CHALMERS

UNIVERSITY OF TECHNOLOGY

Modeling and Synthesis of the Lane Change Function of an Autonomous
Vehicle

Downloaded from: https://research.chalmers.se, 2023-03-31 22:45 UTC

Citation for the original published paper (version of record):

Krook, J., Zita, A., Kianfar, R. et al (2018). Modeling and Synthesis of the Lane Change Function of
an Autonomous Vehicle. IFAC-PapersOnLine, 51(7): 133-138.
http://dx.doi.org/10.1016/j.1fac0l.2018.06.291

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology.
It covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004.
research.chalmers.se is administrated and maintained by Chalmers Library

(article starts on next page)

Modeling and Synthesis of the Lane Change
Function of an Autonomous Vehicle

Jonas Krook* Anton Zita Roozbeh Kianfar *
Sahar Mohajerani** Martin Fabian **

* Zenuity, Géteborg, Sweden
(e-mail: firstname.lastname@zenuity.com)
** Department of Electrical Engineering, Chalmers University of
Technology, Géteborg, Sweden
(e-mail: {mohajera,fabian}@chalmers.se)

Abstract: Unexpected incorrect behavior of autonomous vehicles can have catastrophic
outcomes. But, as with any large-scale software development, correctness of the system is not
easily guaranteed. As the system is made up of multiple sub-modules that interact with each
other, unexpected behavior can arise from incorrect interactions between the modules. In a
previous paper, formal verification was applied to the lane change module of the decision and
control software (under development) for an autonomous vehicle. This revealed incorrectness in
the model, which could also be shown to exist in the actual software. Manual changes to the
model did not result in absence of the incorrectness, and so in this paper we aim to patch the error
by applying synthesis. The synthesized result is correct by construction, but it is not obvious
what part of the functionality is disabled by the synthesis. Though different synthesis techniques
were able to generate supervisors for the model, only when the supervisor was expressed as guard
conditions on the events was it possible to interpret the effect of the synthesis. However, the
supervisors put constraints on how the input data to the lane change module might change, so
in the end the supervisors put behavioral requirements on the modules that generate the input

to the lane change module.

Keywords: Extended finite-state machines, Synthesis, Supervisory control theory, Discrete

event systems.

1. INTRODUCTION

The automotive industry is currently on a road towards
autonomous vehicles that will maneuver themselves with-
out human supervision or intervention, referred to as Level
4 and Level 5 automation according to the SAE stan-
dard (On-Road Automated Driving (Orad) Committee,
2016). These vehicles will operate in real traffic situa-
tions, together with other cars — both manually and
autonomously driven — pedestrians, cyclists and all kinds
of road users. Thus, their correct behavior is of utmost
importance.

In order to deploy Level 4 automation and beyond on pub-
lic roads, the automotive industry is required to follow the
process recommended by ISO standard 26262 (ISO/TC
22/SC 32, 2012) to achieve functional safety. This in
practice means that for certain safety requirements the
probability of failure should be less than 10~%. Breaking
down such requirements to a decision-making module, no
more than 1 wrong decision should be made in 10° hours of
operation. Achieving such level of integrity and correctness
makes any approach only based on simulation, field testing

1 This work was partially supported by the Wallenberg Artificial
Intelligence, Autonomous Systems and Software Program (WASP)
funded by Knut and Alice Wallenberg Foundation.

2 Supported by the Swedish Research Council (VR 2016-00529).

and statistical data inadequate and unrealistic. As noted
by (Kalra and Paddock, 2016), if a fleet of 100 autonomous
vehicles drives 24 hours/day, 365 days/year, at an average
speed of 25 mph, it takes 400 years to demonstrate with
95% confidence that their failure rate is 20% better than
the human driver failure rate of 1.09 fatalities per 100
million miles (US, 2013).

Though system testing is still necessary, formal verifica-
tion (Baier and Katoen, 2008) is a complementary tool,
where a formal model of the system is subjected to math-
ematically proven methods to find counter-examples that
show if and how the specified behavior is broken. The
power of formal verification is that not only presence of
counter-examples can be shown, but also absence of them
and in that case the model has been exhaustively searched
and is guaranteed to under no circumstances to break
the specification. Assuming that the model is accurate in
enough detail, this can then be said also about the modeled
implementation.

