
Adaptive high-order splitting schemes for large-scale differential Riccati
equations

Downloaded from: https://research.chalmers.se, 2025-06-18 02:23 UTC

Citation for the original published paper (version of record):
Stillfjord, T. (2018). Adaptive high-order splitting schemes for large-scale differential Riccati
equations. Numerical Algorithms, 78(4): 1129-1151. http://dx.doi.org/10.1007/s11075-017-0416-8

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology. It
covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004. research.chalmers.se is
administrated and maintained by Chalmers Library

(article starts on next page)



Numer Algor (2018) 78:1129–1151
DOI 10.1007/s11075-017-0416-8

ORIGINAL PAPER

Adaptive high-order splitting schemes for large-scale
differential Riccati equations

Tony Stillfjord1

Received: 2 December 2016 / Accepted: 8 September 2017 / Published online: 23 September 2017
© The Author(s) 2017. This article is an open access publication

Abstract We consider high-order splitting schemes for large-scale differential Ric-
cati equations. Such equations arise in many different areas and are especially
important within the field of optimal control. In the large-scale case, it is critical to
employ structural properties of the matrix-valued solution, or the computational cost
and storage requirements become infeasible. Our main contribution is therefore to
formulate these high-order splitting schemes in an efficient way by utilizing a low-
rank factorization. Previous results indicated that this was impossible for methods of
order higher than 2, but our new approach overcomes these difficulties. In addition,
we demonstrate that the proposed methods contain natural embedded error estimates.
These may be used, e.g., for time step adaptivity, and our numerical experiments in
this direction show promising results.

Keywords Differential Riccati equations · Large-scale · Splitting schemes · High
order · Adaptivity

Mathematics Subject Classification (2010) 15A24 · 49N10 · 65L05 · 93A15

1 Introduction

We consider differential Riccati equations (DREs) of the form

Ṗ = AT P + PA + Q − PSP, P (0) = P0, (1)

� Tony Stillfjord
tony.stillfjord@gu.se

1 Mathematical Sciences, Chalmers University of Technology and the University of Gothenburg,
SE-412 96 Göteborg, Sweden

http://crossmark.crossref.org/dialog/?doi=10.1007/s11075-017-0416-8&domain=pdf
http://orcid.org/0000-0001-6123-4271
mailto:tony.stillfjord@gu.se


1130 Numer Algor (2018) 78:1129–1151

where the solution P(t) is matrix-valued and A, Q, and S are given matrices.
Such equations arise in many different areas, e.g., in optimal/robust control, optimal
filtering, spectral factorizations, H∞-control, and differential games [1, 4, 22, 27].

A typical application is a linear quadratic regulator (LQR) problem, where one
seeks to control the output y = Cx given the state equation ẋ = Ax +Bu by varying
the input u. In the case of a finite time cost function,

J (u) =
∫ T

0
x(t)T Rxx(t) + u(t)T Ruu(t)dt,

where Rx and Ru are given matrices; it is well known that the optimal input u∗
is given in a state feedback form. In particular, u∗(t) = −R−1

u BT P (T − t)x(t),
where P is the solution to the DRE (1) with the specific matrices Q = CT RxC and
S = BR−1

u BT . We note that the situation Mẋ = Ax + Bu can be handled in a
straightforward way without explicitly inverting the mass matrix M , see, e.g., [34].

In this paper, we are interested in the large-scale setting. Even if A ∈ R
N×N is

sparse, the solution P is typically dense. Hence, a “large” dimension N is here
considerably smaller than the number of components which would be considered
large for a vector-valued ordinary differential equation (ODE). A naive method that
works well for the small-scale case would run into storage problems already for
N = 10, 000 and be computationally expensive long before that. Recently, many
non-naive methods have been proposed for DREs and similar problems, e.g., matrix-
valued BDF and Rosenbrock methods [6, 7], splitting schemes [26, 34], and Krylov
projection methods [14, 23]. The latter is a generalization of the Krylov approach to
algebraic Riccati equations and Lyapunov equations [13, 20, 31]. Other methods for
such equations, like invariant subspace techniques [2, 5, 25], typically also general-
ize to the DRE case by using time-stepping methods of either one- or multi-step type.
Further useful references may be found in the recent surveys [9, 30]. In general, all
these methods rely on the fact that the dense solution possesses certain structure. In
particular, the solution is positive semi-definite, and in all practical applications, it
also has low rank. This allows us to factorize P = ZZT where Z is a matrix with
many fewer columns than P . A main idea in all the algorithms listed above is then to
only do computations on the factor Z and never actually form the product ZZT .

Further, we are interested in different types of splitting schemes, since the equation
has a natural division into two parts:

Ṗ = FP + GP, where FP = AT P + PA + Q and GP = −PSP.

While the full problem is rather difficult, the subproblems

Ṗ = FP, P (0) = P0 and (2)

Ṗ = GP, P (0) = P0 (3)

are separately much easier and cheaper to solve. In fact, as demonstrated in [34],
there exist closed-form expressions for the solutions to both subproblems that are
amenable to low-rank computations. In the following, we will denote the solution
operator to the full problem by TF+G and to the subproblems by TF and TG ; thus,
for example, the solution to (2) at time t is given by TF (t)P0.



Numer Algor (2018) 78:1129–1151 1131

To introduce the simplest splitting schemes and our notation, we first discretize
the time interval [0, T ] by n equidistant time steps of size h and set tj = jh. Then
the approximation to TF+G(tj )P0 by the Lie splitting scheme is given by SLie(h)jP0,
where

SLie(h) = TF (h)TG(h).

That is, we switch back and forth between the affine subproblem and the nonlinear
subproblem. A more accurate approximation is given by the Strang splitting scheme,
defined by the time stepping operator

SStrang(h) = TG(h/2)TF (h)TG(h/2).

In both cases, we may interchange the order of the F and G operators. For a more
thorough introduction to splitting schemes in general, we refer to [21].

It can be shown as in [21] that the Lie splitting is first-order convergent and the
Strang splitting is second-order convergent, i.e., the errors satisfy

‖SLie(h)jP0 − TF+G(tj )P0‖ ≤ Ch and ‖SStrang(h)jP0 − TF+G(tj )P0‖ ≤ Ch2.

In general, one can also consider higher-order schemes, but so far this has not been
done for DREs. This is due to the fact that multiplicative splitting schemes of the
form TF (α1h)TG(β1h) · · · TF (αsh)TG(βsh) require that some coefficients αj and βj

are either negative or complex [10, 19], which is not compatible with the low-rank
implementation.

The first main contribution of this work is therefore to demonstrate that a new
type of additive splitting schemes introduced in [12] allows for arbitrary high-order
schemes to be implemented efficiently in a low-rank DRE setting. These schemes are
of the form

γ1TF (h)TG(h) + γ2
(
TF (h/2)TG(h/2)

)2 + · · · + γs

(
TF (h/s)TG(h/s)

)s

and thus only utilize positive step sizes. A minor drawback is that the approximations
are no longer guaranteed to be positive semi-definite, since the coefficients γj may
be negative. This prohibits the use of a ZZT factorization, and we therefore outline
the changes necessary to instead consider a so-called LDLT factorization (cf. [24]).

The second main contribution lies in the observation that these splitting schemes
contain natural lower-order embedded methods, which allows for cheap and easy
error estimation. We utilize this to construct high-order splitting schemes with adap-
tive time stepping, i.e., the time steps hj = tj+1 − tj are no longer equidistant but
chosen as large as possible while keeping the error below a given tolerance. Modi-
fying the step size can greatly increase the efficiency, but only if the computational
cost of changing the step size is small. We therefore outline which quantities can be
precomputed or recomputed cheaply, and describe efficient updating strategies for
the quantities that necessarily change with each step.

