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Göteborg, Sweden 2018



to my mother, Nadiia Semeniuta





List of Publications

This thesis is based on the following appended papers:

Paper 1 Oleksandr Semeniuta, Sebastian Dransfeld, Kristian Martinsen, and Pet-

ter Falkman. Towards increased intelligence and automatic improvement in

industrial vision systems. Procedia CIRP, 67:256–261, 2018. ISSN 22128271.

doi: 10.1016/j.procir.2017.12.209

Paper 2 Oleksandr Semeniuta, Sebastian Dransfeld, and Petter Falkman. Vision-

based robotic system for picking and inspection of small automotive compo-

nents. In 2016 IEEE International Conference on Automation Science and

Engineering (CASE), pages 549–554. IEEE, aug 2016. ISBN 978-1-5090-2409-

4. doi: 10.1109/COASE.2016.7743452

Paper 3 Oleksandr Semeniuta and Petter Falkman. EPypes: a framework for build-

ing event-driven data processing pipelines. Submitted to: PeerJ Computer

Science

Paper 4 Oleksandr Semeniuta and Petter Falkman. Flexible image acquisition ser-

vice for distributed robotic systems. In 2018 Second IEEE International Con-

ference on Robotic Computing (IRC), pages 106–112. IEEE, jan 2018. ISBN

978-1-5386-4652-6. doi: 10.1109/IRC.2018.00024

Paper 5 Oleksandr Semeniuta and Petter Falkman. Event-driven industrial robot

control architecture for the Adept V+ platform. Submitted to: Frontiers in

Robotics and AI

v



vi

Other relevant publications co-authored by Oleksandr Semeniuta:

Oleksandr Semeniuta. Analysis of camera calibration with respect to measurement

accuracy. Procedia CIRP, 41:765–770, 2016. ISSN 2212-8271. doi: http://dx.

doi.org/10.1016/j.procir.2015.12.108

Oleksandr Semeniuta and Petter Falkman. Discrete event dataflow as a formal

approach to specification of industrial vision systems. In 2015 IEEE Inter-

national Conference on Automation Science and Engineering (CASE), volume

2015-Octob, pages 849–854. IEEE, aug 2015. ISBN 978-1-4673-8183-3. doi:

10.1109/CoASE.2015.7294187

Ivanna Baturynska, Oleksandr Semeniuta, and Kristian Martinsen. Optimization of

process parameters for powder bed fusion additive manufacturing by combina-

tion of machine learning and finite element method: A conceptual framework.

Procedia CIRP, 67:227–232, 2018. ISSN 22128271. doi: 10.1016/j.procir.2017.

12.204



Acknowledgments

Big thanks to my supervisor, Petter Falkman, for lots of inspiration throughout these

four years. I wish every PhD candidate had a supervisor as great as you.

I would like to thank the Norwegian Research Council and the MultiMat project

for funding my work, and H̊akon Raabe and Anja Solheim for their friendly support.

Thanks to Geir Liaklev and Henning Rud from Kongsberg Automotive AS for sharing

their vision and industrial knowledge, and for giving me freedom in shaping my

research.

Big thanks to the Production Technology department at SINTEF Raufoss Manu-

facturing AS, and specifically the Raufoss crew: Sebastian Dransfeld, Ådne Solhaug

Linnerud, and Mats Larsen. I have learned a lot from you.

Thanks to my colleagues at the NTNU’s Department of Manufacturing and Civil

Engineering. Thanks to Kristian Martinsen for the support throughout all my PhD

years, and especially for the laboratory equipment arrangements. Ability to work

with the Adept robot in the last phase of my PhD research had greatly streamlined

my activities. Thanks to Torbjørn Skogsrød and Iver Eugen Jensen for great lead-

ership assistance in tough situations. Additional gratitude to Torbjørn for believing

in the importance of my research and my ideas. Thanks to Michael Cheffena for

the interesting conversations about the future of industrial communication. Thanks

Chunhong Luo and Natasja Bours for their top-notch administrative assistance.

Thanks to all members of the Automation research group at Chalmers, espe-

cially Martin Fabian, Bengt Lennartson, Knut Åkesson, Kristofer Bengtsson, Ashfaq
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Oleksandr Semeniuta, Göteborg/Gjøvik, August 2018

ix





Abbreviations

AGV Automated guided vehicle

API Application programming interface

AMQP Advanced Message Queuing Protocol

ARM A family of reduced instruction set computing architectures for com-

puter processors

AS Aksjeselskap (Norwegian for limited liability stock-based company)

CAD Computer-aided design

CERN The European Organization for Nuclear Research

CPS Cyber-physical system

CPU Central processing unit

CSP Communication Sequential Processes

DAG Directed acyclic graph

DDS Data Distribution Service

DEDF Discrete event data flow

FAS Flexible assembly system

FIFO First in, first out

FN False negatives

FP False positives

FPGA Field-programmable gate array

FxIS Flexible image acquisition service

GCC GNU Compiler Collection

GPU Graphical processing unit

GUI Graphical user interface

HTTP Hypertext Transfer Protocol

I/O Input/output

IOCP Input/output completion port

KA Kongsberg Automotive AS

LAN Local area network

xi



xii

LED Light-emitting diode

LESH Local energy-based shape histogram

LISA Line Information System Architecture

ML Machine learning

MLE Maximum likelihood estimation

MSE Mean squared error

MQTT Message Queuing Telemetry Transport

NTNU Norwegian University of Science and Technology

PC Personal computer

PLC Programmable logic controller

POSIX Portable Operating System Interface

RGB The red/green/blue color model

RMS Root mean square

ROS Robot Operating System

RPC Remote procedure call

RS-232 A standard for serial transmission of data

SE(3) Special Euclidean group

SIFT Scale-invariant feature transform

SDF Synchronous data flow

SO(3) Special orthogonal group

SOA Service oriented architecture

SOAP Simple Object Access Protocol

SRM SINTEF Raufoss Manufacturing AS

SURF Speeded up robust features

SVD Singular-value decomposition

SVM Support vector machine

TCP Transmission control protocol

TN True negatives

TP True positives

UDP User datagram protocol

UML Unified Modeling Language

USB Universal serial bus

XML Extensible Markup Language

VLAN Virtual local area network

YARP Yet Another Robot Platform

ZMTP ZeroMQ Message Transport Protocol



Contents

I Introductory chapters 1

1 Introduction 3

1.1 Research questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 Contributions of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Method 9

2.1 Methodological considerations . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 The MultiMat project . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Main theme of the PhD research . . . . . . . . . . . . . . . . . . . . . 12

2.4 Solutions development as a research method . . . . . . . . . . . . . . . 13

2.5 Case system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.6 PhD research path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.7 Thesis structure and contributions of the papers . . . . . . . . . . . . 18

3 Background 25

3.1 Specifics of Kongsberg Automotive AS . . . . . . . . . . . . . . . . . . 25

3.2 Automation in manufacturing and assembly . . . . . . . . . . . . . . . 28

3.3 Industrial vision systems . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3.2 Lighting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3.3 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3.4 Perception and action . . . . . . . . . . . . . . . . . . . . . . . 34

3.4 Cyber-physical systems . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.5 Concurrency and parallelism . . . . . . . . . . . . . . . . . . . . . . . 37

4 Estimation and learning 39

4.1 Machine learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

xiii



xiv Contents

4.3 Point estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.4 Linear models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.5 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.6 Flexible machine learning models . . . . . . . . . . . . . . . . . . . . . 44

4.7 Probabilistic interpretation . . . . . . . . . . . . . . . . . . . . . . . . 45

4.8 Machine learning model evaluation . . . . . . . . . . . . . . . . . . . . 47

5 Vision pipelines 49

5.1 Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.2 Vision algorithms as pipelines . . . . . . . . . . . . . . . . . . . . . . . 50

5.3 Image segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.4 Connected components . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.5 Edge detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.6 Image features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.7 Computational graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.8 Concrete computational graphs . . . . . . . . . . . . . . . . . . . . . . 55

5.8.1 Star washer segmentation and polar transformation . . . . . . 55

5.8.2 Sharpness measurement . . . . . . . . . . . . . . . . . . . . . . 56

6 Image acquisition 61

6.1 Technical details of image acquisition . . . . . . . . . . . . . . . . . . . 62

6.2 GigE Vision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.3 Service-oriented architecture . . . . . . . . . . . . . . . . . . . . . . . . 63

6.4 FxIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

7 Control and programming of industrial robots 67

7.1 Industrial robot geometry . . . . . . . . . . . . . . . . . . . . . . . . . 68

7.2 Robot commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

7.3 Adept V+ platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

7.4 Event-driven systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

7.5 Coroutines and AsyncIO . . . . . . . . . . . . . . . . . . . . . . . . . . 71

7.6 Robotic middleware . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

8 Discussion and further work 73

8.1 Answering the research questions . . . . . . . . . . . . . . . . . . . . . 73

8.2 Lessons learned and further work . . . . . . . . . . . . . . . . . . . . . 75



Contents xv

II Papers 85

1 Towards increased intelligence and automatic improvement in in-

dustrial vision systems 87

2 Vision-based robotic system for picking and inspection of small au-

tomotive components 95

3 EPypes: a framework for building event-driven data processing

pipelines 103

4 Flexible image acquisition service for distributed robotic systems 120

5 Event-driven industrial robot control architecture for the Adept V+

platform 129





Part I

Introductory chapters

1





Chapter 1

Introduction

The increased demands for flexibility and quality stimulate manufacturing companies

to seek production solutions that are both easy to adapt to changing needs and able

to consistently produce parts in accordance with the specification. Automation is

in many cases regarded as an indisputable means of realization of such production

systems, particularly in high cost countries.

