (ω, π
2 ), we fix the open set

Σ := Σ− ∪ Σ+ ∪ Σ0,

where

Σ± := {ζ ∈ C : ±Reζ > a, |Imζ| < τ + |Reζ| tan μ}
and

Σ0 := ∪N
i=1{ζ ∈ C : |ζ − λ0

i | < R}.

Due to (3.7) and (3.8), Σ is a disjoint union of N + 2 open, connected sets,
and σ(T ) ⊂ Σ.

Next, we define

H∞(Σ) := {h : Σ → C holomorphic, sup
z∈Σ

|h(z)| < ∞},

Θ(Σ) := {ψ ∈ H∞(Σ) : |ψ(z)| ≤ C

|z|α , for some α,C > 0 and all z ∈ Σ}.

For b > a such that

σ(T ) ∩ {ζ ∈ C : a ≤ |Reζ| ≤ b} = ∅ (3.9)

and ν ∈ (ω, μ), r < R, we define anti-clockwise oriented curves

γ± := {ζ ∈ C : ±Reζ = b, |Imζ| ≤ τ + |Reζ| tan ν}

⋃
{ζ ∈ C : ±Reζ > b, Imζ = τ + |Reζ| tan ν}

⋃
{ζ ∈ C : ±Reζ > b, Imζ = − (τ + |Reζ| tan ν)},

γ0 :=
N⋃

i=1

{ζ ∈ C : |ζ − λ0
i | = r} (3.10)

and

γ := γ− ∪ γ+ ∪ γ0. (3.11)

See Fig. 1.
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3.2. The Θ(Σ) Functional Calculus

Here we introduce the following preliminary functional calculus.

Definition 3.7. Let r < R, 0 < ν < μ, and b > a such that (3.9) holds. For
ψ ∈ Θ(Σ), we define ψ(T ) by

ψ(T ) =
1

2πi

∫
γ

ψ(ζ)
ζ − T

dζ, (3.12)

where γ is the curve defined in (3.11).

A justification of this definition follows from the next proposition.

Proposition 3.8. For ψ ∈ Θ(Σ), the integral
1

2πi

∫
γ

ψ(ζ)
ζ − T

dζ

converges absolutely. Moreover, the integral is independent of the choice of
γ = γ±(r, ν, b), where 0 < r < R, b > a, and ν ∈ (ω, μ) such that (3.9) holds.

Proof. We give only the main ideas of the proof. For ψ ∈ Θ(Σ), Proposi-
tion 3.4 implies

|ψ(ζ)|‖(ζ − T )−1‖ ≤ C
1
|ζ|

1
|ζ|α .

Therefore the first statement follows from the convergence∫ +∞

ε

1
xα+1

dx < ∞
for ε > 0, since α > 0.

Next, let us prove that the integral is independent of the choice of ν.
Assume ω < ν1 < ν2 < μ. For P > 0, we set

δ±
P (t) := b ± i(b tan ν + τ) + Pe±i(tν2+(1−t)ν1).

Then ∥∥∥∥∥
∫

δ±
P

ψ(ζ)
ζ − T

dζ

∥∥∥∥∥ ≤ Cl(δ±
P )

1
Pα

1
P

≤ C
1

Pα
,

where l(δ±
P ) is the length of δ±

P . Letting P → ∞, we obtain the desired
independence of the choice of ν.

Finally, suppose b1 and b2 satisfy the assumptions of the proposition,
and b1 < b2. Then, there is no spectral point inside the region b1 ≤ Reλ ≤ b2.
This shows that the integral is independent of the choice of b. �

The proofs of the next three propositions are standard and based on
proofs for bisectorial operators, see for instance [1,2]. First we prove that the
map given by (3.12) is an algebra homomorphism.