A brief outline of the paper is as follows. In Section 2, we state the basic assump-
tions on the given data and review the use of the ZZT and LDLT factorizations
for low-order splitting schemes. The issues that arise when considering higher-order
multiplicative splitting schemes are outlined in Section 3, wherein we also present
the new type of additive schemes that eliminate these issues. Error estimates and
different kinds of time step adaptivity are discussed in Section 4 and an algorithm



1132 Numer Algor (2018) 78:1129–1151

summarizing the complete implementation is presented. In Section 5, several numer-
ical experiments demonstrate the validity of the implementation, the efficiency of the
methods, and the use of adaptive time stepping. Finally, we collect some conclusions
in Section 6.

2 Low-rank factorizations

The first assumption we make on the problem data is the following:

Assumption 1 The matrices A, Q, and S and the initial condition P0 all belong to
R

N×N . In addition, Q, S, and P0 are symmetric and positive semi-definite.

This implies the existence and uniqueness of a solution P to the DRE (1) such that
P(t) is also symmetric and positive semi-definite for all t ≥ 0 [1, Theorem 4.1.6].
An important example of when Assumption 1 is satisfied is the LQR setting from the
introduction, with Rx and Ru both symmetric positive definite. Secondly, we assume
that the solution has the low-rank property:

Assumption 2 For each t ∈ [0, T ], the rank of the solution P(t) is at most r � N

and the rank of Q is rQ � N .

To the author’s knowledge, there are currently no known useful criteria on the data
in the DRE setting which guarantee that Assumption 2 is fulfilled. However, such
low-rank structure is observed in all practical applications, e.g., in LQR problems
where B ∈ R

N×mB and C ∈ R
mC×N with mB, mC � N . Recently, some results in

this direction have been established for algebraic Riccati equations, i.e., the stationary
version of (1), in [5]. These are generalizations of results for Lyapunov equations [3,
33] and it seems likely that further generalizations to the DRE setting could be
made.

Assumptions 1 and 2 imply that we can low-rank factorize P(t) = Z(t)Z(t)T and
Q = EET with Z(t) ∈ R

N×r and E ∈ R
N×rQ . Similarly, as demonstrated in [34],

we can low-rank factorize also the approximations SLie(h)P0 and SStrang(h)P0. This
is based on factorizing the exact solutions to the subproblems (2)–(3), for which we
have the closed-form expressions

TF (h)P0 = ehAT
P0ehA +

∫ h

0
esAT

QesAds and

TG(h)P0 = (I + hP0S)−1P0.

The latter expression quickly yields an explicit factorization while the former
requires that the integral is approximated by a quadrature formula, whereafter column
compression is applied.

Considering instead a so-called LDLT factorization where L(t) ∈ R
N×r and

D(t) ∈ R
r×r is beneficial for many schemes [24], because it can decrease the amount



Numer Algor (2018) 78:1129–1151 1133

of computations. This is true also for splitting schemes. Assuming that P0 = LDLT

and considering first the nonlinear subproblem, we have

TG(h)P0 = (I + hLDLT S)−1LDLT = L(I + hDLT SL)−1DLT ,

by use of a simplified version of the Woodbury matrix inversion formula [17]. Thus,
L̂D̂L̂T is a low-rank factorization of the solution to the nonlinear subproblem, where
L̂ = L and D̂ = (I + hDLT SL)−1D. In contrast to the ZZT situation, there exist
matrices D and L such that I + hDLT SL is not invertible for all h. However, it
certainly is for all h < 1/ρ(DLT SL), where ρ denotes the spectral radius, and
therefore, the step size can always be chosen such that D̂ is well defined. We note that
even for large time steps, this theoretical issue has not yet been observed in practice.
We also note that this formulation is cheaper to compute than the corresponding ZZT

factorization, since it is no longer necessary to compute a Cholesky factorization of
the inverse.

Considering next the affine subproblem and assuming that Q = LQDQLT
Q, we

have

TF (h)P0 = ehAT
LDLT ehA +

∫ h

0
esAT

LQDQLT
QesAds

= L1DLT
1 +

∫ h

0
L(s)DQL(s)T ds

≈ L1DLT
1 +

nQ∑
k=1

wkL(sk)DQL(sk)
T ,

where L1 = ehAT
L, L(s) = esAT

LQ, and (sk, wk) are the nQ nodes and weights of
a quadrature formula. We choose the parameters such that the error in this approxi-
mation is negligible with respect to the splitting error; for a splitting scheme of order
p, we typically choose a quadrature formula of order p + 1. For efficiency, the struc-
ture of A (sparsity, bandedness, etc.) should be taken into account when computing
the terms L1 and L(s). In our tests, we simply use a fifth-order implicit Runge-
Kutta method with a crude error estimate based on halving the internal step size. It
seems likely, however, that an approach based on, e.g., Krylov subspaces or the Leja
point method (see, e.g., [11]) would be even more efficient, especially if subspaces
from previous steps can be (partially) reused. We note that these terms do not need
to be computed to full precision, but (like for the integral term) their errors should
be negligible in comparison to the splitting error. Then, similarly to the ZZT case,
setting

L̃ = [
L1 L(s1) · · · L(snQ

)
]

and D̃ =

⎡
⎢⎢⎢⎣

D

w1DQ

.. .

wnQ
DQ

⎤
⎥⎥⎥⎦

means that L̃D̃L̃T is a low-rank approximation of the solution to the affine subprob-
lem. After forming L̃ and D̃, column compression should be applied to eliminate any
unnecessary columns. We refer to [24] for an efficient way to do this.



1134 Numer Algor (2018) 78:1129–1151

3 High-order splitting schemes

Let us now consider low-rank factorization of higher-order multiplicative splitting
schemes like the Lie and Strang splitting schemes. Let

S(h) = TF (α1h)TG(β1h) · · · TF (αsh)TG(βsh)

with s and the coefficients {αk}sk=1 and {βk}sk=1 be chosen such that S(h) is a splitting
scheme of order p ≥ 3. Then the coefficients must include either negative or complex
values [10, 19]. In the first case, computing eγ hAT

P0 for such a negative coefficient
γ corresponds to taking a negative time step for the system ẋ = AT x. If A, e.g.,
corresponds to a discretization of the Laplacian (a common application), we are thus
solving the heat equation backwards in time, which is ill-posed. It is therefore only
possible to consider the class of problems where A corresponds to the discretization
of an analytic operator, but even in this case, the evaluation of (I + hZT SZ)−1 or
(I + hDLT SL)−1 tends to yield step size restrictions. We therefore do not think that
this is a worthwhile direction of research to pursue.

In the case of a ZZT factorization, a complex coefficient γ destroys the struc-
ture of I + γ hZT SZ and we can only factorize it in very special cases. Considering
instead an LDLT factorization leads to problems with complex arithmetic: If L

and D are real, the approximation L̂D̂L̂T to TG(γ h)LDLT will have L̂ real but D̂

complex-valued. Such input to the affine subproblem will then lead to both L̂ and D̂

being complex-valued. Once this is the case, we not only have to do computations
fully in complex arithmetic but we also have issues with column compression since
the complex values do not match the “transpose” formulation. Switching instead to
a complex LDLH factorization results in similar issues. Like negative coefficients,
using complex coefficients thus does not seem worthwhile.