Automated solutions for high-volume production often constitute dedicated high-

speed machines and transfer lines, especially when dealing with small parts and prod-

ucts. Practically, such systems, which can be categorized as hard automation, possess

high speed at the expense of limited flexibility. In contrast, or rather in addition,

to them, industrial robots play the role of a canonical workhorse of manufacturing

automation. Not only robots are general-purpose and flexible, but with effective in-

tegration of sensory data, one can tackle problems with increased uncertainty and

harness the knowledge about the surrounding environment.

In today’s industrial automation, systems based on programmable logic con-

trollers (PLCs) have become pervasive. PLCs allow for implementing control sys-

tems using familiar graphical programming abstractions, extensive I/O interfaces,

and high-frequency real-time control capabilities. PLC vendors have been constantly

adding higher-level functionality, such as connection to product lifecycle manage-

ment systems, virtual manufacturing environments, and other enterprise information

systems. PLCs are particularly suitable for implementation of sequential control

systems, which are ultimately based on discrete event logic.

In addition to industrially accepted PLCs, two other competing categories of

control devices are gaining increased popularity, those being embedded systems and

general-purpose computers. The former, typically based on microcontroller technol-

ogy and ARM architecture, has long been a part of many consumer products, and,

3



4 Chapter 1. Introduction

with the proliferation of the novel smart manufacturing paradigms such as Industry

4.0, are becoming more common in the industrial automation environments. For

complex signal processing, FPGAs are often used as a means of building embedded

systems with high performance computations. On the other side of the spectrum,

general-purpose computing has been a backbone for complex processing tasks, which,

in relation to automated manufacturing, encompass signal processing, computer vi-

sion, machine learning etc. The current trend is to harness graphical processing units,

computing clusters, and cloud computing environments.

Inspired by biological agents, which possess rather sophisticated perception func-

tion, many researchers have been working for years on developing methods for the

realization of perception in man-made systems. This has led to methods of sensor

data acquisition and processing in order to get insights into the surrounding environ-

ment. In manufacturing systems and the associated industrial robotics, perception

based on artificial vision plays a key role as it leads to a number of important capa-

bilities such as automatic estimation of product quality, volumetric properties of the

surrounding environment, specifics of physical dynamics of system operation etc.

Similarly to the visual function in biological agents, which is heavily tied with

cognitive processing, artificial vision systems are naturally considered in conjunction

with methods from artificial intelligence and machine learning. These methods are

aimed at mimicking the biological cognitive function, and are based on the com-

bination of probabilistic and statistical modeling, optimization methods, advanced

algorithms and data structures, and implementation of clever high-performance com-

puting architectures.

As such, computer and machine vision are ever-growing fields with solid accep-

tance in the industry and a large number of useful applications. Modern computer

vision includes sophisticated methods for robust feature detection such as SIFT,

SURF, HoG, offering scale and orientation invariance, and thus allowing for reliable

matching of interest points in several views and, as a result, reconstruction of the

scene in 3D. This has led to many useful applications in robotics, based on point

clouds obtained from matched features. Hardware solutions for 3D image acquisition

has also become widely-used, from consumer-grade devices based on structured light,

to industrial high-density laser scanners. The increased availability of computational

resources in recent years, combined with greater availability of data, streamlined the

application of machine learning methods, particularly deep learning, for analysis of

visual data. Nevertheless, a large number of challenges exists in developing vision

algorithms, including a high level of uncertainty in image data and the environment,

properties of illumination and reflection, processing time limitations, and the like.

Naturally, the first intention when developing any vision algorithm is feasibility :
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whether the pilot implementation can prove that a particular vision task can be algo-

rithmically solved. Further, it is important to assure higher accuracy, robustness to

various sorts of deviations, and reasonable processing time. At the same time, when

an industrial solution is being developed, it is essential to perform system integration

and hardware-in-the-loop testing even in the early stages of system development.

In the context of industrial automation, the vision function has a direct relation

to the physical behavior of the larger system. As an example, even a relatively simple

robotic cell constitutes a distributed collection of mechatronic entities that deliver

their value collectively. As shown in Figure 1.1, a typical machine vision system is

functionally comprised of such processes as imaging (with the optical system and an

image sensor), acquisition (transforming captured images to a computer memory),

and image processing with high-level decision making (both being implemented with

software components, but operating at different levels of abstraction). In a way, the

traditional approach of vision systems development focuses primarily on the image

processing and decision-making tasks, mainly due to the abovementioned feasibility

requirement. However, for effective integration with the process/scene and other

system components, which are typically distributed, a wider approach should be

taken, with an explicit goal of bridging the functions of perception and action.

Imaging

Acquisition

High-level	decision	making

Image	processing

Process/scene

Ex
te
rn
al
	sy

st
em

s

N
et
w
or
k	
fa
br
ic

Figure 1.1: A layered view of a machine vision pipeline

Biologic agents naturally possess an effective interplay between perception and

action, as well as their relation to planning and other types of complex cognitive pro-

cessing. When it comes to automation systems, the tasks of geometric calibration,

unification of coordinate systems, pose estimation, and visual servoing specifically

target coupling the vision function with the rest of the system. Each of these tasks
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are associated with certain isolated aspects of implementation of visually-guided be-

haviors. What is missing, however, is an established system-level methodology of

vision function integration into automated systems.

The work underlying this thesis combines the problematics of machine vision

algorithms development with their integration into larger systems possessing event-

driven behavior. The thesis focuses on composition of three functions: (1) robot

logic, (2) image acquisition function, and (3) image processing function. Each of

the three is considered in details to achieve event more granular composition on the

function level.

1.1 Research questions

This thesis is aimed at answering the following research question.

RQ1 How to better couple the automated systems’ perception and action with the

means of computational abstractions and architectural solutions?

This research question is aimed at combining research directions that have tra-

ditionally been orthogonal to each other, though highly complementary in practice.

The task of perception is typically concerned with signal analysis, and the implemen-

tation of the perception function is normally done with little consideration of how the

dynamics of the entire system is going to be controlled. In this thesis it is assumed

that one can do better with coupling perception and action in automated systems

with the means of suitable modeling abstractions and software architectures.

RQ2 How can the image acquisition function be exposed in a service-oriented man-

ner?

Image acquisition is present in every vision system, although it is normally not

exposed to a computer vision developer in a flexible service-oriented way. This limits

possibilities for creation of modular distributed systems that utilize vision sensing.

This thesis aims at creating a practical realization of its ideas, including a flexible

image acquisition service with well-understood dynamics.

RQ3 How to achieve greater composability of communication-heavy robot logic by

utilizing discrete event nature of distributed robotic systems?

Programming industrial robots directly in the robot controller is a standard prac-

tice that leads to efficient system operation. At the same time, the resulting robot

logic is often rigid and difficult to integrate into a distributed system with varying
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communication modalities. It is therefore of interest to investigate the capabili-

ties of a high-level robot control node that would allow seamless composability of

communication-heavy logic units.

1.2 Contributions of the thesis

This thesis describes the following contributions:

1. Study of the specifics of the production systems of the case company (Kongs-

berg Automotive AS) with focus on (1) industrial application of machine vision

system to the current challenges the company is facing and (2) possible vision-

based solutions that could be implemented in the future.

2. Implementation of an image analysis pipeline, including feature engineering and

machine learning, for identification, classification and close-range measurements

of star washer components in a robotic cell.

3. Development of a software framework for implementation of event-based data

processing pipelines, aimed at application in automated systems with a strong

perceptual component and publish/subscribe communication architecture.

4. Development of a flexible image acquisition service for use as a part distributed

robotic systems with event-based communication; the service realizes continu-

ous acquisition from multiple cameras and on-demand retrieval of images that

are closely synchronized in time, both between the cameras and with the re-

quest event.

5. Formulation of an event-driven industrial robot control architecture for the

Adept V+ platform, along with the associated software implementation, grounded

upon (1) the robot controller providing a TCP/IP server and a collection of

robot skills, and (2) a high-level control module deployed to a dedicated com-

puting device, with an AsyncIO-based composable logic.





