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Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) is poised to become one of the key scientific discoveries 
of the twenty-first century. Originating from prokaryotic and archaeal immune systems to counter phage invasions, CRISPR-
based applications have been tailored for manipulating a broad range of living organisms. From the different elucidated types 
of CRISPR mechanisms, the type II system adapted from Streptococcus pyogenes has been the most exploited as a tool for 
genome engineering and gene regulation. In this review, we describe the different applications of CRISPR/Cas9 technology 
in the industrial biotechnology field. Next, we detail the current status of the patent landscape, highlighting its exploitation 
through different companies, and conclude with future perspectives of this technology.

Introduction

Throughout the years following the discovery of the struc-
ture of DNA, scientists have endeavored to genetically 
manipulate organisms. Until recently, most of the genetic 
engineering tools developed were based on DNA:protein 
recognition principles, such as restriction enzymes, site-
directed zinc finger nucleases (ZFs), and TAL effector 
nucleases (TALENs) [6, 47]. However, these tools are com-
monly experienced with difficulties in design, synthesis, 
and efficiency which altogether prevented a global wide-
spread adoption, e.g. TALENs require 30–35 amino acids 
repeats, each only recognizing a single nucleotide (nt) [29]. 
On the other hand, the RNA-programmable CRISPR/Cas9 
technology has led to a scientific revolution by solving all 
of the above-mentioned issues [20]. The technology relies 
on two elements: a protein, the CRISPR associated protein 

(Cas9), and a RNA molecule, the guide RNA (gRNA) [5, 
46]. Cas9, the first Cas protein used in genome editing, is a 
large multi-domain enzyme interacting with the gRNA, the 
target DNA, and the Protospacer Adjacent Motif sequence 
(PAM) (Fig. 1a). The gRNA element is composed of two 
distinct elements: the spacer, a 20 nt domain that binds to the 
DNA; and the scaffold, a ~ 79 nt domain that interacts with 
Cas9 (Fig. 1a). Once guided to the target, Cas9 catalytically 
cleaves the DNA sequence 3 nt upstream the 5′-NGG PAM, 
resulting in the activation of endogenous repair mechanisms, 
such as homologous recombination (HR) or non-homolo-
gous end joining (NHEJ) [2, 71] (Fig. 1b).

Expanding Cas9 features through enzyme 
engineering

The structural characterization of Cas9 has led to the devel-
opment of mutagenized variants with various catalytic 
properties, specificities through different PAM recogni-
tion preferences and reduction in off-targeting [37, 55, 56, 
90]. For example, Hirano et al. first characterized FnCas9 
from Francisella novicida and, based on the characterized 
protein structure, created a variant recognizing a 5′-YG’ 
PAM instead of the original 5′-NGG [37]. A 5′-YG PAM 
increases the target space availability for genome editing, 
i.e. any target followed by CG or TG is prone to be tar-
geted by the gRNA:FnCas9 complex. Additionally, other 
CRISPR nucleases with different PAM preferences can also 
be used to increase the target space availability, e.g. FnCpf1 
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a type V CRISPR system from F. novicida which recog-
nizes a T-rich PAM 5′-TTTN [26, 101] (Fig. 1b). In another 
approach, mutation in one of the nuclease activity domains 
 (RuvCD10A or  HNHH840A, Cas9n) was shown to result in a 
modified Cas9 only capable of performing single-strand 
DNA breaks (nick) instead of the original blunt DNA break 
[80]. This feature has been shown to reduce off-targeting 
and enhance HR in some organisms [12, 70]. By extension, 
‘paired nickases’, i.e. using two adjacent gRNAs with Cas9n, 
can efficiently introduce both indel mutations and HR events 
with a single-stranded DNA oligo-nucleotide donor template 
in mammalian cells [28, 10, 80]. Complete disruption of the 
endonuclease activities  (RuvCD10A along with  HNHH840A) 
results in a catalytically inactive Cas9, or dead-Cas9 (dCas9) 
[78, 79]. This has been exploited to physically block the 
transcriptional machinery when targeted in the promoter 
region of a gene of interest, coined CRISPR interference 
(CRISPRi) [22, 34] (Fig. 1c). Additionally, repression can be 
further enhanced by fusing dCas9 with repressive domains, 
such as the mammalian transcriptional repressor domain 
Mxi1 [33] (Fig. 1d). Gander et al. have recently exploited 
dCas9-Mxi1 repressive mechanism to effectively built up to 
seven layers of synthetic NOR gate circuits, in S. cerevisiae 