One of the companies leading in development of software
for autonomous driving is Zenuity. In a recent paper (Zita
et al., 2017), we reported an application of formal veri-
fication to a small part of the software for autonomous
driving being developed at Zenuity. The existing MAT-
LAB (MathWorks, 2013) code was manually translated
into Extended Finite State Machines (EFSM) (Cheng and

Krishnakumar, 1993; Skoldstam et al., 2007), which were
then loaded into the formal verification and synthesis
tool Supremica (Akesson et al., 2006; Malik et al., 2011;
Akesson, 2016). Some basic specifications were added, and
existing verification techniques (Mohajerani et al., 2016)
were used to check for counter-examples, the presence of
which would signify non-fulfillment of the given specifica-
tions. As it turned out, such counter-examples were found.

Formal synthesis (Ramadge and Wonham, 1989; Moha-
jerani et al., 2014, 2017) can automatically remove all
counter-examples related to a given plant with specifi-
cation. Whereas formal verification points out a single
counter-example, which the user can then contemplate,
understand, and manually correct, synthesis automatically
removes all counter-examples (using repeated verification
and correction) in a structured but still “black-box” kind
of way. Though the result will be correct by construction,
it is not always clear what parts of the functionality that
gets removed; for complex industrial systems the synthesis
result might be highly complex and difficult to analyze.
A designer might easily be fooled by the notion of proven
correctness into believing that a successful synthesis means
that the specifications are sound and that the synthesis
results in a good system behavior. It is not obvious at
all times how modeling and choice of synthesis method
affect the possibility to effectively analyze the result, or
the feasibility of the synthesis.

In this paper, we report a continuation of the work begun
in Zita et al. (2017); Petersson and Zita (2016). Since
the counter-example was not easily removed manually,
we explore the feasibility of using formal synthesis to
automatically remove all counter-examples related to the
given specification. By doing this we hope to be able to
patch the code, without having to model all specifications
and implement the code anew. The system is complex (the
system treated in this paper has more than 9.2-10° states
and 1.3 - 105 transitions), so it is not trivial to find out if
any useful behavior, such as in this case being able to turn
both right and left, is removed. This is further accentuated
by some synthesis methods that, to be able to cope with
systems of huge complexity, employ abstractions to remove
information redundant for the synthesis task, thus making
the result next to impossible to relate back to the original
system.

This paper reports the results of some synthesis experi-
ments with the system modeled in Zita et al. (2017); Pe-
tersson and Zita (2016). Both the monolithic and the com-
positional abstraction-based synthesis of Supremica (Mo-
hajerani et al., 2014, 2017) can indeed synthesize correct
models, but the result is practically incomprehensible due
to the size of the result in the former case, and due to the
abstractions in the latter case. The BDD-based synthe-
sis implemented in Supremica (Fei et al., 2014), though
working on the monolithic model, can also synthesize a
correct model, and since the result is returned as Boolean
constraints on controllable events, the result is much more
easily comprehended. However, the result puts constraints
on how the input data to the lane change module might
change, thus placing behavioral requirements on the mod-
ules that generate the input to the lane change module.

The paper is structured as follows. Section 2 collects
the preliminary background of EFSMs, controllability,
BDD-based synthesis, and compositional synthesis. Then,
Section 3 gives an overview of the overall system together
with the model of it. Section 4 then presents a specification
that the systems should fulfill, but was in Zita et al. (2017);
Petersson and Zita (2016) shown not to. The synthesis is
then described in Section 5, which also discusses the result.
The paper concludes with Section 6 where key findings are
summed up and some future works are suggested.

2. PRELIMINARIES

The logical behavior considered in this paper can be
modeled in terms of states and events; where states
represent situations where certain properties hold, and
events are associated to transitions between the states that
affect changes of those properties. A typical formalism
for this is finite-state machines (FSM) (Ramadge and
Wonham, 1989; Cassandras and Lafortune, 2010). FSMs
are a suitable formalism in this case, since continuous
dynamics can be disregarded and floating point data is
used mainly for comparisons.

Supremica implements several different synthesis algo-
rithms for FSMs, among them ordinary monolithic synthe-
sis, as well as synthesis based on binary decision diagrams
(BDDs), and compositional abstraction-based synthesis.
These all have different properties, some of which are
investigated in the following sections.