Chapter 2

Method

2.1 Methodological considerations

A common aspect of research in both robotics and computer vision is a strong fo-

cus on feasibility of solutions. Because in general it is challenging to implement a

functional prototype, be it a robotic task, or a recognition algorithm, the particular

implementation in itself possesses a high value. Thus, it makes sense not to do pre-

mature optimization in the early phases of system development, and focus on proving

feasibility of automation of a task of interest. Exactly this focus is highlighted by

Goldberg [7] as a principal difference between the areas of research in robotics and

automation. Though very interconnected, there are principal differences in both

the purpose of the research and the methodological approaches. While robotics, as

noted before, emphasizes feasibility, automation emphasizes efficiency, productivity,

quality, and reliability.

In relation to the dichotomy above, it is interesting to consider the classifica-

tion of philosophical paradigms in the computer science community. As described by

Eden [8], one can distinguish between three paradigms: rationalist, technocratic, and

scientific. In short, the discussion comes down to understanding the nature of a com-

puter program. The rationalist paradigm treats a program as a mathematical object

one can formally reason about, the technocratic — as an engineered artifact one can

test, and the scientific — as a natural phenomenon one can explore experimentally.

It is noted that the scientific paradigm is typical in the fields of machine learning

and robotics, mainly due to highly stochastic nature of the developed systems.

The emergent field of cyber-physical systems (CPS) has a strong focus on a rig-

orous approach to system design, aiming at combing formal models of physical dy-

namics with formal models of computational and communication systems. Thus, in

9



10 Chapter 2. Method

general the CPS approach is highly rationalistic. At the same time, according to the

CPS development framework formulated by Lee and Seshia [9], see Figure 2.1, rig-

orous modeling and analysis should be interleaved with the practical design process.

The latter puts an emphasis on computing equipment mechanisms, software design,

and input/output interface.

Modeling
Dynamic and static models, 
continuous and discrete time

Design
Hardware and software 
implementation

Analysis
System verification based on formal 
methods

Figure 2.1: Cyber-physical systems development framework (adapted from [9])

The advent of data science is characterized by the proliferation of ad-hoc ap-

proaches to scientific discovery, focusing on quick prototyping with the help of flexi-

ble programming tools. The same holds for feasibility-oriented research practices in

computer vision and robotics. This may seem opposite to the structured engineer-

ing approaches and formal system analysis and synthesis. As argued by Lee [10],

an implement-and-test style of system design is considered ”hacking, not based on

sound engineering principles”. This argument is similar to the one made by Eden [8]

concerning the domination of the technocratic paradigm in contemporary computer

science, and the shortcomings associated with it.

It is important to mention ideas that bring more structure into the data science

workflow without compromising flexibility. The central idea here is ”data science is

software” [11], stressing that although ad-hoc processes are essential for prototyping

and data discovery, the resulting codebase should be treated as a software product.

This implies requirements for maintaining a well-structured and well-documented

project and applying software engineering practices alongside exploration and pro-

totyping. A related idea, driven by the need for greater reproducibility, concerns

custom scientific software modules and data science projects as immutable software
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artifacts. This can be achieved by harnessing containerization technology and the

DataOps philosophy.

The work underlying this thesis targets the early stage of system development, and

thus gravitates towards implementation-centric approaches. At the same time, the

goal of the proposed solutions is to unify prototyping with well-defined specification

of system structure and behavior. More details on this follows in section 2.4.

2.2 The MultiMat project

There always exists a pool of problems that companies in various industries are

facing. In manufacturing, among others, there are challenges associated with new

product development and the requirements for production systems. In addition,

one always tackles the problems of improvement and evolution of existing produc-

tion systems. The abovementioned challenges go hand in hand with opportunities

that stem from successful systems implementation and novel non-trivial applications.

And it is undoubtedly beneficial to carry out new technological developments in a

trans-disciplinary environment. In such a way, ideas from different disciplines and

intellectual schools are likely to converge.

The PhD research described in this thesis is done as part of the Norwegian inno-

vation project MultiMat, focusing on development of technical solutions for manu-

facturing of novel multi-material products. The primary MultiMat project objective

is set on developing new products and production processes based on combinations

of dissimilar materials with integrated and automated injection molding, joining and

assembly. The project utilizes trans-disciplinary R&D efforts within product de-

velopment, materials technology, injection molding, assembly, joining, and flexible

automation.

The main stakeholder in MultiMat is Kongsberg Automotive AS (KA), whose core

competence in the project lies within the area of product development. The latter is

naturally tightly connected to materials science and manufacturing processes, most

notably injection molding and joining. However, in the Norwegian settings, practical

implementations of industrial automation solutions is a critical factor ensuring the

required quality and cost savings.

The increasing need for innovative automation solutions in Norwegian manufac-

turing industry places high expectations on vision- and sensor-based robotics and a

wider field of flexible automation. SINTEF Raufoss Manufacturing AS (SRM), an

R&D partner in the MultiMat project, have been conducting the main automation-

related activities, including development of a robotized cell for integrated injection
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molding and assembly of newly-developed products.

In addition to the activities at SRM, this PhD research was carried out with a

central focus on the combination of machine vision and robotics to tackle industrial

problems. Particular cases of such problems were to be drawn from the MultiMat

project, and specifically from the product development efforts of Kongsberg Auto-

motive AS. When it comes to vision systems, KA is particularly interested in vision-

based quality control of small components (star washers, O-rings, clamp rings) and

the development of systems for data acquisition, storage and analysis to cope with

visual variation and assure system improvement. As such, the case-related parts of

this thesis discuss the tasks of vision-based analysis of small safety-critical parts that

are included in KA products. A great deal of practical undertakings underlying this

thesis were conducted at the SRM facilities with the support from the members of

the Production Technology department at SRM.

2.3 Main theme of the PhD research

Previous experience and preliminary planning of this PhD research placed a key focus

onto the systemic aspects of machine vision and robotics.

For one thing, even relatively simple assembly cell arrangements possess a com-

plexity that has to be managed. In order for a collection of computational and

mechatronic components to work as a system, issues of concurrency, communica-

tion, synchronization, and time need to be dealt with. To increase capabilities of

automated systems, the complexity needs to be increased even more, for example

by introducing additional sensor systems and computational equipment. A typical

way of tackling complexity is by careful architectural design emphasizing modular-

ity. However, architectural concerns often remain overlooked, especially when a quick

implementation of robot/vision system prototype is desired.

The pervasive penetration of digital technology into every area of human activity

has been specifically evident in the recent years. In particular, mobile technology

in combination with cloud computing has in many ways transformed established

workflows. In this new setup, the value is delivered by well-designed distributed sys-

tems, comprised of powerful cluster- and cloud-based back-ends and energy-efficient

smart devices. The success of such technologies has motivated applied researchers

and policymakers to put a special emphasis on more effective integration of numer-

ous heterogeneous systems of various scales (ranging from embedded devices to large

computing clouds). Thus, harnessing these novel systems is an integral part of such

strategic initiatives as Industry 4.0 [12], Industrial Internet [13], and Smart Manu-
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facturing Systems [14].

Flexible and scalable server-side applications, particularly those in cloud environ-

ments, are the result of proliferation of open source software, such as Linux-based

operating systems, software containerization technologies, cluster-based file systems,

and the like. A great influence in the cloud computing industry has been the Unix

philosophy [15], which is a loose collection of principles centered around simplicity,

modularity and composability. The same culture is now driving the data science and

machine learning communities, as well as constituting a major force of the DevOps

and DataOps philosophies.

When it comes to robotics and automation, there is already a big community

around open source projects such as Robot Operating System (ROS), OpenCV, Point

Cloud Library, YaRP, and many others. These technologies are widely used in the

research environment, but slowly adopted in industry. Nevertheless, this thesis makes

a bet on the open source approach and the Unix philosophy principles. In particular,

the idea of composability is central in most of the described practical undertakings.

2.4 Solutions development as a research method

Because the research area of this thesis is highly applied, it is natural to perform

research by developing practical solutions and functional prototypes.

There is a challenge with this approach in that it becomes difficult to distinguish

engineering and research. Referring to the computer science philosophical paradigms,

described earlier in section 2.1, the said application-oriented approach is closest to

the technocratic paradigm. At the same time, the common theme in this thesis is

the focus on general principles rather that concrete technologies. These principles

include the following:

• Events as explicit building blocks of distributed systems;

• Executable direct acyclic graphs for design of computer vision algorithms;

• Architectural separation of low-level robot logic in the from of skills from high-

level communication-heavy logic in the form of coroutines;

• Service-oriented architecture approach to exposing image acquisition function;

• Internal multi-threaded design of the image acquisition service with a set of

concurrent data structures;

• Composition of image acquisition and image processing via thread-based con-

current objects and blocking queues;
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• Composition of communication-heavy robot logic by cooperative multitasking.

Apart from implementation of laboratory prototypes, a collection of open source

software projects is conceived as a part of this PhD project:

EPypes A framework for building computer vision and general data processing al-

gorithms in the form of executable computational graphs, with additional ca-

pabilities of exposing the resulting graphs as reactive pipelines. Written in

Python with support for ZeroMQ messaging middleware.