Proposition 3.9. If ψ1, ψ2 ∈ Θ(Σ), then

ψ1(T ) + ψ2(T ) = (ψ1 + ψ2)(T )

and

ψ1(T )ψ2(T ) = (ψ1ψ2)(T ).
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Proof. For 0 < r1 < r2 < R, 0 < ν1 < ν2 < μ, and b1 > b2 > a such that

σ(T ) ∪ {ζ ∈ C : a < |Reζ| < b1} = ∅,

we define two curves γ1 and γ2 as in (3.11). Note that γ1 belongs to the
interior of γ2. Then

(2πi)2ψ1(T )ψ2(T ) =
(∫

γ1

ψ1(λ)
λ − T

dλ

)(∫
γ2

ψ2(ζ)
ζ − T

dζ

)

=
∫

γ1

∫
γ2

ψ1(λ)ψ2(ζ)
1

ζ − λ

(
1

λ − T
− 1

ζ − T

)
dζdλ

=
∫

γ1

ψ1(λ)
λ − T

(∫
γ2

ψ2(ζ)
ζ − λ

dζ

)
dλ

−
∫

γ2

(∫
γ1

ψ1(λ)
ζ − λ

dλ

)
ψ2(ζ)
ζ − T

dζ.

Using the Cauchy formula, we see that the second term vanishes. Therefore

(2πi)2ψ1(T )ψ2(T ) = 2πi

∫
γ1

ψ1(λ)
λ − T

ψ2(λ)dλ = (2πi)2(ψ1ψ2)(T ). �

Next we prove the convergence lemma for the Θ(Σ) functional calculus.

Proposition 3.10. Let ψn, ψ ∈ Θ(Σ) for n ∈ N. Assume that ψn → ψ uni-
formly on compact subsets of Σ, and there exist n-independent constants
α > 0, C > 0 such that

|ψn(ζ)| <
C

|ζ|α
for ζ ∈ Σ. Then ψn(T ) → ψ(T ) in the operator norm.

Proof. Let us fix ε > 0. One can find an integer m1 ∈ N such that for any
n > m1,∥∥∥∥

∫
γ0

ψn(ζ) − ψ(ζ)
ζ − T

dζ

∥∥∥∥ ≤ C‖ψn − ψ‖L∞(γ0)

∥∥∥∥
∫

γ0

1
ζ − T

dζ

∥∥∥∥ ≤ 2πε

3
.

Let γp,q := {ζ ∈ γ : p ≤ |ζ| < q}, then we can fix M > 0 such that∥∥∥∥∥
∫

γM,∞

ψn(ζ) − ψ(ζ)
ζ − T

dζ

∥∥∥∥∥ ≤ C

∫ +∞

M

1
rα+1

dr <
2πε

3
.

Moreover, since a > 0, there exists m2 ∈ N such that for any n > m2,∥∥∥∥∥
∫

γb,M

ψn(ζ) − ψ(ζ)
ζ − T

dζ

∥∥∥∥∥ ≤ C‖ψn − ψ‖L∞(γb,M )

∥∥∥∥∥
∫

γa,M

1
ζ − T

dζ

∥∥∥∥∥ <
2πε

3
.

By choosing n > max(m1,m2), we obtain ‖ψn(T ) − ψ(T )‖ < ε. �

The following proposition, together with Proposition 3.16, allows us to
derive an H∞(Σ) functional calculus from the Θ(Σ) functional calculus.
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Proposition 3.11. Let {fj}∞
j=1 ⊂ Θ(Σ) be a sequence such that ‖fj‖L∞(Σ) < C

and ‖fj(T )‖ < C for all j ∈ N and some C > 0. Assume f ∈ H∞(Σ)
and fj → f uniformly on compact subsets of Σ. Then, for any u ∈ H, the
sequence {fj(T )u}∞

j=1 is convergent in H. Moreover, if f(z) = 1 on Σ, then
fj(T )u → u in H.

Proof. Let τ1 > τ and u ∈ D(T ). Since iτ1 /∈ Sω,τ , there exists v ∈ H such
that

u = (iτ1 − T )−1v.

Let ψ(z) = f(z) 1
iτ1−z and ψj(z) = fj(z) 1

iτ1−z on Σ. By Proposition 3.9,
we see that fj(T )u = ψj(T )v, and therefore Proposition 3.10 implies that
{fj(T )u}∞

j=1 converges to ψ(T )v in H.
Next, let u ∈ H. Since D(T ) is a dense set in H, there exists a sequence

{uk}∞
k=1 ⊂ D(T ) converging to u in H. Thus

‖fm(T )u − fn(T )u‖ ≤ ‖(fm(T ) − fn(T ))(u − uk)‖ + ‖fm(T )uk − fn(T )uk‖
≤ 2C‖u − uk‖ + ‖(fm(T ) − fn(T ))uk‖.