2.1 Extended Finite-State Machines

Eztended finite-state machines (EFSM) are similar to con-
ventional finite-state machines, but augmented with wup-
dates associated to the transitions (Cheng and Krishnaku-
mar, 1993; Skoldstam et al., 2007); formulas constructed
from variables, integer constants, the Boolean literals true
(T) and false (F), propositional logic connectives, and
discrete arithmetic operators.

A variable v is an entity associated with a bounded discrete
domain dom(v) and an initial value v° € dom(v). Let
V = {vo,...,vn} be the set of variables with domain
dom(V) = dom(vg) x - - - x dom(v,,). An element of dom(V)
is called a wvaluation and is denoted by © = (g,...,0n)
with ¢; € dom(v;), and the value associated to variable
v; € V is denoted ¥[v;] = ¥;. The initial valuation is

v = (v§,...,0%).

r n

A second set of variables, called next-state variables, de-
noted by V' = {v' | v € V } with dom(V’) = dom(V), is
used to describe the values of the variables after execution
of a transition. Variables in V are referred to as current-
state variables to differentiate them from the next-state
variables in V’. The set of all update formulas using
variables in V and V’ is denoted by IIy .

For an update p € Ily, the terms vars(p) and vars'(p)
denote the sets of all variables, and all next-state variables,
respectively, that occur in p. For example, if p = 2’ = y+1
then vars(p) = {z,y} and vars'(p) = {z}. Here and in
the following, the relation = denotes syntactic identity of
updates to avoid ambiguity when an update contains the
equality symbol =.

With slight abuse of notation, updates p € Il are also
interpreted as predicates over their variables, and they
evaluate to T or F, i.e., p: dom(V) x dom(V’) — {T,F}.
For example, if V' = {z} with dom(z) = {0,1}, then
the update p = 2/ = = + 1 means that the value of the
variable = in the next state will be increased by 1 over
its current-state value. Its predicate p(z,z’) evaluates as
p(0,1) =T and p(1,1) = p(0,0) = p(1,0) = F

Definition 1. An extended finite-state machine (EFSM)
is a tuple E = (,Q,—,Q° Q%¥), where ¥ is a set of
events, the alphabet; () is a finite set of locations; — C
Q x X x IIy x Q is the conditional transition relation;
Q° C Q is the set of initial locations; and Q¥ C (@ is the
set of marked locations.

The expression qq P q1 denotes the presence of a transi-
tion in F, from location g to location ¢; with event o and
update p. Such a transition can occur if the EFSM is in
location gg and the update p evaluates to T, and when the
transition occurs, the EFSM changes its location from ¢q
to ¢; while updating the variables in vars’(p) in accordance
with p; variables not contained in vars’(p) are unchanged.

Given an EFSM E = (X,Q,—,Q°,Q%), its variable set
is vars(E) = U(qo_gp a)e—s vars(p), and it contains all the

variables that appear on some transitions of FE.

Definition 2. Given two EFSMs E; = (3;,Q1,—, @5,
Q%) and By = (X5,Qq, —4,Q5,Q%), the synchronous
composition of Ey and Ey is By || Ea = (X, UX,, Q1 X @4,
—, Q% x Q3,Q% x Q%), where:

0:p1/Ap2

(21, 22) T2 (y1,y0) if 0 € 21Ny, 21 T2y,

gip2
and xg ——32 Y2 ;

(x1,x2) zh, (y1,22) if 0 € X1\ X2 and x4 e Y13

(.’L‘l,mg) ﬂ) (ml,yg) ifoe 22\21 and xo %2 Yo -

In an EFSM, the current state of the system is given by
the current location together with the current values of all
the variables. Since the variables are discrete and bounded,
the EFSM can be flattened, which introduces states for the
combinations of locations and variable values (Baier and
Katoen, 2008).

Definition 3. Let E = (£,Q,—,Q°, Q%) be an EFSM
with variable set vars(E) = V. The monolithic flattening
of Eis U(E) =(X,Qu, —y, QY, Q%) where

e Qu =Q x dom(V);

(z,9) Sy (y,w) if E contains a transition z =% y
such that p(0,w) = T;

Qy = Q° x{v°}

Q¥ = Q¥ x dom(V).

U(F) is the FSM representation of the EFSM, where
all the variables have been removed and their values ¥
embedded into the state set Q7. This ensures the correct
sequencing of transitions in the FSM.

