
Code Constructions for Distributed Storage With Low Repair Bandwidth
and Low Repair Complexity

Downloaded from: https://research.chalmers.se, 2024-03-13 10:19 UTC

Citation for the original published paper (version of record):
Kumar, S., Graell i Amat, A., Andriyanova, I. et al (2018). Code Constructions for Distributed
Storage With Low Repair Bandwidth and Low Repair Complexity. IEEE Transactions on
Communications, 66(12): 5847-5860. http://dx.doi.org/10.1109/TCOMM.2018.2858765

N.B. When citing this work, cite the original published paper.

© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained
for all other uses, in any current or future media, including reprinting/republishing this material for
advertising or promotional purposes, or reuse of any copyrighted component of this work in other
works.

This document was downloaded from http://research.chalmers.se, where it is available in accordance with the IEEE PSPB
Operations Manual, amended 19 Nov. 2010, Sec, 8.1.9. (http://www.ieee.org/documents/opsmanual.pdf).

(article starts on next page)

1

Code Constructions for Distributed Storage With
Low Repair Bandwidth and Low Repair Complexity

Siddhartha Kumar, Student Member, IEEE, Alexandre Graell i Amat, Senior Member, IEEE,
Iryna Andriyanova, Member, IEEE, Fredrik Brännström, Member, IEEE, and Eirik Rosnes, Senior Member, IEEE

Abstract—We present the construction of a family of erasure
correcting codes for distributed storage that achieve low repair
bandwidth and complexity at the expense of a lower fault
tolerance. The construction is based on two classes of codes,
where the primary goal of the first class of codes is to provide
fault tolerance, while the second class aims at reducing the repair
bandwidth and repair complexity. The repair procedure is a two-
step procedure where parts of the failed node are repaired in the
first step using the first code. The downloaded symbols during
the first step are cached in the memory and used to repair the
remaining erased data symbols at minimal additional read cost
during the second step. The first class of codes is based on
MDS codes modified using piggybacks, while the second class
is designed to reduce the number of additional symbols that
need to be downloaded to repair the remaining erased symbols.
We numerically show that the proposed codes achieve better
repair bandwidth compared to MDS codes, codes constructed
using piggybacks, and local reconstruction/Pyramid codes, while
a better repair complexity is achieved when compared to MDS,
Zigzag, Pyramid codes, and codes constructed using piggybacks.

Index Terms—Codes for distributed storage, piggybacking,
repair bandwidth, repair complexity.

I. INTRODUCTION

IN recent years, there has been a widespread adoption of
distributed storage systems (DSSs) as a viable storage

technology for Big Data. Distributed storage provides an
inexpensive storage solution for storing large amounts of data.
Formally, a DSS is a network of numerous inexpensive disks
(or nodes) where data is stored in a distributed fashion. Storage
nodes are prone to failures, and thus to losing the stored data.
Reliability against node failures (commonly referred to as fault
tolerance) is achieved by means of erasure correcting codes
(ECCs). ECCs are a way of introducing structured redundancy,
and for a DSS, it means addition of redundant nodes. In case of
a node failure, these redundant nodes allow complete recovery

Parts of this paper were presented at the IEEE Global Communications
Conference (GLOBECOM), San Diego, CA, December 2015. This work was
partially funded by the Research Council of Norway (grant 240985/F20),
Simula@UiB, and the Swedish Research Council (grant #2016-04253).

S. Kumar was with the Department of Electrical Engineering, Chalmers
University of Technology, SE-41296 Gothenburg, Sweden. He is now with
Simula@UiB, N-5020 Bergen, Norway (e-mail: kumarsi@simula.no).

A. Graell i Amat and F. Brännström are with the Department of Electrical
Engineering, Chalmers University of Technology, SE-41296 Gothenburg,
Sweden (e-mail: {alexandre.graell, fredrik.brannstrom}@chalmers.se).

I. Andriyanova is with the ETIS-UMR8051 group, EN-
SEA/University of Cergy-Pontoise/CNRS, 95015 Cergy, France (e-mail:
iryna.andriyanova@ensea.fr).

E. Rosnes is with Simula@UiB, N-5020 Bergen, Norway (e-mail:
eirikrosnes@simula.no).

of the data stored. Since ECCs have a limited fault tolerance,
to maintain the initial state of reliability, when a node fails a
new node needs to be added to the DSS network and populated
with data. The problem of repairing a failed node is known as
the repair problem.

Current DSSs like Google File System II and Quick File
System use a family of Reed-Solomon (RS) ECCs [1]. Such
codes come under a broader family of maximum distance
separable (MDS) codes. MDS codes are optimal in terms
of the fault tolerance/storage overhead tradeoff. However, the
repair of a failed node requires the retrieval of large amounts
of data from a large subset of nodes. Therefore, in the recent
years, the design of ECCs that reduce the cost of repair has
attracted significant attention. Pyramid codes [2] were one of
the first code constructions that addressed this problem. In
particular, Pyramid codes are a class of non-MDS codes that
aim at reducing the number of nodes that need to be contacted
to repair a single failed node, known as the repair locality.
Other non-MDS codes that reduce the repair locality are local
reconstruction codes (LRCs) [3] and locally repairable codes
[4], [5]. Such codes achieve a low repair locality by ensuring
that the parity symbols are a function of a small number of data
symbols, which also entails a low repair complexity, defined as
the number of elementary additions required to repair a failed
node. Furthermore, for a fixed locality LRCs and Pyramid
codes achieve the optimal fault tolerance.

Another important parameter related to the repair is the
repair bandwidth, defined as the number of symbols down-
loaded to repair a single failed node. Dimakis et al. [6] derived
an optimal repair bandwidth-storage per node tradeoff curve
and defined two new classes of codes for DSSs known as
minimum storage regenerating (MSR) codes and minimum
bandwidth regenerating (MBR) codes that are at the two
extremal points of the tradeoff curve. MSR codes are MDS
codes with the best storage efficiency, i.e., they require a
minimum storage of data per node (referred to as the sub-
packetization level). On the other hand, MBR codes achieve
the minimum repair bandwidth. Product-Matrix MBR (PM-
MBR) codes and Fractional Repetition (FR) codes in [7] and
[8], respectively, are examples of MBR codes. In particular,
FR codes achieve low repair complexity at the cost of high
storage overheads. Codes such as minimum disk input/output
repairable (MDR) codes [9] and Zigzag codes [10] strictly fall
under the class of MSR codes. These codes have a high sub-
packetization level. Alternatively, the MSR codes presented
in [11]–[18] achieve the minimum possible sub-packetization
level.

2

Piggyback codes presented in [19] are another class of
codes that achieve a sub-optimal reduction in repair bandwidth
with a much lower sub-packetization level in comparison to
MSR codes, using the concept of piggybacking. Piggybacking
consists of adding carefully chosen linear combinations of data
symbols (called piggybacks) to the parity symbols of a given
ECC. This results in a lower repair bandwidth at the expense of
a higher complexity in encoding and repair operations. More
recently, the authors in [20] presented a family of codes that
reduce the encoding and repair complexity of PM-MBR codes
while maintaining the same level of fault tolerance and repair
bandwidth. However, this comes at the cost of large alphabet
size. In [21], binary MDS array codes that achieve optimal
repair bandwidth and low repair complexity were introduced,
with the caveat that the file size is asymptotic and that the
fault tolerance is limited to 3.

In this paper, we propose a family of non-MDS ECCs
that achieve low repair bandwidth and low repair complex-
ity while keeping the field size relatively small and having
variable fault tolerance. In particular, we propose a systematic
code construction based on two classes of parity symbols.
Correspondingly, there are two classes of parity nodes. The
first class of parity nodes, whose primary goal is to provide
erasure correcting capability, is constructed using an MDS
code modified by applying specially designed piggybacks to
some of its code symbols. As a secondary goal, the first class
of parity nodes enable to repair a number of data symbols
at a low repair cost by downloading piggybacked symbols.
The second class of parity nodes is constructed using a
block code whose parity symbols are obtained through simple
additions. The purpose of this class of parity nodes is not
to enhance the erasure correcting capability, but rather to
facilitate node repair at low repair bandwidth and low repair
complexity by repairing the remaining failed symbols in the
node. Compared to [22], we provide two constructions for
the second class of parity nodes. The first one is given by a
simple equation that represents the algorithmic construction
in [22]. The second one is a heuristic construction that is
more involved, but further reduces the repair bandwidth in
some cases. Furthermore, we provide explicit formulas for
the fault tolerance, repair bandwidth, and repair complexity
of the proposed codes and numerically compare with other
codes in the literature. The proposed codes achieve better
repair bandwidth compared to MDS codes, Piggyback codes,
generalized Piggyback codes [23], and exact-repairable MDS
codes [24]. For certain code parameters, we also see that
the proposed codes have better repair bandwidth compared
to LRCs and Pyramid codes. Furthermore, they achieve better
repair complexity than Zigzag codes, MDS codes, Piggyback
codes, generalized Piggyback codes, exact-repairable MDS
codes, and binary addition and shift implementable cyclic-
convolutional (BASIC) PM-MBR codes [20]. Also, for certain
code parameters, the codes have better repair complexity than
Pyramid codes. The improvements over MDS codes, MSR
codes, and the classes of Piggyback codes come at the expense
of a lower fault tolerance in general.

...
...

Class A parities Class B paritiesk data nodes

k
da

ta
sy

m
bo

ls

nA + nB − 2k parity nodes

Fig. 1. System model of the DSS.

II. SYSTEM MODEL AND CODE CONSTRUCTION

We consider the DSS depicted in Fig. 1, consisting of
storage nodes, of which k are data nodes and n−k are parity
nodes. Consider a file that needs to be stored on the DSS. We
represent a file as a k × k matrix D = [di,j], called the data
array, over GF(q), where GF(q) denotes the Galois field of size
q, with q being a prime number or a power of a prime number.
In order to achieve reliability against node failures, the matrix
D is encoded using an (n, k) vector code [25] to obtain a
code matrix C = [ci,j], referred to as the code array, of size
k×n, ci,j ∈ GF(q). The symbol ci,j in C is then stored at the
i-th row of the j-th node in the DSS. Thus, each node stores k
symbols. Each row in C is referred to as a stripe so that each
file in the DSS is stored over k stripes in n storage nodes.
We consider the (n, k) code to be systematic, which means
that ci,j = di,j for i, j = 0, . . . , k − 1. Correspondingly, we
refer to the k nodes storing systematic symbols as data nodes
and the remaining n−k nodes containing parity symbols only
as parity nodes. The efficiency of the code is determined by
the code rate, given by R = k2/kn = k/n. Alternatively, the
inverse of the code rate is referred to as the storage overhead.