By choosing k large enough and then letting m,n → ∞, we conclude that
{fj(T )u}∞

j=1 is a Cauchy sequence.
Finally, if f(z) = 1 on Σ and u ∈ D(T ), then the arguments above imply

that fj(T )u → u in H. For u ∈ H, there exists a sequence {uk}∞
k=1 ⊂ D(T )

converging to u in H. Thus

‖fj(T )u − u‖ = ‖fj(T )u − fj(T )uk‖ + ‖uk − u‖ + ‖fj(T )uk − uk‖.

By choosing k large enough and then letting j → ∞, we get fj(T )u → u in
H. �

Remark 3.12. Note that we do not use the uniform boundedness of the se-
quence {fk(T )}∞

k=1 to prove the second part of Proposition 3.11.

Definition 3.13. For an eigenvalue λ ∈ σ(T ), define the index of λ as the
smallest non-negative integer m such that

N((λ − T )m) = N((λ − T )m+1).

Next, we prove that each imaginary eigenvalue of T has finite index.

Proposition 3.14. The index mi of λ0
i is a finite number for i = 1, . . . , N .

Proof. Let us set

pi(z) =

{
1, if |z − λ0

i | ≤ R,

0, otherwise.

Since pi ∈ Θ(Σ), we can define Πi := pi(T ) for i = 1, . . . N . Proposition 3.6
implies that (λ − T )−1 is a compact operator for all λ ∈ ρ(T ). Hence Πi is a
compact operator as the Riemann sum of compact operators. Moreover, by
Proposition 3.9, Πi is a projection. Therefore Πi is a finite rank operator,
and

H = N(Πi) ⊕ R(Πi). (3.13)
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Finally, for any integer m > 0, we obtain N((λ0
i − T )m) ⊂ R(Πi). Therefore

the index of λ0
i is a finite number. �

We conclude this subsection with the following inequality, which will be
used in Sect. 4.

Proposition 3.15. For fixed i = 1, . . . , N , there exists a constant C > 0 such
that for all h ∈ H∞(Σ) satisfying h(z) = 0 for z /∈ {ζ ∈ C : |λ0

i − ζ| < R},
the following estimate holds

‖h(T )‖ ≤ C max
0≤j≤mi−1

|h(j)(λ0
i )|.

Proof. From the assumption, h(T )u = h(T )Πiu = 0 for u ∈ N(Πi). There-
fore, due to (3.13), it suffices to prove

‖h(T )v‖ ≤ C max
0≤j<mi

|h(j)(λ0
i )|‖v‖ (3.14)

for all v ∈ R(Πi) and some C > 0.
Since T |R(Πi)

is bounded and R(Πi) = N((λ − T )mi), we obtain

h(T )v =
mi−1∑
k=0

h(k)(λ0
i )

k!
(λ0

i − T )kv

for any v ∈ R(Πi). This implies (3.14). �

3.3. The H∞(Σ) Functional Calculus

Here we prove that T has a bounded H∞(Σ) functional calculus. In order
to do this, analogous to the functional calculus for bisectorial operators, we
need the following quadratic estimate.

Proposition 3.16. There exists a constant C > 0 such that∫ 1
τ

0

∥∥∥∥ tT

1 + t2T 2
u

∥∥∥∥
2

dt

t
≤ C‖u‖2 (3.15)

for all u ∈ H.

Proof. Note that ± i
t /∈ Sω,τ for t ∈ (0, 1

τ ). Hence, by Proposition 3.4, we
obtain

‖(1 + itT )−1 − (1 + itT1)−1‖ = ‖(1 + itT )−1(tT0)(1 + itT1)−1‖ ≤ C|t|.
Thus

‖tT (1 + t2T 2)−1 − tT1(1 + t2T 2
1 )−1‖

=
1
2i

‖(1 + itT )−1 − (1 − itT )−1 + (1 + itT1)−1 − (1 − itT1)−1‖ ≤ C|t|.
(3.16)

The quadratic estimate (3.15) for T1 was proved in [5, Theorem 3.1]. There-
fore (3.16) implies (3.15). �

Next we prove the following auxiliary lemma.
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Lemma 3.17. Let P , Q be the operators defined by

Pu =
τ2

τ2 + T 2
u and Qu = 2

∫ 1
τ

0

(
sT

1
1 + s2T 2

)2

u
ds

s

for u ∈ H. Then the following identity

(P + Q)u = u

holds for u ∈ H.

