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Abstract

Clustered regularly interspaced short palindromic repeats (CRISPR) is poised to become one of the key scientific discoveries
of the twenty-first century. Originating from prokaryotic and archaeal immune systems to counter phage invasions, CRISPR-
based applications have been tailored for manipulating a broad range of living organisms. From the different elucidated types
of CRISPR mechanisms, the type II system adapted from Streptococcus pyogenes has been the most exploited as a tool for
genome engineering and gene regulation. In this review, we describe the different applications of CRISPR/Cas9 technology
in the industrial biotechnology field. Next, we detail the current status of the patent landscape, highlighting its exploitation

through different companies, and conclude with future perspectives of this technology.

Introduction

Throughout the years following the discovery of the struc-
ture of DNA, scientists have endeavored to genetically
manipulate organisms. Until recently, most of the genetic
engineering tools developed were based on DNA:protein
recognition principles, such as restriction enzymes, site-
directed zinc finger nucleases (ZFs), and TAL effector
nucleases (TALENS) [6, 47]. However, these tools are com-
monly experienced with difficulties in design, synthesis,
and efficiency which altogether prevented a global wide-
spread adoption, e.g. TALENS require 30-35 amino acids
repeats, each only recognizing a single nucleotide (nt) [29].
On the other hand, the RNA-programmable CRISPR/Cas9
technology has led to a scientific revolution by solving all
of the above-mentioned issues [20]. The technology relies
on two elements: a protein, the CRISPR associated protein
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(Cas9), and a RNA molecule, the guide RNA (gRNA) [5,
46]. Cas9, the first Cas protein used in genome editing, is a
large multi-domain enzyme interacting with the gRNA, the
target DNA, and the Protospacer Adjacent Motif sequence
(PAM) (Fig. 1a). The gRNA element is composed of two
distinct elements: the spacer, a 20 nt domain that binds to the
DNA; and the scaffold, a ~ 79 nt domain that interacts with
Cas9 (Fig. 1a). Once guided to the target, Cas9 catalytically
cleaves the DNA sequence 3 nt upstream the 5'-NGG PAM,
resulting in the activation of endogenous repair mechanisms,
such as homologous recombination (HR) or non-homolo-
gous end joining (NHEJ) [2, 71] (Fig. 1b).

Expanding Cas9 features through enzyme
engineering

The structural characterization of Cas9 has led to the devel-
opment of mutagenized variants with various catalytic
properties, specificities through different PAM recogni-
tion preferences and reduction in off-targeting [37, 55, 56,
90]. For example, Hirano et al. first characterized FnCas9
from Francisella novicida and, based on the characterized
protein structure, created a variant recognizing a 5'-YG’
PAM instead of the original 5'-NGG [37]. A 5'-YG PAM
increases the target space availability for genome editing,
i.e. any target followed by CG or TG is prone to be tar-
geted by the gRNA:FnCas9 complex. Additionally, other
CRISPR nucleases with different PAM preferences can also
be used to increase the target space availability, e.g. FnCpfl
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Fig. 1 CRISPR/Cas9 for genome editing and gene regulation. a The
gRNA:Cas9 complex binding to the DNA target. In green, the spacer
region which interacts with the DNA target. b DNA cut generated
from the Cas9 nuclease activity. ¢ Gene regulation with dCas9 physi-
cally blocking the RNA polymerase from binding to the promoter

a type V CRISPR system from F. novicida which recog-
nizes a T-rich PAM 5'-TTTN [26, 101] (Fig. 1b). In another
approach, mutation in one of the nuclease activity domains
(RquDlOA or HNH840A, Cas9n) was shown to result in a
modified Cas9 only capable of performing single-strand
DNA breaks (nick) instead of the original blunt DNA break
[80]. This feature has been shown to reduce off-targeting
and enhance HR in some organisms [12, 70]. By extension,
‘paired nickases’, i.e. using two adjacent gRNAs with Cas9n,
can efficiently introduce both indel mutations and HR events
with a single-stranded DNA oligo-nucleotide donor template
in mammalian cells [28, 10, 80]. Complete disruption of the
endonuclease activities (RuvCP!0A along with HNHH8404)
results in a catalytically inactive Cas9, or dead-Cas9 (dCas9)
[78, 79]. This has been exploited to physically block the
transcriptional machinery when targeted in the promoter
region of a gene of interest, coined CRISPR interference
(CRISPRI) [22, 34] (Fig. 1¢). Additionally, repression can be
further enhanced by fusing dCas9 with repressive domains,
such as the mammalian transcriptional repressor domain
Mxil [33] (Fig. 1d). Gander et al. have recently exploited
dCas9-Mxil repressive mechanism to effectively built up to
seven layers of synthetic NOR gate circuits, in S. cerevisiae

