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ABSTRACT. The study of quantum quasi-particles at low temperatures includ-
ing their statistics, is a frontier area in modern physics. In a seminal paper
Haldane [10] proposed a definition based on a generalization of the Pauli exclu-
sion principle for fractional quantum statistics. The present paper is a study
of quantum quasi-particles obeying Haldane statistics in a fully non-linear ki-
netic Boltzmann equation model with large initial data on a torus. Strong
L' solutions are obtained for the Cauchy problem. The main results concern
existence, uniqueness and stabililty. Depending on the space dimension and
the collision kernel, the results obtained are local or global in time.

1. Haldane statistics and the Boltzmann equation. In a previous paper [2],
we studied the Cauchy problem for a space-dependent anyon Boltzmann equation

[5],
8tf(t,£l,',’l}) +v181f(t,x,v) = Qa(f)(tvxav)a e R+’ T € [07 1}7 v = (01702) € R27
f(O,CC,?)) = fo(CE,’U)-

The collision operator Q,, in [2] depends on a parameter « €]0, 1], and is given by
Qu(he) = [
R2x St

Qa(f)(v) = / B(lv = v |,n)(f' fiFu(f)Fa(fs) = fFa(f) Fa(fl))dv.dn,

R2x St
with the kernel B of Maxwellian type, f', f., f, f« the values of f at v’, v., v and
v, respectively, where

vV=v—(v—v.,n)n, v, =0+ (v—0,n)n,
and the filling factor Fy,
Foalf) =1 —af)*(1+ 1 -a)f)™=
Let us recall the definition of anyon. Consider the wave function ¥(R, 8, r, ¢) for two
identical particles with center of mass coordinates (R, ) and relative coordinates
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(r, ). Exchanging them, ¢ — ¢ + , gives a phase factor e2™ for bosons and €™
for fermions. In three or more dimensions those are all possibilities. Leinaas and
Myrheim proved in 1977 [11], that in one and two dimensions any phase factor is
possible in the particle exchange. This became an important topic after the first
experimental confirmations in the early 1980-ies, and Frank Wilczek in analogy
with the terms bos(e)-ons and fermi-ons coined the name any-ons for the new quasi-
particles with any phase.

By moving from spin to a definition in terms of a generalized Pauli exclusion
principle, Haldane [10] extended this to a fractional exclusion statistics valid for
any dimension. The conventional Bose-Einstein and Fermi-Dirac statistics are com-
monly associated with integer spin bosonic elementary particles resp. half integer
spin fermionic elementary particles, whereas the Haldane fractional statistics is con-
nected with quasi-particles corresponding to elementary excitations in many-body
interacting quantum systems.

In this paper we consider the Cauchy problem associated to the Boltzmann equa-
tion in a torus [0,1)%, k € {1,2,3}, for quantum particles obeying the Haldane
statistics;

Oif(t,,v) + 0 - Vo f(t,x,v) = Q(f)(t,z,v), (t,x,v) € Ry x [0,1]* x R3,
v = (v1,v9,v3) € R, (1.1)
f(0,z,v) = fo(z,v), (1.2)
where
0 = (v1) (resp. © = (v1,v2), resp. v =v) for k =1 ( resp. k =2, resp. k = 3).

The collision operator @ is given by

Qf)(w) = / B( v~ vn [\n)(f' L Fa(£)Falf2) — £ Fa(f)Fa(f])) dvsdn,

R3xS2
veRS.

Strong solutions to the space-homogeneous case were obtained in [1] for any dimen-
sion bigger than one in velocity. Strong solutions to the space-inhomogeneous case
were obtained in [2] in a periodic slab for two-dimensional velocities. There the
proof depends on the two-dimensional velocities setting. In the present paper we
prove local in time well-posedness of the Cauchy problem for £ = 1 and collision ker-
nels similar to those used in [2], and for k € {1,2,3} global in time well-posedness
under the supplementary assumption of very soft potential at infinity [15]. The
solutions conserve mass, momentum and energy.

2. The main results. With cosf =n - IZ:Z*l, the kernel B(Jv — v|,n) will from
now on be written B(|v — v,|,6) and be assumed measurable with
0 < B < By, (2.1)

for some By > 0. It is also assumed for some v,~" > 0, that
B(lv—v.],0) = 0 if either |cosf| </, or 1—|cosf]| <~', or [v—v.| <7, (2.2)

together with the existence for any I' > 0 of a constant c¢p > 0 such that

/ inf B(u,8)dn > cr. (2.3)
u€[y,I]
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The initial datum fo(zx,v),

1
periodic in z, is a measurable function with values in [0, —], (2.4)
a

and such that for some positive constants ¢y and ¢,

(1+ [vI*) fo(w,v) € L'([0,1]* x R?), (2.5)

/ sup fo(z,v)dv = co, (2.6)
z€[0,1]F

[ sw o fatav)de = o, 2.7
z€[0,1]F

for any subset X of R? of positive measure, / i[nf]k fo(z,v)dv>0. (2.8)

x z€[0,1
Denote by
fﬁ(t,x,v):f(t,x—kt@,v) (t,x,v)€R+x[O,1}ka3, 5:(1}1,-”7’Uk)ERk.

(2.9)
Strong solutions to the Cauchy problem with initial value f; associated to the
quantum Boltzmann equation (1.1) are considered in the following sense.

Definition 2.1. f is a strong solution to (1.1) on the time interval I if
fect(r; L ([0,1]* x R?),
and

%fﬁ — (Q(N)*, on I x[0,1]F xR, (2.10)

The main results of the present paper are given in the following theorems.

Theorem 2.1. Under the assumptions (2.1)-(2.6) and (2.8), there is a time Ty > 0,
so that there exists a unique periodic in x, strong solution f € C1([0,To[; L1([0,1] x
R3)) of (1.1)-(1.2). It depends continuously in C([0, To[; L*([0,1] x R?)) on the
initial L'-datum. It conserves mass, momentum and energy.

Theorem 2.2. Under the assumptions (2.1)-(2.8) and the supplementary assump-
tion of very soft collision kernels at infinity,

B(u,0) = By(u)Ba(0) with |By(u)| < c|u|277 for some n > 0, and By bounded,

(2.11)
there exists a unique periodic in x, strong solution f € C*([0,00[; L*([0,1]* x
R3)) of (1.1)-(1.2) for k € {1,2,3}. For any T > 0 it continuously depends in
C([0,T); L*([0,1]F x R®)) on the initial L'-datum. It conserves mass, momentum
and energy.