Proof. Let us consider the functions

fm(z) =
τ2

τ2 + z2
+ 2

m∑
j=1

1
j

(
j

τmz
)2

(
1 +

(
j

τmz
)2)2 .

Observe that fm → 1 pointwise on Σ. Actually, {fm}∞
m=1 converges uniformly

on compact subsets of Σ. Indeed, assume there exist a compact subset K ⊂ Σ
and {xk}∞

k=1 ⊂ K such that

|fm(xm) − 1| > c

for some c > 0. Since K is compact, without lost of generality we assume
that xm → x for some x ∈ K. Then

c < |fm(xm) − 1| < |fm(x) − 1| + |fm(xm) − fm(x)|.
The first term tends to zero because of pointwise convergence. To estimate
the second term, let us note that dist(iτ,Σ) > 0, and hence there exists C > 0
such that ∣∣∣∣ 1

1 + (αz)2

∣∣∣∣ < C

for any α ∈ [0, 1
τ ], z ∈ Σ. Therefore, straightforward calculations give

|fm(xm) − fm(x)| ≤
m∑

j=1

1
j

(
j

τm

)2

C|x − xm| ≤ C|x − xm|.

This contradicts our assumption c > 0. Thus fm → 1 uniformly on compact
subsets of Σ.

Therefore Proposition 3.11 and Remark 3.12 imply that

fm(T )u → u (3.17)

for all u ∈ H.
On the other hand, Proposition 3.9 yields

fm(T )u =
τ2

τ2 + T 2
+ 2

m∑
j=1

1
j

⎛
⎝ j

τm
T

(
1 +

(
j

τm
T

)2
)−1

⎞
⎠

2

u

for each u ∈ H, and therefore

fm(T )u → Pu + Qu.

Hence, due to (3.17), we derive Pu + Qu = u. �
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Now we prove that T has a bounded H∞(Σ) functional calculus . The
main idea is contained in [2], [7].

Theorem 3.18. There exists a constant C > 0 such that the following estimate

‖f(T )‖ ≤ C‖f‖∞

holds for all f ∈ Θ(Σ).

Proof. Let P , Q be the operators defined in Lemma 3.17. Then, for v, u ∈ H,

|(v, f(T )u)| = |(v, (P + Q)f(T )(P + Q)u)|
≤ |(v, Pf(T )Pu)| + |(v, (I − P )f(T )Pu)|

+ |(v, Pf(T )(I − P )u)| + |(v,Qf(T )Qu)|
≤ 3|(v, Pf(T )Pu)| + 2|(v, Pf(T )u)| + |(v,Qf(T )Qu)|.

We estimate each summand separately. For the first two terms, by using
Proposition 3.9, we obtain

|(v, Pf(T )Pu)| ≤ ‖v‖‖u‖
∥∥∥∥
∫

γ

τ4f(z)
(τ2 + z2)2

(z − T )−1dz

∥∥∥∥
≤ C‖v‖‖u‖‖f‖∞

and

|(v, Pf(T )u)| ≤ ‖v‖‖u‖
∥∥∥∥
∫

γ

τ2f(z)
τ2 + z2

(z − T )−1dz

∥∥∥∥
≤ C‖v‖‖u‖‖f‖∞.

To estimate the last term, let us set ψt(z) = tz
1+t2z2 ∈ Θ(Σ), and note

that

‖ψs(T )f(T )ψt(T )‖ ≤ ‖f‖∞
∫ +∞

0

stx2

(1 + s2x2)(1 + t2x2)
dx

x

≤ ‖f‖∞ min
((

t

s

)α

,
(s

t

)α
)(

1 +
∣∣∣∣log

(
t

s

)∣∣∣∣
)

for t, s ∈ (0, 1
τ ) and some α > 0. Denote η(x) = min (xα, x−α) (1 + |log x|).

Then

|(v,Qf(T )Qu)| ≤ C

∫ 1
τ

0

∫ 1
τ

0

‖ψ∗
s (T )v‖‖ψs(T )f(T )ψt(T )‖‖ψt(T )u‖dt

t

ds

s

≤ C‖f‖∞
∫ 1

τ

0

∫ 1
τ

0

‖ψ∗
s (T )v‖‖ψt(T )u‖η

(
t

s

)
dt

t

ds

s
.