@ Springer

region. d CRISPR interference further enhanced with dCas9 fused
with transcriptional regulators. e gRNA scaffold extended with stem-
loops recruiting regulator elements. f. Multiplexing gRNAs from a
single transcript through endoribonuclease or self-processing ele-
ments

[30] (Figs. 1d, 2b). Likewise, dCas9 can be coupled to acti-
vating transcription factor domains, such as the tripartite
VP64-p65-Rta (VPR) or the RNAP w-subunit (rpoZ), which
have been characterized as powerful tools for activating
genes [4, 7, 44, 91] (Fig. 1d). Similarly, epigenetic regu-
lators, such as methylation, demethylation, acetylation and
deacetylation domains, can be fused to dCas9 to influence
chromatin structure and, therefore, interfere with the tran-
scriptional signature of a promoter [36, 50, 54]. Hilton et al.
reported the fusion of dCas9 with the histone acetyltrans-
ferase domain of the human E1A-associated protein p300
(dCas9-p300), which significantly modulated the chromatin
structure, and resulted in a 4000-fold up regulation with a
single gRNA [36].

The gRNA characteristics and extensions

Cas9 can be guided virtually anywhere in the genome
where a PAM sequence is present. However, several
parameters, such as nucleotide motifs, particularity of
the PAM sequence, and mismatches in the guide, have
to be taken into account for a correct cleavage in the tar-
get DNA [91]. Recently, efforts have been made to solve
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Fig.2 Example of application in drug discovery and synthetic biol-
ogy. a Genome-wide pooled gRNA libraries targeting all pairs of 73
cancer genes with dual guide RNAs in three mammalian cell lines.

target efficiency through algorithms predicting the ability
of the gRNA to facilitate DNA cleavage by Cas9 at the
intended target site by employing refined machine learn-
ing methods and incorporating large training datasets [18,
19]. The sequence accuracy of the gRNA is also essential
to achieve a correct base-pairing between the gRNA and
the target DNA. Most commonly, RNA pol. III promoters
are used to transcribe gRNAs. These are scarce and more
importantly, some of them contain idiosyncratic features,
e.g. U6 mammalian promoter requires to have a G at the 5’
end of the transcript [28]. Transcriptional expression can
be improved by inserting self-processing elements, such
as HDV ribozyme and tRNAs, at the 5" or 3’ end to prevent
potential degradation of the transcript [49, 83]. Process-
ing elements can also be exploited to multiplex several
gRNAs in a row by collocating those element between
each gRNAs [17] (Fig. le). Several examples, such as the
type III CRISPR-Csy4 [25, 76] or natural CRISPR array
[1, 14] have been shown to efficiently generate multiple

b Example of logic circuits made with dCas9-Mxi NOR gates with
GFP signal used as output similar to Gander et al. study

gRNAs from a single transcript (Fig. le). Notably, while
Cpfl belongs to the same CRISPR class II as Cas9, i.e.
only a single crRNA—effector enzyme and no tracrRNA
part is required for cutting DNA. It differs from it by pos-
sessing a specific RNA processing domain that allows to
process the crRNA into multiple gRNAs [55, 69, 92, 101].

Finally, the gRNA scaffold can be extended to include
effector protein recruitment stem-loops, which has been
shown to enhance transcriptional regulation [8, 44, 100]
(Fig. 1d). With that strategy, Zalatan et al. were able to
design gRNAs to either recruit activator or repressor ele-
ments, which ultimately established both, repression and
activation of specific gene targets at the same time [100]
(Fig. 1d). This platform offers a considerable advantage in
comparison to dCas9 fused to a regulator, as it is not lim-
ited to which transcriptional regulator is fused to dCas9,
but to which stem-loop is connected to the gRNA scaffold.

