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Abstract—It is well known that matched filtering and
sampling (MFS) demodulation together with minimum
Euclidean distance (MD) detection constitute the op-
timal receiver for the additive white Gaussian noise
channel. However, for a general nonlinear transmission
medium, MFS does not provide sufficient statistics, and
therefore is suboptimal. Nonetheless, this receiver is
widely used in optical systems, where the Kerr non-
linearity is the dominant impairment at high powers.
In this paper, we consider a suite of receivers for a
two-user channel subject to a type of nonlinear inter-
ference that occurs in wavelength-division-multiplexed
channels. The asymptotes of the symbol error rate
(SER) of the considered receivers at high powers are
derived or bounded analytically. Moreover, Monte-
Carlo simulations are conducted to evaluate the SER
for all the receivers. Our results show that receivers
that are based on MFS cannot achieve arbitrary low
SERs, whereas the SER goes to zero as the power
grows for the optimal receiver. Furthermore, we devise
a heuristic demodulator, which together with the MD
detector yields a receiver that is simpler than the
optimal one and can achieve arbitrary low SERs. The
SER performance of the proposed receivers is also
evaluated for some single-span fiber-optical channels
via split-step Fourier simulations.

Index Terms—Optical fiber, nonlinearity compensa-
tion, nonlinear channel, demodulation, MAP detector.

I. Introduction
The development of the standard single-mode fiber

(SMF) in the 1970s [2] and of the erbium-doped fiber
amplifiers [3] in the late 80s increased the capacity of the
fiber-optical channel far beyond the required data rate in
those days. This abundance of resources made it inessen-
tial to exploit the bandwidth optimally in the design
of optical communication networks. Nowadays, however,
with the exponential growth of the global Internet, the
data demand has started meeting the limits of traditional
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optical systems. This ever-increasing data demand has
motivated many recent efforts, including the one in the
current paper, to increase the efficiency of optical trans-
mitters and receivers.

For the additive white Gaussian noise (AWGN) chan-
nel, it is well known that the matched filtering and
sampling (MFS) demodulator provides sufficient statistics
for detecting the transmitted symbol from the received
continuous-time signal. Although, in general, this method
is suboptimal for nonlinear channels, it has been deployed
broadly in optical fiber transmission systems, where the
Kerr nonlinearity critically limits the achievable informa-
tion rate at moderate and high powers [4].

In advanced optical communication systems, a single-
mode fiber hosts approximately one hundred wavelength-
division-multiplexed (WDM) channels. In such systems,
the Kerr nonlinearity gives rise to: i) self-phase modulation
(SPM), where the signal phase is distorted depending on
its own magnitude; ii) cross-phase modulation (XPM),
where the magnitude of the signal transmitted over neigh-
boring channels modulates the phase of the signal of
interest; and iii) four-wave mixing (FWM), where three
signals at different frequencies create a distortion at a new
frequency. In this paper, we shall focus on the first two
effects and assume that the impact of FWM (the third
effect) is mitigated by appropriate channel spacing (see,
for example, [5]).

Many methods have been proposed, both in the optical
and the electrical domains, to compensate for the fiber
nonlinear distortion [6, Ch. 2]. Soliton-based communi-
cation [7] is among the primary solutions to mitigate
the channel impairments including the nonlinearity. It
is based on soliton pulses, which can propagate through
the fiber undisturbed. In recent years, this method has
received attention in the context of the nonlinear Fourier
transform [8]. Inverting the signal’s phase at the middle
of the transmission line is another effective approach to
reduce the nonlinear distortion [9].

In the last decade, the advancement of digital signal
processors (DSP) made them a key enabling technology for
data transmission over the fiber-optical channel. A number
of known nonlinearity mitigation techniques are based on
DSPs, three of which are reviewed next. i) Digital back
propagation [10] is a well-known method to compensate for
the fiber impairments. Using this technique, all the signal–
signal distortions can be compensated for by processing
the signal at the transmitter, at the receiver, or at both
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ends. However, digital back propagation suffers from high
computational complexity, and it requires knowledge of all
copropagating channels. ii) The effects of XPM can be par-
tially mitigated via adaptive equalization that utilizes the
time coherency of the XPM distortions (see for example
[11], [12]). iii) Using an approximate probability distri-
bution for the channel law, one can devise nonlinearity-
tailored detection techniques to improve the symbol error
rate (SER) [13], [14].

The optical channel model can be described by the
nonlinear Schrödinger (NLS) equation [15, Eq. 2.6.18].
Since the input–output relation is given implicitly through
a differential equation, developing the optimal transmitter
and receiver for the NLS channel seems a formidable task.
By neglecting the channel memory, closed-form input–
output relations can be obtained. The analyses based on
these models are applicable to optical systems with short-
haul zero-dispersion fibers (see, for example [16]–[20]).
Furthermore, many simplified models have been developed
in the literature to approximate the NLS channel (see [21]
and the references therein). Applying perturbation theory,
or equivalently Volterra series, and ignoring signal–noise
interaction are among the most common simplifications.
The channel models derived based on these assumptions
lose accuracy at high powers [22]. Nevertheless, since
the physical channel is intractable, these models can be
studied to develop transceivers that are more matched
to the nonlinear nature of the optical channel than the
MFS. The corresponding results can serve as a first step
towards optimizing optical receivers for the actual physical
channel.

In [23], [24], the capacity of a memoryless discrete-
time two-user WDM channel, where both SPM and XPM
are present, has been studied at high powers. It has
been proved for this channel that the capacity pre-log1

pair (1, 1) is achievable. The discrete-time channel model
used in [23], [24] relies on the sampling receiver, whose
bandwidth is infinite. This receiver has been used in many
publications to obtain a tractable discrete-time model for
the single-user NLS channel (see, for example [19], [20],
[22], [25]). However, the sampling receiver is suboptimal
and impractical, particularly for WDM systems [26, Sec. I].
The discrete-time channel in [23], [24] can also be ob-
tained from the underlying continuous-time channel by
using rectangular pulse shaping at the modulator, which,
however, cannot be implemented in practice.