For later use, we denote the set of message symbols in the
k data nodes as D = {di,j} and by Pt, t = k, . . . , n− 1, the
set of parity symbols in the t-th node. Subsequently, we define
the set DI ⊆ D as

DI = {di,j ∈ D | (i, j) ∈ I},

where I is an arbitrary index set. We also define the operator
(a+ b)k , (a+ b) mod k for integers a and b.

Our main goal is to construct codes that yield low repair
bandwidth and low repair complexity of a single failed data
node. We focus on the repair of data nodes since the raw
data is stored on these nodes and the users can readily access
the data through these nodes. Thus, their survival is a crucial
aspect of a DSS. To this purpose, we construct a family of
systematic (n, k) codes consisting of two different classes
of parity symbols. Correspondingly, there are two classes of
parity nodes, referred to as Class A and Class B parity nodes,
as shown in Fig. 1. Class A and Class B parity nodes are
built using an (nA, k) code and an (nB, k) code, respectively,
such that n = nA + nB − k. In other words, the parity nodes
from the (n, k) code correspond to the parity nodes of Class A
and Class B codes. The primary goal of Class A parity nodes
is to achieve a good erasure correcting capability, while the
purpose of Class B nodes is to yield low repair bandwidth and

3

low repair complexity. In particular, we focus on the repair of
data nodes. The repair bandwidth (in bits) per node, denoted
by γ, is proportional to the average number of symbols (data
and parity) that need to be downloaded to repair a data symbol,
denoted by λ. More precisely, let β be the sub-packetization
level of the DSS, which is the number of symbols per node.1

Then,

λ =
γ

νβ
, (1)

where ν = dlog2 qe is the size (in bits) of a symbol. λ can
be interpreted as the repair bandwidth normalized by the size
(in bits) of a node, and will be referred to as the normalized
repair bandwidth.

The main principle behind our code construction is the
following. The repair is performed one symbol at a time. After
the repair of a data symbol is accomplished, the symbols read
to repair that symbol are cached in the memory. Therefore,
they can be used to repair the remaining data symbols at no
additional read cost. The proposed codes are constructed in
such a way that the repair of a new data symbol requires a
low additional read cost (defined as the number of additional
symbols that need to be read to repair the data symbol), so
that λ (and hence γ) is kept low.

Definition 1: The read cost of a symbol is the number of
symbols that need to be read to repair the symbol. For a
symbol that is repaired after some others, the additional read
cost is defined as the number of additional symbols that need
to be read to repair the symbol. (Note that symbols previously
read to repair other data symbols are already cached in the
memory and to repair a new symbol only some extra symbols
may need to be read.)

III. CLASS A PARITY NODES

Class A parity nodes are constructed using a modified
(nA, k) MDS code, with k + 2 ≤ nA < 2k, over GF(q). In
particular, we start from an (nA, k) MDS code and apply pig-
gybacks [19] to some of the parity symbols. The construction
of Class A parity nodes is performed in two steps as follows.

1) Encode each row of the data array using an (nA, k) MDS
code (same code for each row). The parity symbol pAi,j
is obtained as2

pAi,j =

k−1∑
l=0

αl,jdi,l, j = k, . . . , nA − 1, (2)

where αl,j denotes a coefficient in GF(q) and i =
0, . . . , k−1. Store the parity symbol in the corresponding
row of the code array. Overall, k(nA−k) parity symbols
are generated.

2) Modify some of the parity symbols by adding piggy-
backs. Let τ , 1 ≤ τ ≤ nA − k − 1, be the number of
piggybacks introduced per row. The parity symbol pAi,u
is updated as

pA,pi,u = pAi,u + d(i+u−nA+τ+1)k,i, (3)

1For our code construction, β = k, but this is not the case in general.
2We use the superscript A to indicate that the parity symbol is stored in a

Class A parity node.

PA
5 PA

6

d0,0 d0,1 d0,2 d0,3 d0,4

d1,0 d1,1 d1,2 d1,3 d1,4

d2,0 d2,1 d2,2 d2,3 d2,4

d3,0 d3,1 d3,2 d3,3 d3,4

d4,0 d4,1 d4,2 d4,3 d4,4

pA0,5 pA0,6 + d1,0

pA1,5 pA1,6 + d2,1

pA2,5 pA2,6 + d3,2

pA3,5 pA3,6 + d4,3

pA4,5 pA4,6 + d0,4

DQ0

DX0

Fig. 2. A (7, 5) Class A code with τ = 1 constructed from a (7, 5) MDS
code. PA

5 and PA
6 are the parity nodes. For each row j, colored symbols

belong to DRj .

where u = nA − τ, . . . , nA − 1, the second term in
the summation is the piggyback, and the superscript
p in pA,pi,u indicates that the parity symbol contains
piggybacks.

The fault tolerance (i.e., the number of node failures that
can be tolerated) of Class A codes is given in the following
theorem.

Theorem 1: An (nA, k) Class A code with τ piggybacks per
row can tolerate

f =

nA − k − τ +

⌊√
(nA−k−τ)2+4k−(nA−k−τ)

2

⌋
if τ ≥ ξ

nA − k if τ < ξ

node failures, where ξ =

√
(nA−k−τ)2+4k−(nA−k−τ)

2 .
Proof: See Appendix A.

We remark that for τ < ξ, Class A codes are MDS codes.
When a failure of a data node occurs, Class A parity nodes

are used to repair τ+1 of the k failed symbols. Class A parity
symbols are constructed in such a way that, when node j is
erased, τ+1 data symbols in this node can be repaired reading
the (non-failed) k−1 data symbols in the j-th row of the data
array and τ + 1 parity symbols in the j-th row of Class A
parity nodes (see also Section IV-C). For later use, we define
the set Rj as follows.

Definition 2: For j = 0, . . . , k − 1, the index set Rj is
defined as

Rj = {(j, (j + 1)k), (j, (j + 2)k), . . . , (j, (j + k − 1)k)}.

Then, the set DRj is the set of k− 1 data symbols that are
read from row j to recover τ+1 data symbols of node j using
Class A parity nodes.

Example 1: An example of a Class A code is shown in
Fig. 2. One can verify that the code can correct any 2 node
failures. For each row j, the set DRj is indicated in red color.
For instance, DR0

= {d0,1, d0,2, d0,3, d0,4}.
The main purpose of Class A parity nodes is to provide good

erasure correcting capability. However, the use of piggybacks
helps also in reducing the number of symbols that need to
be read to repair the τ + 1 symbols of a failed node that are
repaired using the Class A code, as compared to MDS codes.

4

The remaining k− τ − 1 data symbols of the failed node can
also be recovered from Class A parity nodes, but at a high
symbol read cost of k. Hence, the idea is to add another class
of parity nodes, namely Class B parity nodes, in such a way
that these symbols can be recovered with lower read cost.

IV. CLASS B PARITY NODES

Class B parity nodes are obtained using an (nB, k) linear
block code with nB < 2k− τ over GF(q) to encode the k×k
data symbols of the data array. This generates k(nB−k) Class
B parity symbols, pBi,l, i = 0, . . . , k− 1, l = nA, . . . , n− 1. In
[22], we presented an algorithm to construct Class B codes.
In this section, we present a similar construction in a much
more compact, mathematical manner.

A. Definitions and Preliminaries
Definition 3: For j = 0, . . . , k − 1, the index set Qj is

defined as

Qj =

{((j + τ + 1)k, j), ((j + τ + 2)k, j), . . . , ((j + k − 1)k, j)}.
Assume that data node j fails. It is easy to see that the set

DQj is the set of k−τ−1 data symbols that are not recovered
using Class A parity nodes.

Example 2: For the example in Fig. 2, the set DQj is indi-
cated by hatched symbols for each column j, j = 0, . . . , k−1.
For instance, DQ0 = {d2,0, d3,0, d4,0}.

For later use, we also define the following set.
Definition 4: For j = 0, . . . , k − 1, the index set Xj is

defined as

Xj = {(j, (j + 1)k), (j, (j + 2)k), . . . , (j, (j + k − τ − 1)k)}.
Note that Xj = Rj ∩ {∪k−1

l=0 Ql}.
Example 3: For the example in Fig. 2, the set DXj is

indicated by hatched symbols for each row j. For instance,
X0 = R0∩{Q0∪Q1∪Q2∪Q3∪Q4} = {(0, 1), (0, 2), (0, 3)},
thus we have DX0

= {d0,1, d0,2, d0,3}.
The purpose of Class B parity nodes is to allow the recovery

of the data symbols in DQj , j = 0, . . . , k − 1, at a low
additional read cost. Note that after recovering τ + 1 symbols
using Class A parity nodes, the data symbols in the sets DRj
are already stored in the decoder memory. Therefore, they
are accessible for the recovery of the remaining k − τ − 1
data symbols using Class B parity nodes without the need of
reading them again. The main idea is based on the following
proposition.

Proposition 1: If a Class B parity symbol pB is the sum of
one data symbol d ∈ DQj and a number of data symbols in
DXj , then the recovery of d comes at the cost of one additional
read (one should read parity symbol pB).

This observation is used in the construction of Class B parity
nodes in Section IV-B below to reduce the normalized repair
bandwidth λ. In particular, we add up to k − τ − 1 Class B
parity nodes which allow to reduce the additional read cost of
all k(k− τ − 1) data symbols in all DQj ’s to 1. (The addition
of a single Class B parity node allows to recover one new
data symbol in each DQj , j = 0, . . . , k− 1, at the cost of one
additional read.)

PB
7 PB

8 PB
9

d2,0 + d0,1 + d0,2

d3,1 + d1,2 + d1,3

d4,2 + d2,3 + d2,4

d0,3 + d3,4 + d3,0

d1,4 + d4,0 + d4,1

d3,0 + d0,1

d4,1 + d1,2

d0,2 + d2,3

d1,3 + d3,4

d2,4 + d4,0

d4,0

d0,1

d1,2

d2,3

d3,4

Fig. 3. Class B parity nodes for the data nodes in Fig. 2.