Another high potential application area for the
CRISPR technology is systematic genetic screening

@ Springer
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Table 1 (continued)
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employing gRNA libraries. Due to the short length of
gRNAs (~ 100nt), accurate predictability, and easy clon-
ing approaches, genome-wide gRNA libraries have been
successfully designed to knockout and regulate genes
throughout the entire genome [31]. For example, Shen
et al. developed a systematic approach to map synthetic
lethality genes by targeting all pairs of 73 cancer genes
with dual guide RNAs in three different cancer cell lines
(Fig. 2a). Their strategy involved nine gRNA pairs per
combination, the library comprised 23,652 double-gene-
knockout constructs with two replicates in three cell lines
which ultimately led to a total of 141,912 interactions and
to the discovery of 120 potential drugs candidates [86]
(Fig. 2a).

Industrial applications through metabolic
engineering

Genome engineering

There has been an increasing interest in improving
microbial cell factories through metabolic engineering
approaches using CRISPR/Cas9 technology [42]. The
efficiency and versatility offered by CRISPR tools have
shown great potential in rewiring the metabolic network
of host cells to enhance their production of metabolites
used in various areas of industrial biotech ranging from
applications as biofuels to chemical building blocks and
pharmaceuticals (Table 1). Metabolic pathway optimiza-
tion towards the product of interest commonly requires
deletions of multiple genes, e.g. competitive metabolic
pathways, which is traditionally performed through itera-
tive cycles of genetic marker integration and removal
[15]. Conversely, the CRISPR technology does not neces-
sitate integrative markers, and several efficient marker-
free approaches were developed to perform multiplexed
genome editing, e.g. knockouts, point-mutations [41, 93]
and gene integration [45], which extensively reduced the
time and effort required to perform targeted strain engi-
neering. The CRISPR technology has also improved
genetic engineering in difficult-to-engineer industrial
organisms, such as food crops. Among several examples
(Table 1), Li et al. reported a significant site-specific gene
replacement of the 5-enolpyruvylshikimate-3-phosphate
synthase (EPSPS) in rice plants using a pair of gRNAs
targeting introns, ultimately converting the crop into a
glyphosate-resistant one (Fig. 3¢) [62]. More recently,
several studies have highlighted significant improvements
in genome editing in plants using DNA-free CRISPR/Cas9
ribonucleoproteins [65, 98].

Besides its multiplexing qualities, CRISPR has also
shown great efficiency to integrate large pathways and
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libraries [38, 88]. For example, Shi et al. specifically
designed gRNAs to target multiple delta sites in the yeast
genome, ultimately achieving 18-copy genomic integra-
tions of a 24 kb combined xylose utilization and (R,R)-
2,3-butanediol (BDO) production pathway in a single step,
in S. cerevisiae [88]. DNA libraries, such as error-prone
PCRs derived or double-stranded fragments obtained from
DNA synthesizing companies, can be genomically inte-
grated to find variants of a studied enzyme with enhanced
catalytic activities or optimal level of expression [64, 83].
Genomically integrated DNA libraries offer several advan-
tages compared to plasmid based strategies, especially in
terms of expression stability [83]. Liang et al. used that
strategy to integrate 640 ribosome binding sites (RBS)
for five different enzymes involved in the production of
isopropanol in E. coli [64] (Fig. 3a). After multiple rounds
of screening for strains carrying the best RBS variants, i.e.
optimal expression of the gene leading to a higher isopro-
panol titer, a final strain producing 7.1 g L™! of isopro-
panol was obtained [64].

dCas9—transcriptional regulation

Fine-tuning of biosynthetic pathways is a key step in the
correct and efficient synthesis of a particular target com-
pound (Nielsen and Keasling 2016). Traditional strategies
have been relying on a limited number of characterized pro-
moters to control gene expression, i.e. strong, weak, and
inducible promoters [51]. As mentioned above, besides its
efficient endonuclease activity, CRISPR can enable gene
expression modulation through the deactivated form of the
Cas9 protein, dCas9 [59, 79]. Once bound to, or in the vicin-
ity of the transcriptional start site (TSS), the gRNA:dCas9
complex can significantly alter the transcriptional expres-
sion by physically interfering with RNA polymerase bind-
ing [14, 43, 79]. Wu et al. recently exploited this strategy
in E. coli where they did a selective knockdown of gene
expression of enzymes that could divert the carbon flux
away from the production of 1,4-Butanediol (BDO) [99].
They divided their study into two phases, (1) a heavy strain
engineering approach through multiple genome edits such
as gene knockouts, knockins, and point-mutations, and (2)
optimization through fine tuning of gene expression of three
genes competing with the production of BDO. This strategy
increased the 1,4-BDO titer by 100% from phase (1) to phase
(2), resulting in a final titer of 1.8 g L~!1,4-BDO (Table 1).

