
THESIS FOR THE DEGREE OF LICENTIATE OF ENGINEERING

Towards Automatic Generation of Formal Models for
Highly Automated Manufacturing Systems

ASHFAQ FAROOQUI

Department of Electical Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY

Göteborg, Sweden 2018

Towards Automatic Generation of Formal Models for
Highly Automated Manufacturing Systems
ASHFAQ FAROOQUI

c© ASHFAQ FAROOQUI, 2018.

Technical report number: R006/2018
ISSN 1403-266X

Department of Electical Engineering
Chalmers University of Technology
SE–412 96 Göteborg
Sweden
Telephone + 46 (0)31 – 772 1000

Typeset by the author using LATEX.

Chalmers Reproservice
Göteborg, Sweden 2018

to those who seek

Abstract
The manufacturing industry is undergoing a digital revolution, often referred to
as Industry 4.0. The aim of this revolution is to transform the factories into, so
called, smart factories. These smart factories will be modular, decentralized, and
interconnected, to achieve higher level automation and flexibility. Additionally,
a smart factory will have a digital twin, a virtual replica that allows testing, mon-
itoring, and visualization of the factory behavior. As these factories are aimed to
be completely automated, ensuring correctness and safety of the control logic in
each sub-system of the factory is of utmost importance.

The need for having digitalized tools that support operators and engineers
was identified in a survey that was conducted to understand the problems faced
during maintenance of manufacturing systems. To this end, this thesis provides
an architecture that can be applied on old legacy systems as well as new state-
of-the-art systems to collect data from the factory floor. The data obtained can
be visualized in the form of Gantt charts to help operators keep track of the
execution of the station. Furthermore, a model that captures the behavior of the
system can be created by applying Process Mining algorithms to the collected
data.

Model-based techniques have shown to be beneficial in developing control
logic for highly automated and flexible manufacturing systems, as these tech-
niques offer tools to test and formally verify the control logic to guarantee its
correctness. These formal tools operate on such a model of the behavior of the
system. However, manually constructing a model on which these tools can be
applied is a tedious and error prone task, seldom deemed to be worth the effort.
Thus, supporting engineers to build models will improve the adoption of formal
tools within the manufacturing industry.

In order to obtain a formal model during the early development phase of the
manufacturing system, this thesis studies the possibility to automatically infer a
model of a system by interacting with its digital twin. The suggested L+ algo-
rithm, an extension of the well-known L∗ algorithm, shows that it is possible to
automatically build formal models in this way. Additionally, certain shortcom-
ings are identified and need to be addressed before being able to these methods
in a practical setting.

Keywords: Formal Methods, Industrial Automation, Automata Learning, Visu-
alization, Operations

ii

Acknowledgments

When I embarked on this long and lonely journey exploring the realms of academia
as a PhD student, I had not anticipated the way it would transform me. Now, here
I am at the half-way mark eager to move ahead; but stopping to reflect upon my
metamorphosis so far, and those that have contributed to this metamorphosis.
Like in all journeys, the people encountered have left an impact; some more than
others, but each profound and beautiful in their own ways. And to each, I owe a
debt of gratitude. This journey would certainly not have been possible without
the guidance, support, and patience of many important people.

First of all, I would like to thank my supervisor Martin Fabian. Your ability
to ask the most pressing questions and provide blunt and honest feedback has
helped me mature as a researcher. The detailed comments on the nitty-gritties
of writing have helped me develop my skills as a writer, and for that, I am ever
grateful. You have been an impeccable example of what a supervisor must be,
not just for the guidance and support you provide, but for teaching me the what,
why, and how, of supervision.

I would also like to thank my co-supervisor Petter Falkman for, firstly, for
offering me this opportunity to enter academia. Secondly, and more importantly,
for helping me keep my work anchored by helping me find use cases for all my
ideas.

Håkan Pettersson from Volvo Cars Corporation was a great host during my
short stint at Volvo Torslanda. Thank you!

My gratitude to Fredrik and Kristoffer for the insightful discussions that have
helped change my perspectives at times I needed to most. To all the present and
former members of the “discrete klubb” a big thank you for all the interesting
discussions and support in different forms.

Stephen King says “The scariest moment is always just before you start,” I
am grateful to Raghav, Charul, Martin (Viktorsson), Per-Lage, and Patrik who
not just inspired me to embark on this journey but whose support helped me get
over the scariest times.

When one has not written a thesis, the customary acknowledgments to the
author’s family seems meaningless, but when one has spent long weekends and
evenings absent from family activities, it reaches its full meaning. This journey

iii

ACKNOWLEDGMENTS

would have been impossible without the constant support of loved ones. My
family, though far away, are a source of strength and support. I am forever
grateful to my parents for being ever so supportive in everything I have done.
Tania, my wife, has been by my side through the ups and downs of this journey.
More importantly, she has helped me learn the beauty of balance; the balance
that has helped sustain this journey; the balance that has made this journey even
more beautiful. Thank you!

Lastly, a big cheers to the Free Software communities, chiefly, Manjaro –
my platform for a few years now; Emacs – for being everything but a good text
editor; And, LATEX– for making writing tedious but beautiful!

Ashfaq Farooqui
Göteborg, August 2018

This work has been supported by Vinnova FFI VIRTCOM (2014-01408),
ITEA3 VINNOVA ENTOC (2016-02716), VINNOVA LISA 2 (2014-06258),
and VR SyTeC (2016-06204).

iv

List of Publications

This thesis is based on the following appended papers:

Paper 1 Ashfaq Farooqui, Patrik Bergagård, Petter Falkman, and Martin Fabian.
Error Handling Within Highly Automated Automotive Industry: Current
Practice and Research Needs. 2016 IEEE 21st International Conference
on Emerging Technologies and Factory Automation (ETFA), 2016, Berlin,
Germany.

Paper 2 Ashfaq Farooqui, Kristofer Bengtsson, Petter Falkman, and Martin Fabian.
From Factory Floor to Process Models: A Data Gathering Approach to
Generate, Transform, and Visualize Manufacturing Processes. Submitted
for possible journal publication. 2018

Paper 3 Ashfaq Farooqui, Petter Falkman, and Martin Fabian. Towards Auto-
matic Learning of Discrete-Event Models using Queries and Observations.
Submitted for possible journal publication, 2018

In what follows, these papers will be referred to as Paper 1, Paper 2, and
Paper 3, respectively. The individual contributions of each paper are outlined in
Chapter 4.

Other publications
The following publications, authored by the author of this thesis, are relevant but
not included in the thesis:

Ashfaq Farooqui, Kristofer Bengtsson, Petter Falkman, and Martin Fabian.
Real-time Visualization of Robot Operation Sequences. 2018 IFAC Sym-
posium on Information Control Problems in Manufacturing (INCOM), 2018,
Bergamo, Italy.