[30] (Figs. 1d, 2b). Likewise, dCas9 can be coupled to acti-
vating transcription factor domains, such as the tripartite 
VP64-p65-Rta (VPR) or the RNAP ω-subunit (rpoZ), which 
have been characterized as powerful tools for activating 
genes [4, 7, 44, 91] (Fig. 1d). Similarly, epigenetic regu-
lators, such as methylation, demethylation, acetylation and 
deacetylation domains, can be fused to dCas9 to influence 
chromatin structure and, therefore, interfere with the tran-
scriptional signature of a promoter [36, 50, 54]. Hilton et al. 
reported the fusion of dCas9 with the histone acetyltrans-
ferase domain of the human E1A-associated protein p300 
(dCas9-p300), which significantly modulated the chromatin 
structure, and resulted in a 4000-fold up regulation with a 
single gRNA [36].

The gRNA characteristics and extensions

Cas9 can be guided virtually anywhere in the genome 
where a PAM sequence is present. However, several 
parameters, such as nucleotide motifs, particularity of 
the PAM sequence, and mismatches in the guide, have 
to be taken into account for a correct cleavage in the tar-
get DNA [91]. Recently, efforts have been made to solve 

RNA
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Multiplexing gRNAs

dCas9 with RNA Sca old 
MS2, PP7, PCP, Com

Cas9, Cpf1 
Catalytic nuclease active 
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Fig. 1  CRISPR/Cas9 for genome editing and gene regulation. a The 
gRNA:Cas9 complex binding to the DNA target. In green, the spacer 
region which interacts with the DNA target. b DNA cut generated 
from the Cas9 nuclease activity. c Gene regulation with dCas9 physi-
cally blocking the RNA polymerase from binding to the promoter 

region. d CRISPR interference further enhanced with dCas9 fused 
with transcriptional regulators. e gRNA scaffold extended with stem-
loops recruiting regulator elements. f. Multiplexing gRNAs from a 
single transcript through endoribonuclease or self-processing ele-
ments
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target efficiency through algorithms predicting the ability 
of the gRNA to facilitate DNA cleavage by Cas9 at the 
intended target site by employing refined machine learn-
ing methods and incorporating large training datasets [18, 
19]. The sequence accuracy of the gRNA is also essential 
to achieve a correct base-pairing between the gRNA and 
the target DNA. Most commonly, RNA pol. III promoters 
are used to transcribe gRNAs. These are scarce and more 
importantly, some of them contain idiosyncratic features, 
e.g. U6 mammalian promoter requires to have a G at the 5′ 
end of the transcript [28]. Transcriptional expression can 
be improved by inserting self-processing elements, such 
as HDV ribozyme and tRNAs, at the 5′ or 3′ end to prevent 
potential degradation of the transcript [49, 83]. Process-
ing elements can also be exploited to multiplex several 
gRNAs in a row by collocating those element between 
each gRNAs [17] (Fig. 1e). Several examples, such as the 
type III CRISPR-Csy4 [25, 76] or natural CRISPR array 
[1, 14] have been shown to efficiently generate multiple 

gRNAs from a single transcript (Fig. 1e). Notably, while 
Cpf1 belongs to the same CRISPR class II as Cas9, i.e. 
only a single crRNA–effector enzyme and no tracrRNA 
part is required for cutting DNA. It differs from it by pos-
sessing a specific RNA processing domain that allows to 
process the crRNA into multiple gRNAs [55, 69, 92, 101].