2.2 Controllability

A key property when it comes to synthesis is the no-
tion of controllability. Synthesis removes states that are
considered “bad” in the sense that they break the given

specification, and transitions to bad states must also be
removed to make the bad states unreachable in the model.
However, some of these transitions are labeled by events
that are considered uncontrollable in the sense that if the
source-state of such a transition is reached then there is
no way to guarantee that the event labeling the transition
will not occur taking the system to the bad state. A typical
example is an event representing some input; if at some
state this input may occur, the system must be ready
to transit on that event, or not have that state at all
reachable. This is expressed as the synthesis result must
be controllable (Ramadge and Wonham, 1989; Cassandras
and Lafortune, 2010) with respect to the uncontrollable
events. Controllability guarantees that the synthesized
model can always remain within the specified behavior.

2.8 BDD-based Synthesis

A Binary Decision Diagram (BDDs) is a data structure
that can efficiently store huge state-spaces and transition
sets encoded as Boolean functions. The computational
complexity of synthesis using BDDs does not depend on
the number of states or transitions, but on the number
of nodes in the BDD, as the computations are performed
symbolically rather than explicitly; synthesis is performed
on sets of states and transitions rather than single such
elements. So even though the BDD-based synthesis works
on a monolithic model, it can handle systems of consid-
erable sizes. The approach presented in (Fei et al., 2014)
uses partitioning techniques to further stretch the ability
of the synthesis procedure.

The BDD-based synthesis works directly on the EFSM
model, encoding the transition relation and the guards
as Boolean expressions. The synthesis then results in a
partitioning of the state-space into allowed and forbidden
states, and then guarantees that only controllable events
take the system from the allowed into the forbidden states.
From this is then generated guards that represent the
control actions of the supervisor. These guards are Boolean
expressions over values of variables and state labels, that
define when the particular event is enabled.

2.4 Compositional Synthesis

The compositional abstraction-based synthesis works on
the flattened EFSM model by gradually abstracting sys-
tem components and collecting partial supervisors at each
step. Abstraction means merging states or removing tran-
sitions. Moreover, sometimes it can be determined that
some states must eventually be removed by the synthesis.
It is then possible to remove those states at an early stage
and add the refined components as a partial supervisor
to the supervisor set (Mohajerani et al., 2014, 2017). At
the first step, the compositional synthesis abstracts each
component and collects possible partial results. When no
more abstraction is possible, some components are com-
posed and the result is abstracted again. This procedure
is continued until one single component is obtained. The
final component has, due to the abstractions, less states
or transitions compared to the original system. Monolithic
synthesis is applied on this abstracted final component and
the result is added to the supervisor set (Mohajerani et al.,
2014, 2017).

ChangeLane Path

:}p,m“m LaneChangeRequest

Path Planner
TrafficState ath Planner

Lateral State
Manager

Direction Acceleration

VehicleState TurnIndicator

Fig. 1. Lane change module system overview with signal
flow. The Planner, lateral state manager, and path
planner are depicted as boxes.

3. SYSTEM DESCRIPTION AND MODELING

This paper focuses on a part of the lane change module
called the lateral state manager (LSM). The lane change
module is implemented with the use of several classes,
all with different responsibilities. The interactions be-
tween three of these classes, Planner, LSM, and the Path
Planner, are considered (see Fig. 1). The implementation
of the lane change module is written in object oriented
MATLAB-code. The lane change module is cyclically up-
dated at a high frequency with the current status of the
vehicle, surrounding traffic situation, and current reference
signals.

Planner has the responsibility to decide in which lane to
drive, and when. Based on the vehicle’s current position,
it sends lane change requests to the LSM. These are
three valued signals that can take the values NoRequest,
ChangelLeft, and ChangeRight. The request reflects which
lane is the desired lane, not that a lane change can or may
be done right now.

The LSM receives the lane change request signal and issues
commands to the Path Planner to safely change lanes, if
Planner requests it. LSM has to keep track of where in
the process of the lane change the car currently is, and
thus it is implemented as a state machine.

Based on the commands from the Planner and the LSM,
the Path Planner creates a path and required control
signals to make a lane change in a safe and efficient
manner. This is then executed by lower level controllers.
Since the task of the Path Planner is to calculate a path
for the current inputs there is no need to use data from
previous updates. States are hence completely handled
within LSM.

The implementation of LSM is done with a set of methods
and variables, where the current state is one of the vari-
ables. The LSM code is called once every execution cycle,
and it goes through three different stages during each call:

(i) All of the inputs are updated according to the func-
tion call arguments. This step is associated to the
event update in the model.