However, the necessity of negative or complex coefficients only holds for the type
of multiplicative splitting schemes mentioned above. Recently, a new type of additive
splitting schemes was introduced in [12]. These are either of the asymmetric type

Ss
asym(h) =

s∑
k=1

γk

(
TF (h/k)TG(h/k)

)k
, (4)

which are of order s if the coefficients γ1, . . . , γs are chosen appropriately, and the
symmetric type

S2s
sym(h) =

s∑
k=1

γk

((
TF (h/k)TG(h/k)

)k + (
TG(h/k)TF (h/k)

)k
)

, (5)

which are of order 2s. (We only consider the case of minimal number of stages here.
One might of course add extra stages in order to improve the local error structure, but
given the form of the schemes, it would then make more sense to instead increase the
order.) In both cases, the roles of F and G may be interchanged.

At first sight, these methods may look computationally expensive. However, (as
noted in [12]) if we have the possibility to work in parallel, then taking one step with
either method is only as expensive as taking s Lie splitting steps. More important



Numer Algor (2018) 78:1129–1151 1135

is that they only require real, positive step sizes. This eliminates all the issues listed
above and allows us to consider splitting schemes for DREs of arbitrarily high order.

Because the coefficients {γk}sk=1 may include negative values, using a ZZT factor-
ization to formulate these methods is impossible. However, instead, using an LDLT

factorization is not only possible but rather straightforward after the preliminary work
in the previous section. The only additional computational work is a column compres-
sion step after forming the linear combinations. In an optimized code, most of this
work could additionally be done while waiting for the slowest processor that takes s

steps to finish. Using a higher-order method also requires us to compute terms of the
form eγ hAT

L more accurately (unless we also increase the step size h and thereby
the error) and to use a higher-order quadrature formula to approximate the integral
term in TF (h)P0.

We also note here that while the LDLT factorization does not guarantee that the
approximations are positive semi-definite, in practice, this still seems to hold. This is
likely due to the fact that the approximations are very close to the solution of the full
problem, which is guaranteed to be positive semi-definite.

4 Time adaptivity

An additional major feature of the schemes (4) and (5) is the existence of natural
embedded lower-order methods. This seems to have been overlooked by [12]. For
example, the scheme

S2
asym(h) = −1

(
TF (h)TG(h)

) + 2
(
TF (h/2)TG(h/2)

)2

is of order 2, and it obviously contains the first-order method TF (h)TG(h). This holds
true for all the schemes, symmetric and asymmetric. In general, neglecting the last
terms of the sum and using other coefficients {γk} yields embedded methods of order
p − 1 in the asymmetric case and of order 2p − 2 in the symmetric case with p =
2, 3, . . . , s. Since these lower-order approximations are simply linear combinations
of previously computed terms, they are cheap to compute. In our case, the only extra
computational effort is a column compression step.

The embedded methods yield natural error estimates. For example, we have

(
Ss

asym(h)P0 − TF+G(h)P0
) − (

Ss−1
asym(h)P0 − TF+G(h)P0

)
= �s(P0)h

s+1 + O(hs+2) − �s−1(P0)h
s + O(hs+1)

= −�s−1(P0)h
s + O(hs+1),

where �s and �s−1 are the principal error functions of the two methods. Thus, the
difference Ss

asym(h)P0 − Ss−1
asym(h)P0 is a local error estimate of order s − 1. In the

symmetric case, we instead get an error estimate of order 2s − 2.
These error estimators may be used to control the size of h, with the aim of keep-

ing the local error below a certain tolerance while minimizing the computational
effort. There are many different kinds of such controllers, see, e.g., [16, 32]. As an



1136 Numer Algor (2018) 78:1129–1151

example, we choose a simple PI controller which typically provides a smoother step
size sequence than the commonly used deadbeat I controller. It is given by [16, 32]

hn+1 =
(

ε TOL

en+1

)kI
(

en

en+1

)kP

hn,

where hn is the nth time step, en is the error estimate at tn, TOL is the desired accu-
racy (tolerance), and ε is a safety factor . The parameters (kI , kP ) determine the
characteristics of the controller such as responsiveness and robustness. In our numer-
ical experiments, we set ε = 0.9 and (kI , kP ) = (0.2/p, 0.2/p), where p is the
order of the error estimate. These are similar to the values recommended for explicit
Runge-Kutta methods when using the error per unit step strategy [15]. Clearly, these
are not optimal values for splitting schemes, but an in-depth investigation for a variety
of typical problems is out of the scope of this paper.

The evaluation of TG(h)P0 requires the same effort whether the step size is varying
or not. Evaluating TF (h)P0, on the other hand, requires that the approximation of the
integral term

IQ(hn) =
∫ hn

0
esAT

QesAds

is recomputed in every step, while it previously could be precomputed. We note that
typically the rank of Q is sufficiently small in relation to the rank of the solution
approximation that this extra computational cost is small and easily outweighed by
the benefits of adaptivity. Nevertheless, we suggest here a strategy to decrease this
cost further.

We need to compute
∑nQ

k=1 wkL(sk)DQL(sk)
T where L(s) = esAT

LQ for given
nodes sk and weights wk . The main idea now is to change only a few nodes (and
thereby also the weights) in each step, such that the interval [0, hn] is covered as
evenly as possibly. For a quadrature rule of order p, we need nQ = p + 1 nodes if
we do not place the nodes optimally, in contrast to, e.g., Gaussian quadrature which
would need roughly half as many. However, by storing the computed matrices L(sk)

and keeping most of the nodes unchanged, we will still decrease the overall com-
putation cost. Thus, we define the initial nodes by sk = kh1

p
for k = 0, . . . , p and

compute the initial weights from
⎡
⎢⎢⎢⎢⎣

s0
0 s0

1 · · · s0
p

s1
0 s1

1

...
...

. . .

s
p

0 · · · s
p
p

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

w0
w1
...

wp

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

hn

h2
n/2
...

h
p+1
n /(p + 1)

⎤
⎥⎥⎥⎦ (6)

with n = 1. Then, to update these nodes and weights given a new hn, we follow
the procedure outlined in algorithmic form in Algorithm 1. (In Algorithm 1 and in
the following, blkdiag denotes the block diagonal operator, i.e., it places its block
arguments on the diagonal of an otherwise zero matrix.)

Essentially, we add a node at hn if the interval increases and then remove the
node which makes the remaining sequence as close to equidistributed as possible.



Numer Algor (2018) 78:1129–1151 1137

Similarly, if the interval decreases, we iteratively relocate the nodes that are outside
the new interval to the midpoints of the largest gaps between the nodes in the new
interval. In order to ensure that the nodes sk cover the interval [0, hn] well, we recom-
pute the whole sequence if the step size changes by more than 25%. We note that we
could of course, in theory, store all the previously computed L(sk) and use increas-
ingly high-order quadrature formulae. However, this would yield a major increase in
the storage requirements while having little effect on the overall accuracy.

Remark 1 We note that in, e.g., a real-world optimal control problem, it is frequently
the case that the state of the system is sampled at regular, predetermined intervals.
The feedback control thus needs the solution of the corresponding DRE at these
specific times. This suggests that a constant, matching step size should be employed,
or that the adaptive step size is restricted. Neither approach is desirable; the former
is inefficient compared to the adaptive approach, and the latter destroys the smooth
time step sequence the PI controller is intended to provide. However, assuming that
the exact solution is sufficiently regular, we may still use the more efficient adaptive
time stepping and simply interpolate the computed approximations to find the values
at the desired times. For example, assume that we use piecewise linear interpolation.
Then on the interval [tn−1, tn], the error between the interpolant PI and the exact
solution P is bounded by

‖PI (t) − P(t)‖ ≤ TOL + h2
n sup

s∈[tn−1,tn]
‖P̈ (s)‖/8.