Remarks. Theorem 2.1 is restricted to the slab case, since its proof below uses an
estimate for the Bony functional only valid in one space dimension.
Theorems 2.1 and 2.2 also hold with the same proofs in the fermion case where
a =1, in particular giving strong solutions to the Fermi-Dirac equation.
Theorems 2.1 and 2.2 also hold with a limit procedure when o« — 0 in the boson
case where a = 0, in particular giving strong solutions to the Boltzmann Nordheim
equation [14]. It is the object of a separate paper [4] (see also [9], [13] and [7])
Theorems 2.1 and 2.2 also hold for v € R™, n > 3.
The proofs in [2] strongly rely on the property that for any unit vector n with direct
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orthogonal unit vector n| , either nq or n, 1 is bigger that %, where nq (resp. n,1)
is the component of n (resp. n, ) along the a- axis. This allows to control the mass
density of the solution from its Bony functional. This is no more the case in the
three-dimensional velocity setting of the present paper. It is why our results are
local in time under the same assumptions on the collision kernel B as in [2]. They
are global in time under the supplementary assumption of a very soft potential at
infinity.

The paper is organized as follows. Approximations are introduced in Section 3
for k € {1,2,3} together with for k£ = 1, a control of their Bony functional. Their
mass density is uniformly controlled under the assumptions of Theorem 2.1 (resp.
Theorem 2.2) in Section 4 (resp. Section 5). The well-posedness of the Cauchy
problem is proven in Section 6. Conservation of mass, momentum and energy is
proven in Section 7.

3. Preliminaries on solution approximations and the Bony functional.
Let k € {1,2,3}. For any j € N*, denote by 1;, the cut-off function with
Yi(r)=0 ifr>j* and ;(r)=1 ifr<j?
and set
X5 (0,02) = 5 ([?] + v, ?).
Let F; be the C! function defined on [0, 1] by
1—ay

T T agpe (L'

Fi(y) =
Denote by Q; (resp. Q, and Q} to be used later), the operator
QD) = [ Bl vl 000, 0) (FEE(DE(E) = FLE(E(£) ) dodn,
(vesp. s gain past @ (1)(e) = [ Bllo = v 6)x; (v, ) FLE () (.o,
(3.1)

and its loss part Q; (f)(v) = /B(|v — 0], 0)x; (v, va) L F (f ) Fj(fL)dvsdn).
(3.2)
For j € N*, let a mollifier ¢; be defined by ¢;(z,v) = j3T*

@ € CP(R*F), support(p) C [0,1]F x {v € R || < 1},

v >0, / o(z,v)dzdv = 1.
[0,1]% xR3

o (ja, jv), where

Let
- . , , 11
fo,; be the restriction to [0,1]F x {v; |v| < j} of (min{fy, — — =}) x¢;. (3.3)
a ]
The following lemma concerns a corresponding approximation of (1.1)-(1.2) for k €
{1,2,3}).

Lemma 3.1. For any T > 0, there is a unique solution f; € C’([O,T] x [0,1]%;
L'({v; ] < 4})) to
Ofi+v-Vaof; =Q;(f;), [fi(0,,) = fo- (3.4)
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There is n; > 0 such that f; takes its values in [0, 2 —n;].
The solution conserves mass, momentum and energy.

Proof of Lemma 3.1. Let T > 0 be given. We shall first prove by contraction that
for 77 > 0 and small enough, there is a unique solution

f € (0T x 0,105 2 ({uslol < 7)) 0 {f: € 0, 1)
to (3.4). Let the map C be defined on periodic in = functions in
C(0T)x 0.1 L ({uslol < 7)) N {7+ f € 0,21}

by C(f) = g, where

1+(1—a)f 1—a L
M) /ijf FiFj(fo)dv.dn

g / B L F5 () E5 (f)) dv.dn,

8tg+5-ng=(1—049)(

9(0,+,-) = fo,j-
The previous linear partial differential equation has a unique periodic solution
g € C([0,T] x [0,1]%; L' ({s [vo] < j})).
For f with values in [0, =], g takes its values in [0, é] Indeed, denoting by

1
a

1 1- 1=a 1 g ’ ’
oy = a(w) [ Bur s odvin [ 5150 F(1)do.dn

gH(t,,v) = g(t, @ + 10, v),
it holds that

gu(t, , U) _ fO,j ({IJ7 ’0)67 jot Eg(r,:v,v)dr

‘ 1+ (1 — O{)f 1-a 1 gl : - [t &4 (@, v)dr
+/0 ds((}ﬂ_af) /Bng f*Fg(f*)dv*dn) (s,z,v)e” )= 7

t ot
> foi(z,v)e” Jo Tirewdr 5

and

(1= ag)i(t,z,v) = (1 — afo;)(w,v)e o 7rrewdr
t
# t ot )
b [ (] Bt BB dvdn) (s v)em EETH gy
0

> (1 - afo)(x,v)e” o hrandr > g

C is a contraction on C([0, T3] x [0, 1]%; L' ({v; [v| < 1)) N{f; f € [0, 1]}, for Ty > 0
small enough only depending on j, since the derivative of the map F} is bounded
by (3ja®~t +1)j17* on [0, 1]. Let f; be its fixed point, i.e. the solution of (3.4)
on [0,71]. The argument can be repeated and the solution continued up to t = T.

By Duhamel’s form for f; (resp. 1 — af;),

# — [t &t (ryz,v)dr k .
[z, 0) = foi(z,v)e 0T >0, (t,x) €[0,T]x[0,1]%, [v] <,
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(resp.

— ft 6”_(r,x,v)dr

(1= afy)i(t,z,0) = (1= afo,)(z,v)e 7%
1 & )
e T (t,x) € [0,T] x [0,1]%, |v] < J).
Consequently, for some 77; > 0, there is a periodic in x solution
fi € C(10, ] x [0, 1]% L' ({v; [v] < 5}))

to (3.4) with values in [0, 1 — 7;].

If there were another nonnegative local solution f] to (3.4), defined on [0,7"] for
some T” €]0, T}, then by the exponential form it would strictly stay below é The

Y

difference f; — f; would for some constant ¢y satisfy
¢
165 = Bt oldeds < exo 1105 = (s, 0)ldsdado, ¢ € 0,7
0

(f] - f‘])ﬁ((),I,U) = 07
implying that the difference would be identically zero on [0,7”]. Thus f; is the
unique solution on [0,7] to (3.4), and has its range contained in [0, 1 — 7;]. O

Denote by M; the mass density
M;(t) :/ sup ff(s,%v)dv. (3.5)
(s,x)€[0,t]x[0,1]

In Lemma 3.2 the tails for large velocities of the mass are controlled with respect
to the mass density.

Lemma 3.2. Given T > 0, the solution f; of (3.4) satisfies
/ / |v] sup fﬁ(t x,v)dvdr < —MJ(T), JjeN,

[v]>A te[0,T] A
where cr only depends on T and [ |v]? fo(x,v)dzdv.
Proof of Lemma 3.2. Denote f; by f for simplicity. By the non-negativity of f,

T
sup fi(ta.0) < folaro) + [ Q) (N)F(s.a.0)ds, (36)
te[0,T) 0

where Qj (f) is defined in (3.1). Integration with respect to (z,v) for |[v| > A, gives

1
/ / lv| sup fH(t,z,v)dvdx < // |v|fo(z,v) dvdx+/ / By;lv|f
0 Jjv|>A te[0,T] o[>\ [v|>X

(8,2 4 sv1,0") f (s, + sv1, V) F; () (s, @ + svi,v)Fj(f)(s, x 4+ sv1, v, )dvdv,.dndads.