(ii) A code snippet associated to the current state is
executed. This code assigns output and persistent
variables, and decides whether the system should
transition into a new state.

(iii) If a transition occurs, then the third stage executes
specific code connected to entering a certain state.
This code assigns output and persistent variables.

A small example of this is shown in Fig. 2. The four
locations to the left correspond to the high level LSM state
called S0, and the four locations to the right correspond
to the high level LSM state called S1. After an update call
to the S1 state, the input variable request is first assigned

a value. The internal code for the state is run during event
S1_update. In the end, the request variable is checked to
determine whether to stay in S1 or to transition into S0.
Fig. 2 is a minimal working example of the LSM and the
properties that are relevant in this treatise. We will use it
for illustrative purposes for the rest of the paper.

Modeling LSM’s 223 lines of MATLAB-code in Supremica
was done manually, as described in Zita et al. (2017). This
resulted in a single EFSM with 75 locations, 86 events, 123
transitions, and 17 variables (14 Boolean, 2 three-valued,
and one T-valued variable holding the current location).
Using Supremica’s normalizing compiler, the flattening of
this EFSM plant model has 370 864 states, 105 events, and
528 394 transitions.

These numbers are lower than what is quoted in Zita
et al. (2017), because for verification the variables’ initial
values could be left undetermined, whereas the synthesis
algorithms implemented in Supremica can only handle
deterministic systems, and so the initial values of the
variables were set to false for the Booleans, and 0 for the
others. These initial values matches the default values of
the variables in the source code. Moreover, as will be stated
later, this simplification does not affect the result of the
verification.

Although a systematic approach was used in the modeling
of the MATLAB code, manual translation always has the
chance of introducing modeling errors. However, since the
conflicts found in the model were possible to reproduce
by simulations of the code, there is at least some level of
correspondence.

4. SPECIFICATION

Zita et al. (2017) specifies a property that the LSM shall
always do a lane change to the same lane as is requested by
the Planner. This was shown not to hold. A good manual
fix was elusive, so synthesis is performed to try to patch the
issue. The property states that the LSM internal variable
direction and the incoming request from Planner may not
differ during more than one update event; when a lane
change is performed, it needs to accord with the currently
active request. Fig. 3 shows R, the EFSM model of the
lane change request specification.

If two consecutive updates occur where direction and
request differs, then R of Fig. 3 will transition from the
initial location sy through location s; to location ss. If
the variables would be equal during one of the events, R
would transition back from s; to s, or do a self loop in
Sp. From s, it is not possible to come back to the initial
state, and so R blocks in s5. Verification showed that this
blocking state is indeed reachable from the initial state in
the global system of LSM||R. As described by Zita et al.
(2017), a counter-example was given and it could be shown
that this faulty behavior was also present in the actual
code and could lead to collision.

Even with the initial values of the variables set to distinct
values, the problem described by Zita et al. (2017) persists.
The same problem can be shown to exist in the minimal
example of Fig. 2.

el : request’ = ChangeLeft

e2 : request’ = NoReque3)

ed : request = NoRequest

eb : request # NoRequest,

eb : request # NoRequest

el : request’ = ChangeLeft

€2 : request’ = NoReque

>

e3 : request’ = ChangeRight

SO_update : direction’ = reque

> »>
sigl update S1l_update

e3 : request’ = ChangeRigh

e4 : request = NoRequest

Fig. 2. A minimal working example of the verified code. This simplified model is used for illustrative purposes.

update : direction = request

S0 update : direction # request
») »

> >

O s2
S1 ypdate : direction # request

update : direction = request

Fig. 3. Specification describing that the direction variable
should always on each update be equal to the input
parameter request.

5. SYNTHESIS

The monolithic model of the original plant and the spec-
ification in Fig. 3 has in total 923854 states, 1274732
transitions, and 105 events. Given enough memory, mono-
lithic synthesis can be done, and in roughly 10 seconds
(using Supremica’s “Monolithic (Waters)” algorithm) this
removes 406 684 blocking states, resulting in a supervisor
with 517170 states, and 715594 transitions.

The compositional synthesis (using Supremica’s “Compo-
sitional (Waters)” algorithm) produces in roughly 0.5 sec-
onds three supervisors, the largest of which has 346 states
and 1446 transitions. Synchronizing those supervisors with
the plant confirms that the compositional result has the
same behavior as the monolithic one, as the number of
states and transitions are identical.