To estimate the second term, we can first use the available approximation Pn ≈ P(tn)

to estimate Ṗ (tn) ≈ AT Pn + PnA + Q − PnSPn. Then by differentiating (1), we
get P̈ = AT Ṗ + ṖA − Ṗ SP − PSṖ , from which we can estimate P̈ (tn). Both of
these operations may be low-rank factorized; if Pn = LDLT then Ṗ (tn) ≈ L̃D̃L̃T

where L̃ = [
AT L L LQ

]
, and P̈ (tn) ≈ L̂D̂L̂T where L̂ = [

AT L̃ L̃ L
]

(with

appropriate 3 × 3 block matrices D̃ and D̂). Thus, the norm of P̈ may be estimated
efficiently by two applications of AT and two column compression operations. This
estimation may be incorporated into the step size controller to automatically ensure
that the interpolation error is bounded by a fixed tolerance. Whether this is cost-
effective or not is of course heavily dependent on the rank of the approximation and,
thus, of the problem data.

To actually compute the interpolant in a low-rank setting, we note that if
Pn−1 = Ln−1Dn−1L

T
n−1 and Pn = LnDnL

T
n , then L = [

Ln−1 Ln

]
and D =[

αDn−1 0
0 (1 − α)Dn

]
constitute a low-rank factorization of αPn−1 + (1 − α)Pn,

so that this computation comes at the cost of one column compression step. This
interpolation procedure is less straightforward if the setting is generalized to that of
time-varying matrices. However, in that case, the strategy of sampling the system at
constant time intervals is also rather dubious.

Remark 2 It is enough if the terms involved in one step of the splitting methods are of
the same accuracy as the local error. Therefore, the error estimates may additionally



1138 Numer Algor (2018) 78:1129–1151

Algorithm 1 Updating the low-rank factorization of IQ(hn)

Input: Old and new step sizes (hn−1, hn), previous nodes {sk}pk=0, matrices {L(sk)}pk=0
1: if hn ≤ 0.8 hn−1 or hn ≥ 1.25 hn−1 then
2: Set ŝk = khn

p
, k = 0, . . . , p

3: Recompute all L(ŝk)

4: else if hn > hn−1 then
5: Set ŝk = sk , k = 0, . . . , p, and ŝp+1 = hn

6: Remove the node ŝj such that dj = min
0≤k≤p+1

dk, where d0 = ŝ1, dp+1 =hn− ŝp

and dk = ŝk+1 − ŝk−1 for k = 1, . . . , p

7: if the new node ŝp+1 was removed then
8: Set L(ŝk) = L(sk), k = 0, . . . , p

9: else
10: Compute L(hn) = ehnAT

LQ

11: Set L(ŝk) to the matrices L(sk) and L(hn) that match the nodes ŝk
12: end if
13: else if hn < hn−1 then
14: Find the number of nodes to recompute: ñ=p+1−j , with j =max{k : sk ≤hn}
15: if ñ = 0 then
16: Set ŝk = sk and L(ŝk) = L(sk) for k = 0, . . . , p, i.e. do nothing
17: else
18: Set ŝk = sk and L(ŝk) = L(sk) for k = 0, . . . , j

19: for l = 1, . . . , ñ do
20: Find i such that di = max

0≤k≤j+l
dk , where d0 = ŝ0, dj+l = hn − ŝj+l−1

and dk = ŝk − ŝk−1 for k = 1, . . . , j + l − 1
21: Add a new node ŝj+l at ŝ0/2 if i = 0, at (hn + ŝj+l−1)/2 if i = j + l

or at (si + si−1)/2 if 1 ≤ i ≤ j + l − 1
22: Compute L(ŝj+l ) = eŝj+lA

T
LQ

23: Reorder ŝk and L(ŝk) so that the nodes are increasing
24: end for
25: end if
26: end if
27: Compute new weights {ŵk}pk=0 from (6)

28: Form L̂ = [
L(ŝ0) · · · L(ŝp)

]
and D̂ = blkdiag(ŵ0DQ, . . . , ŵpDQ)

29: Column-compress L̂ and D̂

Output: New nodes {ŝk}pk=0, matrices {L(ŝk)}pk=0, weights {ŵk}pk=0, matrices L̂ and

D̂ such that L̂D̂L̂T ≈ IQ(hn)

be used to determine the optimal tolerances for column compression and the actions
of the matrix exponentials. As these quantities are obviously not independent, how-
ever, a proper implementation requires some care. We have not used this feature
in our numerical experiments and instead rely on experience to choose reasonable
tolerances.



Numer Algor (2018) 78:1129–1151 1139

Finally, we present the full procedure for approximating the solution to (1) in
algorithmic form in Algorithms 1–4. We consider only the symmetric case of the
additive splitting schemes, since the asymmetric version is analogous; change the
order of the error estimator from 2s − 2 to s − 1 and only use the L+ or L− terms
instead of both. When a step is rejected, it is likely that it is because the approximation
of IQ(hn) is poor. We thus first recompute the whole sequence of quadrature nodes
and then retry the step with the same step size. Only if this also fails do we decrease
the step size and proceed as normal.

Remark 3 The s computations on Line 5 of Algorithm 4 could be performed by
first approximating IQ(hn/s), then approximating the integral over the interval
[hn/s, hn/(s − 1)] and so on. This results in less total work than s independent
evaluations, though the locations of the quadrature points then require extra care.
Additionally, parallelization could still be faster. The code used for the experiments
in the next section employs neither of these two options and simply scales the current
quadrature points by 1/j , j = 1, . . . , s.

Algorithm 2 Computing the low-rank factorization of TG(h)P0

Input: Matrices S ∈ R
N×N , L0 ∈ R

N×r and D0 ∈ R
r×r with P0 = L0D0L

T
0 , step

size h

1: Compute D = (I + hD0L
T
0 SL0)

−1D0
2: Set L = L0

Output: Matrices L and D such that LDLT ≈ TG(h)P0

Algorithm 3 Computing the low-rank factorization of TF (h)P0

Input: Matrices L0 ∈ R
N×r , D0 ∈ R

r×r such that P0 = L0D0L
T
0 , step size h,

approximate low-rank factorization LIDIL
T
I of IQ(h)

1: Compute L̂ = ehAT
L0

2: Form L = [L̂, LI ] and D =
[

D0 0
0 DI

]
and column-compress

Output: Matrices L and D such that LDLT ≈ TF (h)P0

5 Numerical experiments

In order to verify the validity of the proposed splitting schemes, a number of numer-
ical experiments were performed using MATLAB implementations of the presented
algorithms.