This paper studies the same continuous-time two-user
WDM channel as in [23], [24]. Although our focus in this
paper is on a two-user channel, our framework can be
used to analyze a channel of interest in a WDM system
with an arbitrary number of users by considering all of the
interfering signals as a single channel [27], [28]. We con-
sider three demodulation schemes for the aforementioned
continuous-time channel under the assumption that joint
processing is not possible at the transmitters or at the

1The capacity pre-log is defined by lim
P→∞

C(P )/ logP , where C(P )
is the channel capacity under the input power constraint P .

receivers. First, the MFS demodulator is studied, which is
conventionally used in optical systems. Second, a demod-
ulator that provides sufficient statistics (SS) is developed.
Third, a novel heuristic demodulation method, referred to
as maximum matching (MxM), is presented. Furthermore,
three different detection schemes, used at the receivers
to estimate the transmitted signal based on the demod-
ulator output, are considered: the conventional minimum
Euclidean distance (MD) detector, the optimal detector
based on maximum a posteriori (MAP) probability, and
a two-stage (TS) detection method, which first estimates
the amplitude and then the phase of each symbol. Different
versions of TS detectors have been considered previously
to mitigate the nonlinear phase noise in optical systems
[17], [25], [29]. As we shall see, our TS detector is superior
to the MD detector at moderate powers.

By coupling different modulators and detectors, we
investigate the performance (in terms of SER) and the
complexity of six different receivers. First, we study the
conventional MFS-MD receiver, which is optimal for the
linear AWGN channel. Second, we study a receiver that
performs MFS demodulation, phase recovery (using the
method in [30]), and MD detection. This receiver, which
relies on processing techniques used in today’s optical
systems, is referred to as MFS-PR. Third, to find the
performance limits of the MFS demodulator, we couple
it with the optimal (MAP) detector. Fourth, we consider
the SS-MAP receiver, which is the optimal receiver for
the channel under study. Fifth, we couple MxM with MD
to obtain a receiver that has a lower complexity than SS-
MAP and can achieve arbitrary low SERs. Sixth, we study
the MxM-TS receiver, which turns out to yield a slight
performance improvement over MxM-MD at moderate
powers. A summary of the considered receivers and a
qualitative evaluation of their complexity and performance
is provided in Table I. At low powers, where nonlinearity
is weak, all the receivers except the MxM-TS and MFS-
PR have approximately the same SER as the optimal
receiver, whereas in the moderate-power regime only MFS-
MAP and MFS-PR perform close to optimal. It can be
seen that unlike receivers based on MFS, the SER for
the optimal receiver (SS-MAP) goes to zero as the power
grows large. Also, arbitrarily low SERs can be achieved
via simple detectors (MD and TS) coupled with the
MxM demodulator. The results presented in Table I are
obtained for truncated Gaussian pulse shaping and 16-
QAM modulation. We expect similar results to hold for
practically relevant pulse shapes whose spectrum broadens
with increasing power (see [19, Sec. VIII]). For rectangular
pulse shaping, for which the signal spectrum does not
broaden, MFS provides sufficient statistics and the SER of
MFS-MAP goes to zero as power grows large. Modulation
formats that are resilient to phase noise, such as pulse-
amplitude modulation, may also result in a different SNR
behavior compared to Table I.

We also evaluate the SER performance of the proposed
receivers (by means of split-step Fourier simulations) for
two single-span fiber-optical systems with different disper-
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TABLE I
A qualitative comparison between the complexity and performance of the receivers under study.

Complexity Symbol error rate compared to the optimal receiver
Receiver Demodulation Detection Low powers Moderate powers High powers

MFS-MD Low Low Close to optimal Far from optimal Far from optimal
MFS-PR Low Low Far from optimal Close to optimal Far from optimal

MFS-MAP Low High Close to optimal Close to optimal Far from optimal
SS-MAP High High Optimal Optimal Optimal (→ 0)∗

MxM-MD High Low Close to optimal Far from optimal Close to optimal (→ 0)
MxM-TS High Low Far from optimal Far from optimal† Close to optimal (→ 0)

* SER→ 0 as power grows large. † The SER with MxM-TS, is lower than with MxM-MD at moderate powers.

sion parameters. Our results show that, for all receivers,
the SER increases with power after a certain optimal
power. When the dispersion is small, the performance
of SS-MAP and MFS-MAP turns out to be superior to
that of MFS-PR. When dispersion is high, all receivers
except for SS-MAP are inferior to MFS-PR. This paper
completes the analysis initiated with the conference paper
[1], where the MxM-MD and the MFS-MD receivers were
investigated for the channel under study.

Organization: The rest of this paper is organized as
follows. In Section II, a model for a continuous-time two-
user WDM channel is obtained from a pair of coupled
NLS equations under some simplifications. In Section III,
we present the demodulation and detection methods. Sec-
tion IV presents some analytical asymptotic bounds on the
SER. Numerical results are provided in Section V. Specif-
ically, in Section V-A, we study the simplified channel
model and in Section V-B, the performance under more
realistic dispersive conditions is evaluated by simulation.
Finally, Section VI concludes the paper.

Notation: Bold-face letters are used to denote random
quantities. Sets are indicated by upper-case script let-
ters, e.g., X . The cardinality of a set X is indicated
by |X |. Vectors are denoted by lower-case underlined
letters. CN (µ, σ2) denotes the proper complex Gaussian
distribution with mean µ and variance σ2. The inner
product between two complex functions f(t) and g(t) is
defined as 〈f, g〉 =

∫∞
−∞ f(t)g∗(t) dt, where (·)∗ denotes

complex conjugation. <(x) and =(x) denote the real and
the imaginary part of a complex number x, respectively.
With | · | and (·)T we denote the determinant and the
transpose operators, respectively. We use Pr(x = x) to
denote the probability mass function of a discrete random
variable x at x. Also, the probability density function of
a continuous random variable x at x is denoted by fx(x).
The real line and the complex plane are represented by
R and C, respectively. Finally, for two functions q(x) and
r(x), we write q(x) = O(r(x)) if lim sup

x→0
|q(x)/r(x)| <∞.