FxIS A framework for creation of flexible image acquisition services based on one or

more cameras performing continuous image capture. Written in C++ with a

Python extension, having initial support for Allied Vision GigE Vision cameras

via the Vimba SDK.

pyadept A Python library for realization of high-level robot control nodes for the

Adept V+ platform with logic composable from AsyncIO coroutines.

AdeptServer A collection of V+ programs for realization of Adept robot skills and

a TCP server, used in conjunction with pyadept.

As most of the projects are Python-based, it is important to describe the stack

of Python libraries this thesis’ codebase depends on. As Figure 2.2 shows, Python of

version 3.6 has been used to develop the projects. The core libraries include OpenCV

(providing computer vision routines), NumPy (handling multi-dimensional arrays),

Pandas (data analysis with data frames), PyZMQ (binding for ZeroMQ, which is used

as the primary publish-subscribe communication means), and Protobuf (allowing to

work with the Protocol Buffers serialization format, used to communicate data over

wire). The next layers include scientific computing libraries (SciPy, Scikit-learn,

Scikit-image, and Pillow), and the libraries used for data and graph visualization

(Matplotlib, NetworkX, PyGraphviz, and nxpd).

python 3.6

opencv numpy pandas pyzmq protobuf

scipy scikit-learn scikit-image pillow

matplotlib pygraphviz nxpdnetworkx

Figure 2.2: Python stack for the codebase of this thesis
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The first C++ implementation of FxIS has been done on top of the Vimba SDK

for Allied Vision cameras, with OpenCV providing abstraction for image handling.

To produce a Python extension for FxIS that was further used together with EPypes,

the Pybind11 library was used. CMake and GCC were used for building.

Laboratory work in connection with this PhD project was done with access to

the following equipment:

• Adept Viper s850 industrial robot, Adept SmartController CX, Adept DeskTop

programming software, communication over Ethernet with external systems.

• Anyfeed SX240 flexible feeder with RS-232 communication interface.

• Allied Vision GigE Vision cameras: Prosilica GC1020 (resolution 1024x768),

Prosilica GC1350/GC1350C (resolution 1360x1024).

• Camera lenses: PENTAX C1614-M (focal length 8 mm), Fujinon HF35HA-1B

(focal length 35 mm), TAMRON 25-HB/12 (focal length 12 mm).

• Raspberry Pi 3 Model B single board computers.

• Netgear GS108Ev3 managed Gigabit Ethernet switch.

As such, solutions development described in this thesis is done in a highly prototyping-

oriented environment. Partly, this is attributed to a constrained selection of hardware

available for experimentation, which didn’t include such industrial-grade components

as PLCs and fieldbus-based networks. As a result, the primary communication chan-

nel is Ethernet, with protocols based on TCP/IP. At the same time, similar setups

are not uncommon in robotics research environments, motivated by flexibility of

development and availability of general-purpose hardware for streamlining the pro-

totyping process. Thus, although the primary platforms used in this PhD research

are general purpose, rather than industrial-grade, the common principles are aimed

to be universal.

2.5 Case system

In order to set the boundaries for the class of systems dealt with in this thesis, a

common case system is considered throughout multiple included papers.

When it comes to vision-guided robotics, there exist different use cases in terms

of joint behavior of a robot and a vision system. For instance, in many custom

research testbeds, images from a camera and their processing results are treated as a

sampled signal, which is continuously monitored, with image features used for direct
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control of robot joints. The architecture of image raw publish/subscribe topics in

ROS is particularly suited for such applications. In contrast, this thesis considers

robot-vision interaction in a discrete event manner, i.e. when a part of robot logic is

predetermined, and at specific events the robot control program requests data from

the vision system. Such interaction is common to industrial robotic applications, as

well as in manufacturing-related robotics research.

The case system used in this thesis is comprised of four components (Figure 2.3).

The master control node sends commands to the robot server and receives the cor-

responding acknowledging responses. On certain events, it initiates a request to the

vision system, which is handled by the image acquisition service. The latter hands

the resulting images from one or more cameras to the image processing node, which,

upon completion of processing, sends the results back to the master control node.

Master 
control 
node

Image 
acquisition 

service

Image 
processing 

nodeRobot server

Vision request

Images

Vision response

Command Ack

Figure 2.3: The case system high-level data flow principles

2.6 PhD research path

Prior to starting this PhD project, the author completed his master thesis [16] while

working at SINTEF Raufoss Manufacturing AS (SRM) and being involved in research

activities concerning combination of industrial robotics and machine vision. An inter-

esting part of research practice was practical development of functional prototypes in

the laboratory. The general impression was that the development process constitutes

a form of craft, with the challenge to prototype and integrate multiple heterogeneous

components: a robot control program made natively in the robot controller, a vi-

sion system implemented in a proprietary GUI-based vision software, Python scripts

that communicate over RS-232 with part feeding equipment, Python scripts utilizing

EtherCAT communication with various industrial equipment, and other components.
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Thus, the initial motivation was to tackle the problematics of such early stage

robotic systems development as done at SRM. During the master thesis work, a core

focus of research was the calibration of robot/vision systems, specifically camera,

stereo, and hand-eye calibration. These topics continued to be of high interest at

SRM, so the goal was to continue working on calibration research as a part of the

PhD project. The core idea in that respect was to explicitly capture and harness

uncertainty regarding calibration parameters. A paper was published [4] with the

initial results in this direction, but it was not included in this thesis to keep the scope

of the thesis more coherent.

One of the most important ideas in this PhD project has been the notion of vision

pipelines. When developing a vision algorithm, the developer thinks in terms of data

flowing from one operation to another, with all of them forming a directed graph

architecture. In most practical cases, however, such pipelines are just conceptual,

with actual logic being implemented as a single function, a cascade of function calls,

or configuration in a GUI-based vision software. When an algorithm gets too com-

plex, with larger number of configuration parameters, it becomes harder to manage

experimentation with the algorithm and tuning of its parameters. It was of interest,

therefore, to investigate the feasibility of integrating explicit pipeline construction

into the workflow of vision algorithm development with OpenCV and Python data

science stack. Another idea was to be able to expose reactive pipelines, i.e. vision

algorithms, defined as direct acyclic graphs, that would react to events of new images

arrival. All of the pipeline-related considerations led to the RQ1, aimed at coupling

the perception function with event-driven system behavior.

Open source software, such as OpenCV, the Python data science stack, and SRM’s

in-house code, was an integral part of the work on robot/vision calibration, and

continued to be such in the vision modules developed during the PhD project. At

the same time, it was challenging to integrate custom vision software modules with

the image acquisition function. The latter was either a part of commercial vision

software, with limited access to raw image data, or available through a low-level

SDK, with the need for implementing custom adapters. This motivated the RQ2

regarding exposing the image acquisition function as a service.

In the early stages of the PhD project, there was an idea of investigating pos-

sibilities for using formal methods to model event-driven behavior in robot/vision

systems under consideration. This thinking was inspired by models of computation

in the study of cyber-physical systems [10], as well as by Supervisory Control Theory

[17]. However, this made the potential scope of the PhD work to broad. It was also

challenging on a philosophical level to combine the specification/verification practices

with ad-hoc prototyping approaches. As a result of publishing another paper not in-



18 Chapter 2. Method

cluded in this thesis [5], the author received feedback from fellow computer vision

researchers who deemed the idea of formal methods integration too cumbersome.

Nevertheless, it was still of interest to keep focus on certain system engineering

principles. One of them is the abovementioned graph-based models of vision algo-

rithms. Another principle was that of composability, i.e. the ability to automatically

compose more complex logic from simpler parts. This was specifically interesting in

the context of robot control, and motivated the RQ3. When working with the Adept

Viper s850 robot, the employed architecture was based on a TCP/IP server in the

robot controller that accepts commands from the outside and executes them. Such

an approach is certainly not the best in terms of efficiency, as compared to custom

code directly in the robot controller. However, it allows for extensive experimentation

with high-level logic of the component that initiates the commands.

2.7 Thesis structure and contributions of the pa-

pers

The following chapters (3 – 7) in part I are aimed at setting a context for the meth-

ods and results described in the appended papers. The structure of the thesis follows

the framework depicted in Figure 2.4, where the papers (the right column) create

a logical sequence of ideas, and the chapters (the left column) highlight important

theoretical underpinnings and overview the established practices. Each chapter log-

ically precedes the corresponding paper, and the reader can refer to Figure 2.4 for a

better understanding of the presented material.

An overview of problems and contributions in the included papers is presented

below.

P1. Towards increased intelligence and automatic improve-

ment in industrial vision systems

Problem

The case company, Kongsberg Automotive AS, is a heavy adopter of automation

equipment with a high number of integrated vision systems. The latter are used for

parts inspection and robot guidance. Through the course of manufacturing systems’

operation, KA has been facing a range of challenges with robustness of vision sensing,

mainly due to appearance variability of the imaged components. Before devising

an improvement strategy for the available system, as well as for the planned new
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P1. Towards increased intelligence and 
automatic improvement in industrial vision 
systems

P2. Vision-based robotic system for picking 
and inspection of small automotive 
components

P3. EPypes: a framework for building 
event-driven data processing pipelines for 
cloud robotics and automation 

P4. Flexible image acquisition service for 
distributed robotic systems

P5. Event-driven industrial robot control 
architecture for the Adept V+ platform

C3. Background

C4. Estimation and learning

C5. Vision pipelines

C6. Image acquisition

C7. Control and programming of 
industrial robots

Figure 2.4: Thesis structure

installations, there was a need for a systematic study of vision system functions,

techniques and capabilities.