Finally, the gRNA scaffold can be extended to include 
effector protein recruitment stem-loops, which has been 
shown to enhance transcriptional regulation [8, 44, 100] 
(Fig. 1d). With that strategy, Zalatan et al. were able to 
design gRNAs to either recruit activator or repressor ele-
ments, which ultimately established both, repression and 
activation of specific gene targets at the same time [100] 
(Fig. 1d). This platform offers a considerable advantage in 
comparison to dCas9 fused to a regulator, as it is not lim-
ited to which transcriptional regulator is fused to dCas9, 
but to which stem-loop is connected to the gRNA scaffold.

Another high potential application area for the 
CRISPR technology is systematic genetic screening 

Dual gRNAs Library 
targeting 73 cancer 

genes new synthetic-
lethal interactions

1 2 0
141,912 interactions

Transfection 
into 

3 cancer cell lines

Growth kinetics
Drug screening

A

LOGICAL GATES

INPUT1

INPUT2

GFP12

NOR GATE

OUTPUT

GFP

I1 I2 GFP

- -
- +
+ -
+ +

1
0
0
0

Mxi1
OUTPUT

GROWTH
REPORTERS

BIOCHEMICALS
…

B

Fig. 2  Example of application in drug discovery and synthetic biol-
ogy. a Genome-wide pooled gRNA libraries targeting all pairs of 73 
cancer genes with dual guide RNAs in three mammalian cell lines. 

b Example of logic circuits made with dCas9-Mxi NOR gates with 
GFP signal used as output similar to Gander et al. study
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employing gRNA libraries. Due to the short length of 
gRNAs (~ 100nt), accurate predictability, and easy clon-
ing approaches, genome-wide gRNA libraries have been 
successfully designed to knockout and regulate genes 
throughout the entire genome [31]. For example, Shen 
et al. developed a systematic approach to map synthetic 
lethality genes by targeting all pairs of 73 cancer genes 
with dual guide RNAs in three different cancer cell lines 
(Fig. 2a). Their strategy involved nine gRNA pairs per 
combination, the library comprised 23,652 double-gene-
knockout constructs with two replicates in three cell lines 
which ultimately led to a total of 141,912 interactions and 
to the discovery of 120 potential drugs candidates [86] 
(Fig. 2a).

Industrial applications through metabolic 
engineering

Genome engineering

There has been an increasing interest in improving 
microbial cell factories through metabolic engineering 
approaches using CRISPR/Cas9 technology [42]. The 
efficiency and versatility offered by CRISPR tools have 
shown great potential in rewiring the metabolic network 
of host cells to enhance their production of metabolites 
used in various areas of industrial biotech ranging from 
applications as biofuels to chemical building blocks and 
pharmaceuticals (Table 1). Metabolic pathway optimiza-
tion towards the product of interest commonly requires 
deletions of multiple genes, e.g. competitive metabolic 
pathways, which is traditionally performed through itera-
tive cycles of genetic marker integration and removal 
[15]. Conversely, the CRISPR technology does not neces-
sitate integrative markers, and several efficient marker-
free approaches were developed to perform multiplexed 
genome editing, e.g. knockouts, point-mutations [41, 93] 
and gene integration [45], which extensively reduced the 
time and effort required to perform targeted strain engi-
neering. The CRISPR technology has also improved 
genetic engineering in difficult-to-engineer industrial 
organisms, such as food crops. Among several examples 
(Table 1), Li et al. reported a significant site-specific gene 
replacement of the 5-enolpyruvylshikimate-3-phosphate 
synthase (EPSPS) in rice plants using a pair of gRNAs 
targeting introns, ultimately converting the crop into a 
glyphosate-resistant one (Fig. 3c) [62]. More recently, 
several studies have highlighted significant improvements 
in genome editing in plants using DNA-free CRISPR/Cas9 
ribonucleoproteins [65, 98]. 