In addition, graded transcriptional patterns can be
achieved depending on where the dCas9 complex binds in
the promoter region, e.g. on the TSS for strong downregu-
lation or more distanced from it for a medium repression.
Thus, optimal gene expression can be elucidated by target-
ing dCas9 at different positions on the studied promoter
[16, 17, 44]. This feature is subject to several parameters,

such as the distance to TSS, condition dependent presence
of transcription factors, chromatin accessibility, but the
complete understanding of how to obtain precise regula-
tion has yet to be characterized and is most likely depend-
ent on specific promoters [57, 91]. For example, Deaner
et al. recently developed a graded expression platform that
can be employed to systematically test enzyme perturba-
tion sensitivities (STEPS), and assists to identify potential
flux limiting enzymes arising from production pathways
[16] (Fig. 3d; Table 1). Their strategy relied on targeting
dCas9, with either a repressor and activator domain, at dif-
ferent positions of several promoters of genes, and analyze
their effect on the final titer. For example, while optimizing
glycerol production, from the seven tested genes, one gRNA
targeting GPD1 with dCas9-VPR led to a significant titer
increase, highlighting its importance in the overall produc-
tion pathway. Then they iteratively used STEPS to find a
second bottleneck in GPP1, which ultimately led to a final
titer ~ 28 g L™!, a sevenfold increase compared with their
original strain.

Patenting landscape

The patent landscape related to CRISPR/Cas9 technology
is complex, constantly changing, with several main actors
dominating the field [21]. Those include one hospital, five
universities, and one researcher, namely: Massachusetts
General Hospital, Duke University, the Broad Institute (joint
Harvard and MIT entity), the University of California Berke-
ley, the University of Vienna and Emmanuelle Charpentier.
These entities have granted broad exclusive licenses to “sur-
rogate” companies such as Caribou Bioscience (Berkeley,
Vienna University, Jennifer Doudna), CRISPR Therapeutics
(E. Charpentier; therapeutic field) and ERS genomics (E.
Charpentier; all applications, except human therapeutics).
Additionally, several spin-out companies have been formed,
e.g. Editas Medicine (Broad institute, Duke University, Mas-
sachusetts General Hospital; area of human therapeutics)
and Intellia Therapeutics (Caribou Biosciences; human
therapeutics) with focus on their own R&D activities in
human therapy, and specific out-licensing in certain areas.
Notably, Editas Medicine, CRISPR Therapeutics and Intellia
Therapeutics are publicly registered in the NASDAQ Stock
Market.

Regarding the different commercialization areas of these
patents, three main application fields have formed: (1)
CRISPR/Cas9 used in medical applications with focus on
human therapeutics and drug discovery, (2) research tool
applications, cell line and animal models, and (3) agriculture
and food applications (Fig. 4).
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«Fig.3 CRISPR applications in metabolic engineering. a CRISPR
enabled trackable genome engineering (CREATE) strategy for opti-
mal expression of 4 genes involved in isopropanol biosynthetic
pathway. Integration of DNA libraries composed of variant RBS
sequences. b Multiple integration of the xylose and BDO pathway
into retroposons sites in S. cerevisiae. Retrotransposons are com-
posed of similar DNA sequences, which ultimately allows to gen-
erate a promiscuous gRNA able to target several of these targets at
once. ¢ Genetic engineering in rice using dual gRNAs targeting ESPS
introns for double amino acid substitution [T102I + P106S (TIPS)].
d Systematic testing of enzyme perturbation sensitivities (STEPS)
approach to iteratively find bottleneck

In the area of human therapeutics, spin-outs originated
from academic institutions and initial inventors are dominat-
ing the field with focus on R&D, licensing, and commer-
cial partnering. We see specific exclusive licenses to newly
formed companies in the field, e.g. for Chimeric Antigen
Receptor T-cell therapy (CAR-T) (Juno, Novartis and Cellec-
tis) or treatment of blood, eye and heart diseases (Casebia,
and Editas Medicine), as well as broader licenses in using
CRISPR as a drug for human therapeutics (AstraZenenca,
Amri, Oxford Genetics and Evotec) (Figs. 4, 5).