Different norms may be used to measure the errors. In all our experiments, we
consider relative errors at the final time, measured in the Frobenius norm. That is, if



1140 Numer Algor (2018) 78:1129–1151

Algorithm 4 Approximating the solution to (1)

Input: Matrices A, S ∈ R
N×N , LQ ∈ R

N×rQ and DQ ∈ R
rQ×rQ such that Q =

LQDQLT
Q, L0 ∈ R

N×r and D0 ∈ R
r×r such that P0 = L0D0L

T
0

Input: Desired method order 2s, coefficients {γk}sk=1 for order 2s, coefficients
{βk}sk=1 for order 2s − 2, initial time step h1, desired error tolerance TOL

Input: Equidistant nodes sk and weights wk for a quadrature rule of order s+1 on [0, h1]
1: Set αk = γk − βk for k = 1, . . . , s − 1 and αs = γs

2: Set kI = 0.2/(2s − 2), kP = 0.2/(2s − 2)

3: Set n = 1, tn = 0 and en = 0
4: while tn + hn ≤ T do
5: Low-rank approximate IQ(hn/j) ≈ L

j
ID

j
I (L

j
I )

T , j = 1, . . . , s, according to
Algorithm 1, store the computed L(sk)

6: Compute in parallel L
j
± and D

j
± such that

L
j
+D

j
+(L

j
+)T =

(
TF (hn/j)TG(hn/j)

)j

Ln−1Dn−1L
T
n−1 and

L
j
−D

j
−(L

j
−)T =

(
TG(hn/j)TF (hn/j)

)j

Ln−1Dn−1L
T
n−1,

for j = 1, . . . , s, according to Algorithms 2 and 3
7: Form Ln=[L1+ L1− · · · Ls+ Ls−], Dn=blkdiag(γ1D

1+, γ1D
1−, . . . , γsD

s+, γsD
s−)

and column compress
8: Form L̂n =Ln, D̂n = blkdiag(α1D

1+, α1D
1−, . . . , αsD

s+, αsD
s−) and column

compress
9: Compute the error estimate en+1 = ‖L̂nD̂nL̂

T
n ‖F =(

trace
((

L̂T
n L̂nD̂n

)2))1/2

10: if en+1 > TOL then
11: Reject the step
12: If first rejection, do a full recomputation of IQ(hn/j) and redo step with

same hn

13: If still rejected, redo step with hn =
(

0.9 TOL
en+1

)1/(2s−2)

hn

14: else
15: Set tn = tn−1 + hn

16: if tn = T then
17: break
18: end if

19: Update the time step by hn+1 =
(

0.9 TOL
en+1

)kI
(

en

en+1

)kP

hn

20: Set n = n + 1
21: end if
22: if tn + hn > T then
23: Set hn = T − tn
24: end if
25: end while
Output: Time steps tk ∈ [0, T ], approximations Lk , Dk such that LkDkL

T
k ≈ P(tk)



Numer Algor (2018) 78:1129–1151 1141

the approximation Pn and a given reference approximation Pref both approximate the
solution P(T ), the error is given by

‖Pn − Pref‖F

‖Pref‖F

,

where ‖·‖F denotes the Frobenius norm.

5.1 Order investigation, small-scale

As a first test, we demonstrate that the methods exhibit the expected orders of conver-
gence when constant step sizes are used. For this, we consider a small-scale problem
with N = 10 and take A, Q, S, and P0 to be random matrices with the latter three
having rank 4. The small dimension of the problem means that we may compute
a highly accurate reference approximation by unrolling the matrix-valued problem
into a vector-valued problem of dimension N2 and applying a standard method for
ODEs. Here we utilize the MATLAB built-in function ode15s, which implements
an adaptive variable-order multistep method, with an absolute tolerance of 10−20 and
a relative tolerance of 2.22 · 10−14 (the minimum).

For this test, we consider the asymmetric splitting schemes (4) of orders 2 and
3, the symmetric schemes (5) of orders 2, 4, 6, and 8, as well as the second-order
Strang splitting. To compute terms of the form ehAT

L, we use the fifth-order implicit
Runge-Kutta scheme RadauIA [18, Chapter IV.5] and halve the step size until two
subsequent approximations differ (relatively) by at most 10−6. This can clearly be
done better, ideally with adaptive time stepping also on this level, but it is sufficient
for our purposes. We set the column compression tolerance to 10−16 so that it has no
effect on the results.

The results are shown in Fig. 1, where it can be seen that all the methods do,
indeed, achieve the expected converge orders. However, a few comments are in order.
First, the third-order asymmetric scheme actually exhibits an order of convergence
which is slightly larger than 3. This is not true in general and we interpret this as
the structure of the error being favorable for this particular problem. Secondly, the
errors for the sixth- and eighth-order methods level out around 10−12. This is due
to round-off error accumulation in each step. Using a dense instead of low-rank fac-
tored version of the code, computing ehA explicitly and approximating IQ(h) to high
accuracy gives similar results. The leveling out of all the error curves for large step
sizes is due to leaving the asymptotic regime; for these step sizes, also lower-order
error terms influence the result. Thirdly, we note that the second-order asymmetric
method performs slightly better than both the Strang splitting and the second-order
symmetric method. However, since it is 50% more expensive if parallelization is not
used, and even more so if it is, we clearly still prefer the symmetric method.

5.2 Order investigation, larger-scale

We consider also a larger, real-world problem, arising from the optimal control of
steel cooling [8, 28]. This is essentially a finite element discretization of a semi-
linear PDE given on a non-convex two-dimensional domain. It results in matrices



1142 Numer Algor (2018) 78:1129–1151

10
-4

10
-3

10
-2

10
-1

10
0

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

Fig. 1 Errors plotted against step sizes for the problem defined in Section 5.1. We observe that all the
methods exhibit the expected convergence orders until the round-off level is reached, except for very large
step sizes

A ∈ R
N×N , B ∈ R

N×7, and C ∈ R
6×N from which we construct Q = CT C and

S = BR−1BT , with R−1 = I . The problem also involves a mass matrix, i.e., the state
equation is Mẋ = Ax + Bu. We handle this without inverting M by straightforward
modifications to the code as in [34]. Additionally, due to a scaling of the problem,
a simulation time step of 1 s corresponds to a real time step of 10−2 s. To avoid
confusion, we work with the simulation time throughout and, therefore, use a final
time T = 4500.

The exact solution to the problem is unavailable, and since the other currently
existing methods are limited to low orders, it is infeasible to use these to compute a
sufficiently accurate reference approximation. Instead, we use the eighth-order sym-
metric splitting scheme itself for this, but with a step size half as large as the smallest
step size for the actual approximations. In this experiment, we do employ paralleliza-
tion through use of MATLAB’s parfor command, using eight cores on a cluster
built out of Intel 2650v3 CPUs. We restrict ourselves to the Strang splitting and the
symmetric methods, since our tests indicate that these are typically more efficient
than the asymmetric methods. We perform two tests, one with N = 371 and one with
N = 1357. Except the time step size, the only varying parameter is the relative tol-
erance for computing the matrix exponential actions. In the smaller example, this is
set to 10−3 for the Strang splitting and 10−3, 10−6, 10−8, and 10−8 for the additive
schemes of orders 2, 4, 6, and 8, respectively. In the larger example, we take instead
10−3, 10−3, 10−5, 10−6, and 10−6, respectively. The column compression tolerance
is in all cases set to Nε, where ε is the machine epsilon.



Numer Algor (2018) 78:1129–1151 1143

Figure 2 shows the results, with N = 371 on the left and N = 1357 on the right. In
the smaller example, we observe that the second-order methods behave as expected,
while the higher-order methods only achieve their respective orders for small step
sizes. The fact that the errors level out at around 10−11 can be avoided by computing
the matrix exponentials more accurately, but at additional cost. In the larger exam-
ple, the situation is slightly worse in that neither of the higher-order methods reaches
their asymptotic regimes with the used step sizes. This issue may be due to a lack of
regularity in the solution to the exact problem. As in the smaller example, we could
eliminate the leveling out of the error by decreasing the tolerance for the matrix expo-
nential actions. However, as the computation times required for these small errors
are already rather long, we do not do this. In spite of these issues, we note that the
higher-order methods still produce much smaller errors for all step sizes except the
largest.

Also included in Fig. 2 are the corresponding errors for the second-order Rosen-
brock method proposed in [6]. These computations were done using the MATLAB
software M-MESS 1.0.1 [29], which implements the improved LDLT formulation
given in [24]. We choose the parameters suggested in the example code for the steel
cooling problem. For the smaller problem, we observe clear second-order conver-
gence with errors of comparable size to the splitting schemes. The situation is similar
in the larger problem, except that the error evens out for small step sizes, likely due
to inner iterations not being computed accurately enough.