Besides its multiplexing qualities, CRISPR has also 
shown great efficiency to integrate large pathways and Ta
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libraries [38, 88]. For example, Shi et  al. specifically 
designed gRNAs to target multiple delta sites in the yeast 
genome, ultimately achieving 18-copy genomic integra-
tions of a 24 kb combined xylose utilization and (R,R)-
2,3-butanediol (BDO) production pathway in a single step, 
in S. cerevisiae [88]. DNA libraries, such as error-prone 
PCRs derived or double-stranded fragments obtained from 
DNA synthesizing companies, can be genomically inte-
grated to find variants of a studied enzyme with enhanced 
catalytic activities or optimal level of expression [64, 83]. 
Genomically integrated DNA libraries offer several advan-
tages compared to plasmid based strategies, especially in 
terms of expression stability [83]. Liang et al. used that 
strategy to integrate 640 ribosome binding sites (RBS) 
for five different enzymes involved in the production of 
isopropanol in E. coli [64] (Fig. 3a). After multiple rounds 
of screening for strains carrying the best RBS variants, i.e. 
optimal expression of the gene leading to a higher isopro-
panol titer, a final strain producing 7.1 g L−1 of isopro-
panol was obtained [64].

dCas9—transcriptional regulation

Fine-tuning of biosynthetic pathways is a key step in the 
correct and efficient synthesis of a particular target com-
pound (Nielsen and Keasling 2016). Traditional strategies 
have been relying on a limited number of characterized pro-
moters to control gene expression, i.e. strong, weak, and 
inducible promoters [51]. As mentioned above, besides its 
efficient endonuclease activity, CRISPR can enable gene 
expression modulation through the deactivated form of the 
Cas9 protein, dCas9 [59, 79]. Once bound to, or in the vicin-
ity of the transcriptional start site (TSS), the gRNA:dCas9 
complex can significantly alter the transcriptional expres-
sion by physically interfering with RNA polymerase bind-
ing [14, 43, 79]. Wu et al. recently exploited this strategy 
in E. coli where they did a selective knockdown of gene 
expression of enzymes that could divert the carbon flux 
away from the production of 1,4-Butanediol (BDO) [99]. 
They divided their study into two phases, (1) a heavy strain 
engineering approach through multiple genome edits such 
as gene knockouts, knockins, and point-mutations, and (2) 
optimization through fine tuning of gene expression of three 
genes competing with the production of BDO. This strategy 
increased the 1,4-BDO titer by 100% from phase (1) to phase 
(2), resulting in a final titer of 1.8 g L−1 1,4-BDO (Table 1).

In addition, graded transcriptional patterns can be 
achieved depending on where the dCas9 complex binds in 
the promoter region, e.g. on the TSS for strong downregu-
lation or more distanced from it for a medium repression. 
Thus, optimal gene expression can be elucidated by target-
ing dCas9 at different positions on the studied promoter 
[16, 17, 44]. This feature is subject to several parameters, 

such as the distance to TSS, condition dependent presence 
of transcription factors, chromatin accessibility, but the 
complete understanding of how to obtain precise regula-
tion has yet to be characterized and is most likely depend-
ent on specific promoters [57, 91]. For example, Deaner 
et al. recently developed a graded expression platform that 
can be employed to systematically test enzyme perturba-
tion sensitivities (STEPS), and assists to identify potential 
flux limiting enzymes arising from production pathways 
[16] (Fig. 3d; Table 1). Their strategy relied on targeting 
dCas9, with either a repressor and activator domain, at dif-
ferent positions of several promoters of genes, and analyze 
their effect on the final titer. For example, while optimizing 
glycerol production, from the seven tested genes, one gRNA 
targeting GPD1 with dCas9-VPR led to a significant titer 
increase, highlighting its importance in the overall produc-
tion pathway. Then they iteratively used STEPS to find a 
second bottleneck in GPP1, which ultimately led to a final 
titer ~ 28 g L−1, a sevenfold increase compared with their 
original strain.