II. Channel Model

The signal propagation through the fiber-optical chan-
nel suffers from several impairments such as chromatic

dispersion, fiber loss, and Kerr nonlinearity. The chro-
matic dispersion is mainly caused by the dependency of
the refractive index on the frequency. Therefore, in the
presence of chromatic dispersion, the different frequency
components of a transmitted pulse propagate with dif-
ferent speeds, causing the pulse to broaden in time. This
impairment can be compensated for by using dispersion-
compensating fibers or through DSPs.

To compensate for the fiber loss, two types of optical
amplification are typically deployed, namely, distributed
or lumped amplification. While the former amplifies the
signal continuously during propagation, the latter does
so only at the end of each amplification span. Optical
amplification is always accompanied by additive noise
caused by spontaneously emitted light photons. In this
paper, we shall focus on lumped-amplified systems.

The main impairment that limits the achievable data
rates in fiber communications is the Kerr nonlinearity.
It arises because the glass refractive index depends on
the propagating optical power. It can be described by a
phase shift proportional to the optical power applied to
the complex baseband signal. This phase shift is caused by
the signal itself (SPM) or by other copropagating signals
at different wavelengths (XPM).

In this paper, we consider two channel models: a sim-
ple memoryless model for algorithm design and analysis,
and a more realistic split-step Fourier model for perfor-
mance evaluation. For the first purpose, we consider the
propagation of two optical signals with different carrier
wavelengths through a point-to-point single-mode fiber,
focusing on the effects of SPM and XPM. We assume that
the two signals have nonoverlapping spectra. The signal
propagation can then be described by the pair of coupled
NLS equations [31, Eqs. (7.4.1)–(7.4.2)]

∂a1
∂z

+ jβ21
2

∂a1
∂t2

+ α

2 a1 = jγ1
(
|a1|2 + 2|a2|2

)
a1

(1)
∂a2
∂z

+ d
∂a2
∂t

+ jβ22
2

∂a2
∂t2

+ α

2 a2 = jγ2
(
|a2|2 + 2|a1|2

)
a2

(2)
where ak = ak(z, t), k ∈ {1, 2} is the complex envelope
of the optical signal k at position z and time t. Time
is measured according to a reference frame moving with
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a1(z, t). The group-velocity mismatch between the two
channels is given by d. The constants β2k and γk are the
dispersion and the nonlinearity coefficients, respectively.
The fiber loss, which is assumed to be the same in both
channels, is quantified by the parameter α. Although our
focus in this paper is on single-polarization transmission,
our analytical framework can be adapted to suit an exten-
sion of the channel model (1)–(2) to two polarizations (see
[32, Eqs. (7.1.19)–(7.1.20)]).

We assume that the fiber loss is completely compensated
for using lumped amplification and that each amplifier
generates Gaussian noise. Moreover, we assume that the
effects of dispersion, group velocity mismatch, and signal–
noise interaction are negligible. This assumption is valid
for single-span short-haul communication systems with
(optical or digital) dispersion compensation. Under this
assumption, the coupled NLS equations (1)–(2) yield the
continuous-time channel [31, Eq. (7.4.5)]

a1(L, t) = a1(0, t)ejη1(|a1(0,t)|2+2|a2(0,t)|2) + n1(t) (3)
a2(L, t) = a2(0, t)ejη2(|a2(0,t)|2+2|a1(0,t)|2) + n2(t). (4)

Here, L is the length of the fiber. The parameters ηk
quantify the nonlinearity and can be calculated as

ηk = nspanγkLeff (5)

where nspan is the number of amplification spans and

Leff = 1− e−αLspan

α
(6)

is the effective length of the fiber in a single span with
length Lspan = L/nspan. Because of fiber loss, the sig-
nal power and, consequently, the nonlinear distortion,
diminishes along the fiber. Therefore, the effective length
is less than the actual span length Lspan. Finally, the
amplification noise is captured by n1(t) and n2(t), which
are two independent complex white circularly-symmetric
Gaussian processes with power spectral density

N0 = 1
2nspanhνFG. (7)

Here, hν is the optical photon energy, F is the noise figure,
and G is the amplifier gain, which we assume equal to the
signal attenuation in one span exp(αLspan).

In this paper, we shall first focus on the simplified
continuous-time model (3)–(4) and study the SER perfor-
mance of different demodulation and detection schemes.
A more realistic channel model is studied in Section V-B.
Throughout the paper, we assume that the parameters of
the fiber are known at both receivers. Moreover, we assume
that the messages sent over each channel are independent,
and that joint processing is not allowed at the transmitters
or receivers.

III. Modulation, Demodulation, and Detection
In this section, a modulation scheme together with

the six receivers listed in Table I are presented for the
continuous-time channel (3)–(4). The transmitters are

assumed to perform linear modulation. Specifically, let the
pulse shape g(t) be a real function that is zero outside the
interval (0, T ] and has unit energy, i.e.,

∫ T
0 g2(t) dt = 1.

Furthermore, define ak(0, t) =
∑
i xkig(t − iT ) to be the

signal sent by transmitter k, where xki ∈ C is the ith
transmitted symbol. Since g(t) is zero outside (0, T ], after
demodulation the noise terms at different symbol times
become independent. Based on this and the fact that the
channel model is memoryless, the channel can be studied
by only considering the input–output relation in the first
symbol interval. Hence, we can drop the index i. For
0 ≤ t < T , the channel (3) can be expressed as

a1(L, t) = x1g(t) exp
(
jη1
(
|x1|2 + 2|x2|2

)
g2(t)

)
+ n1(t)

(8)

where we set xk = xk1 for k = 1, 2 to simplify notation.
In this section, we focus only on the first WDM channel
(3). Because of the symmetry, all the results hold for the
second channel (4) as well.