Here in the last integral, either |v’| or |v| is the largest and larger than % The
two cases are symmetric, and we discuss the case |[v'| > |v}|. After a translation in
x, the integrand of the r.h.s of the former inequality is estimated from above by
cf'[f#(s,x,0")  sup fF(ta,0)).
(t,2)€[0,T]x[0,1]

The change of variables (v, v,,n) — (v', v, —n) and the integration over

(S,.’ﬂ,'U,’U*,TL) € [OaT} X [Oa ]-] x {’U € RS; |U| > X 823

\%}XRS
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give the bound

T
E(/ /|v|2f#(s,x,v)dxdvds) (/ sup f#(t,:r:,v*)dv*)
0 (t,x)€[0,T]x[0,1]

< LD [ 2 gy (s, ) o

The lemma follows. O

For k = 1 there is a Bony type inequality available (cf [6] [8]) as follows.

Lemma 3.3. For any n € S?, denote by n, the component of n along the x-axis.
It holds that

¢
| [ o= o) nP B £ F G (. dodo.dndads < 61+ )
t>0,j€eN", (37
with cf, only depending on [ fo(z,v)dzdv and [ |v|*fo(z,v)dzdv.

Proof of Lemma 5.5. Denote f; by f. The integral over time of the first component
of momentum [ vy f(t,0,v)dv (resp. [v?f(t,0,v)dv ) is first controlled. Let 8 €
C1([0,1]) be such that 8(0) = —1 and (1) = 1. Multiply (3.4) for k = 1 by B(x)
(resp. v183(z)) and integrate over [0,¢] x [0,1] x R3. Tt gives

//UlfTO’Ud’UdT* /6 fodxvdxdvf/ﬂ ft,x,v)dzdv

+/0 /5’(x)v1f(7',x,v)dxdvd7'),

(resp.
// fTOUdvdT— /ﬁ vlfoj(xvdxdv—/ﬂ Yo f(t, z,v)dadv

+ / / B (@)} f (r,,v)dadvdr) ).

Consequently, using the conservation of mass and energy of f,
|/Ot/v1f(7',0,v)dvd7'| + /Ot /vff(T,O,v)dvdT <c(l1+41¢). (3.8)
Let
I(t)= / (v1 — ve1) f(E, 2,0) £ (£, y, v ) dadydvdo,.
<y
It results from
T'(t) = — /(m — 0,12 f(t, 2, 0) f(t, x, v, )dedudy,

+2 / Vi1 (Vi1 — 1) f(£,0,v,) f(t, z, v)dzdvdu,,
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and the conservations of the mass, momentum and energy of f that

/Ot /01/@1 —0a)2f (5, 0) fo (5, 7, v )dvdv.dads

< Z/fo(x,v)dacdv/|v1|fo(x,v)dv+2/f(t,x,v)dxdv/|v1|f(t,x,v)dxdv
+2/0t/v*1(v*1 — 1) f(7,0,v.) f(7, 2, v)drdvdv.dr

< 2/f0(x,v)dxdv/(1+ [v|?) fo(z,v)dv
+2/f(t,x,v)da:dv/(l—i—|v|2)f(t,sc,v)dxdv
+2/()t(/vflf(7',O,U*)dv*)dT/fg(x,v)dzdv

—2/;(/ v*lf(T,o,v*)dv*)m/vlfo(x,v)dxdv

gc(1+/0t/vff(7-,0,v)dvd7'+|/Ot/vlf(T,O,v)dvD.

And so, by (3.8),

t 1
— 0.2 (7, 2, ) f(7, x, v dedvdo.dr < ¢ . .
/0/0/@1 D2 (r, 2, 0) f(ry 2, v )dedodvodr < e(L+18).  (3.9)

Here, c is a constant depending only on [ fo(z,v)dzdv and [|v|? fo(z, v)dzdo.

Denote by u; = / fv }J;i". It holds

1
/t/ /(m —u1)?Bx; ffFj(f)F(fL) (s, 2, v, 0., n)dvdv.dndads
o Jo

t 1
< c/ / /(m — w1 f fu(s, 2,0, v, )dvdv.dads
o Jo

t 1
_¢ 3 )
B 2 /0 /0 /<v1 U*l) ff* (8’1'7 v, U*)d'l/d’l]*dxds
=, (3.10)

Multiply equation (3.4) for f by v?, integrate and use that
J0iQ;(f)dv = [(v1 —u1)?Q;(f)dv and (3.10). It results

/0 /(vl — w1 Bx; f fLF;(f)F;(f.)dvdv.dndzds = /vff(t,:c,v)dxdv

¢

— /v%fo’j(x,v)dxdv —|—/ /(v1 —u1)?Bx; f [ Fj(f')F(fl)dxdvdv.dnds
0

<d(1+1),

where ¢’ is a constant only depending on [ fo(z,v)dzdv and [|v|*fo(z,v)dzdv.
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After a change of variables the left hand side can be written
t
/ / (v —w1)2Bx; f £ F5(f) Fi(f1)dvdv.dndzds
0

¢
= / /(61 —np[(v =) - n))2Bx; f fFi(f)F(f))dvdv.dndzds,
0
where ¢; = v; — u;. Expand (c; — ny[(v — v.) - n])?, remove the positive term

containing c?.

The term containing n?[(v — v.) - n]? is estimated as follows;

[ [ v nP B £ E B, (s
’ t
<141+ 2/ /(vl —up)ni[(v —vy) - n)Bx; f o F (f)F;(f)dvdv,dndads
0

t 3
d1+1t)+ 2/0 / (v1 Z(vl - v*l)nlnl)ijff*Fj(f’)Fj(f;)dvdv*dndxds,

=2

since
/ul(vl — v)nimX; B fFi () Fi(fL)dvdv.dndz = 0, =23,

by an exchange of the variables v and v,. Moreover, exchanging first the variables
v and vy,

t 3
2/ /v1 Z(vl — o) Bx; f [+ F () F;(fi)dvdv.dndzds
0 1=2
t 3
:/ /(vl — Uy Z v — va)mBx; [ F5 (f)Fj(fi)dvdv.dndzds
0 1=2
t
g%/o /(1}1 — 0,1)2Bx; f o F (f)E;(fL)dvdv.dndzds