Patenting landscape

The patent landscape related to CRISPR/Cas9 technology 
is complex, constantly changing, with several main actors 
dominating the field [21]. Those include one hospital, five 
universities, and one researcher, namely: Massachusetts 
General Hospital, Duke University, the Broad Institute (joint 
Harvard and MIT entity), the University of California Berke-
ley, the University of Vienna and Emmanuelle Charpentier. 
These entities have granted broad exclusive licenses to “sur-
rogate” companies such as Caribou Bioscience (Berkeley, 
Vienna University, Jennifer Doudna), CRISPR Therapeutics 
(E. Charpentier; therapeutic field) and ERS genomics (E. 
Charpentier; all applications, except human therapeutics). 
Additionally, several spin-out companies have been formed, 
e.g. Editas Medicine (Broad institute, Duke University, Mas-
sachusetts General Hospital; area of human therapeutics) 
and Intellia Therapeutics (Caribou Biosciences; human 
therapeutics) with focus on their own R&D activities in 
human therapy, and specific out-licensing in certain areas. 
Notably, Editas Medicine, CRISPR Therapeutics and Intellia 
Therapeutics are publicly registered in the NASDAQ Stock 
Market.

Regarding the different commercialization areas of these 
patents, three main application fields have formed: (1) 
CRISPR/Cas9 used in medical applications with focus on 
human therapeutics and drug discovery, (2) research tool 
applications, cell line and animal models, and (3) agriculture 
and food applications (Fig. 4).
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In the area of human therapeutics, spin-outs originated 
from academic institutions and initial inventors are dominat-
ing the field with focus on R&D, licensing, and commer-
cial partnering. We see specific exclusive licenses to newly 
formed companies in the field, e.g. for Chimeric Antigen 
Receptor T-cell therapy (CAR-T) (Juno, Novartis and Cellec-
tis) or treatment of blood, eye and heart diseases (Casebia, 
and Editas Medicine), as well as broader licenses in using 
CRISPR as a drug for human therapeutics (AstraZenenca, 
Amri, Oxford Genetics and Evotec) (Figs. 4, 5).

In the area of research tools, non-exclusive licenses, 
mostly coming from the Broad Institute and Caribou Bio-
sciences, are most prominent in the field. The applications 
range from licenses for general research tools, e.g. Clontech, 
Horizon, ATCC, GE-Healthcare, to specific licenses in the 
field of drug discovery, e.g. Evotec, Novartis, Regeron, and 
applications in animal models, e.g. Taconic, Sage Labs, The 
Jackson Laboratory, and Knudra (Fig. 4).

In the area of agricultural and food applications, larger 
industry players, such as DowDupont, control the field 
with regards to patent holding and licensing. Their strategy 
included (1) the acquisition of Danisco in 2011, an agricul-
tural/food ingredient company that made crucial progress 
in understanding CRISPR mechanism and the role of Cas9 
[2], (2) agreements with Virginijus Siksnys from Univer-
sity of Vilnius, one of the founders of CRISPR technology 
[32, 84], and (3) exclusive cross-licenses from Caribou 
Bioscience and ERS Genomics specific for the agricultural 
field. In addition, Monsanto/Bayer Crop Science recently 
acquired a non-exclusive license from the Broad Institute 
for sole use in the agricultural sector. Another key player 
in the field of crop engineering is Calyxt, which acquired 
exclusive worldwide rights for CRISPR/Cas9 utilization in 
plants from the University of Minnesota, highlighting the 
complexity emerging from these patents and the different 
licensing structures in the field.