Contributions

• Case study of the company with focus on the KArtridgeTM product family and

its star washer component.

• Study of the current state of the production systems at the KA facility in

Raufoss, Norway, highlighting the vision systems capabilities.

• Formulation of the improvement strategy based on establishing a data store and

data analysis system for on-line stream processing, off-line machine learning

from historical data, and systematic adjustment of machine vision parameters.

P2. Vision-based robotic system for picking and inspection of

small automotive components

Problem

The first paper was motivated by the need for better vision-based quality inspection of

star washers, small parts used to manufacture automotive components by Kongsberg
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Automotive AS. To eventually design a custom inspection station, the first steps

in system development were to be realized with a flexible robot-based system with

computer vision sensing.

The first apparent challenge was to design a vision algorithm to analyze star

washers’ appearance when lying on the feeder surface in order to determine the

components’ orientation for robotic picking. A related problem was to devise a

vision algorithm for the analysis of a close-up image to check for the part’s quality.

Contributions

• High-level planning of the prospective robot cell.

• Custom feature engineering algorithm utilizing the nature of a star washer as

a circular object imaged from the top.

• Training a range of machine learning classifiers on the common set of feature

vectors, with the aim of determining classifiers with the best performance.

P3. EPypes: a framework for building event-driven data pro-

cessing pipelines

Problem

The motivation behind EPypes has been at the heart of this thesis work since its

inception. When a new robotic system with vision sensing is developed, the early-

stage system prototyping favors flexible tools and techniques that allow for iterating

towards a functional solution quickly. A resulting prototype, however, is often devel-

oped as a patchwork solution, which may be challenging to effortlessly evolve into a

production system.

The high level goal of the paper is to devise a system development method, backed

by a set of tools, that would bring more structure into the prototyping phase without

compromising the flexibility of the established data science/computer vision stack.

Since the target area of the paper constitutes robotic systems with vision sensing,

the developed prototypes should be easily integrated as part of distributed systems,

possessing communication capabilities and event-driven behavior.

Contributions

• EPypes, a Python-based framework for building event-driven data processing

systems that directly harness the data flow nature of vision algorithms, as well

as asynchronous publish/subscribe messaging systems.
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• A lightweight Python module for specification, scheduling and visualization of

executable directed acyclic graphs (computational graphs).

• A set of abstractions that transform a computational graph into a reactive data

processing pipeline with a generic queue-based input/output.

• Custom reactivity components based on ZeroMQ publish/subscribe mecha-

nisms.

• A system development methodology based on the proposed tools, which pro-

ceeds from the early stages of algorithm development to a structured distributed

system with well-defined capabilities and behavior.

• Validation of the proposed tools in a lab-based distributed computing environ-

ment, featuring ZeroMQ-based publish/subscribe communication, with quan-

titative assessment of timing characteristics.

P4. Flexible Image Acquisition Service for Distributed Robotic

Systems

Problem

Cameras based on the GigE Vision standard are pervasively used as a part of in-

dustrial automation systems. Nevertheless, they are traditionally used either with

off-the-shelf vision software with limited flexibility, or as directly embedded in cus-

tom software modules. Some of the cameras are supported in ROS, but mainly as

providers of image raw topics. With the proliferation of more distributed setups and

flexible robotic architectures, the workflow of image acquisition needs to support a

wider variety of communication styles and application scenarios.

In a nutshell, this paper aimed at proposing a generic image service supporting

continuous acquisition from several cameras internally, with flexible service-oriented

capabilities for external systems. The described flexible image service had been a

missing link in the robot-vision architecture that underlies this thesis.

Contributions

• Multi-threaded architecture of the vision service.

• Collection of concurrent data structures for short-period image caching, search

and retrieval via a time stamp.

• A driver for Allied Vision cameras with GigE Vision interface based on the

vendor’s Vimba library.



22 Chapter 2. Method

• A high-level Python extension for the core C++ code.

• Quantitative evaluation of timing properties of the vision service.

P5. Event-driven industrial robot control architecture for the

Adept V+ platform

Problem

The initial planning of robotic cell in paper 2, as well as corresponding experiment

with physical equipment, involved an Adept Viper s850 robot. Its controller runs V+

real-time operating system, and can be programmed in the V+ language. Although

developing a robot program directly in the controller is a common practice, the

resulting solutions are rigid and difficult to integrate into a distributed automation

system. It is also hard to quickly iterate towards the final solution.

To create a more flexible control module for an Adept robot, this paper pro-

poses an architecture based on the robot controller providing a TCP/IP server and

a collection of robot skills, and a high-level control module deployed to a dedicated

computing device. The control module possesses bidirectional communication with

the robot controller and publish/subscribe messaging with external systems. A par-

ticular control module is composed of a set of concurrent coroutines, which allows to

implement complex logic in a well-defined way.

Contributions

• Multi-tasked server realized in the robot controller with the ability to accept

commands from a client (robot control node) and launch the corresponding

robot skills.

• A Python library, based on the AsyncIO coroutines, for building custom robot

control nodes deployed to a dedicated computer; the coroutines can be flexibly

composed together to realize event-driven robot control logic and communica-

tion with external systems.

• An application-level protocol for communication between a robot server and a

master control node.

• A network architecture based on virtual LANs for connecting the robot network

and the vision network.

• A vision algorithm, defined as an EPypes computational graph, for measure-

ment of sharpness of a calibration object attached to the robot’s tool plate.
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• Validation of the proposed solutions on a robot application with visual feedback,

realized as a distributed system, for automatic determination of the robot pose

where the robot’s tool plate appears most in focus in the close-range camera.





Chapter 3

Background

This chapters provides an introduction to the application area context of the work

underlying this thesis, namely machine vision for industrial automation. At first, the

specifics of the case company, Kongsberg Automotive AS, are introduced, highlight-

ing the problematics around vision systems for imaging small parts. Further, the

overview of automation in manufacturing and industrial vision systems is presented.

An emerging area of cyber-physical systems and their application for manufacturing

is then described. The chapter is concluded with an overview of concurrency and

parallelism.

3.1 Specifics of Kongsberg Automotive AS

Kongsberg Automotive AS is a global manufacturing company producing compo-

nents and subsystems for the automotive industry. This thesis is concerned with the

production facilities of the KA plant in Raufoss, Norway, which supplies products for

vehicular fluid transfer, marketed as Raufoss ABCTM. Raufoss ABCTM is a product

system providing a function of coupling air brake tubes and targeting the commer-

cial vehicle market (buses and trucks). Raufoss ABCTM includes air brake couplings,

building blocks, release tools, and rotation stops.

KArtridgeTM is a product family of composite couplings with a metallic star

washer and clamp ring, and a series of rubber O-ring seals. A coupling from the

KArtridgeTM family is shown in Figure 3.1. It consists of a housing, the inner parts

(cone element, environment seal, clamp ring, seal tube, and support sleeve), and the

outer parts (main port seal, locking ring, star washer, and environmental port seal).

Most of the assembly operations at KA are performed by dedicated transfer ma-

chines, optimized for performance and fulfilling the requirement for high volume pro-

25
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Housing

Environmental	port	seal

Star	washer

Locking	ring

Main	port	seal

Support	sleeve

Cone	element

Figure 3.1: A KArtridgeTM coupling

duction. Each machine is designed by a specific machine supplier, and is typically

comprised of the supplier’s standard modules.

KA utilizes a high number of vision systems installed at various production stages

and serving the functions of individual components inspection, process inspection,

and object pose identification for picking. The installed machine vision solutions are

off-the-shelf, and heavily rely on the associated illumination setups. The latter are

implemented using LED solutions of various sizes and colors, and are controlled to

turn on coinciding with part arrival and camera exposure.

The question regarding the role of illumination in vision systems is of major

importance for KA. A general consideration is on the question of what types of

lighting are better for different materials. KA deals with components made of brass,

composite (having different colors), and rubber. Especially difficult is the problem

of O-rings recognition because of process-caused color irregularities: O-rings’ surface

color can vary from black to gray, and the application of silicone oil induces reflection.

Some of the assembly lines include robotic manipulators and flexible feeders. In

the latter case, the parts to be picked are randomly distributed on the feeder surface,

and vision systems in combination with robots (typically gantry type) are used to

pick the parts.

The problem of pose estimation using a mono vision system is challenging for

relatively big parts that have a large degree of freedom in terms of orientations. In

the KArtridgeTM assembly, the housing and the cone element are characterized by

such geometry.

Because there exists time-dependent variability in the dimensions of the parts

(specifically those obtained from the external suppliers), KA is interested in more

effective quality process control with application of vision systems.