The Cauchy-Schwartz inequality yields

|(v,Qf(T )Qu)|2 ≤ C‖f‖2
∞

(∫ 1
τ

0

‖ψ∗
s (T )v‖2

(∫ 1
τ

0

η

(
t

s

)
dt

t

)
ds

s

)

×
(∫ 1

τ

0

‖ψt(T )u‖2

(∫ 1
τ

0

η

(
t

s

)
ds

s

)
dt

t

)
.
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Finally, using the quadratic estimate from Proposition 3.16, we get

|(v,Qf(T )Qu)| ≤ C‖f‖∞‖u‖‖v‖. �

Now we are in a position to introduce the following H∞(Σ) functional
calculus for the operator T .

Definition 3.19. Let f ∈ H∞(Σ) and {ψi}∞
i=1 ⊂ Θ(Σ) be a uniformly bounded

sequence such that ψi → f uniformly on compact subsets of Σ. We define

f(T )u = lim
i→∞

ψi(T )u

for u ∈ H.

By Proposition 3.11, the definition of f(T ) is independent of the choice
of sequence {ψi}∞

i=1. Also observe that the sequence { im
im+z f(z)}∞

m=1 ⊂ Θ(Σ)
converges to f uniformly on compact subsets of Σ for f ∈ H∞(Σ). Therefore
Proposition 3.18 implies that we have a well defined bounded operator f(T )
on H for any f ∈ H∞(Σ).

Proposition 3.11 also shows that Definition 3.19 agrees with Defini-
tion 3.7 for functions in Θ(Σ).

Let us consider the basic properties of the H∞(Σ) functional calculus.
First we prove that the map given by Definition 3.19 is an algebra homomor-
phism.

Proposition 3.20. Let f , g ∈ H∞(Σ). Then

f(T ) + g(T ) = (f + g)(T ),

and

f(T )g(T ) = (fg)(T ).

Proof. Let f , g ∈ H∞(Σ) and {fj}∞
j=1, {gj}∞

j=1 ⊂ Θ(Σ) be the corresponding
sequences, see Definition 3.19. Then {fgj}∞

j=1 ⊂ Θ(Σ) is uniformly bounded
and fgj → fg on compact subsets of Σ. Therefore

(fg)(T )u = lim
j→∞

(fgj)(T )u (3.18)

for each u ∈ H. Similarly, for a fixed j, we see that figj → fgj on compact
subset of Σ, so that

(fgj)(T )u = lim
i→∞

(figj)(T )u (3.19)

for any u ∈ H. Finally, Proposition 3.9 together with (3.18) and (3.19) give

(fg)(T )u = lim
j→∞

(
lim

i→∞
(figj)(T )u

)
= lim

j→∞

(
lim

i→∞
(fi(T )gj(T )u)

)
= lim

j→∞
(f(T )gj(T )u) = f(T ) lim

j→∞
(gj(T )u) = f(T )g(T )u

for each u ∈ H. �

Next we show the convergence lemma for the H∞(Σ) functional calcu-
lus.
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Proposition 3.21. Let {fn}∞
n=1 ⊂ H∞(Σ) be a uniformly bounded sequence.

Assume f ∈ H∞(Σ) and fn → f uniformly on compact subsets of Σ. Then
fn(T )u → f(T )u for any u ∈ H.

Proof. Fix u ∈ H. By Proposition 3.11, there exists a sequence {mn}∞
n=1 ⊂ N

such that mn > n and∥∥∥∥ imn

imn − T
fn(T )u − fn(T )u

∥∥∥∥ → 0 (3.20)

as n → ∞. On the other hand, the sequence
{

imn

imn−z fn(z)
}∞

n=1
⊂ Θ(Σ) is

uniformly bounded and converges to f on compact subsets of Σ. Therefore∥∥∥∥ imn

imn − T
fn(T )u − f(T )u

∥∥∥∥ → 0 (3.21)

as n → ∞. The triangle inequality together with (3.20) and (3.21) imply
that

‖fn(T )u − f(T )u‖ → 0. �

3.4. Important Examples of the Functional Calculus

We conclude this section by considering several important examples.
Let us define the following functions on Σ

π±(z) =

{
1, if z ∈ Σ±

0, if z ∈ Σ\Σ± , π0(z) =

{
1, if z ∈ Σ0

0, if z ∈ Σ\Σ0

and the corresponding operators Π± := π±(T ), Π0 := π0(T ).