Next, we introduce some notation that will come to
use in the rest of this section. We assume that the input
random variable x1 takes values from a finite-cardinality
set X = {x1, x2, ..., x|X |} and has a probability distribu-
tion πi = Pr(x1 = xi). Furthermore, we assume that x2
belongs to a finite-cardinality set, which may be different
from X . Also, we let s = |x1|2 + 2|x2|2, which belongs
to a finite set S = {s1, s2, ..., s|S|}. Finally, we denote
the conditional probability distribution of s given x1 by
π̃ji = Pr(s = sj | |x1| = |xi|).

Next, we study the receivers listed in Table I. We begin
by introducing the conventional MFS-MD and MFS-PR
receivers. Then, we study MFS-MAP, which is used to
determine the performance limits of MFS demodulation.
Next, we devise the optimal receiver, SS-MAP, which
serves as a benchmark to assess the performance of the
other receivers. Finally, two heuristic receivers, MxM-
MD and MxM-TS are studied. These receivers have lower
complexity than SS-MAP and can obtain arbitrary low
SERs for sufficiently high powers.

A. MFS demodulation with MD detection (MFS-MD)
The MFS demodulator maps the received signal a1(L, t)

to the complex number

v =
∫ T

0
a1(L, t) · g(t) dt (9)

= 〈a1(L, t), g(t)〉. (10)

After observing the demodulation outcome v = v, the MD
detector selects xm ∈ X such that

m = arg min
i
|v − xi|2. (11)

B. MFS demodulation with phase recovery (MFS-PR)
In the MFS-PR receiver, the output of the MFS demod-

ulator passes through a phase-recovery block and is then
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fed to the MD detector. Throughout, we shall focus on the
phase-recovery technique proposed in [30].2

C. MFS demodulation with MAP detection (MFS-MAP)
Given the MFS output v = v in (9), the optimal MAP

detector determines the input symbol xm ∈ X , such that

m = arg max
i

Pr(x1 = xi | v = v) (12)

= arg max
i
πifv|x1(v | xi) (13)

= arg max
i
πi
∑
j

π̃jifv|s,x1(v | sj , xi) (14)

where in (14) we used that Pr(s = sj | x1 = xi) =
Pr(s = sj | |x1| = |xi|) = π̃ji. The conditional probability
fv|s,x1(v | sj , xi) can be calculated by noting that, given
s = sj and x1 = xi, we have that v ∼ CN (µji, N0), where

µji = xi
〈
g(t) exp

(
jη1sjg

2(t)
)
, g(t)

〉
. (15)

Therefore,

fv|s,x1(v | sj , xi) = 1
πN0

exp
(
−|v − µji|

2

N0

)
. (16)

D. Sufficient statistics with MAP detection (SS-MAP)
Let φ(s, t) = η1 s g2(t). The real and the imaginary part

of a1(L, t) are

<(a1(L, t)) = <(x1) g(t) cos(φ(s, t))
−=(x1) g(t) sin(φ(s, t)) + <(n1(t)) (17)

=(a1(L, t)) = <(x1) g(t) sin(φ(s, t))
+=(x1) g(t) cos(φ(s, t)) + =(n1(t)) . (18)

Note that, if additive noise is neglected, the signals
<(a1(L, t)) and =(a1(L, t)) can be written as linear com-
binations of the signals h`(t) = g(t) sin(φ(s`, t)) and
h̃`(t) = g(t) cos(φ(s`, t)), ` = 1, . . . , |S|. Therefore, by [33,
Corollary 26.4.2],

uR
` = 〈<(a1(L, t)) , h`(t)〉 (19)

ũR
` = 〈<(a1(L, t)) , h̃`(t)〉 (20)

uI
` = 〈=(a1(L, t)) , h`(t)〉 (21)

ũI
` = 〈=(a1(L, t)) , h̃`(t)〉 (22)

are sufficient statistics for determining x1 based on
a1(L, t). Let uR = [uR

1 , . . . ,uR
|S|], and similarly define the

vectors ũR, uI, and ũI. Moreover, let the vector u with
length 4|S| be the concatenation of the aforementioned
vectors, i.e.,

u = [uR, ũR,uI, ũI]. (23)

It follows from [33, Prop. 25.15.2] that the vector u is
conditionally jointly Gaussian given s = sj and x1 = xi.
Let the conditional mean vector of u given s = sj and
x1 = xi be µ

ji
and the conditional covariance matrix be

Σ (as we shall see later, Σ does not depend on j or i).

2The test carrier phases considered in the simulation results are
πb/128, b ∈ {−32, . . . , 31}.

It follows from steps similar to (12)–(14) that the MAP
decoder, after observing u = u, selects the transmitted
symbol xm such that

m = arg max
i
πi
∑
j

π̃jifu|s,x1(u | sj , xi) (24)

where

fu|s,x1(u | sj , xi) =
exp
(
− 1

2 (u− µ
ji

)Σ−1(u− µ
ji

)T
)

(2π)2|S|
√
|Σ|

.

(25)
Next we calculate µ

ji
and Σ. We write µ

ji
as a concate-

nation of four vectors: µ
ji

= [µR
ji
, µ̃R

ji
, µI

ji
, µ̃I

ji
]. It follows

from (23) that the `th element of µR
ji

is

µR
ji` = E

[
uR
` | s = sj ,x1 = xi

]
. (26)

The vectors µ̃R
ji

, µI
ji

, and µ̃I
ji

can be calculated as in (26).
We have from (17) and (19) that

E
[
uR
` | s = sj ,x1 = xi

]
= <(xi) 〈g(t) cos(φ(sj , t)) , h`(t)〉

− =(xi) 〈g(t) sin(φ(sj , t)) , h`(t)〉 . (27)

Moreover,

〈g(t) cos(φ(sj , t)) , h`(t)〉

=
∫ T

0
g2(t) sin(φ(s`, t)) cos(φ(sj , t)) dt (28)

= 1
2

∫ T

0
g2(t) sin(φ(s` + sj , t)) dt

+ 1
2

∫ T

0
g2(t) sin(φ(s` − sj , t)) dt (29)