B. Construction of Class B Nodes
For t = 0, . . . , k − 1, each parity symbol in the l-th Class

B parity node, l = nA, . . . , n − 1, is sequentially constructed
as

pBt,l = d(τ+1−nA+l+t)k,t +

k−τ−3+nA−l∑
j=0

dt,(1+j+t)k . (4)

The construction above follows Proposition 1 wherein
d(τ+1−nA+l+t)k,t ∈ DQt and {dt,(1+j+t)k}k−τ−3+nA−l

j=0 ⊂
DXt . This ensures that the read cost of each of the k symbols
d(τ+1−nA+l+t)k,t is 1. Thus, the addition of each parity node
leads to k data symbols to have a read cost of 1. Note that
adding the second term in (4) ensures that k(k − τ − 1) data
symbols are repaired by the Class B parity nodes. The same
principle was used in [22]. It should be noted that the set of
data symbols used in the construction of the parity symbols
in (4) may be different compared to the construction in [22].
However, the overall average repair bandwidth remains the
same.

Remark 1: For the particular case nB−k = k−τ−1 one may
neglect the second term in (4). The resulting codes would still
have the same repair bandwidth and lower repair complexity
than the codes built from (4). However, this construction would
not allow rate-compatible Class B codes.

In the sequel, we will refer to the construction of Class B
parity nodes according to (4) as Construction 1.

Example 4: With the aim to construct a (10, 5) code,
consider the construction of an (8, 5) Class B code where the
(7, 5) Class A code, with τ = 1, is as shown in Fig. 2. For
t = 0, . . . , k−1, the parity symbols in the first Class B parity
node (the 7-th node) are

pBt,7 = d(2+t)5,t

+

1∑
j=0

dt,(1+j+t)5 = d(2+t)5,t + dt,(1+t)5 + dt,(2+t)5 .

The constructed parity symbols are as seen in Fig. 3, where the
t-th row in node PB

7 contains the parity symbol pBt,7. Notice
that d(2+t)5,t ∈ DQt and {dt,(1+t)5 , dt,(2+t)5} ⊂ DXt . In a
similar way, the parity symbols in nodes PB

8 and PB
9 are

pBt,8 = d(3+t)5,t +

0∑
j=0

dt,(1+j+t)5 = d(3+t)5,t + dt,(1+t)5

5

and

pBt,9 = d(4+t)5,t +

−1∑
j=0

dt,(1+j+t)5 = d(4+t)5,t,

respectively.
Consider the repair of the first data node in Fig. 2. The

symbol d0,0 is reconstructed using pA0,5. This requires reading
the symbols d0,1, d0,2, d0,3, and d0,4. Since pA0,6 is a function
of all data symbols in the first row, reading pA0,6 + d1,0 is
sufficient for the recovery of d1,0. From Fig. 3, the symbols
d2,0, d3,0, and d4,0 can be recovered by reading just the parities
d2,0 + d0,1 + d0,2, d3,0 + d0,1, and d4,0, respectively. Thus,
reading 5 + 4 = 9 symbols is sufficient to recover all the
symbols in the node, and the normalized repair bandwidth is
9/5 = 1.8 per failed symbol. A more formal repair procedure
is presented in Section IV-C.

Adding nB − k Class B parity nodes allows to reduce the
additional read cost of nB − k data symbols from each DQj ,
j = 0, . . . , k − 1, to 1. However, this comes at the cost
of a reduction in the code rate, i.e., the storage overhead is
increased. In the above example, adding nB − k = 3 Class B
parity nodes leads to the reduction in code rate from R = 5/7
to R = 5/10 = 1/2. If a lower storage overhead is required,
Class B parity nodes can be punctured, starting from the last
parity node (for the code in Example 4, nodes PB

9 , PB
8 , and

PB
7 can be punctured in this order), at the expense of an

increased repair bandwidth. If all Class B parity nodes are
punctured, only Class A parity nodes would remain, and the
repair bandwidth is equal to the one of the Class A code.
Thus, our code construction gives a family of rate-compatible
codes which provides a tradeoff between repair bandwidth and
storage overhead: adding more Class B parity nodes reduces
the repair bandwidth, but also increases the storage overhead.

C. Repair of a Single Data Node Failure: Decoding Schedule

The repair of a failed data node proceeds as follows. First,
τ + 1 symbols are repaired using Class A parity nodes. Then,
the remaining symbols are repaired using Class B parity nodes.
With a slight abuse of language, we will refer to the repair
of symbols using Class A and Class B parity nodes as the
decoding of Class A and Class B codes, respectively.

We will need the following definition.
Definition 5: Consider a Class B parity node and let PB

denote the set of parity symbols in this node. Also, let d ∈
DQj for some j and pB ∈ PB be the parity symbol pB =
d +

∑
d′∈D′ d

′, where D′ ⊂ D, i.e., the parity symbol pB is
the sum of d and a subset of other data symbols. We define
D̆ = D′ ∪ {d}.

Suppose that node j fails. Decoding is as follows.
• Decoding the Class A code. To reconstruct the failed data

symbol in the j-th row of the code array, k symbols (k−1
data symbols and pAj,k) in the j-th row are read. These
symbols are now cached in the memory. We then read the
τ piggybacked symbols in the j-th row. By construction
(see (3)), this allows to repair τ failed symbols, at the
cost of an additional read each.

• Decoding the Class B code. Each remaining failed data
symbol di,j ∈ DQj is obtained by reading a Class B

parity symbol whose corresponding set D̆ (see Defini-
tion 5) contains di,j . In particular, if several Class B parity
symbols pBi′,j′ contain di,j , we read the parity symbol
with largest index j′. This yields the lowest additional
read cost.

V. A HEURISTIC CONSTRUCTION OF CLASS B NODES
WITH IMPROVED REPAIR BANDWIDTH

In this section, we provide a way to improve the repair
bandwidth of the family of codes constructed so far. More
specifically, we achieve this by providing a heuristic algorithm
for the construction of the Class B code, which improves
Construction 1 in Section IV for some values of n and even
values of k.

The algorithm is based on a simple observation. Let pB1 and
pB2 be two parity symbols constructed from ρ data symbols in
D in two different ways as follows:

pB1 = di,j + dj,i + dj,i2 + · · ·+ dj,iρ−1 , (5)

pB2 = di,j + dj,i1 + dj,i2 + · · ·+ dj,iρ−1 , (6)

where di,j ∈ DQj (see Definition 3), i1, . . . , iρ−1 6= i, and
dj,i1 , dj,i2 , . . . , dj,iρ−1

∈ DXj (see Definition 4). Note that
the only difference between the two parity symbols above is
that pB2 does not involve dj,i (and that pB1 does not involve
dj,i1). This has a major consequence in the repair of the
data symbols di,j , dj,i, . . . , dj,iρ−1 and di,j , dj,i1 , . . . , dj,iρ−1

using pB1 and pB2 , respectively. Consider the repair using parity
symbol pB1 . From Proposition 1, it is clear that the repair of
symbol di,j will have an additional read cost of 1, since the
remaining ρ − 1 data symbols are in DXj . As the symbol
dj,i ∈ DQi and di,j ∈ DXi , from Proposition 1 and the
fact that dj,i2 , . . . , dj,iρ−1 6∈ DXi , we can repair dj,i with an
additional read cost of ρ − 1. The remaining ρ − 2 symbols
each have an additional read cost of ρ, whereas the symbols
repaired using pB2 incur an additional read cost of 1 for the
symbol di,j and ρ for the remaining symbols. Clearly, we see
that the combined additional read cost, i.e., the sum of the
individual additional read costs for each data symbol using pB1
is lower (by 1) than that using pB2 .

In the way Class A parity nodes are constructed and due to
the structure of the sets DQj and DXj , it can be seen that di,j ∈
DQj and dj,i ∈ DXj when k ≥ 2(τ+1). From Construction 1
of the Class B code in Section IV we observe that for odd
k and k > 2(τ + 1), the parity symbols in node PB

l are as
in (5) for nA ≤ l ≤ nA + bk/2c − τ − 1. Furthermore, for
nA + bk/2c − τ ≤ l ≤ n− 1, the parity symbols in node PB

l

have the structure in (6). On the other hand, for k even and
k ≥ 2(τ + 1), the parity symbols in the node PB

l are as in (5)
for nA ≤ l ≤ nA+k/2−τ−2. However, contrary to case of k
odd, the parity symbols in the node PB

nA+k/2−τ−1 follow (6).
But since k ≥ 2(τ + 1), we know that di,j ∈ DQj and dj,i ∈
DXj . Thus, it is possible to construct some parity symbols in
this node as in (5), and Construction 1 of Class B nodes in the
previous section can be improved. However, the improvement

6

d0,0 pA0,4 pA0,5 + d1,0

d1,0 pA1,4 pA1,5 + d2,1

d2,0 pA2,4 pA2,5 + d3,2

d3,0 pA3,4 pA3,5 + d0,3

PA
4

d0,1 pA0,4 pA0,5 + d1,0

d1,1 pA1,4 pA1,5 + d2,1

d2,1 pA2,4 pA2,5 + d3,2

d3,1 pA3,4 pA3,5 + d0,3

PA
5 PB

6 PB,h
6

d0,2 pA0,4 pA0,5 + d1,0

d1,2 pA1,4 pA1,5 + d2,1

d2,2 pA2,4 pA2,5 + d3,2

d3,2 pA3,4 pA3,5 + d0,3

d0,3 pA0,4 pA0,5 + d1,0

d1,3 pA1,4 pA1,5 + d2,1

d2,3 pA2,4 pA2,5 + d3,2

d3,3 pA3,4 pA3,5 + d0,3

d2,0 + d0,1

d3,1 + d1,2

d0,2 + d2,3

d1,3 + d3,0

d2,0 + d0,2

d3,1 + d1,3

d1,2 + d2,3

d3,0 + d0,1

(a) (b)

Fig. 4. A (7, 4) code constructed from a (6, 4) Class A code with τ = 1 and a
(5, 4) Class B code. (a) Class B node constructed according to Construction 1
in Section IV. (b) A different configuration of the Class B node that reduces
the repair bandwidth.

comes at the expense of the loss of the mathematical structure
of Class B nodes given in (4).

Example 5: Consider the (7, 4) code as shown in Fig. 4.
Fig. 4(a) shows the node PB

6 using Construction 1 in Sec-
tion IV, while Fig. 4(b) shows a different configuration of
the node PB

6 . Note that k = 2(τ + 1) = 4. Thus, each pair
(DQj ,DXj) contains one symbol di,j and dj,i. The node PB

6

has parity symbols according to (6), while PB,h
6 has two parity

symbols as in (5) and two parity symbols according to (6). The
configuration of the (7, 4) code arising from Construction 1
has a normalized repair bandwidth of 2, while the (7, 4) code
with node PB,h

6 in Fig. 4(b) has a repair bandwidth of 1.825,
i.e., an improvement is achieved.

In order to describe the modified code construction, we
define the function read(d, pB) as follows.