In the area of industrial biotechnology, CRISPR licenses 
are so far only obtained in a small number of cases, such as 
Evolva which acquired a license from ERS genomics for 
yeast and fungal engineering for biotechnological produc-
tion of chemicals.

Because of the ongoing patent dispute between the Broad 
Institute and UC Berkeley/Charpentier, the licensing situ-
ation remains opaque. Currently, some of the Broad pat-
ents were granted in the beginning of 2017 while the UC 
Berkeley/E. Charpentier patents are still pending. A request 
of interference filed by UC Berkeley was turned down in 
the first round but has now gone to a second round with an 
appeal to the original decision. The hubbub created by the 
“battle” has incentivized several companies, e.g. Horizon, 
DowDupont, Sage labs, to acquire licenses from different 
main patent owners, to secure even exclusive access to the 
technology in a certain field.

A main area in CRISPR-based drug development is 
its use in cancer immunotherapy to reprogram enhanced 
CAR-T receptors for selectively targeting cancer cells 
[81]. The genetic modifications are done in vitro, making 
this approach a potential low hanging fruit for successful 
approval of CRISPR based medical therapies. A major mile-
stone was recently achieved with two CAR-T based treat-
ments approved by the FDA [73, 74]. Large companies and 
several startups acquired exclusive licensing from different 
CRISPR IP holders in the field, e.g. Novartis with Intellia 
Therapeutics, and Juno with Editas Medicine (Fig. 4).

Looking at all the different patents and patent applica-
tions in the field, the total number of patents encompasses 
over 90 granted patents and 1300 filed patents ranging from 
CRISPR/Cas9 components to delivery systems and appli-
cations [21]. Some of the main actors started to create pat-
ent pools to simplify the licensing process for commercial 
users. As such, agreements were made between CRISPR 
Therapeutics, Intellia Therapeutics, Caribou Biosciences 
and ERS Genomics to maintain and coordinate prosecution 
of particular patent families. As direct competitors, a similar 
alliance has been formed between the Broad Institute, Rock-
efeller University, Harvard University, and MIT, through the 
intermediary of MPEG LA, LLC firm Sheridan [87].

Another strategy followed by certain entities in the field 
is to diversify their IP portfolio with the result of having 
priority for follow-on refinements of the previous patent 
applications. For example, Zhang and colleagues from the 
Broad Institute have discovered and filed patent protection 
for Cpf1, a robust alternative to Cas9 [21, 101].

Conclusion and discussion

Only recently discovered, CRISPR/Cas9 technology has 
already been enhanced to the point of fulfilling most of the 
genome editing and gene regulation currently demanded, 
ranging from the ability to perform multiple gene inser-
tions, gene knockouts, combinatorial libraries, to advanced 
fine-tuning of biosynthetic pathways [23, 39, 47, 95]. How-
ever, off-targeting remains an important limitation to the 

Fig. 3  CRISPR applications in metabolic engineering. a CRISPR 
enabled trackable genome engineering (CREATE) strategy for opti-
mal expression of 4 genes involved in isopropanol biosynthetic 
pathway. Integration of DNA libraries composed of variant RBS 
sequences. b Multiple integration of the xylose and BDO pathway 
into retroposons sites in S. cerevisiae. Retrotransposons are com-
posed of similar DNA sequences, which ultimately allows to gen-
erate a promiscuous gRNA able to target several of these targets at 
once. c Genetic engineering in rice using dual gRNAs targeting ESPS 
introns for double amino acid substitution [T102I + P106S (TIPS)]. 
d Systematic testing of enzyme perturbation sensitivities (STEPS) 
approach to iteratively find bottleneck