Ashfaq Farooqui, Petter Falkman, and Martin Fabian. Towards Auto-
matic Learning of Discrete-Event Models from Simulations. 14th IEEE
Conference on Automation Science and Engineering (CASE), 2018, Mu-
nich, Germany.

v

vi

Contents

Abstract i

Acknowledgments iii

List of Publications v

Contents vii

I Introductory Chapters xi

1 Introduction 1
1.1 Research Questions . 3
1.2 Objective and Contribution . 4
1.3 Method . 5
1.4 Outline . 5

2 The Broader Picture 7
2.1 The New Workflow . 8
2.2 Virtual Commissioning . 10
2.3 Modeling Operations . 10
2.4 Formal Methods . 10

3 Inference of Formal Models 13
3.1 Grammar Inference . 14

3.1.1 Passive Learning . 14
3.1.2 Active Learning . 16

3.2 Process Mining . 18

4 Summary of Contributions 21

5 Concluding Remarks and Future Work 23

vii

CONTENTS

Bibliography 27

II Included Papers 33

Paper 1 Error Handling Within Highly Automated Automotive Indus-
try: Current Practice and Research Needs. 37
1 Introduction . 37

1.1 Contribution . 38
1.2 Outline . 39

2 Background . 39
2.1 Error handling process 39

3 Survey summary . 40
3.1 Error scenarios . 40
3.2 Measures to avoid error handing scenarios 42

4 Future trends within manufacturing 42
5 Research needs . 43
6 Conclusion . 45
7 Bibliography . 45

Paper 2 From Factory Floor to Process Models: A Data Gathering Ap-
proach to Generate, Transform, and Visualize Manufacturing Pro-
cesses. 49
1 Introduction . 49

1.1 Contribution . 51
1.2 Outline . 51

2 Software Architecture . 52
2.1 Pipeline components 52
2.2 Message bus . 53

3 Robot event pipeline . 54
3.1 ABB endpoint . 55
3.2 Transformation endpoints 56
3.3 Services . 59

4 Towards creating models . 61
4.1 Process Mining . 62
4.2 Identifying different product cycles 63
4.3 Operation view . 64
4.4 Resource view . 66

5 Conclusions and Future work 67
5.1 Future work . 67

6 Acknowledgements . 68
7 Bibliography . 68

viii

CONTENTS

Paper 3 Towards Automatic Learning of Discrete-Event Models using
Queries and Observations. 75
1 Introduction . 75

1.1 Outline . 77
2 Prerequisites . 77

2.1 Alphabets, Words and Languages 77
2.2 Deterministic Finite State Automata 77
2.3 Operations . 78

3 Background . 78
3.1 Passive learning . 79
3.2 Active Learning . 80

4 The L∗ Algorithm . 82
5 Towards Integrating Active and Passive learning 83
6 L+ learning applied to a robotic arm 87

6.1 Defining the system 88
6.2 Results and Discussions 88

7 Conclusion and Future work 91
8 Bibliography . 92

ix

x

Part I

Introductory Chapters

Chapter 1

Introduction

The complexity of the manufacturing industry constantly increases to keep up
with advancements in technology, market trends, legislative requirements, and
most of all high quality products. Industry 4.0 [1], also called the fourth indus-
trial revolution, can be seen as a collection of various technologies – Internet of
Everything (IoE), Cyber-physical Systems (CPS), and smart factories – to create
the next generation of industrial systems [2]. From the design principles of In-
dustry 4.0 provided by Hermann et al. [2], distributed modular systems are key
to build these next generation factories. The different distributed modules in an
Industry 4.0 setting are normally provided by different manufacturers and have
different properties, but when put together need to work seamlessly. In general,
the systems developed consist of several industrial robots supported by convey-
ors and fixtures, and are designed to be completely automated with minimal
manual handling. The system design must not only take into account flexibility,
efficiency, and development time, but also account for fault tolerant behavior.

Development of these complex automated manufacturing systems is a de-
manding task. In the automotive industry, the development process typically
begins with the company describing the product and design requirements. Based
on these requirements, suitable components are chosen and an overall layout is
decided on, followed by physically building the system. In parallel, the control
system is developed that is to control the physical system so as to manufacture
the desired product. Physically building the manufacturing station is commonly
known as physical commissioning. This includes installation of the physical sys-
tem consisting of robots, conveyors, fixtures, sensors etc., and the control sys-
tem that is responsible for control, supervision and coordination throughout the
production. The requirements specified are not always accurate and often am-
biguous. Hence, the resulting station undergoes several iterations before it can
be used in production. These iterations can significantly delay the time to market
and increase costs, thus they are undesirable.

In order to reduce time to market and save on costs in the long run, the use

1

CHAPTER 1. INTRODUCTION

of Virtual Commissioning (VC) [3] is rapidly increasing today. With VC, a sim-
ulation model of the station is first created using some simulation software, such
as Process Simulate from Siemens [4] or Experior from Xcelgo [5]. Then, the
different manufacturing scenarios are simulated to check if all requirements are
fulfilled. Furthermore, the control system can also be connected to the simula-
tion model and its logic can be tested. This is done to find and fix faults and bugs
in the control logic. Additionally, by visually simulating the manufacturing sys-
tem, errors due to collisions can be detected early on. Physical commissioning
is then done only after the VC model with the control function is acceptable. By
correcting most of the faults during the VC phase, unnecessary time need not be
spent testing the physical system. Thereby, production can start earlier.

However, both physical and virtual commissioning require the control logic,
which is there to ensure that the station works as intended and is safe to operate.
Thus, its correctness is of utmost importance. Since the requirements typically
keep changing during the development process, the control logic needs to be con-
tinuously updated and debugged, which makes its manual development a tedious
and error prone task.

One approach to manage this type of development process, with ever chang-
ing requirements, is to rely on mathematically well-defined formal methods [6].
By applying formal methods, it is possible to analyze and understand the system
in part and as a whole. Formal methods make use of computerized calculations
to analyze the system using a formal model, usually in the form of a discrete
event system (DES) [6], that models the system to be analyzed. Hence, engi-
neers can focus on defining their system and then use computerized algorithms
to analyze, verify, and validate the models.

While the use of formal methods eases the engineering task of building the
control logic, the burden instead gets placed on building the models. As a model
grows in size with incorporating more resources and their operation, the mod-
eling burden grows exponentially. To alleviate this, the models can be built
modularly, where the engineers build models of the respective resources and
their operations, and compose them in a mathematically well defined way into a
model of the overall system. In addition, modeling the requirements as DES, the
control logic can even be automatically generated by synthesis [6], so as to be
correct-by-construction, which further alleviates the risk of introducing errors.

The discussion provided above focuses on building models for the control
logic of new manufacturing stations. Building new systems are not done very
often, though, while changes to existing legacy systems are done daily in order
to improve their behavior, such as cycle time adjustment, bug fixing, etc., or on
a bigger scale to introduce new products or machinery. To be able to do this
in a secure way avoiding disruptions of existing behavior and the production on
the whole, manufacturers are interested in applying formal analysis and to test

2

1.1. RESEARCH QUESTIONS

changes before commissioning them to the physical system. However, a problem
here is that, more often than not, virtually commissioned or formal models do not
exist for legacy systems.

Manually creating the required models is hard and time consuming, requiring
a high degree of knowledge in formal methods and automation system design.
Incorrect or incomplete models are misleading and the use of formal methods
may serve no purpose. To benefit from the use of formal methods, in terms of
verification and synthesis of control logic, the task of building models needs to
be done correctly. In order to do so, this thesis proposes a way to automatically
create a model of the system using computerized tools.

1.1 Research Questions

This thesis aims to explore the following questions.

RQ1 How does the manufacturing industry generally handle errors and perform
maintenance? And what are the challenges faced?

Error recovery techniques have been studied in academia [7, 8, 9, 10, 11],
but these techniques have not really found their way into industrial prac-
tices. Identification of reasons for this disconnect might help bridging the
gap between academia and industry.

RQ2 How can operators be supported with tools and processes that will make
it possible to make more data driven decisions?

Maintenance of manufacturing systems is not an easy task. Decisions need
to be made, tracked, and evaluated. Manually doing so is burdensome and
often ineffective. Having digital tools to support operators can improve the
quality of maintenance [12].

RQ3 Is it feasible to automatically learn formal models of manufacturing sys-
tems? If so, what would be required to make it a reality?

Model-based techniques have shown to be useful for a variety of reasons.
The lack of usable models and the difficulty to create them manually is
a deterrent to using model-based techniques to build and maintain man-
ufacturing systems. Automatic creation of formal models has been stud-
ied [13, 14], but these algorithms are computationally heavy and have typi-
cally been designed for smaller applications. Recent advances in computer
technology have led to computationally powerful computers, and avail-
ability of advanced simulation tools, which might hold the key to making
it possible to learn a formal model of large manufacturing systems.