A star washer plays a critical role in the KArtridgeTM assembly by securing the

grip function between a coupling and its housing. It is important that it is assembled
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in the correct orientation, so that the teeth will create resistance against the housing

after assembly. In addition, the washer’s teeth need to be of the required geometry.

An example of a good and a defective star washer is presented in Figure 3.2. The

failure conditions in this case constitute wrong geometry of some of the teeth.

Figure 3.2: An example a good star washer (left) and the one with various teeth
geometry defects (right)

Depending on the product size, the outer diameters of star washers range from

15 to 26.5 mm. In addition to the small dimension of the star washers, their teeth,

which perform the most important function, are much smaller, ranging in width from

1.4 to 2.11 mm.

Vision-based quality control of star washers is an important task for KA. The

geometric requirements, see Figure 3.3, include the outer diameter, geometry of each

tooth, bending angle of each tooth, and edge sharpness of each tooth. As shown in

Figure 3.3a, the outer diameter of a component is well-imaged from the top-down

perspective. However, other characteristics require a more intricate setup. Methods

for analysis of top-down images of star washers are described in paper 2 and applied

to the problem of ML-based classification of star washer orientation when lying on

the surface of a feeder.

Figure 3.3: Geometric features related to star washer quality

(a) View of a star
washer from above,
highlighting the outer
diameter

Bending	angle	of	a	tooth

Examples	of	teeth	edge	
sharpness	defects

Surface	for	measurement	of	
geometry	of	a	tooth

(b) View of a star washer from the side, highlighting examples
of degraded edge sharpness and the area of interest for a tooth
geometry measurement
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The challenges in developing a vision system for inspection of star washers include

(1) the reflective surface of the parts, (2) batch-to-batch color variation, and (3) small

dimension of the parts and the teeth respectively.

3.2 Automation in manufacturing and assembly

Automation is an integral part of the contemporary manufacturing systems. It is re-

alized by technological solutions, including mechatronic equipment, control systems

and programs of instructions, allowing to accomplish a process with limited human

assistance, increasing productivity, and leading to higher product quality [18, 19].

Typical application of automated solutions in manufacturing target operations that

are dull, dangerous and error-prone, and encompass such areas of activities as for-

mative/subtractive/additive processes, material handling and movement, inspection,

assembly, and packaging [19].

Industrial automation holds strong ties with the field of control engineering. How-

ever, because of the discrete nature of processes in manufacturing, control systems

that govern them to a large extent resemble discrete programs of instructions. The

latter are typically implemented as sequential control systems using programmable

logic controllers (PLCs). For each work cycle, producing a part or a number of parts,

the associated control system automates the processing steps comprising this work

cycle.

In a simple case, the instructions are predetermined, whereas in a complex case,

decision-making is included to provide response to such variations as operator in-

teraction, different product styles, and inconsistency in the starting work units [18].

This category of applications require integrating sensor technology, particularly vi-

sion systems.

Assembly constitute a vital part of modern manufacturing systems, and is con-

cerned with producing compound products from individual parts and sub-assemblies.

Because many assembly processes require a high level of dexterity, they are often

performed manually. However, because of requirements in higher quality, speed and

repeatability, automated assembly is becoming more pervasive in manufacturing com-

panies.

The main operations in assembly processes are parts mating, parts joining, parts

recognition (position and orientation of randomly-fed parts), inspection, and material

handling [20]. The latter has a special role in automated assembly, and deals with

feeding parts into the system, handling of palettes, fixtures and tools, removal of

completed products from the system, as well as transportation related to rework
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[21, 22].

As important objectives in feeder design/selection are their speed and reliability,

it is a common practice in assembly automation to utilize part feeders mechanically

tailored to parts with a specific size and shape. These include such systems as linear

vibrators, vibratory bowl feeders, and belt feeders [21].

Flexible assembly systems typically make use of a number of dedicated feeders,

each tailored to a specific part type. An alternative approach is a fully-flexible as-

sembly system (F-FAS) concept, presented by Rosati et al. [23] and Finetto et al.

[24]. The idea of F-FAS is to simplify the mechanical structure of an assembly system

through a heavier usage of vision systems for parts identification and measurements.

A typical solution of this kind comprises a flexible feeder handling a range of different

components, a robotic manipulator, and an assembly station. A graphical compari-

son between a general assembly system and an F-FAS is presented in Figure 3.4.

Assembly station

Manipulator

Flexible feeder

(a) FAS

Vibrating bulk

Vibrating plane

Manipulator

Assembly station

Camera

(b) F-FAS

Figure 3.4: Comparision of FAS and F-FAS

Though this solution may be unsuitable for high-speed production, its flexibility

can allow for such application as flexible small-batch production, 100% inspection of

parts in a measurement station, and flexible feeding to high-speed production lines.

In the work underlying this thesis, the ideas of F-FAS were used for the proposed

laboratory-based robotic inspection cell (see paper 2).

Part feeding in the laboratory work underlying paper 2 is done using an Anyfeed

SX240 flexible feeder (Figure 3.5). It is designed for random feeding of parts and

usage in a conjunction with a vision system for pose estimation. The picking surface

of the feeder is backlighted, which simplifies further image processing and parts

identification. A control computer can communicate with the feeder by means of
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RS-232 communication interface to perform such operations as feeding more parts to

the feeding surface, flipping the parts on the feeding surface, and moving the parts

linearly. This is achieved by vibrations of different forms and intensities.

Figure 3.5: A flexible feeder with star washers

Assembly planning constitutes a high-level set of activities intended for mapping

formalized assembly instruction to automated operations, e.g. those that can be per-

formed by a robot. The assembly planning activities include CAD modeling of parts,

tolerance modeling, workcell planning, sequence planning, mating pose determination

and others [25].

When the results of assembly planning are mapped onto robot operational level,

uncertainty becomes an inevitable part of the process, and sensory feedback serves

the primary role of tackling it. Typically used types of sensors in assembly are

force, torque, and tactile sensors, sensorized compliant devices, vision systems, op-

tical sensors, mechanical probes, positional sensors, as well as sensors for measuring

temperature, pressure, acoustic emissions, and acceleration [20].

3.3 Industrial vision systems

3.3.1 Overview

Change and uncertainty are inherent in flexible and reconfigurable manufacturing

systems. In order to handle uncertainty in geometric shapes of the parts, as well as

to allow flexible robot operation in geometric volume, vision-based sensing is typically

applied [26].

Computer vision is an engineering discipline dealing with extracting useful in-

formation from images [27]. A computer vision algorithm takes an image, a set of

images, or a video as input, and produces the application-specific output. Machine

vision is branch of engineering focusing not solely on the individual vision algorithms,
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but on integration of all the technical components (hardware and software), needed

for development and deployment of vision systems in the industrial context [28, 29].

The application domains of machine vision include the following [28]:

1. Defect detection: determining product defects, differentiating between different

types of defects, including acceptable and unacceptable;

2. Guidance and alignment: providing a robot control program with visual esti-

mate of an object pose or geometric displacement;

3. Measurement: deriving metric estimates of geometric features of a physical

object;

4. Assembly verification: determining the correctness of an assembly process.

The inspected features of industrial product or process that are measured by

vision systems include dimensional quality, structural quality, surface quality, and

operational quality [28].

A vision system is typically comprised of such components as camera sensors with

the attached lenses, illumination equipment, image acquisition technology, cabling,

computer systems, and software [30]:

Any vision system is consisting of the image capture/acquisition part, responsible

for obtaining the original image data and transforming it to memory, and computa-

tional part, aimed at processing the data to extract the desired information. Both

parts introduce a number of requirements in order for the resulting vision system to

be effective. During image capture, factors such illumination, quality of cameras and

lenses play an important role in obtaining image data with high quality. When it

comes to image processing and feature extraction, even more challenges arise: noise,

shadows and reflection require sophisticated algorithms to extract the information

of interest robustly and precisely enough. The latter, in turn, are constrained by

the available computational resources and processing time requirements. The acqui-

sition process depends of the used communication medium (e.g. Gigabit Ethernet,

USB3, Camera Link), with the specific performance characteristics of bandwidth,

transmission speed, channel reliability, spatial constraints, system integrability etc.

On-line vision systems, which constitute a part of the production process, pro-

vide the necessary information (e.g. pass/fail classification or robot movement coor-

dinates) at the cycle time of the process. Conversely, off-line vision systems are used

for recording information and further analysis [30].

2D vision systems utilize images from a single camera, whereas 3D vision sys-

tems reconstruct a 3D scene as a point cloud, and are subdivided into passive and
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active. Passive systems perform reconstruction using shape-from-shading, shape-

from-motion, or passive stereo vision. Active systems, conversely, project a pattern

of light onto the scene and further detect its position Active systems are categorized

by the underlying physical principles of point cloud generation, namely triangulation,

time-of-flight or laser pulse, and interferometry [26].