/62 t 3
+ Z/ /Z(UZ —va)?nini Bx; f [ Fi (f) F;(fl)dvdv.dndzds

2¢
<@ (1+1) _’_7/ /nlz (v — va1)?ni Bx; f [ Fj (f)F(fl)dvdv,.dndzds,

for any 5 > 0. It follows that

[ [ 0= ) Br 1) B s < i1 + ),
0

with ¢, only depending on [ fo(z,v)dzdv and [|v|?fo(z,v)dzdv. This completes
the proof of the lemma. O

4. Control of the mass density under the assumptions of Theorem 2.1.
Let £k = 1. Lemmas 4.1 to 4.3 are devoted to the local in time uniform control with
respect to j of the mass density defined in (3.5).
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Lemma 4.1. For any € > 0, there ezists a constant ¢ only depending on [ fo(z,v)
dzdv and [ |v|? fo(z,v)dzdv, such that

1
/ sup fA(s,, v)dwdv < cl<(1+ S)(1+1) +eth(t)>, t>0, jeN. (4.1)
s€[0,t]
Proof of Lemma 4.1. Denote f; by f for simplicity. By (3.6),
sup f¥(s,z,v) < fo(z,v) //BX] (r,z + rvg,v')
s€[0,t]
f(r,x+rvl,v*)Fj(f)ﬁ(T,x,v)Fj(f)(r,:E+rv1,v*)dndv*dr. (4.2)

For any (v,v,) € R3 xR3, let NV, be the set of n € S? with max{ni,n,1} < ¢, where
n, is the unit vector in the direction v — v/, (orthogonal to n) in the plane defined
by v — v, and n, and n; is the component of n along the z-axis.

Let V¢ be the complement of N, in S2. Denote by

/// Bx;f(r,x +rvi,v V) f(r, o+ rvg,vl)

Ei(£)*(r,z,0)Fj(f)(r, x + rvy, v.)dndvdv,dzdr.

(3.7) also holds with n; replaced by n, . Integrating (4.2) with respect to (x,v)
and using (2.2) and Lemma 3.3 leads to

/Sup f(sa:v)dzdv</foxvdxdv+1()

s€[0,t]

/// By, f(ryx +rvg,v) f(r,z + rog, vl)

j(f)ﬁ(r x,v) (r,x 4 rvy, ve)dvdv.dndxdr

/fo (z,v)dzdv + T (t / //(ijff* (f)F;(fL)dvdv.dndzdr

/fO “ ’Ud.TdU—i—I / /n1+nJ_1 v_v*)'nPBXjff*
(7€)
F;(f")F;(f.)dvdv,dndzdr

2¢;
< z,v)drdv + L. (t + =9 _(1+1%). 4.3
[ fatav) 1)+ o (141) (13)
Moreover,
T.(t) < 27 Boet || Fy |2 M /foxvda;dv

And so, (4.1) holds with

c = max{/fo r,v)dzdv, ——5, 27 By || Fu 12, /fo x,v)dzdv}.

( )
O

Lemma 4.2. There is ¢, only depending on [ fo(z,v)dzdv and [ |v|? fo(z,v)dzdv
such that, for any ¢ €]0,1[, t > 0 and j € N*,

sup / sup f (s,2,v)dxdv < (65 +t11(1 +t)%(1 +Mj(t))). (4.4)
z0€[0,1] J|z—z0|<d s€[0,t]
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Proof of Lemma 4.2. Denote f; by f for simplicity. For s € [0,¢] it holds,

(s a,v) :fﬁ(t,w,v)—/ Qj(f)ﬁ(nx,v)dréfﬁ(t,%v)Jr/ (@5 ()i, z,v)dr,

where @)} is defined in (3.2). And so

sup fi(s,xz,v) < fH(t,z,v) + //BXJ (ryz,v) f(r,x + rv,vy)

s€[0,t]
Fi(f)(ryz + ro, o) F; (f)(r, z + rvg, o)) dvedndr. (4.5)

Denote by

= sup // // BXJ (r,x,v) f(r,z + rog, v) Fj(f) (r, @ + rog,0)
z9€1[0,1] lz—x0|<d

F;(f)(r,z + rvg, v},)dvdv.dndzdr.
Integrating (4.5) with respect to (z,v), using Lemma 3.3, the L (resp. a®~!) bound
from above of f (resp. F;(y),y € [0, 2]), gives for any zg € [0,1], A >0 and A >0
that

/ sup f¥(s,z,v)dzdv </ At z,v)dedo + T.(t)
I ‘l zo|<d

T— 1o\<6 s€[0,¢]

/\ve / /| o DI = ) 0BG LE (O ()

dvdv,dndzds + c/ / ijfﬁ(s, x,v) f(s,x + sv1, v )dvdv.dndxds
[v—v,| <A

S/ fﬁ(t x,v)dxdv + T (t) + ( +) + t/\3/f0 x,v)dzdv

|z—z0]<d (M'e)?

S%/UQfodxdv—i—céA?’ + Je(t) + (il +)t) + t)\3/f0 x,v)dzdv

<c(0f +t2e (1 +0)F) + (), (4.6)

for an appropriate choice of (A, ). Moreover,

J.(t) < 2w Byet || Fy |2, M. /fo x,v)dzdv.

3
Taking € = ¢(1) ™" M~ with ¢ suitably chosen, leads to

/ sup f*(s,z,v)dzdv < 0(5% %(1 th)%]\/[ (t)%).
|z—z0| <8 s€[0,t]
The lemma follows. O

Lemma 4.3. There is T > 0 such that the solutions f; of (3.4) satisfy

/ sup f}(t,x,v)dv <2c¢y, j€EN*,
(t,z)€[0,T]%10,1]

with co defined in (2.6).
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Proof of Lemma 4.3. Denote by E(z) the integer part of z € R, E(x) < z < E(z)+1.
As in (3.6),

sup fﬁ(S,I’7U) S fo(ﬂf,’l})
s€[0,t]

t
+ / /ijf(s,x + sv1,v") f(s, 2 + svl,v;)(Fj(f))ﬁ(s,x,v)
0
F;(f)(s,z 4 sv1,vi)dvidnds < fo(x,v)+ || Fa 12, (A + A + Az + Ay),  (4.7)
where, for € > 0, 6 > 0 and A that will be fixed later,

t
Ay 2/ / By, sup f#(r,z 4 s(vy —v}),0")
0 Jni|>e, tlog—vi|>6 T€[0,t]

sup f#(Ta T+ 5(111 - ’U:kl)’ Ui)dv*dnds,
T7€[0,t]

¢
A2=/ / By; sup f#(r,2+ s(vy —v}),v")x
0 Jni|>e, tlvy—vi|<8, [v/|<A T€[0,t]

X sup f#(Ta T+ S(Ul - ,U:kl)7 vi)dv*dnds,
T7€[0,t]

t
A3=/ / By; sup f#(r,z+ s(vy —v}),v")x
0 J|n1|>e, tlor—v]| <8, [/ [>X T€[0,t]