Definition 6: Consider the construction of the parity symbol
pB as pB = d+

∑
d′∈D′ d

′ (see Definition 5). Then,

read(d, pB) = |D̆\DXj |.
For a given data symbol d, the function read(d, pB) gives

the additional number of symbols that need to be read to
recover d (considering the fact that some symbols are already
cached in the memory). The set D̆ represents the set of data
symbols that the parity symbol pB is a function of. We use the
index set U to represent the indices of such data symbols. We
denote by Ut, t = 0, . . . , k− 1, the index set corresponding to
the t-th parity symbol in the node (there are k parity symbols
in a parity node).

In the following, denote by A = [ai,j] a temporary matrix
of read costs for the respective data symbols in D = [di,j].
After Class A decoding,

ai,j =

∞ if di,j ∈ ∪k−1

t=0DQt
k if i = j

1 otherwise
. (7)

In Section V-A below, we will show that the construction of
parities depends upon the entries of A. To this extent, for some
real matrix M = [mi,j] and index set I, we define Ψ(MI)
as the set of indices of matrix elements of M from I whose
values are equal to the maximum of all entries in M indexed
by I. More formally, Ψ(MI) is defined as

Ψ(MI) =

{
(i, j) ∈ I | mi,j = max

(i′,j′)∈I
mi′,j′

}
.

The heuristic algorithm to construct the Class B code is
given in Appendix B and we will refer to the construction of
the Class B code according to this algorithm as Construction 2.
In the following subsection, we clarify the heuristic algorithm
to construct the Class B code with the help of a simple
example.

A. Construction Example

Let us consider the construction of a (7, 4) code using a
(6, 4) Class A code and a (5, 4) Class B code. In total, there
are three parity nodes; two Class A parity nodes, denoted by
PA

4 and PA
5 , respectively, and one Class B parity node, denoted

by PB,h
6 , where the upper index h is used to denote that the

parity node is constructed using the heuristic algorithm. The
parity symbols of the nodes are depicted in Fig. 4. Each parity
symbol of the Class B parity node is the sum of k − τ − 1
data symbols di,j ∈ ∪j′DQj′ , constructed such that the read
cost of each symbol di,j is lower than ai,j as shown below.

1. Construction of PB,h
6

Each parity symbol in this node is constructed using ρ6 =
k − τ − 1 = 2 unique symbols as follows.
1.a Since no symbols have been constructed yet, we

have Ut1 = ∅, t1 = 0, . . . , 3. (This corresponds to
the execution of Line 1 to Line 19 of Algorithm 2
in Appendix B.)

1.b Select di,0 ∈ DQ0 such that its read cost is max-
imum, i.e., di,0 ∈ DΨ(AQ0

). Choose di,0 = d2,0,
as a2,0 = ∞. Note that we choose d2,0 since
d0,2 ∈ DX0

.
1.c Construct p0,6 = d2,0 + d0,2 (see Line 4 of

Algorithm 2). Correspondingly, we have U0 =
{(2, 0), (0, 2)}.

1.d Recursively construct the next parity symbol in the
node as follows. Similar to Item 1.b, choose d3,1 ∈
DΨ(AQ1

). Construct p1,6 = d3,1 + d1,3. Likewise,
we have U1 = {(3, 1), (1, 3)}

1.e For the next parity symbol, note that d0,2 is already
used in the construction of p0,6. The only possible
choice of symbol in DQ2

is d1,2, but d2,1 6∈ DX2
.

Therefore, we choose di1,2 ∈ DΨ(AQ2\∪j′ Uj′
) (see

Line 7 of Algorithm 2). In particular, since a1,2 =
∞, we choose di1,2 = d1,2. Then, Lines 8 to 11 of
Algorithm 2 are executed.

1.f Choose an element d2,i2 ∈ DX2\∪j′Uj′ . In other
words choose a symbol in DX2

which has not been
used in p0,6 and p1,6. We have d2,i2 = d2,3. Con-
struct p2,6 = d1,2+d2,3. Thus, U2 = {(1, 2), (2, 3)}.

1.g To construct the last parity symbol, we look for data
symbols from the sets DQ3 and DX3 . However, all
symbols in DQ3 have been used in the construction
of previous parity symbols. Therefore, we cyclically
shift to the next pair of sets (DQ0

,DX0
). Following

Items 1.e and 1.f, we have p3,6 = d3,0 + d0,1 and
U3 = {(3, 0), (0, 1)}.

Note that |Ut| = 2 for all t, thus this completes the construc-
tion of the (7, 4) code. The Class B parity node constructed
above is depicted in Fig. 4(b).

7

B. Discussion

In general, the algorithm constructs nB − k parity nodes,
PB
nA
, . . . ,PB

n−1, recursively. In the l-th Class B node, l =
nA, . . . , n − 1, each parity symbol is a sum of at most
ρl = k− τ − 1− l+ nA symbols di,j ∈ ∪j′DQj′ . Each parity
symbol pt,l, t = 0, . . . , k − 1, in the l-th Class B parity node
with ρl > 1 is constructed recursively with ρl − 1 recursion
steps. In the first recursion step, each parity symbol pt,l is
either equal to a single data symbol or a sum of 2 data symbols.
In the latter case, the first symbol di,j ∈ DQt is chosen
as the symbol with the largest read cost ai,j . The second
symbol is dj,i ∈ DXt if such a symbol exists. Otherwise
(i.e., if dj,i 6∈ DXt), symbol dj,i′′ ∈ DXt is chosen. In the
remaining ρl − 2 recursion steps a subsequent data symbol
dj,i′ ∈ DXt (if it exists) is added to pt,l. Doing so ensures
that k symbols have a new read cost that is reduced to 1 when
parity symbols pt,l are used to recover them. Having obtained
these parity symbols, the read costs of all data symbols in
∪j′DQj′ are updated and stored in A. This process is repeated
for successive parity nodes. If ρl = 1 for the l-th parity node,
its parity symbols pt,l are equal to the data symbols di,j ∈ DQt
whose read costs ai,j are the maximum possible.

In the above example, only a single recursion for the
construction of PB,h

6 is needed, where each parity symbol is
a sum of two data symbols.

VI. CODE CHARACTERISTICS AND COMPARISON

In this section, we characterize different properties of the
codes presented in Sections III-V. In particular, we focus
on the fault tolerance, repair bandwidth, repair complexity,
and encoding complexity. We consider the complexity of
elementary arithmetic operations on field elements of size
ν = mdlog2 pe in GF(q), where q = pm for some prime
number p and positive integer m. The complexity of addition
is O(ν), while that of multiplication is O(ν2), where the
argument of O(·) denotes the number of elementary binary
additions.3

A. Code Rate

The code rate for the proposed codes is given by R =
k

nA+nB−k . It can be seen that the code rate is bounded as

k

3k − τ − 2
≤ R ≤ k

k + 3
.

The upper bound is achieved when nA = k + 2, τ = 1, and
nB = k+1, while the lower bound is obtained from the upper
bounds on nA and nB given in Sections III and IV.

B. Fault Tolerance

The proposed codes have fault tolerance equal to that of
the corresponding Class A codes, which depends on the MDS
code used in their construction and τ (see Theorem 1). Class

3It should be noted that the complexity of multiplication is quite pessimistic.
However, for the sake of simplicity we assume it to be O(ν2). When the field
is GF(2ν) there exist algorithms such as the Karatsuba-Ofman algorithm [26],
[27] and the Fast Fourier Transform [28]–[30] that lower the complexity to
O(νlog2 3) and O(ν log2 ν), respectively.

B nodes do not help in improving the fault tolerance. The
reason is that improving the fault tolerance of the Class A code
requires the knowledge of the piggybacks that are strictly not
in the set ∪jDQj , while Class B nodes can only be used to
repair symbols in ∪jDQj .

In the case where the Class B code has parameters (nB =
k+1, k), the resulting (n = nA+1, k) code has fault tolerance
nA−k for τ < ξ, i.e., one less than that of an (n = nA +1, k)
MDS code.

C. Repair Bandwidth of Data Nodes

According to Section IV-C, to repair the first τ +1 symbols
in a failed node, k− 1 data symbols and τ + 1 Class A parity
symbols are read. The remaining k−τ−1 data symbols in the
failed node are repaired by reading Class B parity symbols.

Let fl, l = nA, . . . , n − 1, denote the number of parity
symbols that are used from the l-th Class B node according to
the decoding schedule in Section IV-C. Due to Construction 1
in Section IV, we have

fnA
= fnA+1 = · · · = fn−2 = 1,

fn−1 = k − τ − 1−
n−2∑
l=nA

fl = k − τ − n+ nA.
(8)

The Class B nodes nA, . . . , n−2 are used to repair n−1−nA
symbols with an additional read cost of n − 1 − nA (1 per
symbol). The remaining k−τ−n+nA = fn−1 erased symbols
are corrected using the (n−1)-th Class B node. The repair of
one of the fn−1 symbols entails an additional read cost of 1.
On the other hand, since the parity symbols in the (n− 1)-th
Class B node are a function of fn−1 symbols, the repair of
the remaining fn−1−1 symbols entails an additional read cost
of at most fn−1 each. In all, the k − τ − 1 erased symbols
in the failed node have a total additional read cost of at most
n − nA + (fn−1 − 1)fn−1. The normalized repair bandwidth
for the failed systematic node is therefore given as

λs ≤ k + τ + n− nA + (fn−1 − 1)fn−1

k
=

2k − 2fn−1 + f2
n−1

k
.

Note that fn−1 is function of τ , and it follows from Sec-
tion VI-B and (8) that when τ increases, the fault tolerance
reduces while λs improves. Furthermore, as nB increases
(thereby as n increases), fn−1 decreases. This leads to a
further reduction of the normalized repair bandwidth.

D. Repair Complexity of a Failed Data Node

To repair the first symbol requires k multiplications and
k− 1 additions. To repair the following τ symbols require an
additional τk multiplications and additions. Thus, the repair
complexity of repairing τ + 1 failed symbols is

CA
r = O((k − 1)ν + kν2) +O(τk(ν + ν2)).

For Construction 1, the remaining k − τ − 1 failed data
symbols in the failed node are corrected using k−τ−1 parity
symbols from nB− k Class B nodes. To this extent, note that

8

TABLE I
COMPARISON OF (n, k) CODES THAT AIM AT REDUCING THE REPAIR BANDWIDTH. THE REPAIR BANDWIDTH AND THE REPAIR COMPLEXITY ARE

NORMALIZED PER SYMBOL, WHILE THE ENCODING COMPLEXITY IS GIVEN PER ROW OF THE CODE ARRAY. NOTE THAT FOR MDR AND EVENODD
CODES, n = k + 2 WHERE k IS PRIME FOR EVENODD CODES.