3

CHAPTER 1. INTRODUCTION

1.2 Objective and Contribution
The objective of this thesis is twofold. First, to highlight the problems faced
by the automotive industry related to maintenance and error handling. Then, to
propose methods, techniques, and tools to help during the commissioning and
production phase so as to increase quality and efficiency. This is achieved by the
following contributions:

• A survey to identify the problems faced by the industry and how these
problems are currently solved.

• A survey of ongoing state-of-the-art projects that provide a glimpse into
future manufacturing technologies.

• An approach to collect and transform data from the factory floor.

• Analysis and visualization of ongoing manufacturing processes in real-
time using Gantt charts, and creation of a behavioral model using Process
Mining.

• A study into methods that enable automatic generation of formal models
from a simulation model of the system using the L+ algorithm. The in-
sights gained from this study will help identify avenues that will allow
automatic creation of models for practical manufacturing systems.

The papers presented in this thesis build upon the ideas presented in this in-
troduction. Paper 1 highlights the common problems faced by the automotive
manufacturing industry with regard to error handling and presents work needed
to address these problems. An outcome of this study was the need to have access
to data from the factory floor to get a better understanding of the systems. Paper 2
presents a flexible and scalable architecture to collect and transform data from
the factory floor. This architecture can be applied to existing and new manufac-
turing stations. The resulting data is then transformed into a more understandable
abstraction in the form of operation descriptions. This data is then used to build
models of existing manufacturing stations using process mining techniques to
help improve and maintain the stations.

Paper 3 presents the possibility to build a formal model of a system from its
simulation model. The functions of the simulation model are modeled as inde-
pendent operations which can be executed from an external interface. The L+

algorithm, an extension of the L∗ algorithm [13], is interfaced to the simula-
tion software, where it can observe the state of the simulation. Then, by posing
queries the algorithm constructs a formal model capturing the behavior of the
system.

4

1.3. METHOD

1.3 Method
The outcome of this thesis is a set of activities and tools that can help build
more reliable and efficient manufacturing systems. Most of the work involved
implementing and testing the algorithms to demonstrate the applicability of the
proposed methods. From a more theoretical perspective, the main research ac-
tivity was to identify gaps in the field of automated modeling that will improve
the practical applicability of these methods.

In general, the method followed was to first, by interacting with industry rep-
resentatives find pressing problems that are faced by the industries; problems
related to error handling and, more specifically, modeling of automated man-
ufacturing systems, were considered. Then, solutions to these problems were
proposed by suggesting a method – as a set of activities – to follow, along with
accompanying algorithms. These algorithms were then implemented to demon-
strate and evaluate the possibility of applying them to real-world scenarios. The
evaluations showed that it is indeed possible to apply in practice the presented
approach. However, there are also some parts missing and parts that need to be
improved. These are summarized in Chapter 5.

1.4 Outline
This thesis is divided into two parts. This first part contains introductory chapters
that aim to help the reader to better understand the ideas and concepts discussed
in the included papers, and also to provide a direction of the research work. The
second part contains the included papers.

This introduction presents a high-level process of building a manufacturing
station and highlights the problems normally faced by engineers involved with
building and maintaining these stations. Chapter 2 puts the thesis into perspec-
tive by positioning this work in the broader picture. To this end, existing industry
practices and challenges are presented, followed by a new updated work-flow
that aims to support engineers and operators during the development of a man-
ufacturing system. Chapter 3 introduces the reader to the field of automatically
inferring formal models. Chapter 4 provides a summary of the included papers.
Finally, some concluding remarks in Chapter 5 sum up the work and provide a
glimpse of future work.

5

6

Chapter 2

The Broader Picture

The aim of this chapter is to provide a context and help position the contribution
of this thesis within the broader picture. In doing so, this chapter will give a gen-
eral overview of existing methodologies followed during the development of a
manufacturing system, and some of their challenges. Additionally, this chapter,
will outline the new methodology that is proposed to help mitigate the chal-
lenges. The tools required to achieve the suggested methodologies in reality are
also briefly introduced.

The traditional procedure followed during the development of a manufac-
turing system starts with a pre-study on the product that will be manufactured.
The pre-study results in a set of requirements that need to be fulfilled by the
manufacturing system; a bill of materials that contains the components, such as,
robots, conveyors, fixtures, etc, that need to be procured; and the system layout
representing the physical placements of those components. The bill of materials
is procured and the physical building of the system is started, in smaller func-
tional parts or as a whole. Based on the requirements, different tasks and actions
needed to manufacture the product are planned. This is known as process plan-
ning [15, 16]. The end result of the process planning stage is the generation of
the control logic. This control logic is responsible for controlling the resources
in the manufacturing system so as to fulfill the objective of the manufacturing
system in an efficient and safe manner. The control logic then needs to be tested
on the physical system, which is usually done in two phases. In the first stage,
components are tested individually or in groups. The second stage is performed
after the system is physically commissioned. Here, testing is done until all re-
quirements are satisfied, and the system behaves satisfactorily.

The consideration of control logic later in the development phase has sev-
eral negative consequences resulting in high financial costs and loss of time. As
seen in Paper 1, fixing software bugs might, as a side effect, introduce more
bugs. Additionally, performing the tests on the physical system increases the
risk of collisions and component failures. During the survey conducted in Pa-

7

CHAPTER 2. THE BROADER PICTURE

per 1 it was also found that the initial testing done at the line manufacturers
site was functional testing. Later, only when the complete system is physically
commissioned, complete end-to-end testing is performed. Directly testing on the
physical system might result in breakage and may require a fresh order of com-
ponents. All these factors add to the unnecessary effort, cost, and time expended
during the physical commissioning phase.

Development of manufacturing systems is just the first phase of its life-cycle.
Building these stations is expensive, and the manufacturing company expects
them to last for several years to even out the cost. Hence, these systems need to
be well maintained to ensure good productivity during their life-cycle. Paper 1
presents the current industrial state of maintenance procedures. The concluding
points in Paper 1 are to have a work-flow that incorporates ways to fix bugs in the
software safely, and a possibility to digitalize the system to be able to use digital
tools to monitor, visualize, and reason about it. Hence, the tools and processes
created in the new work-flow need to not only account for a better manufacturing
process but also need to cater to maintenance requirements.

2.1 The New Workflow
The Division of Systems and Control, at the Department of Electrical Engineer-
ing at Chalmers University of Technology, has been active in developing a work-
flow and tools to support the development of manufacturing systems. A high
level work-flow that is pursued at the department is presented in Figure 2.1. This
new work-flow starts similar to the old work-flow by identifying the bill of ma-
terials. But the process planning starts already at the initial phase along with the
bill of materials to identify the process, tasks and actions needed, resulting in
the bill of processes. Based on the bill of processes, the components identified
are digitally created in a 3D simulation environment. These digital replicas are
placed according to the required system layout. At this point, potential collisions
can be identified, and the layout can be updated to ensure safe operation. The en-
gineers then take the bill of processes and convert this to actions to be performed
in the simulation software. These simulated actions need to be transformed into
control logic that can be run on a Programmable Logic Controller (PLC). The
system is virtually commissioned by connecting the PLC to the simulation tool
to verify functionality and test for errors. At this point, the bill of materials
is finalized, and the components are procured. Following which the system is
physically commissioned.

During the development phase, requirements are constantly changing due to
new insights. Hence, the control logic needs to be constantly updated and tested
to ensure that the requirements are met. One approach is to use mathematically
well-defined formal methods to verify the behavior of the system and to generate

8

2.1. THE NEW WORKFLOW

BOM/mBOM

Bill of Processes

Tooling

Simulation

PLC code

generation

Virtual

Commissioning

Physical

Commissioning

Figure 2.1: The new workflow

the control logic. With the use of formal methods, the focus is shifted from
manually developing and testing the control logic, to developing a model that
describes the behavior of the system.