X sup f#(T,.Z' + S(Ul - U;1)7U;)dv*dnd8,
T7€[0,t]

t
Ay = / / By; sup f#(r,z+ s(vy —v}),v)
0 JIni|<e T€[0,t]
x sup f7(r,x+ s(vy —v,),v))dv.dnds.
T€[0,t]
In Ay, A2 and A3, bound the factor sup, ¢ fH(r, x4+ s(vy —v.,),v.) by its supre-
mum over z € [0, 1], and make the change of variables

s—y=ux+s(v; —vy),

with Jacobian
Ds 1 1 1

—_ = = <
Dy Jor—vi] o= |(n, g=p) ] Ina] — ey

;-

Consequently,

sup Al (ta xz, ’U)
z€]0,1]

B .
< sup / #(/ sup f#(T,y7v’)dy)
2€(0,1] Jtjor—vt |6 101 = V1| Ny att(or—v))) rel0.]

sup f#(r, X, v.)dv.dn
(7,X)€[0,t]x[0,1]

By !
<[ B gme - ) DI [ s )
tlvr—v}|>8 lv1 — vf| 0 7€[0,t]

sup f#(r, X, v.)dv,dn.
(7,X)€[0,t]x[0,1]
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Performing the change of variables (v, vy, n) — (v', 0]

’ *afn)v
/ sup Aj(t,z,v)dv

z€]0,1]

= /v1 —vl|>6 |UlB—U1||E( (v) — 1) +1)|</01 sup f#(T,ym)dy)

T€[0,t]
sup f#(T, X, vy)dvdv,dn
(7,X)€[0,¢]x[0,1]

1 1
<t(l+ g)/BXj(/ sup f#(ﬂy,v)dy) sup f#(r, X, v,)dvdv,dn
0

r€[0,t] (7,X)€[0,¢]x[0,1]

< 4rBot(1+ %)(/ sup f#(ﬂy,v)dydv)Mj(t)

T€[0,t]
Apply Lemma 4.1, so that

/ sup Ai(t,z,v)dv < 4rBocit(1 + %) ((1 + %2)(1 +1t)+ eth(t))Mj(t). (4.8)

z€[0,1]
Moreover,
ce/ sup As(t,z,v)dv < — // sup f#(r, X, v.)dvdv,dn
2€[0,1] [0/ | <A (T X)€[0,4]x[0,1]
/ / sup f# (1, X, vy )dvdv.dn
[v|<A (TX)E[Ot x[0,1]
by the change of variables (v, v.,n) — (v/, v}, —n)
A3
and
Ce/ sup As(t,z,v)dv
z€[0,1]

1
§/ BX]-(/ sup f#(T,y,v’)dy> sup #(r, X, v.)dvdv,dn
[v/|>A 0

T€[0,t] (7,X)€0,t]x[0,1]
/ / sup f#(r,y,v )dvdy) / sup f#(r, X, v,)dv,
[v|>\ T€[0,1] (7, X)€0,t]x[0,1]
by the change of variables (v, v,,n) — (v',v., —n)
< FMQ( ) by Lemma 3.2.

Finally, with the change of variables (v, v.,n) — (v, v., —n),

2
/ sup Ay(t,z,v)dv < Bot(/ dn)(/ sup f#(T7.T,U)dU)
z€[0,1] Ini|<e (

7,x2)€[0,t] x[0,1]

| /\

(4.10)

< 2mBoet M3 (t). (4.11)
It follows from (4.7), (4.8), (4.9), (4.10) and (4.11) that
a(t)MZ(t) — b(t)M;(t) +co >0, t<1, (4.12)

where for some positive constants (¢})2<;<4 independent on €, 6 and A,

a(t) =ch(et(1+6 ") +e"A?), b(t)=1—cht(1+0 ") (1+e?) = che 16N
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Choose A=¢"1, § =€ and ¢ = ¢ min{é, é} For T small enough, it holds that

3 1

b(t) €]-,1] and cpa(t) < =,

4 8

which is sufficient for the polynomial in (4.12) to have two nonnegative roots and
take a negative value at 2c¢o. Recalling that M;(0) = ¢o and M, is continuous by

the continuity in time and space of f;, it follows that

Mj(t) < 2c, te€ [O,T]

€ [0,T], (4.13)

O

5. Control of the mass density under the assumptions of Theorem 2.2.
Let k € {1,2,3}. Under the supplementary assumption (2.11), we prove a uniform
control with respect to j of the mass density M;(t) defined in (3.5). It relies on the
two following lemmas.

Lemma 5.1. Given € > 0, there ezists a constant ¢ only depending on [ fo(z,v)
dxdv, such that

/ sup fﬁ(s z,v)dzdy < c5(14+t), t>0, jeN- (5.1)
s€[0,t]

Proof of Lemvma 5.1 Denote f; by f for simplicity. By the non-negativity of f, it
holds

(s, 2,0) <folw,v) + /s/fu(T,:E +7(0 =), v ) f (. + 7(0 —v)),v.) %
x Fi(f*(r,2,0))F(f(m,2 + 7(0 — T3),v4)) B1 (v — v.) Ba(0)dv.dndr.
Using the 1 bound for f*(r,z + 7(v — v}),v}), and (2.11) leads to

sup f#(sv xz, U)
s€0,t]

< fo(z,v) + c/t / f#(s, 2+ st —0"),v") By (v — v,) Ba(0)dv,dnds. (5.2)
0
Hence,

/ sup f#(t,:c,v)dxdv§/f0(x,v)dxdv

s€[0,t]
t
+ c/ /f#(s, x4+ 5(v —v'),v")B1(v — vy) Ba(0)dwdv.dvdnds
0
t
= /fo(x,v)dmdv—I—c/ /f(s,x,v)Bl(v—v*)Bg(H)dxdv*dvdnds
0

t e}
S/fo(:c,v)dmvarc/ / /f(s,x,v)r*(pr”)dxdvdrds by (2.11)

/foIUdIdUJri//fsxvdxdvds

L(1+1),

by the mass conservation. O
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Lemma 5.2. Given T > 0, the solutions f; of (3.4) satisfy
M;(T) < ar(T), jeN,

where ¢1(T') only depends on T and cg.

Proof of Lemma 5.2. By (5.2), for any (¢,z) € [0,T] x R3,

(s,z)€[0,t] x[0,1]*

< sup folz,v +c/ / sup f(s,x,v")B1(v — vy)Ba(0)dv.dnds.
z€[0,1]% z€[0,1]%

Consequently,

/ sup f(s,z,v)dv

(s,2)€[0,t]x[0,1]F

< ¢ —l—c/ / sup f(s,x,v")B1(v — vi)Ba(0)dv.dvdnds

z€[0,1]

=g —|—c/ / sup f(s,z,v)B1(v — v.)Ba(0)dv.dvdnds

ze0,1]k

<co—|——// sup f(s,xz,v)dvds.

ny" z€[0,1]%
It follows that

/ Sup flt,z,v)dv < e’ T, with ¢’ = .
(t,z)€l0,T]x[0,1]* "

O

6. Well-posedness of the Cauchy problem. Let Ty be supremum of the times
up to which it has been proved that the mass densities of the approximations are
uniformly bounded. Recall that Tp may be finite (resp. is infinite) under the
assumptions of Theorem 2.1 (resp. 2.2). We prove in this section that for any
T € [0,Ty[ there is a unique solution to the Cauchy problem (1.1)-(1.2). This
section is divided into three steps. In the first step, we study initial layers for the
approximations. In the second step, the existence of a solution f to (1.1) on [0, 7]
for T €]0,Tp] is shown. Finally the third step proves the uniqueness and stability
result stated in Theorems 2.1 and 2.2.