Finally, we note that the column compression tolerance has been chosen rather
small. This is required for the small step sizes, due to the small errors produced
by the high-order methods. In Fig. 3, we demonstrate the effect of increasing this
tolerance. We note that the convergence behavior is unaffected until the truncation
level is reached. Obviously, the ranks of the approximations are heavily affected by
changing this tolerance. Table 1 illustrates this, by tabulating the rank of the Strang
splitting approximation at the final time when N = 371. The ranks of the other
methods differ (at most) by ± 10 from these values for the two largest step sizes and
by ± 3 for the other step sizes. In all cases, the rank increases monotonically until the

10
0

10
1

10
2

10
3

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
1

10
2

10
3

10
-10

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

Fig. 2 Errors plotted against step sizes for the problem defined in Section 5.2. Left: N = 371. Right:
N = 1357. We observe that the second-order methods show second-order behavior for all step sizes used,
while the higher-order methods suffer from order reduction. For the smaller problem size, we recapture
the higher-order behavior for the smallest step sizes, while the larger problem size requires even smaller
step sizes before this happens. Regardless of this, the errors of the higher-order methods are significantly
smaller than those of the second-order methods



1144 Numer Algor (2018) 78:1129–1151

10
0

10
1

10
2

10
3

10
-6

10
-5

10
-4

10
-3

10
-2

10
0

10
1

10
2

10
3

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

Fig. 3 Errors plotted against step sizes for the problem defined in Section 5.2 with N = 371 and the
column compression tolerances 10−8 (left) and 10−10 (right). We note that the convergence is unaffected
until the truncation level is reached. Because these errors are introduced in each time step, the error levels
out at a value larger than the specified tolerance

final time, i.e., the presented ranks are the maximum attained during the simulation.
For comparison, the rank of the corresponding ARE (which the DRE solution tends
to as t → ∞) is 138. When N = 1357, the ranks of the approximations are of similar
size, which fits well with the expectation that low rank is a property inherent to the
DRE, independent of the discretizations.

5.3 Efficiency

While the higher-order methods produce smaller errors, this is only relevant if their
computational costs are similar to that of the lower-order methods. We therefore also
provide a rough comparison of the efficiency of the different methods. Figure 4 shows
the errors plotted against the required computation time (wall clock time) for the
small-scale problem given in Section 5.1, with the same method parameters. These
are the same errors as in Fig. 1, i.e., the step size h is the only varying parameter.
We observe that all the methods are roughly equivalent for high tolerances, while
for error levels below 10−4, the symmetric methods outperform the others. For very
small errors, the sixth- and eighth-order methods are clearly superior. This is in spite
of the fact that parallelization was not used in this case (since the extra time spent on
transferring of data was much larger than the actual computation time).

Table 1 Approximation ranks

Tolerance \ No. of steps 10 20 40 80 160 320 640 1280

10−8 68 70 71 70 68 67 66 65

10−10 83 86 86 86 85 84 84 82

8.2 · 10−14 102 107 109 110 110 109 107 107

The ranks of the Strang splitting approximation at the final time when N = 371, for different column
compression tolerances and different numbers of time steps. The last value 8.2 · 10−14 is equal to Nε,
where ε is the machine epsilon



Numer Algor (2018) 78:1129–1151 1145

10
-2

10
-1

10
0

10
-2

10
-2

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

Fig. 4 Errors plotted against computation times for the problem defined in Section 5.1. We see that the
lower-order methods are most efficient for high error levels, while the higher-order methods are most
efficient for low error levels. For errors around 10−4, the efficiency of all the methods is comparable

The results for the steel cooling problem are shown in Fig. 5. These are simi-
lar to the small-scale case in that the higher-order methods are more efficient for
small errors while the Strang splitting is most efficient for large errors. The plot is
slightly misleading, because the low matrix exponential tolerances required for the
high-order methods to reach the smallest errors are not strictly required for the less
accurate approximations. Similarly, the lower-order methods would need to com-
pute the matrix exponentials more accurately when the step size is further decreased.
Thus, the real cutoff point where the higher-order methods become more efficient
lies somewhere between the error levels 10−5 and 10−7. We also observe that the

10
1

10
2

10
3

10
4

10
5

10
-11

10
-10

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
1

10
2

10
3

10
4

10
5

10
-10

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

Fig. 5 Errors plotted against computation times for the problem defined in Section 5.2. Left: N = 371.
Right: N = 1357. The lower-order methods are again most efficient for high error levels and vice versa,
though the difference between the methods is much less than in Fig. 4



1146 Numer Algor (2018) 78:1129–1151

eighth-order method is superior to the sixth-order method for small errors. This is
due to the parallelization: the cost of increasing the order by 2 is equivalent to only
one extra Lie splitting step and one extra processor. Using even higher orders may
thus be beneficial, but eventually the overhead costs incurred by the parallelization
will dominate.

The strange kinks in the error curves require an explanation. For the Strang split-
ting, this happens twice when N = 371, and on the latter occurrence, the computation
time even decreases slightly when the step size is decreased. This happens due to the
way we compute the actions of the matrix exponentials: if the requested accuracy
is not reached, the computation is repeated with twice as many sub-steps. Reducing
the time step by a factor of 2 makes this computation easier, and it may thus be that
most of these computations require only half as many sub-steps as for the larger time
step. With twice as many time steps, the total computation time is therefore roughly
unchanged.

To provide an indication of what parts of the splitting schemes are expensive, all
the methods were run through MATLAB’s profile command while solving the
steel cooling problem with N = 1357 and with either 40 or 640 time steps, corre-
sponding to h = 112.5 or h = 7.0313. The tolerance for the eγ hAT

L computations
was set to 10−6 in all cases. The results are shown in Tables 2 and 3. We observe that,
as expected, the evaluations of TG are essentially free in comparison to TF . The cost
of the latter completely dominates the overall procedure. Along with the observa-
tion in the previous paragraph, this provides additional incentive for studying better
implementation strategies for this basic operation.

Further, we observe that the relative cost of column compression increases with
the order of the method, since L

j
± and D

j
± increase in size. In total, however, this cost

is negligible, despite the fact that the ranks of the approximations are not very small.
It should be noted here that due to the difficulties of accurately timing parallel code
in this level of detail, a serial implementation was used. While this skews the ratios,
the effect is very small because almost all column compressions originate from TF

Table 2 Computational time breakdown – large time steps

Operation \ Method Strang Additive 2 Additive 4 Additive 6 Additive 8

TG 0.01 0.03 0.03 0.03 0.03

TF 96.60 95.90 97.50 98.06 98.32

Column compression 0.16 0.31 0.33 0.36 0.38

eγ hAT
L 99.10 98.88 99.16 99.16 99.18

IQ(h) 3.38 3.92 2.30 1.71 1.42

Computational time breakdown for the splitting schemes when applied to the steel cooling problem with
N = 1357 and 40 time steps. Shown is the time spent on the given operation, divided by the total time
for the integration (in percent). The numbers are not independent, e.g., computing IQ(h) requires several

eγ hAT
L evaluations and column compressions



Numer Algor (2018) 78:1129–1151 1147

Table 3 Computational time breakdown – small time steps

Operation \ Method Strang Additive 2 Additive 4 Additive 6 Additive 8

TG 0.02 0.03 0.03 0.03 0.03

TF 99.86 99.66 99.68 99.68 99.67

Column compression 0.13 0.31 0.33 0.34 0.37

eγ hAT
L 99.51 99.33 99.30 99.30 99.27

IQ(h) 0.12 0.13 0.08 0.05 0.04

Computational time breakdown for the splitting schemes when applied to the steel cooling problem with
N = 1357 and 640 time steps. Shown is the time spent on the given operation, divided by the total time
for the integration (in percent). The numbers are not independent, e.g., computing IQ(h) requires several

eγ hAT
L evaluations and column compressions

evaluations (95% for the order 8 method and the smallest step size). As expected, the
relative cost of the one-time computation of IQ(h) is higher for a small number of
time steps, but even in the worst case, it is measured in single-digit percentages. With
many time steps, the relative cost is negligible.