= Φ(s` + sj) + Φ(s` − sj) (30)

where we have set

Φ(z) = 1
2

∫ T

0
g2(t) sin(φ(z, t)) dt. (31)

Similarly,

〈g(t) sin(φ(sj , t)) , h`(t)〉 = Φ̃(s` − sj)− Φ̃(s` + sj) (32)

where
Φ̃(z) = 1

2

∫ T

0
g2(t) cos(φ(z, t)) dt. (33)

Therefore,

µR
ji` = <(xi) Φ(s` + sj) + <(xi) Φ(s` − sj)

+=(xi) Φ̃(s` + sj)−=(xi) Φ̃(s` − sj). (34)

With analogous calculations, we obtain

µ̃R
ji` = <(xi) Φ̃(s` + sj) + <(xi) Φ̃(s` − sj)

−=(xi) Φ(s` + sj) + =(xi) Φ(s` − sj) (35)
µI
ji` = −<(xi) Φ̃(s` + sj) + <(xi) Φ̃(s` − sj)

+=(xi) Φ(s` + sj) + =(xi) Φ(s` − sj) (36)
µ̃I
ji` = <(xi) Φ(s` + sj)−<(xi) Φ(s` − sj)

+=(xi) Φ̃(s` + sj) + =(xi) Φ̃(s` − sj). (37)
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Next, we calculate Σ, which is a 4|S| × 4|S| matrix.
Dividing Σ into 16 submatrices of size |S| × |S| and using
[33, Prop. 25.15.2], we obtain

Σ =


Σ11 Σ12 0 0(

Σ12)T Σ22 0 0

0 0 Σ11 Σ12

0 0
(
Σ12)T Σ22

 (38)

where the element Σ11
k` of the submatrix Σ11 is

Σ11
k` = N0

2 〈hk(t), h`(t)〉 (39)

= N0
2

∫ T

0
g2(t) sin(φ(sk, t)) sin(φ(s`, t)) dt (40)

= N0
4

∫ T

0
g2(t) cos(φ(sk − s`, t)) dt

−N0
4

∫ T

0
g2(t) cos(φ(s` + sk, t)) dt (41)

= N0
2
[
Φ̃(sk − s`)− Φ̃(sk + s`)

]
(42)

for k = 1, . . . , |S| and ` = 1, . . . , |S|. Furthermore,

Σ12
k` = N0

2
〈
hk(t), h̃`(t)

〉
= N0

2 [Φ(sk + s`) + Φ(sk − s`)]
(43)

Σ22
k` = N0

2
〈
h̃k(t), h̃`(t)

〉
= N0

2
[
Φ̃(sk + s`) + Φ̃(sk − s`)

]
.

(44)
Note that the real and the imaginary parts of n1(t)
are independent processes. This explains why half of the
elements in (38) are zero.

E. MxM demodulation with MD detection (MxM-MD)
Next, we present a novel heuristic demodulation scheme,

which is composed of three steps. First, the phase dis-
tortion of the received signal is estimated. This phase
distortion is compensated for in the second step. Third, a
MFS is applied to obtain the output of the demodulator.
The first step is based on the following proposition, whose
proof follows from [34, Ch. 4, Eq. (3)].
Proposition 1. Let f(t) be a nonnegative continuous
function on the interval [a, b]. Then

max
s∈R

∣∣∣∣∣
∫ b

a

f(t)ejsf(t) dt
∣∣∣∣∣ =

∫ b

a

f(t) dt (45)

and s = 0 achieves the maximum.
Next, we use Proposition 1 to devise the first step of

the demodulation. Assume that x1 = x1 and s = s. To
estimate s, the receiver calculates

smax = argmax
s′∈S

∣∣∣∣∣∣
T∫

0

a1(L, t) · g(t)e−jη1s
′ g2(t) dt

∣∣∣∣∣∣ (46)

= argmax
s′∈S

∣∣∣∣∣∣x1

T∫
0

g2(t)ejη1(s−s′) g2(t) dt+ n

∣∣∣∣∣∣ (47)

where n ∼ CN (0, N0). If we ignore the noise in (47),
it follows from Proposition 1 that smax = s. Therefore,
smax calculated in (46) provides an estimate of s in the
presence of noise. Note that, similar to the SS decoder,
the computation of smax in (47) requires 4|S| real-valued
correlators.

In the next step, the phase distortion is com-
pensated for by multiplying the received signal with
exp
(
−jη1smax g

2(t)
)
. Finally, the result is fed to the MFS

demodulator. To summarize, the output of the MxM
demodulator is

w =
T∫

0

a1(L, t) · g(t)e−jη1smax g
2(t) dt. (48)

We see from (8) that if the demodulator successfully
compensates for the phase distortion, i.e., if smax = s,
then the output of the MxM demodulator has a Gaussian
distribution centered at x1 with variance N0. However, if
s is not estimated correctly at the receiver, the output of
the demodulator has a different mean. The MD detector
determines xm ∈ X , based on the MxM output w = w,
such that

m = arg min
i
|w − xi|2. (49)

F. MxM demodulation with TS detection (MxM-TS)
To map the output of the MxM demodulator w = w

in (48) to one of the constellation points, MxM-TS uses
a simple two-stage detector. The two-stage detector first
estimates the amplitude of the transmitted signal and then
determines its phase. Specifically, let R =

{
r1, . . . , r|R|

}
be the set of all possible amplitudes of the transmitted
symbol. The amplitude detector chooses R̂ = ri, 1 ≤ i ≤
|R|, if mi−1 ≤ |w| ≤ mi, where mi is the ith detection
threshold. To compute the thresholds mi, we assume that
given x1 = x1, we have w ∼ CN (x1, N0). Therefore,

f|w| | |x1|(mi | ri) ≈
2mi

N0
exp
(
−m

2
i + r2

i

N0

)
I0

(
2miri
N0

)
(50)

where I0(·) is the zeroth order modified Bessel function of
the first kind. Since the approximated conditional distri-
bution in (50) is unimodal, mi can be obtained based on
the MAP rule by solving

Pr(|x1| = ri)f|w| | |x1|(mi | ri)
= Pr(|x1| = ri+1) f|w| | |x1|(mi | ri+1) (51)

for i = 1, . . . , |R| − 1, (with the convention that m0 = 0
and m|R| = ∞). After estimating the amplitude of the
transmitted signal, the two-stage detector selects the con-
stellation point with amplitude R̂ that is closest to w.