The models obtained by monolithic and compositional
synthesis are correct by construction, but describe restric-
tions of the original model, and due to their sheer size it is
impossible to interpret the effect of the synthesis, like what
behavior of the model that becomes disabled; for instance,
it could be that the synthesis removes the possibility to
ever turn left, which is clearly unsatisfactory. Morevoer,
due to the abstractions used by the compositional synthe-
sis, it is practically impossible to map the states of that
supervisor to the plant states. It seems that to find out how
the monolithic or the compositional supervisors affect the
plant and what behavior is removed, the only option is
to simulate the supervisors together with the plant and
see what paths that are not generated anymore. This is a
tedious task, and is as daunting as the exhaustive testing
that the formal methods attempt to circumvent. In a while
we will see why the ease of analyzing is important.

The BDD-based synthesis on the other hand, produces
a list of guards which are attached to the events of the
original model. Analyses reveal that the generated guards
all concern the request input signal from the Planner and
the internal variable direction. In principle, the guards

do not allow the input signal request to take any other
value than the current value of direction, if those two have
already been unequal. For the event el in Fig. 2, this
corresponds to having the additional guard
(request = ChangeRight) V (direction = ChangeLe ft)

So, if the Planner issues a request which is unequal to
direction and differs from the previous request, then the
guard will block the el event. This means that Planner
may not issue a request to the left. However, the aim was
to patch LSM, not to put new requirements on Planner.
Since request is an input from Planner, events el, e2, and
e3 must always be enabled after an update. Thus, these
three events should be uncontrollable for LSM.

By making el uncontrollable, the guards cannot disable
its occurrence, but then they cannot prevent request and
direction from being unequal either, so the synthesis fails
in this case; the result is the null supervisor which signifies
that no solution exists.

For the synthesis to become meaningful, the original model
must be changed. The original model is a direct translation
of the code, so every line of code is represented, but for
synthesis what matters is how the inputs behave, how
that affects the state, and how the outputs should be set
based on the inputs and the state. What is immediately
apparent when investigating the plant in Fig. 2 is that
there is only one event, S0_update, which is associated
with an assignment of direction, and then it is only by
setting direction to the same value as request. Hence,
a supervisor has no possibility to change the value of
direction during any transition between locations S1 and
S2. Having identified this, it is possible to add the plant
shown in Fig. 4 to the model. Now, a supervisor has access
to a controllable event, output_update, between e4 or eb
and wupdate, where the supervisor has the possibility to
choose the value of the variable direction. Synthesis of the
plants in Fig. 2 and 4, and the specification in Fig. 3
produces a supervisor that assigns request to direction
when Fig. 2 is in location S1 and if request and direction
differed during the last update event.

The resulting supervisor makes sure to update direction
such that it matches request sufficiently often. However,
when analyzing the original model it becomes clear that
this is not the behavior sought for. The values of direction
and request should not differ during more than one update
event, but if this is enforced only by letting direction
mimic request we have only achieved a copy of the request
variable. Instead, the intention is that if in location S2
in Fig. 2, direction differs from request, then event e4

S0_update
S1l_update

ed

update
ed

output_update : direction’ = ChangeRight

output_update : direction’ = NoReques

output_update : direction’ = ChangeLeft

Fig. 4. An additional EFSM to get feasible synthesis.

should be fired; otherwise eb. Thus, by changing the
guards for the e4 and eb events, originating from location
S2, to request # direction and request = direction,
respectively, we can verify that the plant in Fig. 2 complies
with the specification in Fig. 3; no need at all for the plant
in Fig. 4 or any synthesis. However, this way of correcting
a model is not within the scope of synthesis, as synthesis
can only remove behavior.

6. CONCLUSION

An EFSM model of a part of the lane change module
for an autonomous vehicle with known incorrect and pos-
sibly dangerous behavior was examined and subjected
to synthesis in an attempt to automatically adjust the
model to fulfill the given specification. The standard mono-
lithic supervisor synthesis, the compositional abstraction-
based synthesis, and BDD-based synthesis were tried on
the model and all three approaches managed to generate
identical supervisors but only the BDD-based supervisor,
which comes as a set of guards on the events, was useful
for determining the behavior of the supervisor.