To build a formal model the engineer needs to consider the level of abstrac-
tion needed to be described by the model. By modeling at a very low level the
engineer risks making the model unmanageably large. On the other hand, by
modeling at a high level, a number of details could be missed, and the model
might not be usable. Hence, finding a level of abstraction that suits the system
is key to developing a model. Once a suitable level of abstraction is decided,
the engineer has to ensure that the model correctly captures the behavior. This is
where this thesis contributes towards the development of manufacturing systems.
It looks at possibilities to automatically infer a behavioral model of the system.

A by-product of the defined work-flow is the availability of a digital twin –
a digital replica of the physical system. This digital twin behaves in the same
way as its physical counterpart and can be used for monitoring, testing, and
modifications. To enable the effective use of a digital twin, additional tools need
to be created that can synchronize between the physical system and its digital
twin. These tools need to capture and store operating data from the physical
system for further processing.

The remainder of this chapter will introduce the different components needed
to follow this thesis, specifically, virtual commissioning and formalisms for for-
mal methods.

9

CHAPTER 2. THE BROADER PICTURE

2.2 Virtual Commissioning

Simulation technology has come to a point where it is now possible to simulate
systems at the sensor level. Software programs such as Process Simulate [4],
Xcelgo Experior [5], and ABB Robot studio [17] are capable of simulating con-
veyors, fixtures, robots, and even humans, to a relatively high level of accuracy.

These simulation tools can also be controlled externally, for example, by us-
ing a PLC. Such a setup would constitute virtual commissioning, where a digital
replica of the system is controlled by the PLC code that will eventually run on
the shop floor controlling the physical system.

In order to be able to infer a model of the system, which is the aim here,
the learning algorithm – the learner, introduced later in this thesis – requires
an interface to the virtually commissioned system. This interface must allow the
learning algorithm to execute actions which are at a pre-defined abstraction level,
and allow the learning algorithm to observe the output of the virtual model. An
example of such an interface is the OPC-UA [18] standard for communication.
This standard is supported by many component vendors and can be used with the
virtual and physical system. The OPC-UA, allows control and observation at the
input/output level, and also facilitates observation of internal variables. Hence,
it is an ideal candidate to use as an interface for the learning algorithm.

2.3 Modeling Operations

As discussed in Section 2.1, choosing a sufficiently moderate level of abstraction
becomes important to create a model. The work in this thesis uses the abstraction
of operations [19]. An operation is a task performed in a manufacturing system
by one or more resources. Broadly, an operation can be defined as a set of actions
that change the state of the system to accomplish an objective. The level of detail
of an operation is not fixed, it could be used to define an update in one resource
or can affect several resources. Guards are used to determine when a operation
is allowed (or not allowed) to execute. These operations, along with their guards,
are programmed such that they can be executed by the control system. A more
formal definition is provided in Paper 3, Section 2.3.

2.4 Formal Methods

Formal methods are design techniques that use mathematical models to build
software and hardware systems. These methods make use of mathematical proofs
to ensure correctness. As systems become more complicated and safety becomes
an important concern, a formal approach to the system design offers a certain

10

2.4. FORMAL METHODS

level of insurance.
To apply formal methods, designers need to have access to a formal model

that describes the behavior of the system. One of the many ways to create such a
model is to make use of finite-state machines (a.k.a finite-state automata or sim-
ply automata) [20], which are commonly used to model discrete-event systems.
The system is then abstracted into events and states, where the occurrence of an
event moves the system from one state to another. The original state of the sys-
tem, before the occurrence of any event is the initial state. A particular sequence
of events can lead the system to some desired state, such a desired state is called
an accepted state and the sequence of events an accepted sequence.

When talking about discrete-event systems as finite-state machines a sequence
of events is referred to as a word. The set of words that are accepted by the finite-
state machine is the accepted language. The automaton represents the grammar
of the system; that is, when presented with a word, the grammar decides the va-
lidity of this word. Formal definitions of words and languages are provided in
Paper 3, Section 2.

11

12

Chapter 3

Inference of Formal Models

Consider a small but realistic example consisting of a robot and a machine, as
seen in Figure 3.1a. In this system, the robot takes the part (part A) from the
pallet and puts it on the machine. The machine then loads the part, processes it,
and unloads it. In the meantime, the robot can take the next part or do nothing.
But the robot has to wait until the machine has unloaded its part before putting
the next part on the machine. An automaton representing this setup is shown in
Figure 3.1b, from which it is seen that the system is accepting as long as there is
no part loaded in the machine.

Part A

(a) Representation of the physical system.

m1.r1.s1

m1.r2.s1

take

m1.r1.s2

m1.r2.s2

take

m2.r1.s3

load

put

m2.r2.s3

load

unload

take

unload

(b) Representation of the system behavior.

Figure 3.1: A robot and a machine. The robot takes a part and puts it on the
machine. The machine loads the part, and after processing unloads it.

Assume now that we do not have the model of this system, and want to obtain
the model without manually building it. That is, we are provided access to the

13

CHAPTER 3. INFERENCE OF FORMAL MODELS

actual physical system as in Figure 3.1a and would like to infer a model of it as
seen in Figure 3.1b. There exist tools and techniques that would help to infer
such models. Broadly, models can be inferred using Grammar Inference [21]
or Process Mining [14] techniques.

The aim of this chapter is to provide a glimpse into existing ideas that deal
with automatically inferring models. Both the fields of study, Grammatical In-
ference and Process Mining, are well established and quite vast. It is beyond the
scope of this thesis to cover the details of the different algorithms. However, the
general ideas employed in each of the fields will be discussed to equip the reader
with the basics concepts. This will help interested readers to further delve into
the details.

3.1 Grammar Inference

Grammar Inference (GI) has been studied both as a theoretical problem, where
its goal is to uncover some hidden function, or as a practical problem of attempt-
ing to represent some knowledge as an automaton. GI finds its origin in various
fields of study: computational linguistics, machine learning, formal learning the-
ory, pattern recognition, and computational biology. Hence, it is also known by
different names depending on the field: Automata Learning, Grammar Induc-
tion, Grammar Learning, etc. Though the different names can have different
connotations, they all refer to similar ideas and processes.

The majority of GI algorithms work on generalizing some form of knowl-
edge about the system to be learnt. The learning algorithm referred to as the
learner, internally creates a representation of this knowledge. This representa-
tion is continuously refined and generalized to satisfy certain properties specific
to that learner. When the learner is satisfied with the generalization reached, its
internal representation can be converted into some meaningful representation.
Of the many methods studied and developed under GI, several of them deal with
learning finite-state machines. These methods can be classified as Passive learn-
ing or Active learning.

In-depth surveys of GI techniques are provided by [22, 23, 24].

3.1.1 Passive Learning

Passive Learning, sometimes referred to as Informed Learning, is a setting in
which labeled data is provided to the learner, and the learner is tasked to find
an automaton that generalizes this data. This data is usually an observation log
from the system and consists of words. These words are labelled as accepted (or
rejected) if they belong (or do not belong) to the accepted language.

14

3.1. GRAMMAR INFERENCE

Passive learning algorithms start by first generating a hypothesis from the
available data. This is done by constructing a prefix tree acceptor (PTA), which
is a tree-like automaton constructed by looking at the accepted words in the data.
This PTA can be constructed in linear time and contains no loops or converging
paths. In the example above, accepted words could be the set {〈take〉, 〈take, put,
load, unload〉, 〈take, put, take, load, unload〉}, and non-accepting words could
be {〈take, put〉, 〈take, put, load〉, 〈take, put, take〉}. The first step is to construct
the PTA using the accepted data. The PTA obtained is a crude representation of
the available data as seen in Figure 3.2.