Noise is a factor that is always attributed to vision-based measurements. However,

analysis of images of small parts are especially sensitive to the presence of noise

and lighting irregularities, due to relatively small amount of pixels, on which the

part is projected. Thus, high-resolution imaging is very important for small parts.

When doing close-range imaging using a camera with a lens having a big focal length,

correct focusing is important. Paper 5 considers an application scenario of automatic

alignment of robot end effector in front of the camera, so that it appears in focus.

3.3.2 Lighting

Vision measurement in the industrial context is typically done under controlled con-

ditions with the appropriate lighting and low noise [28]. Lighting is an integral part

of an imaging setup due to the inherent physical principles of light reflection: what

a person (or a camera) sees is electromagnetic radiation reflected from objects in the

field of view.

Controlled illumination is organized using one of the following techniques, or their

combination (see also Figure 3.6):

Backlighting Highlights the background so that silhouettes of dark objects are

clearly visible.

Diffuse lighting Spreads light rays in different directions to suppress specular high-

light and make the image object appear more uniform.

Directional lighting Directs light rays towards the imaged object to highlight re-

gions with reflection.

Dark field lighting Illumination from oblique angles to highlight non-flat regions

on the imaged object.

3.3.3 Challenges

There exist numerous factors that influence the accuracy and performance of vi-

sion algorithms, including the measured object characteristics (size, shape, color,
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(a) Backlighting (b) Diffuse lighting

(c) Directional lighting (d) Dark field lighting

Figure 3.6: Illumination techniques

texture), camera characteristics (camera resolution, quality of lenses), environment

characteristics (pose, working volume, illumination).

Vision algorithms for industrial applications are typically very sensitive to the

environment and the appearance of the observed objects. The measured part charac-

teristics, such as color and reflectivity, may vary from one part to another. Lighting

conditions are also difficult to maintain consistent [26]. Therefore, vision systems

need to be robust enough to tackle this variability.

When camera measurements need to be expressed in real-world coordinates (e.g.

for robot guidance or high-accuracy measurement), the quality of system calibration

is of vital importance. In complex automated systems it is important to effectively

integrate one or more vision systems with other components. In multi-sensor and

multi-device environments (e.g. comprising cameras, lasers, and robots), one is typ-

ically concerned with integrating data from multiple sources under the same coor-

dinate system [26]. These tasks require application of geometric computer vision

methods [31].

Processing time is an important factor, particularly to industrial applications of

vision systems [26, 28]. Because visual data typically has high-resolution, it requires
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efficient algorithms, often in combination with specialized hardware, to be processed.

The processing time requirement is specifically critical for 3D imaging.

Flexibility in manufacturing should be supported by the flexibility of vision sys-

tems [28]. The abovementioned issues of part appearance variability and difficulty

in establishing a consistent imaging environment naturally present a challenge to a

greater flexibility. In addition, the organization of vision algorithms and availabil-

ity of flexible and comprehensive computer vision libraries play a role in making

vision-based solutions more adaptable. This aspect of vision systems development

has received a special attention in this thesis, mainly with EPypes (paper 3) and

FxIS (paper 4).

3.3.4 Perception and action

The key part of a vision system is its processing algorithm. It is no surprise then that

algorithm development constitutes the core task in engineering of a vision system.

Selection and integration of hardware, such as camera sensors, lenses, lighting equip-

ment, communication infrastructure, and processing hardware, is also important,

especially if the goal is to establish a highly controlled imaging environment.

In practice, however, vision systems do not exist in isolation — they are inte-

grated into larger systems comprising robots, assembly machines, material handling

devices etc. Although, thanks to robust feature detection algorithms, there exist

many ”consumer-grade” computer vision systems, in manufacturing one is normally

concerned with development of custom control systems utilizing machine vision as a

sensing modality. In such situations, two tasks, perception and action, need to be

effectively integrated, and vision algorithms should not be considered in isolation (as

solely procedures for processing images).

In automated systems, perception is the process of representing the sensory infor-

mation in a task-oriented model of the world [32]. In artificial systems perception is

realized by means of sensing and estimation. One distinguishes between two types of

perception: proprioception recovers the internal state of the systems (e.g. a robot),

while exteroception recovers the state of the external world. In the former case, pas-

sive sensors are typically used to acquire data, in the latter case — active (contact

and non-contact) sensors [32].

This thesis concerns vision systems, which are the primary means of realization of

exteroception in robotics. Naturally, biological vision has been an important source

of inspiration for researchers dealing with artificial vision. Yet, an important charac-

teristic of biological agents is an inherent interplay between perception and action,

embodied in numerous behaviors reliant on sensory information. These include vari-
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ous body motions, as well as eyes getting focused on particular aspects of the scene.

In addition, perception and action are greatly related to planning and other types of

complex cognitive processing.

3.4 Cyber-physical systems

A cyber-physical system is defined as a composition of physical subsystems with

computing and networking, where computing devices communicate with each other

and interact with physical subsystems with the means of sensors and actuators in

a feedback loop [9, 33]. The above definition has a lot in common with a classical

notion of a control system. In fact, it was acknowledged by prominent researchers

in control that the emergence of CPS can be seen as a natural consequence of the

practical development of control systems [34].

Historically, control systems included two types of equipment, corresponding

to continuous and discrete control respectively. The former included controllers,

recorders, and displays, located on the control panel. The latter were implemented

as relay cabinets for start and stop sequences, and safety interlocks, corresponding

to the continuous and discrete control respectively [34]. The field of control engi-

neering has been constantly adopting various computer technologies such as digital

computers, microcontrollers, computer networks and various sorts of software. In the

recent years, the role of network-based communication and software sophistication

in control systems has increased. This in a way has bridged the continuous and the

discrete world of control, by putting a particular emphasis on joint dynamics of real-

world processes and computer-based control. This demanded a novel system science,

the intellectual core of which would constitute models and abstractions conjoining

computational and physical dynamics [9].

Thus, the interdisciplinary filed of cyber-physical systems has emerged [34], com-

bining knowledge from control theory, concurrency theory, hybrid systems, formal

methods for specification and verification, distributed algorithms, model-based de-

sign, and real-time systems [33]. Because systems that interact with the physical

world are often implemented as embedded systems, the intellectual core of CPS has

been formed within the embedded and real-time systems community.

A CPS example in presented in Figure 3.7. Computing part of a CPS may

be realized with one or more computing platforms, each comprised of one or more

computers, sensors and actuators. Computing platforms communicated with each

other by the means of network fabric. The controlled physical processes form the

physical plant, which can encompass mechanical, chemical, biological processes, as
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well as human operators. The physical plant is perceived by sensors and acted upon

by actuators of the respective computing platforms [9].

Figure 3.7: An example of cyber-physical system components by Lee and Seshia [9]

One may argue whether the CPS concept brings anything new to the field of

control systems, or if it is just a buzz word encompassing the technologies that has

already been around for a while. To confront this point of view, one may point out

that cyber-physical systems shall be regarded as a multi-disciplinary field that puts a

greater emphasis on the computational and networking subsystems. The distinguish-

able features of cyber-physical systems include reactive and real-time computation,

inherent concurrency, feedback control, and safety-critical requirements [33]. The

multi-disciplinary focus of CPS is expected to allow development of large scale con-

trol systems [34], tackling the issue of complexity, and introducing greater flexibility.

This thesis has been greatly influenced with the CPS thinking, specifically with re-

spect to the concurrency and communication aspects.

Computational systems that control physical processes and communicate with

each other are already an integral part of advanced manufacturing systems. There-

fore, the field of CPS has been of particular interest among the researchers in manu-

facturing [35, 36], where the term cyber-physical production systems has been coined.

In manufacturing, the focus has largely been on application-level approaches high-

lighted in strategic initiatives like Industry 4.0 [12], Industrial Internet [13], and

Smart Manufacturing Systems [14]. In this case, numerous ideas have been drawn

from earlier research undertakings in holonic and multi-agent control systems, service-

oriented architecture for manufacturing control, manufacturing-related data mining,

virtual manufacturing, wireless industrial communication, and human-centered re-

search. Generally, the abstraction level of research in cyber-physical production sys-
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tems is much higher than that of the original CPS, and has a distinctly application-

specific focus.

Because future cyber-physical systems in the industrial automation settings are

inherently heterogeneous, i.e. consisting of mechatronic devices based on different

computational platforms and programmed in different programming languages, the

middleware technology in combination with open architecture are seen as important

prerequisites for their effective integration [35]. Middleware is considered in more

details in chapter 7 and paper 5.

3.5 Concurrency and parallelism

Today’s computing systems, especially those with distributed components, come with

an inherent interplay between concurrency and parallelism. These are related, but

conceptually different, computing problems.

Parallelism concerns computationally-intensive tasks, whose execution efficiency

is constrained by the available processing power, and/or the available memory. Typi-

cal examples of this kind are computer vision algorithms, training of machine learning

models, real-time signal processing, stream processing, robotic mapping, etc. To sat-

isfy the respective timing requirements one typically strives to harness parallel com-

puting capabilities, including multi-processing systems, GPUs, computing clusters,

and cloud resources.