β Fault Tolerance Norm. Repair Band. Norm. Repair Compl. Enc. Complexity

MDS 1 n− k k O((k − 1)ν + kν2) O((n− k)(k − 1)ν + kν2)

LRC [3] 1 r + 1 k
n−k−r O((d k

n−k−r e − 1)ν) rO((k − 1)ν + kν2) + (n− k − r)O((d k
n−k−r e − 1)ν)

MDR [9] 2k 2 k+1
2

O((k − 1)ν) O(2(k − 1)ν)

Zigzag [10] (n− k)k−1 n− k n−1
n−k O((k − 1)ν + kν2) O((n− k)(k − 1)ν + kν2)

Piggyback [19] 2 n− k (k−tr)(k+t)+tr(k+tr+`−2)
2k

– –

EVENODD [25] k − 1 2 k O((k − 1)ν) O(2k
2−2k−1
k−1

ν)

Proposed codes k f λs Cs
r /k Cs

e

∑n−1
l=nA

fl = k−τ −1. The repair complexity for repairing the
remaining k − τ − 1 symbols is

CB
r =

n−1∑
l=nA

O(fl(k − τ − 2− l + nA)ν). (9)

From (8), (9) simplifies to

CB
r =

n−2∑
l=nA

O((k − τ − 2− l + nA)ν)

+O((k − τ − n+ nA)(k − τ − 1− n+ nA)ν)

= O

(
1

2
(n− 1− nA)(2k − 2τ − 2 + nA − n)ν

)
+O((k − τ − n+ nA)(k − τ − 1− n+ nA)ν).

For Construction 2, the final k− τ − 1 failed data symbols
require at most k−τ−2 additions, since Class B parity symbols
are constructed as sums of at most k − τ − 1 data symbols.
The corresponding repair complexity is therefore

CB
r ≤ O((k − τ − 2)(k − τ − 1)ν).

Finally, the total repair complexity is Cs
r = CA

r + CB
r .

E. Repair Bandwidth and Complexity of Parity Nodes

We characterize the normalized repair bandwidth and repair
complexity of Class A and B parity nodes.

Class A nodes consist of nA − k MDS parity nodes of
which τ nodes are modified with a single piggyback. Thus, the
repair of each parity symbol in the nA − k − τ non-modified
nodes requires downloading k data symbols. To obtain the
parity symbol, one needs to perform k − 1 additions and
k multiplications. Thus, each parity symbol in these nodes
has a repair bandwidth of k and a repair complexity of
O((k− 1)ν + kν2), while each erased parity symbol in the τ
piggybacked nodes requires reading k+ 1 data symbols. Such
parity symbols are obtained by performing k − 1 additions
and k multiplications to get the original MDS parity symbol
and then finally a single addition of the piggyback to the
MDS parity symbol is required. Overall, the normalized repair
bandwidth is k + 1 and the normalized repair complexity is
O(k(ν + ν2)). In average, the normalized repair bandwidth

and the normalized repair complexity of Class A parity nodes
are

λp,A = k +
τ

nA − k
,

Cp,A
r = O

(
(k − 1)ν + kν2 +

τν

nA − k

)
,

respectively.
Considering the i-th Class B node, the repair of an erased

parity symbol requires downloading k − τ − 1 − i, i =
0, . . . , nB−k−1, data symbols. The repair entails k−τ−2−i
additions, and the average normalized repair bandwidth λp,B

and repair complexity Cp,B
r are given as

λp,B =

∑nB−k−1
i=0 k − τ − 1− i

nB − k
=

1

2

(
3k − 2τ − nB − 1

)
,

Cp,B
r = O

(∑nB−k−1
i=0 k − τ − 2− i

nB − k
ν

)
= O

(
1

2
(3k − 2τ − nB − 3)ν

)
.

F. Encoding Complexity
The encoding complexity, denoted by Ce, is the sum of

the encoding complexities of Class A and Class B codes. The
generation of each of the nA−k Class A parity symbols in one
row of the code array, pAi,j in (2), requires k multiplications
and k− 1 additions. Adding data symbols to τ of these parity
symbols according to (3) requires an additional τ additions.
The encoding complexity of the Class A code is therefore

CA
e = O((nA − k)(kν2 + (k − 1)ν)) +O(τν).

According to Sections IV and V, the parity symbols in the
first Class B parity node are constructed as sums of at most k−
τ − 1 data symbols, and each parity symbol in the subsequent
parity nodes is constructed as a sum of data symbols from a
set of size one less. Therefore, the encoding complexity of the
Class B code is

CB
e ≤

n−nA∑
i=1

O((k − τ − 1− i)ν)

= O

(
1

2
(n− nA)(2k − 2τ − 3− n+ nA)ν

)
.

(10)

Note that for Construction 1 the upper bound on CB
e in (10)

is tight. Finally, Cs
e = CA

e + CB
e .

9

1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9
0

100

200

300

400

500

600

700

800

(8, 4, 3), (7, 4, 2)
(10, 5, 4), (9, 5, 3), (8, 5, 2)

(13, 9, 3)(12, 8, 3)

(10, 5, 5), (9, 5, 4), (8, 5, 3)

(8, 4, 4), (7, 4, 3)

(13, 9, 4)

(12, 8, 4)

(7, 4, 3)
(8, 4, 4)

(8, 5, 3)

(12, 8, 4)

(13, 9, 4)

(8, 5, 3)(9, 5, 4)

(10, 5, 5)

(8, 4, 4)
(7, 4, 3)

(13, 9, 4)

(12, 8, 4)

(8, 4, 2)

(10, 5, 2)(9, 5, 2)
(13, 9, 3)(12, 8, 3)

(8, 4, 3) (10, 5, 3)
(9, 5, 3)

(10, 5, 4)
(8, 4, 2)

(7, 4, 2)
(10, 5, 2)

(9, 5, 2)
(8, 5, 2)

normalized repair bandwidth (λ)

no
rm

al
iz

ed
re

pa
ir

co
m

pl
ex

ity

MDS code
LRC [3]
Zigzag [10]
Piggyback [19]
Our code, τ = 1, nA = k + 2
Our code, τ = 1, nA = k + 3
Our code, τ = 1, nA = k + 4
Our code, τ = 2, nA = k + 3

Fig. 5. Comparisons of different (n, k, f) codes with ν = 8.

G. Code Comparison

In this section, we compare the performance of the proposed
codes with that of several codes in the literature, namely
MDS codes, exact-repairable MDS codes [24], MDR codes
[9], Zigzag codes [10], Piggyback codes [19], generalized
Piggyback codes [23], EVENODD codes [25], Pyramid codes
[2], and LRCs [3]. Throughout this section, we compare the
repair bandwidth and the repair complexity of the systematic
nodes with respect to other codes, except for exact-repairable
MDS and BASIC PM-MBR codes. The reported repair band-
width and complexity for these codes are for all nodes (both
systematic and parity nodes).

Table I provides a summary of the characteristics of the
proposed codes as well as different codes proposed in the
literature.4 In the table, column 2 reports the value of β (see
(1)) for each code construction. For our code, β = k, unlike for
MDR and Zigzag codes, for which β grows exponentially with
k. This implies that our codes require less memory to cache
data symbols during repair. On the contrary, EVENODD codes
have a lower sub-packetization and repair complexity, but this
comes at the cost of having the same repair bandwidth as
MDS codes. The Piggyback codes presented in the table and
throughout this section are from the piggybacking design 1
in [19], which provides efficient repair for only data nodes.
The fault tolerance f , the normalized repair bandwidth λ, the
normalized repair complexity, and the encoding complexity,
discussed in the previous subsections, are reported in columns
3, 4, 5, and 6, respectively.

In Figs. 5 and 6, we compare our codes with Construction 1
for the Class B codes (i.e., the codes are constructed as shown
in Sections III and IV) with other codes in the literature. We
remark that the Pyramid codes in Fig. 6 refer to the basic
Pyramid codes in [2], while the exact-repairable MDS codes
refer to the (2, n − k, n − 1) exact-repairable MDS codes

4The variables (t, tr) and r in Table I are defined in [19] and [3],
respectively. The definition of ` comes directly from r that is defined in
[19].

from [24, Sec. IV]. The aforementioned notation, unlike our
notation in this paper, refers to an (n, k, n − k) code that
has λ ≤ 2n−1

n−k , β = n − k, and repair locality of n − 1. For
generalized Piggyback codes [23], we choose β = k. Also note
that the parameters s, p are chosen according to [23, Eq. 20],
i.e., s =

⌊
k
√
n−k−1√
n−k

⌋
or s =

⌈
k
√
n−k−1√
n−k

⌉
and p = k − s,

whichever pair of values gives the lowest repair bandwidth. In
case of a tie, the pair that gives the lowest repair complexity
was chosen. In particular, the figure plots the normalized repair
complexity of (n, k, f) codes over GF(28) (ν = 8) versus
their normalized repair bandwidth λ. In the figure, we show
the exact repair bandwidth for our proposed codes, while the
reported repair complexities and the repair bandwidths of the
other codes, except for Piggyback, generalized Piggyback, and
exact-repairable MDS codes, are from Table I.5 For Piggyback,
generalized Piggyback, and exact-repairable MDS codes exact
values for the repair bandwidth and the repair complexity
are calculated directly from the codes. Furthermore, for a
fair comparison we assume the parity symbols in the first
parity node of all storage codes to be weighted sums. The
only exception is the LRCs and the exact-repairable MDS
codes, as the code design enforces the parity-check equations
to be non-weighted sums. Thus, changing it would alter the
maximum erasure correcting capability of the LRC and the
repair bandwidth of the exact-repairable MDS code. We also
assume that the LRCs and the Pyramid codes have a repair
locality of k/2. For the generalized Piggyback codes, we
assume that the codes have sub-packetization β = k. For the
Piggyback codes, we consider the construction that repairs just
the data nodes. Therefore, they have a sub-packetization of 2.