The next step is to refine the PTA. The method of building the PTA and then
refining it using non-accepting data samples is called regular positive and nega-
tive inference [25]. This method provides a basis for more advanced algorithms
that focus on the refinement phase. A number of different strategies for PTA re-
finement have been presented in the literature [21, 26, 27, 28]; a detailed survey
of those is beyond the scope of this thesis.

The most common refinement technique, though, is state merging [29]. The
merging of states usually consists of three stages, the first is the search to iden-
tify the states to be merged; then the actual merging, where the merged states are
represented by a single state yet retain the incoming and outgoing transitions;
the final stage is called promotion, which keeps track of the states already tested
and the next states to be evaluated. Several algorithms have been suggested to
efficiently perform the search, merging and promotion. In [27] a general sur-
vey of state merging algorithms is presented where they are classified as Exact
Algorithms or Approximate Algorithms.

Exact algorithms aim to create a model that exactly represents the input data.
Some such algorithms are MMM [30], BICA [31], and EXBAR [32], all of which
start with a basic trivial model as initial PTA. The algorithms then start looking
for states to merge. On every merge done the algorithms search the input data to
check if the samples are consistent with the automaton. Searching through the
input data for inconsistencies is expensive. The algorithms mentioned above use
different techniques and heuristics to perform this search efficiently.

q1 q2 q3 q4q4 q5

q6 q7 q8

take put load unload

take

load unload

Figure 3.2: The PTA generated from the set of accepted words {〈take〉, 〈take,
put, load, unload〉, 〈take, put, take, load, unload〉}

15

CHAPTER 3. INFERENCE OF FORMAL MODELS

Approximate algorithms, on the other hand, rely on heuristics to provide
an automaton that approximately describes the input data. Examples of these
algorithms are EDSM [33], SAGE [34], and ED-BEAM [32]. These algorithms
work in similar ways to their exact counterparts, the difference lies in the way
they perform the state merging. Additionally, these algorithms keep updating the
PTA by backtracking and improving previous merges.

In order to obtain an accurate model of the system, the learner needs to have
access to accepting and non-accepting data [35]. In a manufacturing context
access to accepting data is usually never a problem. However, there does not
seem to exist ways to obtain non-accepting data. Hence, the models identified
using passive learning methods are limited to the fact that they represent only the
observed behavior. One major problem when applying passive algorithms is the
state-space explosion. It has been proved that learning from sampled data is NP-
complete [35]. Thus, most of the algorithms are created and tested on problems
with a significantly smaller state-space [27] compared to what is needed in a
manufacturing setting.

Paper 3 uses ideas from passive learning in conjunction with active learning
methods to obtain a more accurate model of the system.

3.1.2 Active Learning

Active Learning, or learning with queries, is a setting where it is possible to
interact with an oracle. The algorithms available under active learning make the
assumption that there is a minimal adequate teacher, which is an oracle that can
answer queries. An active learner poses queries to the oracle and based on the
responses constructs a model.

The analogy of a teacher and student fits well to explain the working of gen-
eral active learning techniques. The student is the learner, and the teacher is the
oracle. The student is given prior knowledge about the different events possi-
ble, in the example above it would be the set {take, put, load, unload}. And,
the student is allowed to pose two types of queries to the teacher. The first type
is about the membership of a given sequence of events; to this the teacher can
respond positively if the sequence results in an accepted state, else the response
is negative. The second type of query, called equivalence query, occurs when
the student presents a hypothesis model to the teacher. If the teacher responds
positively, that is, acknowledges that the model learnt by the student represents
the actual system fairly accurately, then a model is found and the learning termi-
nates. Else, in case the teacher finds the model incorrect, the student is presented
with a counterexample – a sequence of events that is allowed in the hypothesis
but not in reality, or vice versa. The student then updates its model to exclude or
include the behavior of the counterexample, and continues asking queries. This

16

3.1. GRAMMAR INFERENCE

process iterates until a fairly accurate model is found.
For the sake of an example, lets say the student starts by asking if 〈take〉

is a member; the teacher responds positively. If the student then proposes a
model with a single event, then since the model is invalid the teacher provides a
counterexample by giving, say, the sequence 〈take, put, load, unload〉 The stu-
dent will then take the presented counterexample into consideration, make new
queries, and eventually present a new hypothesis. This process continues until
the teacher decides that an acceptable model is found. The procedure highlighted
above is intended only to provide an analogy into the actual learning process and
to show how this type of learning is closer to how humans learn. The actual
algorithms are far more complex. One of the most fundamental active learn-
ing algorithms is the L∗ algorithm introduced by [13], a detailed explanation
for which is provided in Paper 3, Section 4. This algorithm is known to run in
polynomial time and guarantees termination [13].

The L∗ algorithm has been a starting point for most of the research in the
field of active learning [13]. From an algorithmic perspective, there have been
only a handful of improvements and new approaches suggested. Schapire et.
al. [36] improve the L∗ algorithm by handling counterexamples that include a
homing sequence when it is not possible to reset the target system. In the case
when a robot is allowed to explore its surroundings to infer a map, it is tedious to
always reset the robot to its initial position. Hence, Schapire et. al [36] present
an algorithm that creates a homing sequence. Using this homing sequence allows
the robot to infer its current state. Kearns and Vazirani [26] introduce the idea
of discrimination trees to internally represent the knowledge of the system. The
idea of discrimination trees is further explored by Malte et al. [37] who suggest
the TTT 1 algorithm.

The L∗ algorithm has been used successfully in practical settings to learn
automata. Active automata learning has been applied to verify communication
protocols using Mealy machines [38, 39]. By using a suitable abstraction inter-
face, Arts [40] learn IO automata. Other techniques are directed towards learning
models of software systems; Malte et al. [41] apply active automata learning to-
wards learning models of software programs modeled as register automata, while
Smeenk et al. [42] focus on learning embedded software programs.

The active learning algorithms assume the existence of an oracle. If a com-
puterized oracle would exist, then there would be no problem to solve, since the
model would be available in the oracle, and the task would then be to extract the
model from the oracle. However, with the advancement of technology and easy
availability of simulation software, it is possible to create a digital twin of the
actual system to play the part of an oracle. These simulations are built up of sev-

1The name is derived from Spanning Tree, Discrimination Tree, and Discriminator Trie; the
three concepts fundamental to the algorithm.

17

CHAPTER 3. INFERENCE OF FORMAL MODELS

eral functions that can be executed using an external interface to the simulation
software. For example, the event “take” would have a function that makes the
robot pick the part from the pallet, or “put” would place the part on the machine,
and so forth. The teacher is then no longer an oracle, but an interface to this
simulation. It can then reply to queries by simulating the given sequence. The
accepted states are then identified by observing the simulation, which could be
achieved by reading the internal variables of the simulation and defining a pred-
icate expression over these variables. This setup is further elaborated in Paper 3,
Section 6.

However, in order to be able to apply these techniques to learn models there
needs to be a way to find counterexamples. Queries for membership are fairly
easy to handle, equivalence queries on the other hand are proved to be an NP-
complete problem [43]. Hence, finding counterexamples is a bottleneck for ac-
tive learning methods. In the case when the model of an existing system is to
be created, which also has a virtually commissioned counterpart, Paper 3 inte-
grates active and passive learning methods and presents the L+ algorithm that
uses observation data from the actual system to find counterexamples.

3.2 Process Mining
Process mining [14] is a field of study comprised of process discovery, confor-
mance checking, and model enhancement. Process discovery, similar to passive
learning, aims at creating a process model that imitates the observed process.
The difference between process discovery and passive learning lies in their objec-
tives. While process discovery takes a more pragmatic approach towards build-
ing and analyzing the underlying process in large organization, passive learning
is a more theoretical method focusing on finding grammars that represent the
data. What sets process discovery apart from passive learning is its integration
with the other components of Process Mining, conformance checking and model
enhancement, for investigating and maintaining the process models.