G. Complexity
The MFS demodulator calculates the correlation be-

tween a real function g(t) and the complex received signal,
which can be implemented by two real-valued correlators
(or, equivalently, filters). This number is 4|S| for the
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more sophisticated SS and MxM demodulators. The MAP
detector in (24)–(25) involves calculating a quadratic form
in a 4|S|–dimensional space, which makes it much more
computationally demanding than the other detectors. The
MAP detector in (14)–(16) involves calculating |S| expo-
nential functions. Hence, it is more complex than the MD
and TS detectors, which are only based on comparisons.
Moreover, the MxM and the SS demodulators have larger
bandwidths than the MFS demodulator. The bandwidth of
the MxM demodulator is the maximum of the bandwidths
of the signals g(t) exp(−jηsg2(t)) over all values of s;
the bandwidth of the SS demodulator is the maximum
of the bandwidths of the signals h`(t) and h̃`(t) over
` = 1, . . . , |S|.

IV. Asymptotic SER Analysis
In this section, we provide analytical evaluations of

the asymptotic SER of the proposed receivers. Let the
input random variable be x1 =

√
Px′1, where x′1 takes

values from a fixed alphabet set X ′ = {x′1, x′2, ..., x′|X ′|},
with some arbitrary probability distribution. Similarly, let
x2 =

√
Px′2. In order to make analytical calculations

possible, we assume triangular pulse shaping, i.e.,

g(t) = c

(
T

2 −
∣∣∣∣T2 − t

∣∣∣∣) , c =
√

12
T 3 . (52)

The following theorem presents our asymptotic SER re-
sults.

Theorem 1. Assuming triangular pulse shaping,
i) the SER of the MFS-MAP receiver goes to 1 −

maxi(πi) as P → ∞, where πi = Pr(x1 = xi).
ii) the SER of the MxM-MD and MxM-TS receivers goes

to zero as P → ∞.

Proof: Substituting (8) into (9), we can write the
output of the MFS demodulator as

v =
∫ T

0
x1g

2(t) exp
(
jη1
(
|x1|2 + 2|x2|2

)
g2(t)

)
dt+ n (53)

= 2c2x′1
∫ T/2

0

√
Pt2 exp

(
jη1c

2P
(
|x′1|2 + 2|x′2|2

)
t2
)

dt

+n. (54)

where n ∼ CN (0, N0). Here, (54) follows from (52) and
the definitions of x′1 and x′2. We first assume x′1 6= 0. It
can be shown by standard algebraic calculations that the
integral in (54) is O

(
1/
√
P
)

. Therefore, as P → ∞ the
first term in (54) goes to zero. Furthermore, this term is
zero if x′1 = 0. Since n is independent of the transmitted
signal, the MAP detector selects, in the limit P → ∞,
the symbol with largest a priory probability regardless of
received signal, resulting in a SER of 1−maxi(πi).

Next, we prove the second part of the theorem. Fo-
cusing on (47), one can show with similar calcula-
tions as above that for every s 6= s′, the integral
x1
∫
g2(t)ejη1(s−s′) g2(t) dt goes to zero as P → ∞. More-

over, for s = s′, the integral equals x1. Therefore, assuming

TABLE II
Parameters used in the simulation.

Parameter Symbol Value
Span length Lspan 150 km
Attenuation α 0.25 dB/km
Nonlinearity γ1 = γ2 1.27 (Wkm)−1

Symbol rate 1/T 10 Gbaud
Optical photon energy hν 1.28 · 10−19 J
Amplifier noise figure F 6 dB

Number of spans nspan 1

x1 6= 0, we conclude that, in the limit P → ∞, we have
smax = s with probability one. Under the assumption that
smax = s, it follows from (48) that w ∼ CN

(√
Px′1, N0

)
,

where w is the outcome of the MxM demodulator. There-
fore, in the limit P → ∞, both MD and TS detectors
will correctly detect the symbol x1 with probability one.
If x1 = 0, then w does not depend on P, and therefore in
the limit P → ∞, the symbol 0 will be correctly detected
by both MD and TS with probability one.

Note that the first result in Theorem 1 implies that the
asymptotic SER of the MFS-MD and MFS-PR is lower-
bounded by 1 − maxi(πi); the second result implies that
the SER of SS-MAP goes to zero as P → ∞.

V. Numerical Examples
This section presents numerical SER evaluations for

three single-span channels. The simplified model (3)–(4) is
studied in Section V-A and two NLS channels are analyzed
via split-step Fourier simulations in Section V-B.

A. Transmission Over the Simplified Channel (3)–(4)
In this section, we evaluate the performance of the six

receivers presented in the previous section, by conducting
Monte Carlo simulations on the channel model (3)–(4). We
consider the transmission of 16-ary quadrature amplitude
modulation (QAM) data symbols from each of the two
transmitters. The input power P = Es/T , where Es =
E[|x1|2], is assumed to be the same for both channels. For
these choices we have that |S| = 7 and

S = {0.6Es, 1.4Es, 2.2Es, 3Es, 3.8Es, 4.6Es, 5.4Es} .
(55)

The simulation parameters can be found in Table II.
The nonlinear coefficient can be calculated from (5)–(6)
as η1 = η2 = 22.1 W−1. Also, using (7), one obtains
N0 = 1.43 · 10−15 W/Hz. We use 100 samples per symbol
and set g(t) to a truncated Gaussian pulse with a full width
at half maximum of T/2. A uniform input distribution
is assumed for both transmitted signals, i.e., πi = 1/16.
Consequently, the conditional probabilities π̃ji can be
calculated as in Table III.