The best codes for a DSS should be the ones that achieve the
lowest repair bandwidth and have the lowest repair complexity.
As seen in Fig. 5, MDS codes have both high repair complexity
and repair bandwidth, but they are optimal in terms of fault
tolerance for a given n and k. Zigzag codes achieve the same
fault tolerance and high repair complexity as MDS codes, but
at the lowest repair bandwidth. At the other end, LRCs yield
the lowest repair complexity, but a higher repair bandwidth
and worse fault tolerance than Zigzag codes. Piggyback codes,
generalized Piggyback codes, and exact-repairable MDS codes
have a repair bandwidth between those of Zigzag and MDS
codes, but with a higher repair complexity. Strictly speaking,
they have a repair complexity higher than MDS codes. For a
given storage overhead, our proposed codes have better repair
bandwidth than MDS codes, Piggyback codes, generalized
Piggyback codes, and exact-repairable MDS codes. In par-
ticular, the numerical results in Figs. 5 and 6 show that for
different code parameters with τ = 1 and nA − k = 2 our
proposed codes yield a reduction of the repair bandwidth in
the range of 64%−50%, 39.13%−33.33%, 43.04%−33.33%,
and 33.33% − 30%, respectively. Furthermore, our proposed
codes yield lower repair complexity as compared to MDS,
Piggyback, generalized Piggyback, exact-repairable MDS, and
Zigzag codes. Again, the numerical analysis in Figs. 5 and 6

5For LRCs the expressions for the repair bandwidth and the repair com-
plexity tabulated in Table I are used when n− k− r is a divisor of k. When
n− k− r is not a divisor of k, exact values for the repair bandwidth and the
repair complexity are calculated directly from the codes.

10

TABLE II
COMPARISON OF NORMALIZED REPAIR COMPLEXITY AND BANDWIDTH OF (n, k, f) BASIC PM-MBR CODES [20] AND THE PROPOSED CODES.

Proposed nA τ R GF(q) BASIC PM-MBR Rb δb Rm Cb
r Cr λb λ

(9, 5, 3) 8 1 0.5556 GF(11) (8, 5, 3) 0.4464 7 R11 135 44 1 2.4
(11, 7, 3) 10 2 0.6364 GF(11) (11, 7, 4) 0.4454 10 R11 187.5 66.2857 1 3
(14, 9, 3) 12 2 0.6428 GF(13) (14, 9, 5) 0.4450 13 R17 384 70.6667 1 3.5556

1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0

100

200

300

400

500

600

700

800

900

(7, 4, 2), (8, 4, 3)

(8, 5, 2), (9, 5, 3), (10, 5, 4)

(12, 8, 3)

(13, 9, 3)

(7, 4, 3)(8, 4, 4)

(8, 5, 3)

(9, 5, 4)(10, 5, 5)

(12, 8, 4)

(13, 9, 4)

(7, 4, 3)

(8, 4, 4)
(8, 5, 3)

(9, 5, 4)

(10, 5, 5)

(13, 9, 4)

(12, 8, 4)

(8, 4, 2)

(10, 5, 2) (9, 5, 2)
(13, 9, 3)(12, 8, 3)

(8, 4, 3) (10, 5, 3)
(9, 5, 3)

(10, 5, 4)
(8, 4, 2)

(7, 4, 2)
(10, 5, 2)

(9, 5, 2)

(8, 5, 2)

normalized repair bandwidth (λ)

no
rm

al
iz

ed
re

pa
ir

co
m

pl
ex

ity

Pyramid [2]
Generalized Piggyback [23]
Exact-repairable MDS [24]
Our code, τ = 1, nA = k + 2
Our code, τ = 1, nA = k + 3
Our code, τ = 1, nA = k + 4
Our code, τ = 2, nA = k + 3

Fig. 6. Comparisons of different (n, k, f) codes with ν = 8.

shows that for different code parameters with τ = 1 and
nA − k = 2 our proposed codes yield a reduction of
the repair complexity in the range of 58.18% − 47.86%,
70.90% − 55.23%, 59.26% − 49.30%, 78.70% − 67.93%,
and 58.18% − 47.86%, respectively. However, the benefits
in terms of repair bandwidth and/or repair complexity with
respect to MDS codes, Zigzag codes, and codes constructed
using the piggybacking framework come at a price of a lower
fault tolerance. For fixed (n, k, f) it can be seen that the
proposed codes yield a reduction of the repair bandwidth in
the range of 7.69% − 0% compared to LRCs and Pyramid
codes, while in some cases, for the latter codes our proposed
codes achieve a reduction of the repair complexity in the range
of 24.44%− 15.18%.

In Table II, we compare the normalized repair complexity
of the proposed codes with Construction 1 for the Class B
code and BASIC PM-MBR codes presented in [20]. BASIC
PM-MBR codes are constructed from an algebraic ring Rm,
where each symbol in the ring is a binary vector of length
m. In order to have a fair comparison with our codes, we
take the smallest possible field size for our codes and the
smallest possible ring size for the codes in [20]. Furthermore,
to compare codes with similar storage overhead, we consider
BASIC PM-MBR codes with repair locality, denoted by δb,
that leads to the same file size as for our proposed codes
(which is equal to k2) and code length n such that the code
rate (which is the inverse of the storage overhead) is as close
as possible to that of our proposed codes. The Class A codes
of the proposed codes in the table are (nA, nA− f) RS codes.
The codes are over GF(nA + 1) if nA + 1 is a prime (or a

power of a prime). If nA + 1 is not a prime (or a power of
prime), we construct an (n′, n′−f) RS code over GF(n′+1),
where n′ + 1 is the smallest prime (or the smallest power of
a prime) with n′ + 1 ≥ nA + 1, and then we shorten the RS
code to obtain an (nA, nA− f) Class A code. In the table, the
parameters for the proposed codes are given in columns 1 to 5
and those of the codes in [20] in columns 6 to 9. The code rates
R and Rb of the proposed codes and the BASIC PM-MBR
codes6 are given in columns 4 and 7, respectively. The smallest
possible field size for our codes and the smallest possible ring
size for the BASIC PM-MBR codes are given in columns
5 and 9, respectively. The normalized repair complexity7 for
BASIC PM-MBR codes, Cb

r , is given in column 10, while
the normalized repair complexity of the proposed codes, Cr,
is given in column 11. The normalized repair bandwidth for
BASIC PM-MBR codes, λb, is given in column 12, while
the normalized repair bandwidth of the proposed codes, λ, is
given in the last column. It can be seen that the proposed
codes achieve significantly better repair complexity. However,
this comes at the cost of a lower fault tolerance for the codes in
rows 2 and 3 (but our codes have significantly higher code rate)
and higher repair bandwidth (since BASIC PM-MBR codes are
MBR codes, their normalized repair bandwidth is equal to 1).
For the (9, 5, 3) code, the same fault tolerance of the (8, 5, 3)
code in [20] is achieved, despite the fact that the proposed
code has a higher code rate. We remark that FR codes achieve
a better (trivial) repair complexity compared to our proposed
codes. However, this comes at a cost of R < 0.5 and they
cannot be constructed for any n, k, and δ, where δ is the
repair locality.

In Table III, we compare the normalized repair bandwidth
of the proposed codes using Construction 1 and Construction 2
for Class B nodes. In the table, with λC1 and λC2, we refer
to the normalized repair bandwidth for Construction 1 and
Construction 2, respectively. For the codes presented, it is
seen that the heuristic construction yields an improvement in
repair bandwidth in the range of 1% − 7% with respect to
Construction 1.

VII. CONCLUSION

In this paper, we constructed a new class of codes that
achieve low repair bandwidth and low repair complexity for
a single node failure. The codes are constructed from two
smaller codes, Class A and B, where the former focuses on the
fault tolerance of the code, and the latter focuses on reducing
the repair bandwidth and complexity. It is numerically seen

6BASIC PM-MBR codes have code rate Rb = B/nδb, where B =(k+1
2

)
+ k(δb − k) is the file size and δb ∈ {k, k + 1, . . . , n− 1}.

7The normalized repair complexity of BASIC PM-MBR codes is Cb
r =

(3.5δb+2.5)(m−1)/2 [20]. Such codes have β = δb, λ = 1, and f = n−k.
The value of m is conditioned on the code length n (see [20, Th. 14]).

11

TABLE III
IMPROVEMENT IN NORMALIZED REPAIR BANDWIDTH OF THE PROPOSED

(n, k) CODES WHEN THE CLASS B NODES ARE HEURISTICALLY
CONSTRUCTED.

Code nA τ λC1 λC2 Improvement

(7, 4) 6 1 2 1.875 6.25%
(10, 6) 9 2 2.5 2.4167 3.33%
(13, 8) 12 3 3 2.9375 2.08%
(14, 8) 12 3 2.375 2.3125 2.63%
(16, 10) 15 4 3.5 3.45 1.43%

that our proposed codes achieve better repair complexity
than Zigzag codes, MDS codes, Piggyback codes, generalized
Piggyback codes, exact-repairable MDS codes, BASIC PM-
MBR codes, and are in some cases better than Pyramid codes.
They also achieve a better repair bandwidth compared to MDS
codes, Piggyback codes, generalized Piggyback codes, exact-
repairable MDS codes, and are in some cases better than LRCs
and Pyramid codes. A side effect of such a construction is that
the number of symbols per node that need to be encoded grows
only linearly with the code dimension. This implies that our
codes are suitable for memory constrained DSSs as compared
to Zigzag and MDR codes, for which the number of symbols
per node increases exponentially with the code dimension.

APPENDIX A
PROOF OF THEOREM 1

Consider an arbitrary set of τ ′ ≤ τ piggybacked nodes,
denoted by T = {j1, j2, . . . , jτ ′}, ji = j′i − (nA − τ) + 1,
j′i ∈ {nA − τ, . . . , nA − 1}. Then, the repair of the i-th row,
i = 0, . . . , k − 1, using the piggybacked nodes in T , would
depend upon the knowledge of the data symbols (piggybacks)
in the rows (i+ j1)k, (i+ j2)k, . . . , (i+ jτ ′)k. This is because
the knowledge of the piggybacks in these rows allows to
obtain the original MDS parity symbols in the i-th row. In the
following, we use this observation. We first proceed to prove
that if τ ′(τ ′+nA−k−τ) < k, then θ+τ ′ ≤ nA−k−τ+τ ′ data
nodes can be corrected using θ non-modified parity nodes and
the τ ′ piggybacked nodes in T . Using this we will complete
the proof of Theorem 1.

Lemma 1: Consider an (nA, k) Class A code with k + 2 ≤
nA < 2k. The code consists of τ piggybacked nodes and
nA − k − τ non-modified MDS parity nodes. If τ ′(τ ′ + nA −
k− τ) < k, then the code can correct θ+ ζ data node failures
using θ ≤ nA − k − τ non-modified parity nodes and the
τ ′ piggybacked parity nodes in the set T = {1, . . . , τ ′} for
ζ ≤ τ ′ ≤ τ .