0 0.5 1

10
-10

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

0 0.5 1

10
-10

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

0 0.5 1

10
-10

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

Fig. 6 Computed error estimate, actual error, and step size for each time step, when applying the adaptive
fourth-order symmetric splitting scheme to the problem defined in Section 5.1. We consider error per unit
step (EPUS), i.e., all errors are divided by the time step. The tolerances used are, from left to right, 10−1,
10−2, and 10−3. We observe that the adaptivity finds the maximum step size such that the error estimate
is equal to the tolerance. Due to the lower-order estimate, the actual error is in all cases less than the
estimated error, and the difference increases as the step size decreases. The sudden drop in step size (and
error) in the final step is necessary in order to exactly reach the final time T



1148 Numer Algor (2018) 78:1129–1151

Finally, we note that Fig. 5, like Fig. 2, also includes the results for the second-
order Rosenbrock method. While a fair comparison is difficult, and many parameters
could be further fine-tuned for all the methods, these results clearly indicate that the
splitting schemes constitute a competitive alternative to this class of methods.

5.4 Time adaptivity

Finally, we test the full time step adaptive code with the fourth-order symmetric split-
ting scheme. In Fig. 6, we have plotted the results of using four different tolerances
on the small-scale problem defined in Section 5.1. We plot both the error estimated
by the method using the embedded method and the actual error. The latter is com-
puted by using the same method, but by taking 10 equidistant steps in each of the
steps given by the adaptive code. We observe that the actual error is in all cases less
than the estimated error, and the difference increases as the tolerance decreases. This
is due to the fact that the error estimate is of a lower order than the actual method
used. The effect is more pronounced here than usual, since in the symmetric case,
the accuracy of the estimate is two orders less than the method. In each figure, we
have also plotted the step sizes, and we see that the controller works well in finding
the maximum possible step size. For the largest tolerance, the controller is too cau-
tious and does not quite reach the tolerance until the simulation is over. Effects like

0 1000 2000 3000 4000 5000

t

10
-8

10
-6

10
-4

10
-2

10
0

10
2

0 1000 2000 3000 4000 5000

t

10
-8

10
-6

10
-4

10
-2

10
0

10
2

Fig. 7 Computed error estimate, actual error, and step size for each time step, when applying the adaptive
fourth-order symmetric splitting scheme with tolerance 10−3 to the problem defined in Section 5.2. The
method was applied either without (left) or with (right) Algorithm 1. We consider error per unit step
(EPUS), i.e., all errors are divided by the time step. We observe that the adaptivity works rather well



Numer Algor (2018) 78:1129–1151 1149

Table 4 Computational time breakdown – benefit of Algorithm 1

Method \ Operation Total time IQ(hn) TF eγ hAT
L CC

Without Algorithm 1 100.00 46.57 52.42 87.32 1.78

With Algorithm 1 65.90 7.97 89.90 86.90 6.14

Computational time breakdown for the adaptive splitting scheme when applied to the steel cooling exper-
iment in Section 5.4, either with or without the use of Algorithm 1. The first column shows the relative
computation times depending on this choice. The other columns show the time spent on the given oper-
ation, divided by the total time for the respective method. All numbers are in percent, and “CC” is an
abbreviation for column compression. Only the numbers in the last two columns are independent. The
remaining computation time was spent on (unoptimized) caching of matrices and general bookkeeping

this can (and should, this is one area we aim to pursue in the near future) be tuned by
adjusting the parameters kI and kP .

In Fig. 7, we have repeated the same experiment but on the steel problem with N =
371 and only with the tolerance 10−3. Also in this case, the adaptiveness seems to
work well—the maximum possible step size (given the tolerance) is quickly reached
and after this it varies very little. In this case, the difference between the error estimate
and the actual error is not as large as in the previous example. This is likely due to
the order reductions observed in Section 5.2.

The left plot shows the results when Algorithm 1 is not used and the right plot
when it is. In both cases, we used a column compression tolerance of 10−8, a rela-
tive tolerance of 10−4 for the matrix exponential actions and quadrature of order 9
to compute IQ(hn). When not using Algorithm 1, we use Gaussian quadrature rather
than Newton-Cotes, and thus, these computations only need four quadrature nodes
compared to the updating formula which needs 10. Still, as demonstrated by the com-
putational time breakdown in Table 4, the latter is more efficient because typically
only one or even none of these nodes need to be updated in each step. In the current
experiment, 111 steps were taken. Of these, 6 were rejected which required all 10
nodes to be updated. During the remaining 105 steps, a total of 10 nodes required an
update.

6 Conclusions

We have introduced a family of splitting schemes for differential Riccati equations
which may be of arbitrarily high order, and shown that they may be implemented
efficiently in a large-scale setting by utilizing the low-rank LDLT factorization.
Our numerical experiments indicate that the higher-order methods are more efficient
when high accuracy is desired, though this of course depends on the actual problem.
In addition, we have demonstrated that these methods contain natural embedded error
estimates, which, e.g., may be used for time step adaptivity. While further research
on appropriate controller parameters in this setting is required, experiments show that
even a basic implementation gives promising results.



1150 Numer Algor (2018) 78:1129–1151

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, dis-
tribution, and reproduction in any medium, provided you give appropriate credit to the original author(s)
and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Abou-Kandil, H., Freiling, G., Ionescu, V., Jank, G.: Matrix Riccati Equations. Systems & Control:
Foundations & Applications. Basel, Birkhäuser (2003)

2. Amodei, L., Buchot, J.M.: An invariant subspace method for large-scale algebraic Riccati equation.
Appl. Numer. Math 60(11), 1067–1082 (2010). https://doi.org/10.1016/j.apnum.2009.09.006

3. Antoulas, A.C., Sorensen, D.C., Zhou, Y.: On the decay rate of Hankel singular values and related
issues. Syst. Control Lett 46(5), 323–342 (2002). https://doi.org/10.1016/S0167-6911(02)00147-0

4. Baṡar, T., Bernhard, P. H∞-Optimal Control and Related Minimax Design Problems, 2nd edn. Sys.
Con. Fdn. Birkhäuser Boston, Inc, Boston (1995). A Dynamic Game Approach

5. Benner, P., Bujanović, Z.: On the solution of large-scale algebraic Riccati equations by
using low-dimensional invariant subspaces. Linear Algebra Appl. 488, 430–459 (2016).
https://doi.org/10.1016/j.laa.2015.09.027

6. Benner, P., Mena, H.: Rosenbrock methods for solving Riccati differential equations. IEEE Trans.
Automat. Control 58(11), 2950–2956 (2013). https://doi.org/10.1109/TAC.2013.2258495

7. Benner, P., Mena, H.: Numerical solution of the infinite-dimensional LQR problem and the associated
Riccati differential equations. J. Numer. Math. https://doi.org/10.1515/jnma-2016-1039 (in press)

8. Benner, P., Saak, J.: A Semi-Discretized Heat Transfer Model for Optimal Cooling of Steel Pro-
files. In: Dimension Reduction of Large-Scale Systems, Lecture Notes in Computational Science and
Engineering, vol. 45, pp. 353–356. Springer, Berlin (2005)