Fig. 1 shows scatter plots of the MFS and MxM demod-
ulator outputs for three levels of input power. Note that
since the output of the SS demodulator (19)–(22) lies in a
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Fig. 1. Scatter plots of the output of two demodulation schemes, matched filtering and sampling (MFS) and maximum matching (MxM),
for 16-QAM with three input powers P = −5 dBm: (a) and (d), P = 5 dBm: (b) and (e), and P = 15 dBm: (c) and (f). Different colors are
used to identify demodulator outputs corresponding to three given input symbols.

TABLE III
π̃ji = Pr(s = sj | |x| = |xi|) for 16-QAM transmission with

uniform distribution.

|xi|
sj 0.6Es 1.4Es 2.2Es 3Es 3.8Es 4.6Es 5.4Es

√
0.2Es 0.25 0 0.5 0 0.25 0 0
√
Es 0 0.25 0 0.5 0 0.25 0
√

1.8Es 0 0 0.25 0 0.5 0 0.25

vector space with dimension 4|S| = 28, it is not possible to
draw its scattering pattern. At P = −5 dBm, it can be seen
from Fig. 1(a) that the output of the MFS demodulation
follows approximately a Gaussian distribution. However,
the clouds are not centered at the constellation points.
Rather, they are rotated by an amount proportional to the
amplitude square of the constellation points. This rotation
is caused by the SPM distortion. In Fig. 1(d), the output
of the MxM demodulator at P = −5 dBm is shown. It
can be seen that with this demodulator, the effect of SPM
is mitigated. Indeed, the clouds are now centered at the
constellation points.

Fig. 1(b) illustrates the MFS demodulator’s output at
P = 5 dBm. One can observe that the effect of the

nonlinear distortion becomes more significant compared
to the case P = −5 dBm. Each constellation point is
scattered to three different clouds, each one corresponding
to the three possible values of the XPM distortion (the
three values of |x2|). Also, the centers of the clouds are
further rotated away from the constellation points because
of the SPM. As shown in Fig. 1(e), the output of MxM is
also dispersed to three clouds per symbol. However, unlike
MFS, these clouds are centered at the constellation points.

One can observe from Fig. 1(c) that when P = 15 dBm
both the phase and the amplitude of the MFS output are
distorted. The power loss, which is evident in Fig. 1(c),
can be explained as follows. At high powers, the phase of
the integrand in (9) changes quickly during one time slot.
This rapid phase change scales down the integral’s result
in (9), which is the output of the MFS demodulator. Alter-
natively, the power loss can be explained in the frequency
domain. At high powers, the nonlinear distortions substan-
tially broaden the signal’s spectrum. However, MFS uses
a filter matched to the transmitted pulse shape, which has
the same bandwidth as the transmitted signal. Therefore,
the signal’s out-of-band energy is excluded. It can be seen
from Fig. 1(f) that the output of the MxM demodulator
is centered at each constellation point, i.e., there is no
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Fig. 2. The SER of the six receivers introduced in Section III is illustrated by conducting Monte-Carlo simulations on the channel
model (3)–(4). The SER of an AWGN channel with the same noise variance is also plotted for comparison.

power loss or phase distortion. Fig. 1(f) indicates that the
nonlinear distortion is effectively compensated for by the
MxM demodulator.

Fig. 2 depicts the SER for the six receivers introduced
in Section III. Moreover, the SER for the AWGN channel,
obtained by setting η1 = 0 in (8), is plotted for compar-
ison. In the following, we discuss the results in Fig. 2 for
each demodulation scheme.

MFS demodulator: In our analysis, this demodulator is
combined with two detectors, namely, MD and MAP. It
is well known that for the AWGN channel and a uniform
input distribution, these two detectors coincide. On the
contrary, it can be observed in Fig. 2 that for the nonlinear
channel considered here, a substantial gap exists between
the performance of these two detectors. The SER for the
MFS-MD receiver follows first the SER of the AWGN
channel, reaches a minimum point of 1.6 · 10−2, and then
increases to approximately one at high power levels. The
increase in the SER in the high-power regime can be
explained by looking at Figs. 1(a)–(c). The output of
the MFS demodulator is not centered at the constellation
points. Therefore, the MD decoder fails to provide a sound
estimate of the transmitted symbols. Comparing MFS-
PR with MFS-MD, it can be seen that a considerable
improvement is obtained by performing phase recovery.
The minimum SER for MFS-PR is 1.4 · 10−3.

By changing the detection scheme from MD to MAP, a
substantial performance gain can be obtained. The MFS-
MAP receiver yields a SER of 3.1 · 10−4 at P = 2 dBm,
which is more than 50 times smaller than the minimum
SER that can be obtained with the MFS-MD. The MAP
detector can identify the transmitted symbols as long as
the output of the MFS consists of well-separated clouds.

However, as shown in Figs. 1(a)–(c), because of the non-
linearity, the clouds move in the constellation plane as
the power level changes and can overlap. Therefore, based
on the position of the clouds, increasing the input power
can enhance or deteriorate the performance, which causes
the somewhat irregular behavior of the SER for the MFS-
MAP receiver in Fig. 2.