First step: initial layers.

Lemma 6.1. For any T € [0,Ty[, there are jr € N*, a positive time t,, > 0, and
for V> 0 positive constants by and py such that

1
f}(tv'vv)gafb\/ta t€[0,tm], |1)|<V, ijT7

1 L
f}(t,',v)ﬁafﬂv, te[tmaT]a |v|<‘/a ]Z]T-
Proof of Lemma 6.1. Denote f; by f for simplicity. It follows from Lemmas 4.3 and
5.2 that there is ¢1(T) > 0 such that
M;(T) < (T), jeN-. (6.1)
Denote by
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vi(f) == /ijf’f;Fj(f*)dv*dn, vi(f) ::/ijf*Fj(f’)Fj(f;)dv*dn,
so that
Q;(f) = Fi(£)v;(f) — fri(f)-

It follows from (6.1) that v;(f)* and 7;(f)* are bounded from above uniformly with
respect to j. Denote by co(T') a bound from above of (77;(f)*);jen.

Let us prove that (v;(f)*) is bounded from below for large j on [0, 7] x [0, 1]* x
{v; |v| < V} for any V > 0. By definition,

vi(F)H(t, x,v) = /ijf(t, x4 t0, v ) F (f(t, x + to,0") F;(f (¢, © + tv, v),))dv.dn.

Using Duhamel’s form for the solution, (6.1) and (2.8), one gets that

ft,z+1t0,v,) > e3(T) fo(z,v.) >0, aa. (tz,v,v,) €[0,T] x [0,1]* x R? x R3,

(6.2)
for some constant ¢3(T) > 0. For any angles (0, ¢) € [0,27] x [0, 7] defining the
relative position of v’ — v with respect to v, — v, the maps v, — v’ and v, — v, are
changes of variables. Indeed, consider the map v, — v, reduce it to v, —v — v/ —v
and denote it by U . Let n be the vector with polar coordinates (6, p) with respect
to vx —v. Choose a coordinates system with the first (resp. second, resp. third)
axis in the direction of v, — v (resp. orthogonal to v, — v in the plane defined by
v, — v and n, resp. orthogonal to the two first axes). The map U maps the volume
A(Vig — V3)d(Vayy — vy)d(vs, — v;) into

d(v), — va)d(v}, — vy)d(v] — v.) = (€08 0)*d(Vsz — Vg )d(Vsy — vy)d(Vsz — V)
+ O((d(v*w — 'Uw))Q + (d(’U*y - ’Uy))2 + (d(v*z - Uz))Q)a

since up to second order terms with respect to d(viy — v3), d(vey — vy) and

d(vyy; — v;), the length d(viy — vy) (resp. d(vey — vy), resp. d(vi, —v,)) is changed
into | cos 0|d(vsy — vy) (resp. |cosf|d(viy, — vy), resp. cos® Od(v,, — v;)). And so
the Jacobian of U equals cos? §. Using these changes of variables and (6.1), it holds
that

(&1 (T)

/f(t,:chth,v’)dv* < C(iy(/ﬁ) and /f(t,ertT;,v;)dv* < 0

a.a. (t,z,0,0,0) € [0,T] x [0,1]* x R? x [0,27] x [0,7], |cosf| >~

Consequently, the measure of the set

1
Zijtwwoe) = {0 f(t,x +t0,0") > = or  f(t,z+10,v)) > 5} (6.3)

N | =

is bounded by Q(C;,()E), uniformly with respect to (z,v, 6, ¢) with | cosf| > «/,
t € [0,T], and j € N*. Take jr so large that 3mj7 is at least twice this uniform
bound. Notice that here jz only dependson T, [ fo(z,v)dzdv and [ |v|? fo(z, v)dzdv.

1 1
Denote by B(O7 (‘:’f@f@) “") the ball of radius (%Q)T}) 3. Tt follows from (6.2) and
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the definition of jr that

txv

/ / 3 () 3 Byx; f(t,z + tv, v ) Fi(f(t, 2 + to,0"))
S2 clT

=

3 c
’)4 mZ(szvf?w)

Fi(f(t,z +tv,v)))dv.dn

> B(|lv — 0
- CB /32 / 361(T) OZC (|U ,U*|’ )

’)4 (d,t,x,v,0,9)

1[nf]lC fo(z,v)dvedn, § > jr, aa. (t,z,v) €[0,T] x [0,1]% x {v € R3|v| < V}.
z€[0,1

Using a median property for the restriction of v — inf ¢ 11% fo(x,v) to the ball
1
B(0, (Scl(T)) ?), which is a bounded measurable Lebesgue function, there are two

m(y')*
disjoint sets 1 and 5 of equal volume, such that

inf  fo(z,v1) < inf fo(z,ve) for a.a. v1 € Q1, vy € Q.
ze0,1]F z€[0,1]k

Denote by I' = V + (?:(17(,?4))%

For j > jr and a.a. (n,t,z,v) € S? x [0,T] x [0,1]* x {v € R3; [v| < V'},

/ Bl —v.l.0) inf folw,v.)dv.

B(Ov(i%(/ﬁ) )mZ?J t2,0,0,0) z€[0.1]*

> 1an B(u,9) inf / inf  fo(z,v.)dv,
u€ly,l] QcB(O (321(/7)"4)) ) o |_2(r’3()’£') q z€[0,1]k

= inf B(u, 9)/ inf  fo(z,v.)dv,.
o

u€[v,l] z€[0,1]*

Hence, by (2.3), for j > jr and a.a. (t,x,v) € [0,T] x [0,1]* x {v € R3;|v| < V'},

vi( )t 2,0 c — %2 in U n in T, vy )dv
i) = e = G7( [t Bowoyn) [ e ol vy,

2 u€lvy,I
QA \on
> cres(T)(1 — 5) /Q zel[gfl]k fo(z,vi)dv,. (6.4)

Applying (2.8) to 4, this is a positive bound from below of (z/j(f)ﬁ(t, x, U))j>jT
on [0,T] x [0,1]* x {v € R3; |v| < V}.
The functions defined on 0, é] by x — FJT(‘T) are uniformly bounded from above
with respect to j by
a—1 (1 — aw)a

r— ot —
x

that is continuous and decreasing to zero at x = é Hence there is
fiy = min{5-, (CQ“C(ZT(TC)F) @} such that

1 1 F; T
xr € [— — iy, —] implies i@)  eal@er
a a
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Consequently, for j > jr and |v| < V,
1

fﬁ(tax’v) € [é — Ay, E]

= thu(t7m7v) = (F](fﬁ)ﬁ]ﬁ - %fﬁl/g)(t,x/l)) - %fﬁl/g(tvxvv)

1
< —ifﬁug(t, x,v)

ca (T

< _a@er
da

This gives a maximum time t; = ‘17" for f# to reach i — fiy from an initial value

fo(z,v) G]é — [y, é] On this time interval D, f# < —by. If t; > T, thenat t =T

the value of f# is bounded from above by é —byT = i —py with 0 < ¢/ < fiy.