Process discovery techniques are used to understand task flows in large or-
ganizations where tasks can be performed for various resources or individu-
als. To do this, these techniques rely on process logs as input. The mini-
mal requirement for the logs is a tuple containing <caseId, event name,
attributes>. Here the caseId is a unique identifier that identifies the case
being handled; in a manufacturing context it could be viewed as the product
on which operations are run. The event name identifies the task executed.
A number of other attributes, such as time stamps, the name of the re-
source that performs the operation, product variant, can be appended to improve
the analysis. The resulting output from a discovery algorithm is a work-flow
model that can be represented by formalisms such as Petri nets [44], Transition

18

3.2. PROCESS MINING

Graphs [45], or Business Process Model and Notation diagrams [46].
The basic idea, in almost all Process Mining algorithms, is to construct a

relationship table from the input logs. The relationship table contains informa-
tion about the position of each event relative to the other events. In the example
above, irrespective of the actual sequence of events, every product will log the
sequence 〈take, put, load, unload〉. The relationship table will thus reflect a
“directly follows” relation between the pairs 〈take, put〉, 〈put, load〉, and 〈load,
unload〉. Thus, the resulting work-flow model is a straight sequence of these
events. In a more complex setting, where there are different paths observed, the
relationship table can additionally describe relations such as parallel or arbitrary.

The process outlined above closely resembles the alpha algorithm [47], the
most basic algorithm in Process Mining. However, the alpha algorithm is not
immune to noise in the logs, and also cannot be applied to systems that contain
loops in their execution. Several advanced Process Mining algorithms have been
presented that tackle these problems. The Heuristic Miner [48], for example,
builds a relationship table that contains the number of times an event occurs
before or after other events. Then, using heuristics to normalize this table, the
algorithm constructs a model representing the different relationships. Another
such algorithm, the Fuzzy Miner [49], aims to find closely related patterns and
group them into clusters. In doing so, it becomes possible to not focus on the
details, thus an abstract process is presented for possible further analysis.

A model defining relations between events is not the only form of output
achievable from Process Mining. It is also possible to get a model from various
perspectives and analyze different properties. For instance, by logging the ex-
ecution time and executing resource for each event as additional attributes it is
possible to analyze the system for bottlenecks and resource utilization. To this
end, a model representing the relationship between the resources is first created.
Then by aggregating the time spent at each resource, this model can include the
time each resource is occupied.

Process mining has shown significant benefits in understanding underlying
task flows, bottlenecks, resource utilization and many other factors within large
corporations [50, 51], and has also proved beneficial in health-care [52, 53, 54] to
learn and improve the underlying processes. Within the manufacturing domain,
though, there has been only a handful of studies of applying Process Mining.
Yang et. al. [55] and Viale et. al. [56] present a method to apply Process Min-
ing on manufacturing data. While the former uses structured and unstructured
data generated from a manufacturing system along with operators or workers to
provide domain level knowledge, the latter works with definitions of the system
provided by domain experts to find inconsistencies between the model and the
actual process. Yahya [57] shares interesting insights into using process mining
to understand manufacturing systems using artificially created logs. However,

19

CHAPTER 3. INFERENCE OF FORMAL MODELS

there seem to be two main factors missing when aiming to apply Process Mining
to manufacturing systems:

1. There is a lack of methods to capture and collect usable data from the
factory floor.

2. There is a lack of a defined data structure/abstraction useful for generating
models from factory data.

Paper 2 uses Process Mining to analyze manufacturing systems by collecting
data from the factory floor. Section 2 of Paper 2 provides a general architec-
ture that generates an event stream of program pointer data from the robots in
a manufacturing system. Furthermore, the paper elaborates on transforming the
generated event streams into the usable abstraction of operations. This abstracted
data is used as input to Process Mining algorithms to obtain models and analyze
the system. Section 4.3 of Paper 2 discusses visualization from an operation per-
spective, where the relations between different operations are studied to identify
unique patterns that correspond to different products. Section 4.4 then shows the
use of Process Mining to visualize how the product flows between the resources.

20

Chapter 4

Summary of Contributions

This chapter provides a brief summary of the papers that are included as part of
this thesis.

Paper 1

Ashfaq Farooqui, Patrik Bergagård, Petter Falkman, and Martin
Fabian.
Error Handling Within Highly Automated Automotive Industry: Cur-
rent Practice and Research Needs. 2016 IEEE 21st International
Conference on Emerging Technologies and Factory Automation (ETFA),
2016, Berlin, Germany.

This paper presents a study on error handling in the Swedish automotive manu-
facturing industry, specifically the body-in-white segment. To this end, a survey
was conducted with several industry partners to get a glimpse into what were the
most common errors encountered and the measures taken to avoid them. Addi-
tionally, the paper looks at ongoing research that is aimed towards making man-
ufacturing highly automated. Based on the survey with industrial partners and
ongoing research, the paper identifies future directions of work that will help in-
dustries handle error scenarios. Tool breakage, resource malfunctions, software
bugs, and emergency stops were a few of the most common issues faced in the
industry. To be equipped to handle these problems operators need to be well
trained. Therefore additional effort is required to ensure training handles the
standard scenarios. A common need towards alleviating the problems identified
is the digitalization of the system and its processes.

21

CHAPTER 4. SUMMARY OF CONTRIBUTIONS

Paper 2
Ashfaq Farooqui, Kristofer Bengtsson, Petter Falkman, and Martin
Fabian.
From Factory Floor to Process Models: A Data Gathering Approach
to Generate, Transform, and Visualize Manufacturing Processes. Sub-
mitted for possible journal publication. 2018

This paper provides a software architecture to collect data from robot man-
ufacturing stations. The suggested architecture was designed to be applicable to
existing and new manufacturing stations. The collected data is abstracted into
the form of operations and can be visualized in real-time aiding the operators.
To show the applicability of the data, the software architecture was applied and
tested on manufacturing stations consisting of several robots. Then, process min-
ing methods are used to process the obtained data to construct a general model
that represents the activities of the station. Process mining algorithms are also
used to identify the relationship between the resources in the station.

Paper 3
Ashfaq Farooqui, Petter Falkman, and Martin Fabian.
Towards Automatic Learning of Discrete-Event Models using Queries
and Observations. Submitted for possible journal publication, 2018

This paper presents an approach to integrate active and passive learning by
introducing the L+ algorithm, an extension to the L∗ algorithm. The L∗ algo-
rithm, presented in Paper 5, shows the possibility to learn formal models from
a simulated environment. A major bottleneck to practically use the L∗ on man-
ufacturing stations relates to finding counterexamples. The approach presented
in this paper, specifically the L+ algorithm, uses previously collected sequential
operation data to find counterexamples to a model created by the L∗ algorithm.

22

Chapter 5

Concluding Remarks and Future
Work

Building correct and error free control logic for manufacturing systems is a chal-
lenge. Mathematically well-defined formal methods provide the possibility to
analyze and understand the system. These formal methods can ease the task of
building control logic by focusing on building models that define the behavior
of the system, and analysis can then be performed on these models to verify that
given requirements are guaranteed to be fulfilled. Doing so allows the engineer
to focus on the behavior and not the underlying details of the system. However,
the models grow exponentially as the number of resources and operations per-
formed by them increases, and this makes it hard to manually create models.
Hence, it would be beneficial to be able to automatically build models that can
then be used by engineers to perform analysis by applying formal methods.

This thesis focuses on automatically building models of manufacturing sys-
tems to help during the maintenance stages, as well as during the early virtual
commissioning phase. To help operators doing maintenance, the current state
of the manufacturing system needs to be tracked and visualized in a way under-
standable by the operators. To this end, an architecture to collect and transform
execution data from robots in manufacturing stations is presented in Paper 2.
This data is used to aid operators, by visualizing the execution of the system,
to better understand and service the station in a timely manner. Furthermore,
the logged data is also used to infer a model that describes the behavior of the
system using Process Mining approaches. This model describes the relation-
ship between the different operations in the system, and the general product flow
between the resources.