MxM demodulator: Two detector schemes, namely, TS
and MD, are combined with the MxM demodulator. It can
be seen in Fig. 2 that at power levels lower than 2 dBm,
MD outperforms TS; when 2 dBm ≤ P ≤ 11 dBm, TS
yields a smaller SER than MD; and at power levels larger
than 11 dBm, both detectors perform equally. The reason
is as follows. In the low-power regime, the nonlinearity
is weak and the output of the MxM demodulator has
approximately a Gaussian distribution centered at the
transmitted signal (see Fig. 1(d)). Therefore, MD detec-
tion is close to optimal at low powers. In the moderate-
power regime, the output of the MxM demodulator ex-
periences a phase distortion caused by SPM and XPM
(see Fig. 1(e)). In the presence of phase distortion, TS
outperforms MD, as previously reported in the literature
(see [25], for example). Next, we explain why the MxM-
MD and the MxM-TS receivers yield the same SER at
high powers. The MxM demodulator first tries to cancel
the nonlinear distortion. If it succeeds, the output of
the demodulator follows a Gaussian distribution centered
at the transmitted symbol. Otherwise, the outcome of
MxM gets distorted by the nonlinearity. In the first case,
both the MD and TS detectors are able to detect the
transmitted symbol almost without error. In the second
case, both detectors make most likely an error because
the phase and the amplitude of the demodulator output
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Fig. 3. The SER of the six mismatched receivers introduced in Section III is plotted for a single-span transmission with (a)
low-dispersive fiber and (b) standard fiber. The SER of an AWGN channel with the same noise variance is also plotted for
comparison.

are severely distorted at high powers. This also causes the
nonmonotonic behaviour of the SER as a function of the
power.

SS-MAP receiver: SS-MAP is the optimal receiver for
the channel under study (although it has a high complex-
ity) and its SER can serve as a benchmark to compare
the performance of other low-complexity receivers. One
can see that the SER of the MFS-MAP follows that of the
optimal receiver closely up until P = 1 dBm. However,
unlike the MFS-MAP, the SER of the SS-MAP and of
both the MxM receivers vanishes at high power levels.
We see from Fig. 2 that the effect of the nonlinearity
cannot be completely mitigated even by using optimal
demodulation and detection schemes, as there exists a
considerable gap between the SER of the SS-MAP receiver
and SER achievable over an AWGN channel.

B. Transmission Over Two Single-Span NLS Channels
In this section, we evaluate the performance of the

receivers introduced in Section III for two realistic single-
span fiber-optical systems, one with a low-dispersion SMF
and the other with a standard SMF. We use the MFS-PR
receiver as a benchmark. We note that the SS demodulator
and the MAP detector no longer represent the optimal
demodulation and detection schemes, as they have been
designed for the simplified channel model (3)–(4) and are
mismatched to the channel under study in this section.

The signals a1(0, t) and a2(0, t) are passed through a
brick-wall filter with bandwidth ∆f/2, where ∆f is the
channel spacing parameter in hertz. The baseband input
signal, a(0, t), is generated according to

a(0, t) = a1(0, t)e−jπt∆f + a2(0, t)ejπt∆f (56)

The input signal a(0, t) is transmitted through the fiber-

optical channel governed by the NLS equation
∂a
∂z

+ jβ2
2

∂a
∂t2

+ α

2 a = jγ|a|2 (57)

where β2, γ, and α are dispersion, nonlinearity, and atten-
uation coefficients, respectively. The fiber loss is compen-
sated completely by an optical amplifier. The dispersion
is compensated at each receiver digitally.

We consider two fiber-optical systems with different dis-
persion parameters. The first system deploys a quadruply
clad fiber [31, Ch. 1] with β2 = −1.27 ps2/km and the
second system uses a standard SMF with β2 = −21.7
ps2/km. The channel spacing parameter is ∆f = 40
GHz. The values of the other parameters can be found
in Table II. The solution of (57) is approximated by the
split-step Fourier method [31, Ch. 2.4.1]; 100 samples are
taken from each symbol to discretize the input signal.
Pulse shaping is the same as in Section V.

Fig. 3(a) illustrates the performance of the six receivers
for a low-dispersive fiber. It can be seen that because of
the nonlinearity–dispersion interplay, the SER of all the
receivers increases after reaching a global minimum. By
using the SS-MAP and the MFS-MAP receivers, consid-
erable performance gains can be achieved compared to
MFS-PR. One can see that the MxM-MD and MxM-TS
perform worse than MFS-PR but better than the MFS-
MD receiver. Fig. 3(b) presents the SER for a standard
SMF. The dispersion is high and the MFS-PS and SS-
MAP perform better than the other receivers.

VI. Conclusion and Discussion
Six receivers were studied for a two-user simplified

WDM channel and a novel demodulator, referred to as
MxM, was proposed. Our results indicate that the MFS-
MD receiver, which is optimal for the AWGN channel,
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performs very poorly in the presence of optical nonlinear
distortion. However, when the output of the MFS is fed
to a MAP detector, one can achieve performance close
to the optimal receiver at low powers. In the high-power
regime, the SER goes to zero with power for the optimal
receiver as well as for the receivers based on the MxM
demodulator. On the contrary, for receivers based on the
MFS demodulator, the SER does not vanish.

In coherent optical transmissions the signal spectrum
broadens at high transmit power levels, because of the
nonlinearity. The information embedded in the out-of-
band frequencies is however ignored by the MFS demod-
ulator. Our results indicate that ignoring this information
loss deteriorates performance substantially at high powers.
Moreover, by proposing the MxM demodulator, we showed
that a vanishing SER can be obtained by a heuristic
receiver that is simpler than the optimal one.

When evaluated over a more realistic single-span fiber-
optical channel, modeled by the NLS equation, the perfor-
mance of all receivers declines in the high-power regime.
In the low-dispersion case two of the receivers analyzed in
this paper, namely MFS-MAP and SS-MAP outperform
the conventional MFS-PR receiver. Since the receivers in
this paper were designed based on a simplified memory-
less model, further improvement is expected by devising
receivers that take into account both dispersion and non-
linearity. It seems that developing the optimal receiver
in the presence of dispersion is a formidable task and
heuristic methods should be considered. A straightforward
approach may be optimizing the performance of the pro-
posed receivers over different values of η1. Since dispersion
mitigates the effects of nonlinearity, the optimal η1 may
be smaller than the right-hand side of (5).

Finally, we note that equalization and phase recovery
are essential parts of today’s optical receivers. While the
performance of the introduced receivers may be influenced
by these two steps, we have not investigated the proper
coupling of the equalization and the phase-recovery pro-
cesses with the demodulation and detection steps. This is
an interesting topic for future studies.
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