◂
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technology, with several studies pointing out unwanted cuts 
due to the gRNA binding elsewhere than the intended target 
region [27, 85]. This phenomenon is known to be accen-
tuated in regions with sequences similar to the original 
sequence, e.g. paralogs genes or retrotransposons regions 
[24]. This feature, so far, severely hinders the technology to 
enter into advanced clinical phases. Screening every engi-
neered cell for off-target effects after each genetic manipu-
lation poses long term viability issues for the technology. 
Consequently, other technologies with proven track record 
such as TALENs are so far offering a safer solution for gene 
editing therapies. However, while CRISPR struggles as a 
standalone therapy, several efforts to minimize off-target 
cleavage have been reported. Recently, the development 
of an improved Cas9 variant with enhanced proofreading 
capacities has extensively reduced off-targeting effects 
while maintaining the high-cutting efficiency [9]. Addition-
ally, powerful molecules with the ability to inactivate Cas 
proteins activity, named anti-CRISPR proteins, have been 
reported to significantly reduce off-targeting edits [89].

In the field of crop engineering, CRISPR techniques are 
currently having a major impact, facilitating cheaper, faster, 

and more precise engineering in comparison to laborious 
and time-consuming traditional methods [3, 82]. However, 
it has yet to be determined whether CRISPR based gene 
editing of crops will be regulated the same way traditional 
genetically engineered crops are, which ultimately will settle 
its commercial value within this sector.

Currently, the industrial biotechnology field using meta-
bolically engineered microbial cell factories is progres-
sively shifting from studies with few genetic modifications 
to highly engineered strains. CRISPR has become a near-
commodity in the field as a result of the available panoply of 
engineering tools for these microbial cell factories, as well 
as the complex tasks these tools can perform. While most 
of the CRISPR proof-of-concepts have been carried out in 
well characterized industrial strains, more and more com-
plex organisms successfully generating CRISPR/Cas9 medi-
ated genome edits are being reported. A particular example 
concerns secondary metabolites, which are often derived 
from non-model organisms, thus making the corresponding 
biosynthetic pathways poorly characterized especially with 
the host being difficult to genetically engineer with tradi-
tional tools. In this example, one could either consider using 

CAR-T        JUNO

 EDITAS*

       TENAYA

DRUG ASTRAZENECA
EXONICS

PHAGE TH. NEMESIS
POSEIDA

REGENERON

AMRI

DRUG EVOTEC

CASEBIA

VERTEX

INTELLIA* 

     NOVARTIS

   CELLECTIS

eGENESIS

TACONIC

IDT  

  KNUDRA
  TRANSPOGEN 

REGENERON     
SYNTHEGO

HORIZON    

CHARLES RIVER 

GE HEALTH. 

SIGMA

SAGE LABS   

JACKSON LAB.    

CLONTECH     
ATCC  

MONSANTO   

EVOLVA
DUPONT       

GENUS      

BAYER  

BLOOD, EYE 
& HEART DIS.

CYSTIC FIB. 
& SICKLE CELL

REPARE 

TANGO

ELIGO

DRUG

LIVER

CAR-T

CAR-T

XENOTHERAPY

DRUG

DRUG

CROP
LIVESTOCK

CROP
INDUSTRIAL

CROP

HEART CELL LINES

TOOLS

MODELS

MODELS

TOOLS

RESEARCH

RESEARCH

RESEARCH

MODELS

REAGENTS

REAGENTS

MODELS

TOOLS

TOOLS

DUCHENNE

CAR-T

PHAGE TH. 

OXFORD GEN. CELL LINES

Fig. 4  CRISPR companies and licensing agreements. Bold lines 
represent non-exclusive licensing. Dashed lines represent exclusive 
licensing. In the middle, the four most important owners of CRISPR 
patents. In dark blue, companies applying CRISPR for health-related 

applications. In green, companies applying CRISPR in the crop 
industry and biotech industry. In black, companies developing tools, 
cell lines and animal models



477Journal of Industrial Microbiology & Biotechnology (2018) 45:467–480 

1 3

CRISPR technology to integrate this large pathway into a 
well characterized organism, or, directly genetically engineer 
the host organism to further enhance the product formation 
or elucidate its idiosyncrasies [52, 75].
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