Let

= —by. (6.5)

b = mil’l{tl, T}7 nv = min{ﬂV7 /’(’/V}

For any (z,v) with |v| <V, if f(0,2,v) <1 — jiy, were to reach L — piy at (¢,2,v)
with ¢ < t,,, then D, f#(t,z,v) < —by, which excludes such a possibility. It follows
that

1
fn(t,x,v) < P wy for j > jr, (t,x) € [tm,T] x [0, l]k, lv] <V,
1
fﬁ(t“fv,v) < P byt for j > jp,(t,x) € [0,t,] x [0, 1]’“, lv| < V. (6.6)

The previous estimates leading to the definition of ¢,, are independent of j > jr.
O

Second step: existence of a solution f to (1.1).

Let T € [0, Ty[ where Tp, defined at the beginning of this section, may be finite
under the hypothesis of Theorem 2.1 and is infinite under those of Theorem 2.2.
We shall prove the convergence in L([0, T] x [0, 1]* x R3)) of the sequence (f;) to a
solution f of (1.1) by proving that it is a Cauchy sequence. Let us first prove that
it is a Cauchy sequence in L*([0, Tp] x [0, 1]*¥ x R3)) for some Ty €]0, T, i.e. for any
B > 0, there exists a > max{1, jr} such that

sup /|gj(t,x,v)|dxdv <B, j>a, (6.7)
t€[0,To]

where g; = f; — fo. The sequence (f;) will be proven to be a Cauchy sequence in
LY([Ty, 2Tp) x [0,1]% x R3)) etc. in an analogous way.
By the uniform boundedness of energy of (g;), there is V' > 0 such that

sup / lg;(t, z,v)|dzdv < ﬁ, Jj>a, (6.8)
tel0,T] J |v|>V 2

The function g; satisfies the equation

Orgj + - Vag;
= /(Xj = Xa)B<f§f}*Fj(fj)Fj(fj*) - fjfj*Fj(fﬁ)Fj(f}*))dU*dn
b [ XBU S = LL B ) )dv.dn
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— [ NaBUs e~ FuLu) NG (£ )
b [ xaBu i (BB E) = F(1) + Falfa) (Bi(F52) = Fy(for)) )i
b [ XaBE e (B (B ) = Fallfa)) + Fal ) (F(far) = Fa(fu) )i
—/mﬂhh(ﬂ 1) = () + FalF)(F(f3.) = Fy(f2.)) )dodn
[ XaBtofur (B ELD = Fa)) + FalF2) (Bi(fi) = Fal ) )dvwdn.
(6.9)

Using Lemmas 4.3 and 5.2 and the conservation of energy of f;,

/(X ) (f fJ*F (fj) (fj*)+fjfj* (f) (f ))dmdvdv*dn
< C/U|>a fi(t, z,v)dzdv

< C
= 2
Moreover,

/XaB|fij* fafax Fj(f})Fj(f}.)dzdvdv.dn
< c(/ sup f}(t,x,v)dv—i—/ sup f}i(t,x,v)dv)

(t,2)€[0,T]x[0,1]* (t,2)€[0,T]x[0,1]*
< (f1 = st o)ldzar)
< c/|(fjﬁ — 9 (t,2,v)|dzdv, by Lemmas 4.3 and 5.2, (6.10)
and
[ xaB(fufi BB ) - Fa(fa>|)ﬁdwdvdv*dn — [ B (55
(1=af)(1+ (=) f)' I + 1= af)"™" = (3 + 1= afu)" ! dedvdv.dn.

By Lemmas 4.1, 4.3 and 5.1, .2, this integral restricted to the set where
1- Oéfa(t,x,v)) S %7 hence Where

a+1
(1= afG+1-ar) = G r1—agy | < 20

a® ’
is bounded by -% for some constant ¢ > 0.
For the remammg domain of integration where 1 — a fo(t, z,v)) > 2, it holds

1 1

|F(fa) = Fa(fa)] < (1 - Oéfa)a|(m +1)* 7t - (m + 1)
= c(% - %)(1 —af,)* 'A% where A € [1, 2]
20— 1e
< .

aa
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And so,
# c
[ aB(£20 03I (1) = Fat o)) dndedvsdn < 2.
Finally

:
XaB (JfanFs ()5 (£3) = Fy(fa)l) (8,2, 0)dwdvdv.dn
fol<v

/ E5(f;) — F3(fa) F(t, 2, v)dxd + .
lv|<V

| /\

Split the (z,v)-domain of integration of the latest integral into

Dy :={(z,v); |v]| < V and (ff(t,x,v),fg(t,x,v)) € [Qé — v},

Dy i= {(w ) bl <V and (0, 0), JE(6 ) € [ = v, 12,
D3 = {(z,v); |v| < V,(ff,fg)(t,l“,v) < % _“V’l] % [O’é — ]

or (F£, 7)€ [0, — vl x [+ — v, 211

It holds that
/ Fy(f) — F(f)lF(t, 2 v)dado < clapy )" / 168 (t, 2, ) | dd,
D1 Dl

/ F,(f,) — Fy(f) (2, v)dado < e(byt)*~" / 64 (t,2,0)|dedy, by (6.6),
Do Do

/ E5(;) — F5(f)lH(t 2, v)dado < c((apy)* + (bvt)a*)/ l64(t, 7, v)|dado.
D3 D3

The remaining terms to the right in (6.9) are of the same types as the ones just
estimated.

Consequently,
d
7 |g§(t7:ﬂ,v)\dmdv < %—i—cﬁ—i—c(l—i—u?‘fl—i—(bvt)a*l)(/ |g§(t,x,v)|dmdv).
Jv|<V a lv|<V
(6.11)
And so,
sup / |g§-(t,x,v)\dmdv
t€[0,To] J|v|<V
T (T T
< ( ey | (fo,; — fo,a)(z,v) | dedv + s + CBT(J)e v a (6.12)
v|<

with fo ; (resp. fo,) defined in (3.3). For a (resp. Tp) large (resp. small) enough,
the right-hand side of (6.12) is smaller than g, uniformly w.r.t. j > a. This
proves that (f;)jen~ is a Cauchy sequence in L'([0,Tp] x [0,1]F x R3) and ends
the proof of the existence of a solution f to (1.1). It follows from the boundedness
f 4 that f € C([0,T];L1([0,1]* x R?)), which in turn implies that Q(f) €
C([0,T); L1([0,1)* x B%)) and f € C1([0, T); L1([0,1]* x B?)).
Third step: uniqueness of the solution to (1.1) and stability results.