9. Benner, P., Saak, J.: Numerical solution of large and sparse continuous time algebraic matrix
Riccati and Lyapunov equations: a state of the art survey. GAMM-Mitt 36(1), 32–52 (2013).
https://doi.org/10.1002/gamm.201310003

10. Blanes, S., Casas, F.: On the necessity of negative coefficients for operator splitting schemes of order
higher than two. Appl. Numer. Math 54(1), 23–37 (2005). https://doi.org/10.1016/j.apnum.2004.10.005

11. Caliari, M., Kandolf, P., Ostermann, A., Rainer, S.: Comparison of software for computing the action
of the matrix exponential. BIT 54(1), 113–128 (2014). https://doi.org/10.1007/s10543-013-0446-0

12. De Leo, M., Rial, D., de la Vega, C.S.: High-order time-splitting methods for irreversible equations.
IMA J. Numer. Anal. 36(4), 1842–1866 (2016). https://doi.org/10.1093/imanum/drv058

13. Druskin, V., Knizhnerman, L., Simoncini, V.: Analysis of the rational Krylov subspace and ADI
methods for solving the Lyapunov equation. SIAM J. Numer. Anal. 49(5), 1875–1898 (2011).
https://doi.org/10.1137/100813257

14. Güldoğan, Y., Hached, M., Jbilou, K., Kurulay, M.: Low rank approximate solutions to large-scale
differential matrix Riccati equations. arXiv:1612.00499v2[math.NA] (2017)

15. Gustafsson, K.: Control-theoretic techniques for stepsize selection in explicit Runge-Kutta methods.
ACM Trans. Math. Softw. 17(4), 533–554 (1991). https://doi.org/10.1145/210232.210242

16. Gustafsson, K., Lundh, M., Söderlind, G.: A PI stepsize control for the numerical solution of ordinary
differential equations. BIT 28(2), 270–287 (1988). https://doi.org/10.1007/BF01934091

17. Hager, W.W.: Updating the inverse of a matrix. SIAM Rev. 31(2), 221–239 (1989)
18. Hairer, E., Wanner, G. Solving Ordinary Differential Equations. II, Springer Series in Computational

Mathematics, 2nd edn., vol. 14. Springer, Berlin (1996)
19. Hansen, E., Ostermann, A.: High order splitting methods for analytic semigroups exist. BIT 49(3),

527–542 (2009). https://doi.org/10.1007/s10543-009-0236-x
20. Heyouni, M., Jbilou, K.: An extended block Arnoldi algorithm for large-scale solutions of the

continuous-time algebraic Riccati equation. Electron. Trans. Numer. Anal. 33, 53–62 (2008/09)
21. Hundsdorfer, W., Verwer, J.: Numerical Solution of Time-Dependent Advection-Diffusion-

Reaction Equations. Springer Series in Computational Mathematics, vol. 33. Springer, Berlin
(2003)

22. Ichikawa, A., Katayama, H.: Remarks on the time-varying H∞ Riccati equations. Syst. Control Lett.
37(5), 335–345 (1999)

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.apnum.2009.09.006
https://doi.org/10.1016/S0167-6911(02)00147-0
https://doi.org/10.1016/j.laa.2015.09.027
https://doi.org/10.1109/TAC.2013.2258495
https://doi.org/10.1515/jnma-2016-1039
https://doi.org/10.1002/gamm.201310003
https://doi.org/10.1016/j.apnum.2004.10.005
https://doi.org/10.1007/s10543-013-0446-0
https://doi.org/10.1093/imanum/drv058
https://doi.org/10.1137/100813257
http://arxiv.org/abs/1612.00499v2
https://doi.org/10.1145/210232.210242
https://doi.org/10.1007/BF01934091
https://doi.org/10.1007/s10543-009-0236-x


Numer Algor (2018) 78:1129–1151 1151

23. Koskela, A., Mena, H.: A Structure Preserving Krylov Subspace Method for Large Scale Differential
Riccati Equations. arXiv:1705.07507v1[math.NA] (2017)

24. Lang, N., Mena, H., Saak, J.: On the benefits of the LDLT factorization for large-scale differ-
ential matrix equation solvers. Linear Algebra Appl. 480, 44–71 (2015). https://doi.org/10.1016/
j.laa.2015.04.006

25. Lin, Y., Simoncini, V.: A new subspace iteration method for the algebraic Riccati equation. Numer.
Linear Algebra Appl. 22(1), 26–47 (2015). https://doi.org/10.1002/nla.1936

26. Mena, H., Ostermann, A., Pfurtscheller, L., Piazzola, C.: Numerical low-rank approximation of matrix
differential equations. arXiv:1705.10175 (2017)

27. Petersen, I.R., Ugrinovskii, V.A., Savkin, A.V.: Robust Control Design Using H∞ Methods. Springer,
London (2000)

28. Saak, J.: Effiziente numerische Lösung eines Optimalsteuerungsproblems für die Abkühlung von
Stahlprofilen. Master’s Thesis, Fachbereich 3/Mathematik und Informatik, Universität Bremen (2003)

29. Saak, J., Köhler, M., Benner, P.: M-M.E.S.S.-1.0.1—the matrix equations sparse solvers library.
https://doi.org/10.5281/zenodo.50575. See also: www.mpi-magdeburg.mpg.de/projects/mess (2016)

30. Simoncini, V.: Computational methods for linear matrix equations. SIAM Rev. 58(3), 377–441 (2016).
https://doi.org/10.1137/130912839

31. Simoncini, V., Szyld, D.B., Monsalve, M.: On two numerical methods for the solution of large-scale
algebraic Riccati equations. IMA J. Numer. Anal 34(3), 904–920 (2014). https://doi.org/10.1093/
imanum/drt015

32. Söderlind, G.: Automatic control and adaptive time-stepping. Numer. Algorithms 31(1-4), 281–
310 (2002). https://doi.org/10.1023/A:1021160023092. Numerical methods for ordinary differential
equations (Auckland, 2001)

33. Sorensen, D.C., Zhou, Y.: Bounds on eigenvalue decay rates and sensitivity of solutions to Lyapunov
equations. Tech. Rep 02-07, Dept. of Comp. Appl. Math., Rice Univ., Houston. http://www.caam.rice.
edu/caam/trs/tr02.html#TR02-07 (2002)

34. Stillfjord, T.: Low-rank second-order splitting of large-scale differential Riccati equations. IEEE
Trans. Automat. Control 60(10), 2791–2796 (2015). https://doi.org/10.1109/TAC.2015.2398889

http://arxiv.org/abs/1705.07507v1
https://doi.org/10.1016/j.laa.2015.04.006
https://doi.org/10.1016/j.laa.2015.04.006
https://doi.org/10.1002/nla.1936
http://arxiv.org/abs/1705.10175
https://doi.org/10.5281/zenodo.50575
http://www.mpi-magdeburg.mpg.de/projects/mess
https://doi.org/10.1137/130912839
https://doi.org/10.1093/imanum/drt015
https://doi.org/10.1093/imanum/drt015
https://doi.org/10.1023/A:1021160023092
http://www.caam.rice.edu/caam/trs/tr02.html#TR02-07
http://www.caam.rice.edu/caam/trs/tr02.html#TR02-07
https://doi.org/10.1109/TAC.2015.2398889

	Adaptive high-order splitting schemes for large-scale differential Riccati equations
	Abstract
	Introduction
	Low-rank factorizations
	High-order splitting schemes
	Time adaptivity
	Numerical experiments
	Order investigation, small-scale
	Order investigation, larger-scale 
	Efficiency
	Time adaptivity

	Conclusions
	Open Access
	References