Proof: We consider first the case when ζ = τ ′. Then,
assume that θ + ζ data nodes fail and there exists a sequence
i, (i+1)k, . . . , (i−1+τ ′)k of τ ′ data nodes that are available.
By construction, the parity symbol pA,p(j−1)k,nA−τ−1+t, t ∈ T ,
is (see (3)) given by

pA,p(j−1)k,nA−τ−1+t = pA(j−1)k,nA−τ−1+t + d(j−1+t)k,(j−1)k ,

(11)

where j = 0, . . . , k− 1. To recover all data symbols, set i′ =
(i+ τ ′)k and perform the following steps.

1) Obtain the ζ = τ ′ MDS parity symbols
pA(i′−1)k,nA−τ−1+t, t ∈ T (see (11)) in the (i′ − 1)k-th

row. This is possible because the piggybacks in the
(i′ − 1)k-th node are available.

2) Using the θ+ ζ MDS parity symbols and k− θ− ζ data
symbols in the (i′−1)k-th row, recover the missing θ+ζ
symbols in the (i′−1)k-th row of the failed data nodes.

3) i′ ← (i′ − 1)k.
4) Repeat Items 1), 2), and 3) τ ′−1 times. This ensures that

the failed symbols in the τ ′ rows i′, (i′ + 1)k, . . . , (i
′ −

1 + τ ′)k are recovered. This implies that the piggyback
symbols

di′,(i′−1)k , . . . , d(i′−1+τ ′)k,(i′−1)k in node (i′ − 1)k,

di′,(i′−2)k , . . . , d(i′−2+τ ′)k,(i′−2)k in node (i′ − 2)k,

...
di′,(i′−τ ′)k in node (i′ − τ ′)k,

(12)

are recovered. In other words, (12) says that in the
(i′ − t)k-th node, τ ′ + 1 − t piggybacked symbols are
recovered. More specifically, for t = 1, τ ′ piggybacked
symbols are recovered. Thus,

5) repeat Items 1) and 2), and set
6) i′ ← (i′− 1)k. We thus recover the i′-th row and obtain

the piggyback symbols in DRi′\DXi′ . This increases the
number of obtained piggyback symbols by 1 in the next
τ ′ nodes i′, (i′ − 1)k, . . . , (i

′ + τ ′ − 1)k. In a similar
fashion, we now have τ ′ piggybacked symbols in the
i′-th node, and Items 5) and 6) are repeated until all
k rows have been recovered. With this recursion, one
recovers the θ + τ ′ = θ + ζ failed data nodes.

For the case when ζ < τ ′, the aforementioned decoding
procedure is still able recover θ+ ζ data node failures. This is
because, in order to repair failed symbols in the (i′ − 1)k-th
row, one needs just ζ < τ ′ MDS parity symbols from T ′ ⊆ T .
If the (i′−1)k-th node is available, then ζ piggybacks allow to
recover the MDS parity symbols (see Item 1)). On the contrary,
if the (i−1)k-th node has been erased, then ζ piggybacks are
obtained from (12).

Note that the argument above assumes that τ ′ consecutive
data nodes are available. Thus, in order to guarantee that any
θ+ ζ data nodes can be corrected, we consider the worst case
scenario for node failures, where we equally spread θ+ζ data
node failures across the k data nodes. Since

k

θ + ζ
≥ k

nA − k − τ + τ ′
> τ ′,

where the last inequality follows by the assumption on τ ′

stated in the lemma, it follows that the largest gap of non-
failed data nodes in the worst case scenario is indeed greater
than or equal to τ ′.

The above lemma shows that the Class A code can correct
up to nA−k−τ+τ ′ erasures using non-modified parity nodes
and τ ′ modified parity nodes, provided the condition on τ ′ is
satisfied.

To prove that the code can correct nA−k− τ + τ ′ arbitrary
node failures, let us assume that ρ Class A parity nodes and
nA−k− τ + τ ′−ρ data nodes have failed. More precisely, let
ρ1 ≤ nA − k − τ non-modified nodes, ρ2 ≤ τ ′ piggybacked

12

Algorithm 1: Class B node construction when k is even
Initialization:
A = [ai,j] as defined in (7)
n = nA + nB − k with nB < 2k − τ and nA < 2k

1 for l ∈ {nA, . . . , n− 1} do
2 ρl ← k − τ − 1− l + nA
3 if l ≤ nA + k/2− τ − 2 then
4 PB,h

l ← PB
l

5 else if l > nA + k/2− τ − 2 and ρl > 1 then
6 PB,h

l ← ConstructNode(A, ρl)
7 else if l > nA + k/2− τ − 2 and ρl = 1 then
8 PB,h

l ← ConstructLastNode()
9 end

10 A← UpdateReadCost()
11 end

nodes in T , and ρ3 ≥ 0 remaining piggybacked nodes, where
ρ1 + ρ2 + ρ3 = ρ, fail. Clearly, it can be seen that there
are nA − k − τ − ρ1 non-modified parity nodes and a set of
ζ = τ ′−ρ2 modified nodes T ′ ⊆ T available. Also, note that
the number of data node failures is ρ3 less than the number
of combined available piggybacked nodes in T ′ and available
non-modified parity nodes. Thus, using Lemma 1 with θ =
nA− k− τ − ρ1− ρ3 and ζ = τ ′− ρ2, it follows that θ+ ζ =
(nA−k− τ −ρ1−ρ3) + (τ ′−ρ2) = nA−k− τ + τ ′−ρ data
nodes can be repaired. The remaining ρ failed parity nodes
can then be repaired using the k2 data symbols in the k data
nodes.

We remark that the decoding procedure in Lemma 1 in
essence solves a system of linear equations by eliminating τ ′k
variables (piggybacks) in τ ′ parity nodes. Once the piggybacks
are eliminated, the k(θ + τ ′) data symbols are obtained by
solving k systems of linear equations. Thus, the decoding
procedure is optimal, i.e., it is maximum likelihood decoding.

Consider the quadratic function ψ(τ ′) = τ ′2 + (nA − k −
τ)τ ′−k. According to the proof of Lemma 1 when ψ(τ ′) ≥ 0,
the decoding procedure fails as one can construct a failure
pattern for the data nodes where the largest separation (in the
number of available nodes) between the failed nodes would
be strictly smaller than τ ′. The largest τ ′ such that ψ(τ ′) < 0
can be determined as follows. By simple arithmetic, one can
prove that ψ(τ ′) is a convex function with a negative minima
and with a positive and a negative root. Therefore,

0 ≤ τ ′ < ξ =

√
(nA − k − τ)2 + 4k − (nA − k − τ)

2
,

where ξ is the positive root of ψ(τ ′). Furthermore, it may
happen that τ < ξ. Therefore, the maximum number of node
failures that the code can tolerate is

f =

nA − k − τ +

⌊√
(nA−k−τ)2+4k−(nA−k−τ)

2

⌋
if τ ≥ ξ

nA − k if τ < ξ
.

APPENDIX B
CLASS B PARITY NODE CONSTRUCTION

In this appendix, we give an algorithm that constructs nB−
k Class B parity nodes PB,h

nA
, . . . ,PB,h

n−1. The algorithm is a
heuristic for the construction of Class B parity nodes such
that the repair bandwidth of failed nodes is further reduced in
comparison with Construction 1 in Section IV.

The nodes PB,h
l , l = nA, . . . , n − 1, are constructed recur-

sively as shown in Algorithm 1. The k parity symbols in the
l-th node are sums of at most ρl data symbols di,j ∈ ∪j′DQj′ .
The construction of the l-th node for l ≤ nA + k/2 − τ − 2
(see Line 4) is identical to that resulting from Construc-
tion 1 in Section IV. The remaining parity nodes PB,h

l ,
l > nA+k/2−τ−2, are constructed using the sub-procedures
ConstructNode (A, ρl) and ConstructLastNode ().
After the construction of each parity node, the read costs
of the data symbols di,j are updated by the sub-procedure
UpdateReadCost (). In the following, we describe each
of the above-mentioned sub-procedures.

A. ConstructNode (A, ρl)

This sub-procedure allows the construction of the l-th Class
B parity node, where each parity symbol in the node is a
sum of at most ρl data symbols. The algorithm for the sub-
procedure is shown in Algorithm 2. Here, the algorithm is
divided into two parts. The first part (Line 1 to Line 19) adds
at most two data symbols to each of the k parity symbols,
while the second part (Line 21 to Line 43) adds at most ρl−2
data symbols.

In the first part, each parity symbol pBt,l, t = 0, . . . , k−1, is
recursively constructed by adding a symbol di,j ∈ DQj\∪j′Uj′
which has a corresponding read cost ai,j that is the largest
among all symbols indexed by Qj\ ∪j′ Uj′ (see Line 2 and
Line 7). The next symbol added to pBt,l is dj,i ∈ DXj if
such a symbol exists (Line 4). Otherwise, the symbol added is
dj,i2 ∈ DXj\∪j′Uj′ if such a symbol exists (Line 10). The set
Ut denotes the index set of data symbols from D that are added
to pBt,l. Note that there exist multiple choices for the symbol
di,j . A symbol di,j such that there is a valid dj,i ∈ DXj
is preferred, since it allows a larger reduction of the repair
bandwidth.

The second part of the algorithm chooses recursively at most
ρl−2 data symbols that should participate in the construction
of the k parity symbols. The algorithm chooses a symbol
dj,i3 ∈ DXj\∪j′Uj′ 6= ∅ such that read(dj,i3 , p

B
t,l + dj,i3) <

aj,i3 (see Line 23). In other words, choose data symbols
such that their read cost do not increase. It may happen that
DXj\∪j′Uj′ = ∅. If so, select dj2,i ∈ ∪j1DXj1\∪j′1Uj′1 such that
di′,j2 ∈ DUt and aj2,i > 1, for some i′ 6= i, exists, and then
add dj2,i to the parity symbol pBt,l (see Line 33). If dj2,i does
not exist, then an arbitrary symbol dj3,i ∈ ∪j1DXj1\∪j′1Uj′1 is
added (see Line 37). This process is then repeated ρl−2 times.

B. ConstructLastNode ()

This procedure constructs the l-th Class B parity node that
has ρl = 1. In other words, each parity symbol pBt,l is a data

13

symbol di,j ∈ ∪j′DQj′ . The procedure works as follows. First,
initialize Ut to be the empty set for t = 0, . . . , k − 1. Then,
for t = 0, . . . , k − 1, assign first the data symbol di,j to the
parity symbol pBt,l, where di,j ∈ DΨ(A∪

j′Qj′ \∪t′ Ut′
), and then

subsequently add (i, j) to Ut. Note that for each iteration there
may exist several choices for di,j , in which case we can pick
one of these randomly.