The previous line of arguments can be followed to obtain that the solution is
unique. Namely, assuming the existence of two possibly local solutions f; and f5 to
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(1.1) with the same initial datum and bounded energy, Lemma 6.1 holds for both
solutions. The difference g = f1 — fo satisfies

azt.g‘|'17 ' vwg

= /B(f{f{* = f312.)F(f1) F(frx)dvsdn — /B(f1f1* = fofo) F(fL)F(f{.)dv.dn
+ [ BER (PGP = F() + FED(F() = P(f2) )dv.dn
~ [ BRe (FUMEG) - FUD) + FUD(E(L) = F(53.))) doadn.

The first line in the r.h.s. of the former equation gives rise to ¢ [|g* (¢, z,v)|dzdv
in the bound from above of 4 |g*(t, ,v)|dzdv, whereas the two last lines in the
r.h.s of the former equation give rise to the bound c(1 + t*~1) [|g*(t, x,v)|dzdv.
Consequently,

d
%/|gﬁ(t,x,v)|dxdv <c(1 +t°‘*1)/|gn(t,x,v)\dxdv.

This implies that [|g*(¢, z, v)|dzdv is identically zero, since it is zero initially.
The proof of stability is similar. a

7. Conservations of mass, momentum and energy. The conservation of mass
and momentum of f follow from the boundedness of the total energy. The energy
is non-increasing by the construction of f. Energy conservation will follow if the
energy is non-decreasing. This requires the preliminary control of the mass density
over large velocities, performed in the following lemma.

Lemma 7.1. Given t € [0,T], there is a constant ¢, > 0 such that for every A > 2
the solution f of (1.1)-(1.2) satisfies

/

f €t
sup (s, z,v)dv < —=.
/|v>)\(s,z)€[0,t]><[0,1]k VA

Proof of Lemma 7.1. Take A > 2. First consider the case k = 1. It follows from
(3.6) that

/ sup fu(s,x,v)dv < / sup fo(z,v)dv+ || Fy |2, C,  (7.1)
[v|>A\ (s,2)€[0,t]x[0,1] lv|>X 2€[0,1]
where
C P
t
/ sup / /Bf#(s, z + s(vy — ), ") f# (s, + s(vy — vy),vl)dvdv,.dnds.
[v|>X z€[0,1] JO

For v',v), outside of the angular cutoff (2.2), let n be the unit vector in the direction

v —v' and n, its orthogonal unit vector in the direction v — v,. Split C into
C =) y<;<s Ci, where

t
[v|>\ z€[0,1] 0 J|ni|<eor |nii|<e

f#(s,x + s(vy — ), v;)dv*dnds) dv,
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and Cy (resp. Cy) refers to integration with respect to (vs,n) on
{(ven); Iml =€ |nul>e [0 > i},
(resp. {(verm) a2 e, [nilZ e [] < [oL]}).
By Lemma 4.3 and the change of variables (v, v.,n) = (v, v,n,),
Cy < cet, (7.2)

for some constant ¢ > 0. Analogously to the control of A; in the proof of Lemma
4.3 and using Lemma 3.2, it holds that

¢
Olg/ sup / B(/ sup fH(r,x + s(vy —v}),v")ds)
loi>A zef0,1] S >t Jo €0,

sup A (7, X, vl)dvdv,dn
(m,X)€[0,t]x[0,1]

B
:/ sup / 7/( sup fﬁ(ﬂyyvl)di‘/)
o1z zef0.1] jor (>0 ] 101 = 01| S ye(@att(or—op) refo]

sup A, X, v.)dvdv,dn
(7,X)€0,t] x[0,1]

E(t|vy — v/ 1, [t
S/ p U = i) = (/ sup fH(r,y,v")dy)
[o| >\, |0 |>|v! 0

|U1 - 7Jl1| T7€[0,t]

sup A, X, v.)dvdv,dn
(1,X)€[0,t]x[0,1]

< / / sup f*(r,y,v)dydv
677 |1)|>— 0 T€[0,t]

1+ 7), t < max{1,T}.
€

< —
< )\(
The term C5 can be controlled similarly to C; with the change of variables s — y =
x4 s(vy —vly). And so,
1

CSc(eJr%Jr—

6)\), t <max{1,T}.

Choosing € = \%A leads to

c
C<—, t<max{l,T}.
Repeating the previous proof up to time 7', the lemma follows.
In the case of Theorem 2.2 where in particular k& € {1,2,3} and (2.7) is assumed,
analogously to the proof of Lemma 5.2 we obtain

/ sup [v[2f (s, 2,v)dv < Goe,
(

s,z)€[0,t] x[0,1]*

for some constant c. It follows that

1
/| sup fH(s,z,v)dv < 2 / |v|2( sup fH(s,z,v)dv

v[>A (s,z)€[0,t] x[0,1]* ,x)€[0,t] x[0,1]F

éoect

< S
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Lemma 7.2. The solution f to the Cauchy problem (1.1)-(1.2) conserves energy.

Proof of Lemma 7.2. It remains to prove that the energy is non-decreasing. Taking

2
e = % as approximation for |v|?, it is enough to bound

/Q(f)(t,x,v)qpe(v)dxdv = /Bwe (f/f;F(f)F(f*) - ff*F(f/)F(fi)>d$dUdU*dn

from below by zero in the limit ¢ — 0. Similarly to [12],

[ atp.dsar
=5 [ BILFGIFG(00) + 00) = (o) — bulo))dodudv.dn

elvf?v.|?
(14 €fol?)(1 + elva]?)

The previous line, with the integral taken over a bounded set in (v, v, ), converges
to zero when ¢ — 0. In integrating over |v|? + |v.]? > 2A? | there is symmetry
between the subset of the domain with |v]? > A? and the one with |v.|? > \2. We
discuss the first sub-domain, for which the integral in the last line is bounded from
below by

v

drdvdv.dn.

- / BIf.F(f)F(f!)

—c/|v*|2f(t,x,v*)d:vdv*/ B sup #(s,z,v)dvdn
[v|>X  (s,z)€[0,t]x[0,1]*

> —c/ sup f#(s,z,v)dv.
\

V|2 (s,2)€[0,6]x [0,1]F

It follows from Lemma 7.1 that the right hand side tends to zero when A — oo.
This implies that the energy is non-decreasing, and bounded from below by its
initial value.
That completes the proof of the lemma. O
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