Proposition 3.22. The operators Π± and Π0 are bounded complementary pro-
jections.

Proof. By Proposition 3.20, we see that

Π±Π±u = π±(T )π±(T )u = (π±π±)(T )u = π±(T )u = Π±u

for any u ∈ H. Similarly, we obtain

Π0Π0u = Π0u, Π0Π±u = 0, Π±Π∓u = 0.

Since (π− + π0 + π+)(z) = 1 for z ∈ Σ, Propositions 3.11 and 3.20 give

Π−u + Π0u + Π+u = u

for any u ∈ H. �

According to the above proposition, we have a topological splitting

H = R(Π−) ⊕ R(Π0) ⊕ R(Π+).

For a given u ∈ R(Π0) ⊕ R(Π±), we define

ut :=
(
e−tT

)
u

for ±t > 0, where e−tT is the operator obtained from the function

h±
t (z) =

{
e−tz, if z ∈ Σ0 ∪ Σ±,

0, if z ∈ Σ\ (Σ0 ∪ Σ±) ,
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by the functional calculus.

Proposition 3.23. Let u ∈ R(Π0) ⊕ R(Π±). Then, in H, we have

∂tut + Tut = 0 (3.22)

for ±t > 0. Moreover, ut → u as t → 0.

Proof. Let us fix u ∈ R(Π0) ⊕ R(Π±). Note that ∂th
±
t (z) ∈ Θ(Σ), and

h±
t+δ(z) − h±

t (z)
δ

→ ∂th
±
t (z)

uniformly on compact subsets of Σ as δ → 0. Therefore Proposition 3.11
yields

∂th
±
t (T )u =

(
∂th

±
t

)
(T )u = −Th±

t (T )u.

This implies (3.22).
Next, for any compact subset of Σ, we have the uniform convergence of

h±
t ∈ Θ(Σ) to π0 + π± as t → 0. Therefore Proposition 3.11 gives

lim
t→0

ut = lim
t→0

h±
t (T )u = (Π0 + Π±)u = u. �

4. Application to Waveguide Propagation

In this section, we return to the Helmholtz equation and Maxwell’s system of
equations and use our new functional calculus for the operator T := DB|R(D)

to investigate acoustic and electromagnetic waves along the waveguide. More
precisely, in Theorems 4.1 and 4.2 we prove that all polynomially bounded
time-harmonic waves in the semi- or bi-infinite waveguide have representa-
tions in R(Π0) or R(Π0) ⊕ R(Π+), respectively.

4.1. The Bi-infinite Waveguide

We start by considering the bi-infinite waveguide, that is we consider the
ordinary differential equation

(∂t + T )f = 0, (t, x) ∈ R × Ω. (4.1)

Theorem 4.1. (A) : Let f0 ∈ R(Π0) and

ht(z) =

{
e−tz, if z ∈ Σ0

0, if z ∈ Σ\Σ0.

Then ft := ht(T )f0 ∈ C(R;R(Π0)) solves Eq. (4.1). Moreover, for any non-
negative integer j, there exists a constant C = C(j) > 0, which is independent
of the choice of f0, such that

‖∂j
t ft‖ + ‖T jft‖ < C(1 + |t|l)‖f0‖ (4.2)

with l = supi mi − 1, where mi is the index of λ0
i for i = 1, . . . , N .

(B) : Conversely, let ft ∈ C(R;H) such that ft ∈ D(T ) for all t ∈ R.
Assume that ft solves Eq. (4.1) and satisfies

‖ft‖ < Ceε|t| (4.3)
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for all t ∈ R and some t-independent constants C > 0 and ε ∈ (0, a). Then
f0 ∈ R(Π0) and

ft = ht(T )f0

for any t ∈ R.