The possibility to collect data and build a model in real-time creates many
more avenues to support operators. Live data from the manufacturing system
can be replayed and simulated in the model, in doing so any behavior not already
present in the model can be captured and presented to the operator for inspection.

23

CHAPTER 5. CONCLUDING REMARKS AND FUTURE WORK

Similarly, the generated data can be used to continuously update the model, that
is, build the model in real-time. This live model can be verified against the
requirements of the manufacturing system to find deviations. Furthermore, these
models can be used to perform predictive maintenance on the resources, predict
delays, predict the throughput, thereby supporting the engineers and operators.

Another area that this thesis focuses on is learning of formal models from a
digital twin. Engineers can couple the digital twin with active learning during
the development process to analyze the effects of changing requirements. By
defining executable operations – sets of actions – that perform a specific task,
the learner is tasked with inferring a complete model that describes the behavior
of the simulation model. This helps in building flexible manufacturing systems in
which the engineers need not spend additional effort to manually build models
for every product variant. Thus, the learner can infer models for the different
products, using the virtual model, based on their requirements.

In conclusion, this thesis studied problems faced during error handling in the
manufacturing industry. Certain key problems were identified, and the remainder
of the thesis presented tools and techniques to tackle them. The presented ap-
proaches were tested and validated on small systems and toy examples to show a
proof of concept. However, to be able to fully use these benefits in an industrial
setting, the algorithms need to be improved and implemented.

Future work

To be able to fully realize the work presented in this thesis and apply it in
real demonstrations, there are several challenges that need to be handled. The
state-space explosion problem is one of the major challenges faced while try-
ing to learn models automatically. An approach to alleviate this challenge is
to use richer formalism to describe models; one such formalism is Extended
Finite Automata [58], an extension of finite-state machines that is built up of
bounded discrete variables and uses guards and actions to read and update vari-
ables while executing transitions. In order to automatically generate guards for
an Extended Finite Automaton, it might be worth to investigate if Binary Deci-
sion Diagrams [59] can be used to encode state information in the observation
tables. Then, by consolidating the state information in a smart way, to generate
guards for each transition.

Concerning generation of data from the factory floor as presented in Paper 2,
the current work is limited to gathering data from industrial robots. However,
most of the logic in complex systems is contained within the PLC. Therefore,
generation of execution data from PLCs into a reasonable abstraction is the next
natural step.

In a more broader context, a major challenge is to reason about the quality

24

of the obtained models. Models are not perfect; they represent only a part of
the reality. But to be able to reason and make decisions by using such models,
there needs to be some metrics to help classify them. These metrics can provide
the engineer with a degree of confidence when performing analysis on the model,
and also help reason about the meaning of these results in relation to the physical
system.

25

26

Bibliography

[1] H. Lasi, P. Fettke, H.-G. Kemper, T. Feld, and M. Hoffmann, “Industry 4.0,”
Business & Information Systems Engineering, vol. 6, no. 4, pp. 239–242,
2014. [Online]. Available: http://dx.doi.org/10.1007/s12599-014-0334-4

[2] M. Hermann, T. Pentek, and B. Otto, “Design principles for industrie 4.0
scenarios,” in 2016 49th Hawaii International Conference on System Sci-
ences (HICSS), Jan 2016, pp. 3928–3937.

[3] C. G. Lee and S. C. Park, “Survey on the virtual commissioning of man-
ufacturing systems,” Journal of Computational Design and Engineering,
vol. 1, 2014.

[4] “Process Simulate.” [Online]. Available: https://www.plm.automation.
siemens.com/global/en/products/tecnomatix/assembly-simulation.html

[5] “Xcelgo Experior.” [Online]. Available: https://xcelgo.com/experior/

[6] C. G. Cassandras and S. Lafortune, Introduction to discrete event systems.
Springer Science & Business Media, 2009.

[7] P. Loborg, “Error recovery in automation an overview,” in AAAI-94 Spring
Symposium on Detecting and Resolving Errors in Manufacturing Systems,
Stanford, Ca, USA, 1994.

[8] P. Loborg and A. Törne, “Manufacturing control system principles sup-
porting error recovery,” in Proceedings of the AAAI Spring Symposium on
Detecting and Resolving Errors in Manufacturing Systems, Palo Alto, CA,
USA, vol. 2123, 1994.

[9] Z. Gao, C. Cecati, and S. X. Ding, “A survey of fault diagnosis and fault-
tolerant techniques ;part i: Fault diagnosis with model-based and signal-
based approaches,” IEEE Transactions on Industrial Electronics, vol. 62,
no. 6, pp. 3757–3767, June 2015.

[10] B. Vogel-Heuser, S. Rösch, J. Fischer, T. Simon, S. Ulewicz, and J. Folmer,
“Fault handling in PLC-based industry 4.0 automated production systems

27

http://dx.doi.org/10.1007/s12599-014-0334-4
https://www.plm.automation.siemens.com/global/en/products/tecnomatix/assembly-simulation.html
https://www.plm.automation.siemens.com/global/en/products/tecnomatix/assembly-simulation.html
https://xcelgo.com/experior/

BIBLIOGRAPHY

as a basis for restart and self-configuration and its evaluation,” Journal of
Software Engineering and Applications, vol. 9, no. 1, p. 1, 2016.

[11] P. Bergagård, M. Fabian, P. S, and K. Bengtsson, “Implementing restart in
a manufacturing system using restart states.”

[12] A. Farooqui, P. Bergagard, P. Falkman, and M. Fabian, “Error handling
within highly automated automotive industry: Current practice and re-
search needs,” in 2016 IEEE 21st International Conference on Emerging
Technologies and Factory Automation (ETFA), 9 2016.

[13] D. Angluin, “Learning regular sets from queries and counterexamples,” In-
formation and Computation, vol. 75, no. 2, pp. 87 – 106, 1987.

[14] W. van der Aalst, Process Mining. Springer Nature, 2016.

[15] T.-C. Chang, Expert process planning for manufacturing. Addison-Wesley
Longman, 1990.

[16] H. Marri, A. Gunasekaran, and R. Grieve, “Computer-aided process plan-
ning: a state of art,” The International Journal of Advanced Manufacturing
Technology, vol. 14, no. 4, pp. 261–268, 1998.

[17] “ABB Robot Studio.” [Online]. Available: https://new.abb.com/products/
robotics/sv/robotstudio

[18] W. Mahnke, S.-H. Leitner, and M. Damm, OPC Unified Architecture,
1st ed. Springer Publishing Company, Incorporated, 2009.

[19] K. Bengtsson, B. Lennartson, and C. Yuan, “The origin of operations: In-
teractions between the product and the manufacturing automation control
system,” IFAC Proceedings Volumes, vol. 42, 2009.

[20] J. E. Hopcroft, R. Motwani, Rotwani, and J. D. Ullman, Introduction to
Automata Theory, Languages and Computability, 2nd ed. Boston, MA,
USA: Addison-Wesley Longman Publishing Co., Inc., 2000.

[21] C. de la Higuera, Grammatical Inference: Learning Automata and Gram-
mars. Cambridge University Press, 2010.

[22] ——, “A bibliographical study of grammatical inference,” Pattern Recog-
nition, vol. 38, no. 9, 2005.

[23] M. Bugalho and A. L. Oliveira, “Inference of regular languages using state
merging algorithms with search,” Pattern Recogn., vol. 38, no. 9, 2005.