In the area of research tools, non-exclusive licenses,
mostly coming from the Broad Institute and Caribou Bio-
sciences, are most prominent in the field. The applications
range from licenses for general research tools, e.g. Clontech,
Horizon, ATCC, GE-Healthcare, to specific licenses in the
field of drug discovery, e.g. Evotec, Novartis, Regeron, and
applications in animal models, e.g. Taconic, Sage Labs, The
Jackson Laboratory, and Knudra (Fig. 4).

In the area of agricultural and food applications, larger
industry players, such as DowDupont, control the field
with regards to patent holding and licensing. Their strategy
included (1) the acquisition of Danisco in 2011, an agricul-
tural/food ingredient company that made crucial progress
in understanding CRISPR mechanism and the role of Cas9
[2], (2) agreements with Virginijus Siksnys from Univer-
sity of Vilnius, one of the founders of CRISPR technology
[32, 84], and (3) exclusive cross-licenses from Caribou
Bioscience and ERS Genomics specific for the agricultural
field. In addition, Monsanto/Bayer Crop Science recently
acquired a non-exclusive license from the Broad Institute
for sole use in the agricultural sector. Another key player
in the field of crop engineering is Calyxt, which acquired
exclusive worldwide rights for CRISPR/Cas9 utilization in
plants from the University of Minnesota, highlighting the
complexity emerging from these patents and the different
licensing structures in the field.

In the area of industrial biotechnology, CRISPR licenses
are so far only obtained in a small number of cases, such as
Evolva which acquired a license from ERS genomics for
yeast and fungal engineering for biotechnological produc-
tion of chemicals.

Because of the ongoing patent dispute between the Broad
Institute and UC Berkeley/Charpentier, the licensing situ-
ation remains opaque. Currently, some of the Broad pat-
ents were granted in the beginning of 2017 while the UC
Berkeley/E. Charpentier patents are still pending. A request
of interference filed by UC Berkeley was turned down in
the first round but has now gone to a second round with an
appeal to the original decision. The hubbub created by the
“battle” has incentivized several companies, e.g. Horizon,
DowDupont, Sage labs, to acquire licenses from different
main patent owners, to secure even exclusive access to the
technology in a certain field.

A main area in CRISPR-based drug development is
its use in cancer immunotherapy to reprogram enhanced
CAR-T receptors for selectively targeting cancer cells
[81]. The genetic modifications are done in vitro, making
this approach a potential low hanging fruit for successful
approval of CRISPR based medical therapies. A major mile-
stone was recently achieved with two CAR-T based treat-
ments approved by the FDA [73, 74]. Large companies and
several startups acquired exclusive licensing from different
CRISPR IP holders in the field, e.g. Novartis with Intellia
Therapeutics, and Juno with Editas Medicine (Fig. 4).

Looking at all the different patents and patent applica-
tions in the field, the total number of patents encompasses
over 90 granted patents and 1300 filed patents ranging from
CRISPR/Cas9 components to delivery systems and appli-
cations [21]. Some of the main actors started to create pat-
ent pools to simplify the licensing process for commercial
users. As such, agreements were made between CRISPR
Therapeutics, Intellia Therapeutics, Caribou Biosciences
and ERS Genomics to maintain and coordinate prosecution
of particular patent families. As direct competitors, a similar
alliance has been formed between the Broad Institute, Rock-
efeller University, Harvard University, and MIT, through the
intermediary of MPEG LA, LLC firm Sheridan [87].

Another strategy followed by certain entities in the field
is to diversify their IP portfolio with the result of having
priority for follow-on refinements of the previous patent
applications. For example, Zhang and colleagues from the
Broad Institute have discovered and filed patent protection
for Cpfl, a robust alternative to Cas9 [21, 101].