Proof. (A) : Note that ht(z) ∈ Θ(Σ) for any t ∈ R. Therefore Theorems 3.10
and 3.18 imply

‖ht(T ) − ht+δ(T )‖ ≤ C‖e−tz − e−(t+δ)z‖L∞(Σ0) → 0

as δ → 0, so that ft ∈ C(R;H). By Proposition 3.23, ft solves Eq. (4.1). The
boundedness of T |R(Π0)

and Proposition 3.15 together imply

‖∂j
t ft‖ + ‖T jft‖ ≤ C

N∑
i=1

max
0≤k≤mi−1

|h(k)(λ0
i )|‖f0‖,

which shows (4.2).
(B) : Let us set

g+
t (z) =

{
e−tz, if z ∈ Σ+,

0, if z ∈ Σ\Σ+

for t > 0. By assumption, ft solves (4.1). Therefore, for t0 ∈ R and t < t0,
we obtain

∂t

(
g+

t0−t(T )Π+ft

)
= g+

t0−t(T ) (∂t + T ) Π+ft = g+
t0−t(T )Π+ (∂t + T ) ft = 0.

Integrating over (P, t0), for some P < t0, gives

Π+ft0 − g+
t0−P (T )Π+fP = 0.

By Theorem 3.18 and estimate (4.3), we obtain

‖g+
t0−P (T )Π+fP ‖ ≤ C sup

z∈Σ+

∣∣∣e−(t0−P )z
∣∣∣ eε|P | ≤ Ce−(t0−P )aeε|P |.

Letting P → −∞, we conclude that Π+ft0 = 0 for t0 ∈ R.
Similarly, let

g−
t (z) =

{
etz, if z ∈ Σ−,

0, if z ∈ Σ\Σ−

for t > 0. Then, for t0 ∈ R and t > t0, we derive

∂t

(
g−

t−t0(T )Π−ft

)
= 0.

By integrating over (t0, P ) and letting P → +∞, we conclude Π−ft0 = 0 for
t0 ∈ R, and hence f0 ∈ R(Π0). Then the first part of this theorem implies
that f̃t = ht(T )f0 solves Eq. (4.1), and hence

∂t(hs−t(T )(ft − f̃t)) = 0

for t < s. By integrating over (P, s) and letting P → 0, one can prove fs = f̃s,
so that ft = ht(T )f0. �
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4.2. The Semi-infinite Waveguide

Next to obtain a similar result for the semi-infinite waveguide we consider
the ordinary differential equation

(∂t + T )f = 0, (t, x) ∈ R+ × Ω, (4.4)

where R+ := (0,+∞).

Theorem 4.2. (A) : Let f0 ∈ R(Π0) ⊕ R(Π+) and

ht(z) =

{
e−tz, if z ∈ Σ0 ∪ Σ+,

0, if z ∈ Σ−

for t > 0. Then ft := ht(T )f0 ∈ C(R+;R(Π0) ⊕ R(Π+)) solves (4.4). More-
over, for any nonnegative integer j, there exists a constant C = C(j) > 0,
which is independent of the choice of f0, such that

‖∂j
t ft‖ + ‖T jft‖ < C(tl + t−j)‖f0‖ (4.5)

with l = supi mi − 1, where mi is the index of λ0
i for i = 1, . . . , N . Further-

more, limt→0 ft = f0 in H.
(B) : Conversely, let ft ∈ C(R+;H) such that ft ∈ D(T ) for all t ∈ R+.

Assume that ft solves (4.4) and satisfies

‖ft‖ < Ceε|t| (4.6)

for all t ∈ R+ and some t-independent constants C > 0 and ε ∈ (0, a). Then
there exists f0 ∈ R(Π0) ⊕ R(Π+) such that

ft = ht(T )f0

for t ∈ R+. Moreover, f0 ∈ R(Π+) if and only if ‖ft‖ → 0 as t → ∞.

Proof. (A) : By Proposition 3.23, ft solves Eq. (4.4). From Theorem 4.1, we
see that

‖∂j
t ht(T )Π0f0‖ + ‖T jht(T )Π0f0‖ ≤ C(1 + |t|l)‖Π0f0‖. (4.7)

Theorem 3.18 implies now that

‖∂j
t ht(T )Π+f0‖ + ‖T jht(T )Π+f0‖ ≤ sup

z∈Σ+

∣∣(1 + zj)e−tz
∣∣ ‖Π+f0‖.