28

https://new.abb.com/products/robotics/sv/robotstudio
https://new.abb.com/products/robotics/sv/robotstudio

BIBLIOGRAPHY

[24] R. Parekh and V. Honavar, “Grammar inference, automata induction, and
language acquisition,” Handbook of natural language processing, pp. 727–
764, 2000.

[25] J. Oncina and P. Garcia, “Inferring regular languages in polynomial update
time,” in Pattern Recognition and Image Analysis, ser. Series in Machine
Perception and Artificial Intelligence, N. P. de la Blanca, A. Sanfeliu, and
E. Vidal, Eds., vol. 1. World Scientific, Singapore, 1992, pp. 49–61.

[26] M. J. Kearns and U. V. Vazirani, An Introduction to Computational Learn-
ing Theory. Cambridge, MA, USA: MIT Press, 1994.

[27] M. Bugalho and A. L. Oliveira, “Inference of regular languages using state
merging algorithms with search,” Pattern Recogn., vol. 38, no. 9, Sep.
2005.

[28] E. Gold, “System identification via state characterization,” Automatica,
vol. 8, no. 5, pp. 621 – 636, 1972. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/0005109872900337

[29] W. Wieczorek, Grammatical Inference: Algorithms, Routines and Applica-
tions, 1st ed. Springer Publishing Company, Incorporated, 2016.

[30] A. L. Oliveira and S. Edwards, “Limits of exact algorithms for inference
of minimum size finite state machines,” in Proceedings of the 7th Interna-
tional Workshop on Algorithmic Learning Theory, ser. ALT ’96, 1996.

[31] A. L. Oliveira and J. a. P. M. Silva, “Efficient algorithms for the inference
of minimum size DFAs,” Mach. Learn., vol. 44, no. 1-2, pp. 93–119, Jul.
2001.

[32] K. J. Lang, “Faster algorithms for finding minimal consistent DFAs,” Tech.
Rep., 1999.

[33] S. M. Lucas and T. J. Reynolds, “Learning DFA: evolution versus evidence
driven state merging,” in Evolutionary Computation, 2003. CEC ’03. The
2003 Congress on, vol. 1, Dec 2003, pp. 351–358.

[34] H. Juillé and J. B. Pollack, “A stochastic search approach to grammar in-
duction,” in Grammatical Inference, 1998.

[35] E. M. Gold, “Language identification in the limit,” Information and
Control, vol. 10, no. 5, pp. 447 – 474, 1967. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0019995867911655

29

http://www.sciencedirect.com/science/article/pii/0005109872900337
http://www.sciencedirect.com/science/article/pii/0005109872900337
http://www.sciencedirect.com/science/article/pii/S0019995867911655

BIBLIOGRAPHY

[36] R. E. Schapire, The Design and Analysis of Efficient Learning Algorithms.
Cambridge, MA, USA: MIT Press, 1992.

[37] M. Isberner, F. Howar, and B. Steffen, “The TTT algorithm: A redundancy-
free approach to active automata learning,” in Runtime Verification,
B. Bonakdarpour and S. A. Smolka, Eds. Springer International Pub-
lishing, 2014, pp. 307–322.

[38] B. Steffen, F. Howar, and M. Merten, “Introduction to active automata
learning from a practical perspective,” in International School on Formal
Methods for the Design of Computer, Communication and Software Sys-
tems. Springer, 2011, pp. 256–296.

[39] B. Jonsson, Learning of Automata Models Extended with Data. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2011, pp. 327–349.

[40] F. Aarts and F. Vaandrager, “Learning I/O automata,” in CONCUR 2010 -
Concurrency Theory, P. Gastin and F. Laroussinie, Eds. Berlin, Heidel-
berg: Springer Berlin Heidelberg, 2010, pp. 71–85.

[41] M. Isberner, F. Howar, and B. Steffen, “Learning register automata: from
languages to program structures,” Machine Learning, vol. 96, no. 1, pp.
65–98, Jul 2014.

[42] W. Smeenk, J. Moerman, F. Vaandrager, and D. N. Jansen, “Applying au-
tomata learning to embedded control software,” in Formal Methods and
Software Engineering. Springer International Publishing, 2015.

[43] S. Goldman and M. Kearns, “On the complexity of teaching,” J. Comput.
Syst. Sci., vol. 50, 1995.

[44] J. L. Peterson, “Petri nets,” ACM Comput. Surv., vol. 9, no. 3, pp. 223–252,
Sep. 1977. [Online]. Available: http://doi.acm.org/10.1145/356698.356702

[45] M. Yoeli, “The cascade decomposition of sequential machines,” IRE Trans-
actions on Electronic Computers, vol. EC-10, no. 4, pp. 587–592, Dec
1961.

[46] R. Dijkman, J. Hofstetter, and J. Koehler, Business Process Model and No-
tation. Springer, 2011.

[47] W. van der Aalst, T. Weijters, and L. Maruster, “Workflow mining: discov-
ering process models from event logs,” IEEE Transactions on Knowledge
and Data Engineering, vol. 16, no. 9, pp. 1128–1142, Sept 2004.

30

http://doi.acm.org/10.1145/356698.356702

BIBLIOGRAPHY

[48] A. Weijters, W. M. van Der Aalst, and A. A. De Medeiros, “Process mining
with the heuristics miner-algorithm,” Technische Universiteit Eindhoven,
Tech. Rep. WP, vol. 166, pp. 1–34, 2006.

[49] C. W. Günther and W. M. Van Der Aalst, “Fuzzy mining–adaptive process
simplification based on multi-perspective metrics,” in International Con-
ference on Business Process Management. Springer, 2007, pp. 328–343.

[50] W. van der Aalst et al., “Business process mining: An industrial applica-
tion,” Information Systems, vol. 32, no. 5, pp. 713–732, 2007.

[51] W. M. P. van der Aalst, “Business process management: A comprehensive
survey,” ISRN Software Engineering, vol. 2013, pp. 1–37, 2013.

[52] R. S. Mans, M. H. Schonenberg, M. Song, W. M. P. van der Aalst, and
P. J. M. Bakker, Application of Process Mining in Healthcare - A Case
Study in a Dutch Hospital, ser. Biomedical Engineering Systems and Tech-
nologies. Springer Nature, 2008, pp. 425–438.

[53] A. Partington, M. Wynn, S. Suriadi, C. Ouyang, and J. Karnon, “Process
mining for clinical processes,” ACM Transactions on Management Infor-
mation Systems, vol. 5, no. 4, pp. 1–18, 2015.

[54] E. Rojas, J. Munoz-Gama, M. Sepúlveda, and D. Capurro, “Process min-
ing in healthcare: A literature review,” Journal of Biomedical Informatics,
vol. 61, pp. 224–236, 2016.

[55] H. Yang, M. Park, M. Cho, M. Song, and S. Kim, “A system architecture for
manufacturing process analysis based on big data and process mining tech-
niques,” in 2014 IEEE International Conference on Big Data (Big Data),
10 2014.

[56] P. Viale, C. Frydman, and J. Pinaton, “New methodology for modeling
large scale manufacturing process: Using process mining methods and
experts’ knowledge,” in 2011 9th IEEE/ACS International Conference on
Computer Systems and Applications (AICCSA), 12 2011.

[57] B. N. Yahya, “The development of manufacturing process analysis: Lesson
learned from process mining,” Jurnal Teknik Industri, vol. 16, no. 2, 2014.

[58] R. Malik, M. Fabian, and K. Åkesson, “Modelling large-scale discrete-
event systems using modules, aliases, and extended finite-state automata,”
IFAC Proceedings Volumes, vol. 44, no. 1, pp. 7000 – 7005, 2011, 18th
IFAC World Congress.

31

BIBLIOGRAPHY

[59] R. E. Bryant, “Symbolic boolean manipulation with ordered binary-
decision diagrams,” ACM Computing Surveys (CSUR), vol. 24, no. 3, pp.
293–318, 1992.

32