Conclusion and discussion

Only recently discovered, CRISPR/Cas9 technology has
already been enhanced to the point of fulfilling most of the
genome editing and gene regulation currently demanded,
ranging from the ability to perform multiple gene inser-
tions, gene knockouts, combinatorial libraries, to advanced
fine-tuning of biosynthetic pathways [23, 39, 47, 95]. How-
ever, off-targeting remains an important limitation to the
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technology, with several studies pointing out unwanted cuts
due to the gRNA binding elsewhere than the intended target
region [27, 85]. This phenomenon is known to be accen-
tuated in regions with sequences similar to the original
sequence, e.g. paralogs genes or retrotransposons regions
[24]. This feature, so far, severely hinders the technology to
enter into advanced clinical phases. Screening every engi-
neered cell for off-target effects after each genetic manipu-
lation poses long term viability issues for the technology.
Consequently, other technologies with proven track record
such as TALENS are so far offering a safer solution for gene
editing therapies. However, while CRISPR struggles as a
standalone therapy, several efforts to minimize off-target
cleavage have been reported. Recently, the development
of an improved Cas9 variant with enhanced proofreading
capacities has extensively reduced off-targeting effects
while maintaining the high-cutting efficiency [9]. Addition-
ally, powerful molecules with the ability to inactivate Cas
proteins activity, named anti-CRISPR proteins, have been
reported to significantly reduce off-targeting edits [89].

In the field of crop engineering, CRISPR techniques are
currently having a major impact, facilitating cheaper, faster,
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and more precise engineering in comparison to laborious
and time-consuming traditional methods [3, 82]. However,
it has yet to be determined whether CRISPR based gene
editing of crops will be regulated the same way traditional
genetically engineered crops are, which ultimately will settle
its commercial value within this sector.

Currently, the industrial biotechnology field using meta-
bolically engineered microbial cell factories is progres-
sively shifting from studies with few genetic modifications
to highly engineered strains. CRISPR has become a near-
commodity in the field as a result of the available panoply of
engineering tools for these microbial cell factories, as well
as the complex tasks these tools can perform. While most
of the CRISPR proof-of-concepts have been carried out in
well characterized industrial strains, more and more com-
plex organisms successfully generating CRISPR/Cas9 medi-
ated genome edits are being reported. A particular example
concerns secondary metabolites, which are often derived
from non-model organisms, thus making the corresponding
biosynthetic pathways poorly characterized especially with
the host being difficult to genetically engineer with tradi-
tional tools. In this example, one could either consider using



Journal of Industrial Microbiology & Biotechnology (2018) 45:467-480

477

CARIBOU
BIOSCIENCES
Focus: Multiple

editas

Focus: Multiple
Location: Boston, USA

®erlara

Focus: Drug discovery
L SanF isco, USA
\F $7.32M Total Raised

g

Focus: Multiple
Location: Boston, USA

BROAD

INSTITUTE

horizon

Focus: Library Platform
Location: Cambridge, UK

Gl CS
Focus: Holding

€127M Total Raised Market Cap.: $929M (11/2017)

€132M Total Raised

L tion: Dublin, Ireland Market Cap. $381M (11/2017)

o TENAYA

Focus: Heart related diseases
Location: San Francisco, USA
\F €50M Total Raised |

r

#?SYNTHEGO

Focus: Kit and tools
Location: Redwood City, USA
Financial: €49M Total Raised

Focus: Kit and tools
Location: Boulder, USA
ial: €23M Total Raised

Focus: Therapeutics
Location: London, UK
yarkat Cap. $769M (11/2017) P,

OXFORD
GENETICS

Focus: Plasmid Library
Location: Oxford, UK
Financial: €872k Total Raised

A8i o s cl E. N c E
Focus: Phage Therapy
Location: Cambridge, UK
Financial: €907k Total Raised

r

Location: San Diego, USA
\F €5M Total Raised

Location: Boston, USA
Market Cap. $995M (11/2017)

Location: Somerville, USA
Market Cap. $72B (11/2017)

Location: Somerville, USA
Financial: €40M Total Raised

C POSEIDA 4.5
THERAPEUTICS E
Focus: CAR-T Focus: Crop Engineering
Location: San Diego, USA Location: Leverkusen, Germany
(F €823k Total Raised Market Cap. $928B (11/2017)
\.exomcs Intetiia e Renesls @ ELIGO [ evolva
APEUTICS THERAPEUTICS ENGINEERING LIFE
Focus: Duchenne Dystrophy Focus: Therapeutics Focus: Crop Engineering Focus: Xenotherapy Focus: Phage Therapy Focus: Metabolic Engineering

Location: Paris, France
€22M Total Raised

Location: Reinach, Switzerland
Market Cap. $156M (11/2017)

Fig.5 Map of key CRISPR players

CRISPR technology to integrate this large pathway into a
well characterized organism, or, directly genetically engineer
the host organism to further enhance the product formation
or elucidate its idiosyncrasies [52, 75].
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