This gives

‖∂j
t ht(T )Π+f0‖ + ‖T jht(T )Π+f0‖ ≤ Ct−j‖Π+f0‖ (4.8)

as t → 0, and

‖∂j
t ht(T )Π+f0‖ + ‖T jht(T )Π+f0‖ ≤ Ce−ta‖Π+f0‖ (4.9)

as t → ∞. Combining (4.7)–(4.9), we obtain estimate (4.5).
Since ht → π0+π+ uniformly on compact subsets of Σ, Proposition 3.11

implies

lim
t→0

ht(T )f0 = (π0(T ) + π+(T ))f0 = (Π0 + Π+)f0 = f0.
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(B) : Let us set

gt(z) =

{
etz, if z ∈ Σ−,

0, if z ∈ Σ\Σ−

for t > 0. By our assumption, ft solves (4.4). Therefore, for t > s > 0, we
obtain

∂t (gt−s(T )Π−ft) = gt−s(T )(∂t + T )Π−ft = gt−s(T )Π−(∂t + T )ft = 0.

Integrating over (s, P ), for some P > s, gives

gP−s(T )Π−fP − Π−fs = 0.

Theorem 3.18 and estimate (4.6) imply now that

‖gP−s(T )Π−fP ‖ ≤ Ce−aP eεP .

Letting P → ∞, we get Π−fs = 0, so that fs ∈ R(Π0) ⊕ R(Π+) for all
s ∈ R+.

Fix s > 0. The first part of this theorem implies that fs+t − ht(T )fs

solves (4.4), and hence

∂t(hr−t(T )(fs+t − ht(T )fs)) = 0

for 0 < t < r. Let ε ∈ (0, r), then integration over (P, r − ε) gives

hr−(r−ε)(T )(fs+(r−ε) − hr−ε(T )fs) − hr−P (T )(fs+P − hP (T )fs) = 0.

Letting P , ε → 0, we obtain fs+r − hr(T )fs = 0 for r > 0, or equivalently

ft = ht−s(T )fs (4.10)

for 0 < s < t.
Since ft is uniformly bounded as t → 0, one can find a decreasing

sequence {sk}∞
k=1 ⊂ R+ such that sk → 0 and fsk

→ f0 weakly in H. Let φ
be a test function. Then, due to (4.10),

(ft, φ) = (ht−sk
(T )fsk

, φ) = (fsk
, ht−sk

(T )∗φ)
= (fsk

, ht−sk
(T )∗φ − ht(T )∗φ) + (fsk

, ht(T )∗φ)

for t > sk. Therefore

|(ft, φ) − (fsk
, ht(T )∗φ)| ≤ ‖fsk

‖ ‖ht−sk
(T )∗φ − ht(T )∗φ‖ .

Letting k → ∞, we obtain

|(ft, φ) − (f0, ht(T )∗φ)| ≤ 0.

Hence ft = ht(T )f0. Since ht → π0 + π+ uniformly on compact subsets of Σ,
we conclude that ft → f0 strongly in H.

Finally, if f0 ∈ R(Π+), then

‖ft‖ ≤ Ce−at‖f0‖
for t > 0. Hence ‖ft‖ → 0 as t → ∞.
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Conversely, assume that ‖ft‖ → 0 as t → ∞. Then ‖ht(T )Π0f0‖ → 0
as t → ∞, and therefore∥∥∥∥∥

N∑
i=1

mi−1∑
k=0

(−t)ke−tλ0
i

k!
(λ0

i − T )kΠiΠ0f0

∥∥∥∥∥ → 0

as t → ∞. Since R(Π0) =
⊕N

j=1 R(Πj), and λ0
i is purely imaginary, we obtain

∥∥∥∥∥
mi−1∑
k=0

(−t)k

k!
(λ0

i − T )kΠif0

∥∥∥∥∥ → 0 (4.11)

as t → ∞ for i = 1, . . . , N . Let us define

li := sup{k = 1, . . . ,mi − 1 : (λ0
i − T )kΠif0 �= 0}.

If li > 0, the identity

tli = (t − 1)(tli−1 + tli−2 + · · · + 1) + 1

implies ∥∥∥∥∥
mi−1∑
k=0

(−t)k

k!
(λ0

i − T )kΠif0

∥∥∥∥∥ ≥ 1
2

∥∥∥∥ (−t)li

li!
(λ0

i − T )liΠif0

∥∥∥∥
for sufficiently large t > 0. By (4.11), the left hand side tends to 0 as t → ∞,
while the right hand side tends to ∞. This contradiction shows that li = 0
for i = 1, . . . , N . Hence (4.11) implies Πif0 = 0 for i = 1, . . . , N . Therefore
f0 ∈ R(Π+). �
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