C. UpdateReadCost ()

After the construction of the l-th node, we update the read
costs of all data symbols di,j ∈ ∪j′DQj′ . These updated values
are used during the construction of the (l + 1)-th node. The
read cost updates for the parity symbol pBt,l, t = 0, . . . , k− 1,
are

ai,j = read(di,j , p
B
t,l), ∀di,j ∈ DUt .

REFERENCES

[1] J. Huang, X. Liang, X. Qin, P. Xie, and C. Xie, “Scale-RS: An efficient
scaling scheme for RS-coded storage clusters,” IEEE Trans. Parallel and
Distributed Systems, vol. 26, no. 6, pp. 1704–1717, Jun. 2015.

[2] C. Huang, M. Chen, and J. Li, “Pyramid codes: Flexible schemes to
trade space for access efficiency in reliable data storage systems,” in
Proc. IEEE Int. Symp. Network Comput. and Appl. (NCA), Cambridge,
MA, Jul. 2007.

[3] C. Huang, H. Simitci, Y. Xu, A. Ogus, B. Calder, P. Gopalan, J. Li,
and S. Yekhanin, “Erasure coding in Windows Azure storage,” in Proc.
USENIX Annual Technical Conf., Boston, MA, Jun. 2012.

[4] M. Sathiamoorthy, M. Asteris, D. Papailiopoulos, A. G. Dimakis,
R. Vadali, S. Chen, and D. Borthakur, “XORing elephants: Novel erasure
codes for big data,” in Proc. 39th Very Large Data Bases Endowment
(VLDB), Trento, Italy, Aug. 2013.

[5] D. S. Papailiopoulos and A. G. Dimakis, “Locally repairable codes,”
IEEE Trans. Inf. Theory, vol. 60, no. 10, pp. 5843–5855, Oct. 2014.

[6] A. G. Dimakis, P. B. Godfrey, Y. Wu, M. J. Wainwright, and K. Ram-
chandran, “Network coding for distributed storage systems,” IEEE Trans.
Inf. Theory, vol. 56, no. 9, pp. 4539–4551, Sep. 2010.

[7] K. V. Rashmi, N. B. Shah, and P. V. Kumar, “Optimal exact-regenerating
codes for distributed storage at the MSR and MBR points via a product-
matrix construction,” IEEE Trans. Inf. Theory, vol. 57, no. 8, pp. 5227–
5239, Aug. 2011.

[8] S. El Rouayheb and K. Ramchandran, “Fractional repetition codes for
repair in distributed storage systems,” in Proc. 48th Annual Allerton
Conf. Commun., Control, and Comput., Monticello, IL, Sep./Oct. 2010.

[9] Y. Wang, X. Yin, and X. Wang, “MDR codes: A new class of RAID-
6 codes with optimal rebuilding and encoding,” IEEE J. Sel. Areas
Commun., vol. 32, no. 5, pp. 1008–1018, May 2014.

[10] I. Tamo, Z. Wang, and J. Bruck, “Zigzag codes: MDS array codes with
optimal rebuilding,” IEEE Trans. Inf. Theory, vol. 59, no. 3, pp. 1597–
1616, Mar. 2013.

[11] V. R. Cadambe, C. Huang, J. Li, and S. Mehrotra, “Polynomial length
MDS codes with optimal repair in distributed storage,” in Proc. 45th
Asilomar Conf. Signals, Syst. and Comput. (ASILOMAR), Pacific Grove,
CA, Nov. 2011.

[12] G. K. Agarwal, B. Sasidharan, and P. V. Kumar, “An alternate con-
struction of an access-optimal regenerating code with optimal sub-
packetization level,” in Proc. 21st Nat. Conf. Commun. (NCC), Mumbai,
India, Feb. 2015.

[13] J. Li, X. Tang, and U. Parampalli, “A framework of constructions
of minimal storage regenerating codes with the optimal access/update
property,” IEEE Trans. Inf. Theory, vol. 61, no. 4, pp. 1920–1932, Apr.
2015.

[14] Z. Wang, I. Tamo, and J. Bruck, “Explicit minimum storage regenerating
codes,” IEEE Trans. Inf. Theory, vol. 62, no. 8, pp. 4466–4480, Aug.
2016.

[15] B. Sasidharan, M. Vajha, and P. V. Kumar, “An explicit, coupled-layer
construction of a high-rate MSR code with low sub-packetization level,
small field size and all-node repair,” Sep. 2016, arXiv: 1607.07335v3.
[Online]. Available: https://arxiv.org/abs/1607.07335

[16] M. Ye and A. Barg, “Explicit constructions of optimal-access MDS
codes with nearly optimal sub-packetization,” IEEE Trans. Inf. Theory,
vol. 63, no. 10, pp. 6307–6317, Oct. 2017.

[17] J. Li, X. Tang, and C. Tian, “A generic transformation for optimal repair
bandwidth and rebuilding access in MDS codes,” in Proc. IEEE Int.
Symp. Inf. Theory (ISIT), Aachen, Germany, Jun. 2017.

[18] N. Raviv, N. Silberstein, and T. Etzion, “Constructions of high-rate
minimum storage regenerating codes over small fields,” IEEE Trans.
Inf. Theory, vol. 63, no. 4, pp. 2015–2038, Apr. 2017.

[19] K. V. Rashmi, N. B. Shah, and K. Ramchandran, “A piggybacking design
framework for read-and download-efficient distributed storage codes,”
IEEE Trans. Inf. Theory, vol. 63, no. 9, pp. 5802–5820, Sep. 2017.

[20] H. Hou, K. W. Shum, M. Chen, and H. Li, “BASIC codes: Low-
complexity regenerating codes for distributed storage systems,” IEEE
Trans. Inf. Theory, vol. 62, no. 6, pp. 3053–3069, Jun. 2016.

[21] H. Hou, P. P. C. Lee, Y. S. Han, and Y. Hu, “Triple-fault-tolerant binary
MDS array codes with asymptotically optimal repair,” in Proc. IEEE
Int. Symp. Inf. Theory (ISIT), Aachen, Germany, Jun. 2017.

[22] S. Kumar, A. Graell i Amat, I. Andriyanova, and F. Brännström, “A fam-
ily of erasure correcting codes with low repair bandwidth and low repair
complexity,” in Proc. IEEE Global Commun. Conf. (GLOBECOM), San
Diego, CA, Dec. 2015.

[23] S. Yuan and Q. Huang, “Generalized piggybacking codes for distributed
storage systems,” in Proc. IEEE Global Commun. Conf. (GLOBECOM),
Washington, DC, Dec. 2016.

[24] A. S. Rawat, I. Tamo, V. Guruswami, and K. Efremenko, “MDS
code constructions with small sub-packetization and near-optimal repair
bandwidth,” IEEE Trans. Inf. Theory, to appear.

[25] M. Blaum, J. Brady, J. Bruck, and J. Menon, “EVENODD: An efficient
scheme for tolerating double disk failures in RAID architectures,” IEEE
Trans. Comput., vol. 44, no. 2, pp. 192–202, Feb. 1995.

[26] A. Karatsuba and Y. Ofman, “Multiplication of multidigit numbers on
automata,” Sov. Phys. Doklady, vol. 7, no. 7, pp. 595–596, Jan. 1963.

[27] A. Weimerskirch and C. Paar, “Generalizations of the Karatsuba
algorithm for efficient implementations,” Jul. 2006. [Online]. Available:
https://eprint.iacr.org/2006/224.pdf

[28] J. M. Pollard, “The fast Fourier transform in a finite field,” Math.
Comput., vol. 25, no. 114, pp. 365–374, Apr. 1971.

[29] R. Crandall and C. Pomerance, Prime Numbers: A Computational
Perspective. Springer, 2001.

[30] S. Gao and T. Mateer, “Additive fast Fourier transforms over finite
fields,” IEEE Trans. Inf. Theory, vol. 56, no. 12, pp. 6265–6272, Dec.
2010.

14

Algorithm 2: ConstructNode (A, ρl)

Initialization:
t, j ← 0
Ut1 ← ∅, t1 = 0, . . . , k − 1

1 while min∀t1 |Ut1 | < 2 do
2 Select di,j ∈ DΨ(AQj\∪j′ Uj′

) s.t.
∃ dj,i ∈ DXj , aj,i > 1

3 if di,j exists then
4 pBt,l ← di,j + dj,i
5 Ut ← Ut ∪ {(i, j), (j, i)}; t← t+ 1
6 else
7 Select di1,j ∈ DΨ(AQj\∪j′ Uj′

)

8 if di1,j exists then
9 if ∃ dj,i2 ∈ DXj\∪j′Uj′ s.t.

read(dj,i2 , p
B
t,l + dj,i2) < aj,i2 and aj,i2 > 1

then
10 pBt,l ← di1,j + dj,i2
11 Ut ← Ut ∪ {(i1, j), (j, i2)}; t← t+ 1
12 else
13 pBt,l ← di1,j
14 Ut ← Ut ∪ {(i1, j), (−1,−1)}; t← t+ 1
15 end
16 end
17 end
18 j ← (j + 1)k
19 end
20 t, j ← 0
21 while min∀t1 |Ut1 | ≤ ρl do
22 if DXj\∪j1Uj1 6= ∅ then
23 if ∃ dj,i3 ∈ DXj\∪j′Uj′ s.t.

read(dj,i3 , p
B
t,l + dj,i3) < aj,i3 and aj,i3 > 1

then
24 pBt,l ← pBt,l + dj,i3
25 Ut ← Ut ∪ {(j, i3)}; t← t+ 1
26 else if l > nA then
27 Ut ← Ut ∪ (−1,−1)}; t← t+ 1
28 end
29 else
30 if |Ut| ≤ ρl − 1 then
31 Select dj2,i ∈ ∪j1DXj1\∪j′1Uj′1 s.t.

di′,j2 ∈ DUt and aj2,i > 1 for some i′ 6= i
32 if dj2,i exists then
33 pBt,l ← pBt,l + dj2,i
34 Ut ← Ut ∪ {(j2, i)}; t← t+ 1
35 else
36 Select dj3,i ∈ ∪j1DXj1\∪j′1Uj′1
37 pBt,l ← pBt,l + dj3,i
38 Ut ← Ut ∪ {(j3, i)}; t← t+ 1;
39 end
40 end
41 end
42 j ← (j + 1)k
43 end
44 return {pB0,l, . . . , pBk−1,l}