As it turned out, the supervisor synthesized from the orig-
inal model put restrictions on how the input data might
change, which basically means that the synthesis result
places requirements on another module in the system. It
seems that, in general, it is very difficult to patch legacy
code with the technique attempted in this paper.

The results show that the possibility to effectively ana-
lyze the synthesized supervisor is crucial. Otherwise one
cannot know whether the resulting constrained system is
a plausible solution to the problem at hand. Although
the synthesis did not produce usable supervisors, in this
particular case the method highlighted an error in the code
and a missing requirement.

Research is currently ongoing regarding how to incorpo-
rate these types of formal techniques into the daily en-
gineering work flow. With existing legacy code, the main
obstacles include how to get the model from the code, and
finding the specifications, many of which are not written
down explicitly, plus useful means to understand what
behavior gets removed by synthesis. For these types of
techniques to get industrial acceptance these obstacles
must be overcome.

REFERENCES

Alkesson, K. (2016). Supremica. http://www.supremica.
org/. Online, accessed 2016-04-29.

Akesson, K., Fabian, M., Flordal, H., and Malik, R.
(2006). Supremica - an integrated environment for

verification, synthesis and simulation of discrete event
systems. In Proceeding of the 8th Workshop on Discrete
Event Systems (WODES’06), Ann Arbor, MI, USA,
384-385.

Baier, C. and Katoen, J.P. (2008). Principles of Model
Checking (Representation and Mind Series). The MIT
Press.

Cassandras, C.G. and Lafortune, S. (2010). Introduction
to Discrete Event Systems, 2nd Edition. Springer.

Cheng, K.T. and Krishnakumar, A.S. (1993). Automatic
functional test generation using the extended finite state
machine model. In Proceedings of the 30th International
Design Automation Conference, DAC 93, 86-91. ACM,
New York, NY, USA.

Fei, Z., Miremadi, S., Akesson, K., and Lennartson, B.
(2014). Efficient symbolic supervisor synthesis for ex-
tended finite automata. IEEE Transactions on Control
Systems Technology, 22, 2368-2375.

ISO/TC 22/SC 32 (2012). ISO 26262: Road vehicles
— functional safety. Technical report, International
Organization for Standardization.

Kalra, N. and Paddock, S.M. (2016). Driving to Safety:
How Many Miles of Driving Would It Take to Demon-
strate Autonomous Vehicle Reliability? RAND Corpo-
ration.

Malik, R., Fabian, M., and Akesson, K. (2011). Mod-
elling large-scale discrete-event systems using modules,
aliases, and extended finite-state automata. In IFAC
Proceedings Volumes. 18th IFAC World Congress, Mi-
lano, 28 August - 2 September 2011, 7000-7005.

MathWorks (2013). https://wuw.mathworks.com/
products/matlab.html.

Mohajerani, S., Malik, R., and Fabian, M. (2014). A
framework for compositional synthesis of modular non-
blocking supervisors. IEEE Transactions on Automatic
Control, 59, 150-162.

Mohajerani, S., Malik, R., and Fabian, M. (2016). A
framework for compositional nonblocking verification of
extended finite-state machines. Discrete Fvent Dynamic
Systems: Theory and Applications, 26, 33-84. doi:
10.1007/810626-015-0217-y.

Mohajerani, S., Malik, R., and Fabian, M. (2017). Com-
positional synthesis of supervisors in the form of state
machines and state maps. Automatica, 76, 277-281.

On-Road Automated Driving (Orad) Committee (2016).
SAE J3016: Taxonomy and definitions for terms related
to on-road motor vehicle automated driving systems.
Technical report, SAE International.

Petersson, P. and Zita, A. (2016). Logical modelling and
formal wverification of decision and control functions
for autonomous wvehicles. Master’s thesis, Chalmers
University of Technology, Gothenburg, Sweden.

Ramadge, P.J.G. and Wonham, W.M. (1989). The control
of discrete event systems. Proceedings of the IEEF,
77(1), 81-98.

Skoldstam, M., Akesson, K., and Fabian, M. (2007). Mod-
eling of discrete event systems using automata with
variables. In Proceedings of the 46th IEEE Conference
on Decision and Control, 3387-3392.

Zita, A., Mohajerani, S., and Fabian, M. (2017). Appli-
cation of formal verification to the lane change module
of an autonomous vehicle. In 13th IEEE Conference on
Automation Science and Engineering.