Concurrency is a conceptual notion of simultaneous occurrence of different pro-

cesses. Comparing to parallelism, which concerns computations that physically exe-

cute simultaneously [9], concurrency is about dealing with, rather than doing, lots of

things at once [37].

In computational systems, concurrency is expressed on some abstraction level (in

programming language constructs or modeling formalisms). The problem of mod-

eling concurrency arises in several contexts. This includes, but is not limited to,

heterogeneous industrial automation systems, publish-subscribe middleware, servers

supporting multiple connections at once, and interactive applications, where input

from users constitutes sporadic events.

In distributed systems concurrency is tightly intervened with communication.

The same holds true for cyber-physical systems, where concurrent models of compu-

tation [9] are extensively used to synthesize the desired system behavior. In practical

software engineering in distributed systems, concurrency is typically associated with

I/O-bound execution. To allow for multiple connections and deal with the waiting

time, such techniques as asynchronous functions calls, futures, event loops, pools
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of workers etc are used. These techniques, which explicitly acknowledge concur-

rent execution, can also be applied to tackle CPU-bound problems and harness the

parallelization capabilities.

In this thesis, concurrency is harnessed in the following ways:

• Thread-based concurrency with synchronization over blocking queues in Python

is used in the design of EPypes (paper 3).

• Thread-based concurrency in C++ is used in FxIS (paper 4) to realize image

acquisition and service request/response. Synchronization and data manage-

ment is realized with custom concurrent data structures.

• Publish-subscribe architecture based on ZeroMQ for connecting the robot con-

trol node, the image acquisition service, and the image processing node (used

in both paper 3 and paper 5).

• Cooperative multitasking using Python’s AsyncIO coroutines is used in pyadept

(paper 5) to achieve composition of communication-heavy robot logic.
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Estimation and learning

Estimation can be loosely defined as ”the computation of some transformation or

other mathematical quantity, based on measurements of some nature” [31]. Esti-

mation of unknown parameters and functions from noisy data is a pervasive task

in many fields of engineering. Automation and robotic systems always utilize some

sensing modalities, and the increased availability of sensors of various kind offers bet-

ter possibilities in terms of estimating internal state of the systems and perceiving

the environment around. Learning is a related task, with a broader meaning, associ-

ated with the ability of a system to improve its function as a result of observation of

some kind. The methods by which this improvement is achieved are very often the

same as in the classical estimation, i.e. are based on various models with statistical

assumptions, cost functions, and optimization methods. Nevertheless, the fields of

artificial intelligence and machine learning bring additional approaches of their own.

There exists a large body of knowledge on estimation methods, the associated

models, optimization algorithms, and the underlying probabilistic assumptions. The

approaches developed so far share the common principles, but, depending on the

application area or the scientific school, have different taxonomy, notation, and even

philosophy behind them. Examples are general-purpose model fitting, sensor calibra-

tion, estimation of probability distributions’ parameters, machine learning, Bayesian

estimation and so on. Some scientific schools put an emphasis on the probabilistic

nature of the estimation process, others concentrate on efficient implementation, typ-

ically harnessing the capabilities of linear algebra, while some attempt to tackle the

problems algorithmically by employing non-trivial models, cost functions, and data

structures.

Recent years has been characterized by an increased interest in the use of machine

learning methods for realization of highly-complex data-driven systems. The whole

39
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new discipline is emerging, namely data science, which goes beyond the classical

data analysis methods, and combines interdisciplinary knowledge in probability and

statistics, machine learning, computer science, and practical software engineering to

tackle complex problems with data. The latter in the data science context is often

unstructured and requires a great deal of prototyping/hacking.

There are several ways to generalize estimation and learning problems: from the

points of view of classical statistics, Bayesian statistics, linear algebra, or non-linear

optimization. One could put emphasis on models, or on algorithms. Also, one could

be tightly application-specific, or generalize on broader sets of similar problems. This

chapter establishes a common vocabulary for estimation and learning, which is based

on three integral components [38]: (1) model representation, (2) evaluation function,

and (3) optimization algorithm.

4.1 Machine learning

Machine learning (ML) is a field that studies computer algorithms for automatic

learning (”to do something better in the future”) from observation data (”based on

what was experienced in the past”). That is, an ML application is associated with a

particular task that has to be improved by learning rather than by implementation

of an imperative procedure [39, 40].

ML is typically considered a sub-area of artificial intelligence (AI), though it

is highly related to statistics, optimization, computer vision, and other disciplines.

There exist distinct scientific paradigms studying ML such as statistical learning

theory and computational learning theory.

A large group of ML techniques, dubbed supervised learning, is focused on learning

an unknown function fp : X → Y from a set of training samples {xi,yi}, where

xi ∈ X,yi ∈ Y , and yi = fp(xi). Hence, the known data samples are used to estimate

the unknown function, which can be used for regression (Y ⊆ Rd) or classification

(Y = {0, 1} or Y = {0, 1, 2, . . . , k − 1}, where k is the number of classes).

In paper 2, several supervised classification algorithms were tested on the same

training data. The latter, formed using a custom feature engineering procedure from

a set of images of star washers. Figure 4.1 shows two feature matrices, rendered

as images, where each row corresponds to a single feature vector obtained from an

individual star washer image.

Function fp(·) typically constitutes a complex model with a large number of pa-

rameters. For many problems the learned fp(·) would surpass possible imperative

implementations, while for many, it would not be possible at all to hand-craft equiv-



Chapter 4. Estimation and learning 41

(a) Feature matrix for yi = 1

(b) Feature matrix for yi = 0

Figure 4.1: Feature matrices for star washers’ orientation classification

alent procedures.

Supervised ML algorithms include linear regression, logistic regression, artificial

neural networks (ANN), support vector machines (SVM), decision trees, adaptive

neuro-fuzzy inference system (ANFIS), and others.

Unsupervised learning algorithms are aimed at finding regularities in unlabeled

data, i.e. in a set {xi, i = 1, ...,m}, without dependent variables {yi}. Thus, unsuper-

vised learning algorithms are used for clustering, dimensionality reduction, anomaly

detection, and often are applied for preprocessing the original data before training

some of the supervised learning algorithms.

Depending on the application, one could aim at building ML models for prediction

or for inference. In the former case, it is of interest to predict an unknown value

y∗ ∈ Y given an observation x∗ ∈ X. Conversely, in the latter case one aims at

building an interpretable model that describes the nature of mapping X → Y [41].

ML is often used for analysis of image data, due to better accuracy of functions

for recognition of complex patterns learned from data, as compared to hand-crafted

procedures [40].

Many ML implementations greatly benefit from large data quantities and powerful

computational infrastructure. Software frameworks as Apache Hadoop and Apache

Spark provide capabilities of efficient machine learning from big data using batch

processing with map-reduce technique. In some situations the data is not already

stored, but arrives online. To apply machine learning in this case, stream processing

engines, such as Apache Storm, are employed.

4.2 Models

Every estimation problem is coupled with one or more models, constituting a for-

malized description of a phenomenon at hand. A model Mp(·) can closely mirror a

physical system, e.g. model of a sensor, or have a custom intricate structure, such
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as models used in many machine learning applications. The former case is natural

when one possesses knowledge or assumption of how a physical process can be math-

ematically described. In computer vision, the typical examples is knowledge on light

transport and camera structure, which is formalized with the linear pinhole camera

model and non-linear lens distortion model. These models are well-interpretable, and

thus can be used for inference. Other tasks, conversely, can be treated as pattern

recognition problems, in which a new datum is interpreted based on the prior expe-

rience without an explicit physical model [27]. Here, models like neural networks,

decision trees, support vector machines, random forests etc. are applied, with a

primary focus of prediction (recall section 4.1).

4.3 Point estimation

Let D be a set of all possible data points, and P – a set of all possible parameters that

have to be estimated. Thus, an observed datum is represented as a vector x ∈ D.

Likewise, the unknown parameters, which can e.g. characterize a particular model

Mp(·), are represented as a vector p ∈ P . If P is a vector space, the estimation

problem is referred to as point estimation. A typical example when this is not the

case is the problem of pose estimation, since Euclidean space SE(3) is not a vector

space.

4.4 Linear models

For many systems, linear models are highly preferred due to their simplicity and

interpretability. Also, with matrix/vector representation one is able to harness vec-

torization capabilities of the computing devices. Singular value decomposition allows

to obtain a closed-form solution to model estimation problems.

In many cases, particularly in computer vision, an estimation problem is formu-

lated as a homogeneous system of linear equations:

Ax = 0 (4.1)

Let A ∈ Rm×n. Typically, one considers overdetermined problems, where the

dimensions of data exceeds the number of unknowns, i.e. m > n. In this case, (4.1)

has an infinite number of solutions, with the optimal x+ minimizing the squared

norm of Ax:

x+ = arg min
x

||Ax||2 s.t. ||x|| = 1 (4.2)
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x+ is obtained from singular value decomposition (SVD) of A, that is, given

A = UDVT :

x+ = V(:,−1) (4.3)

The estimate obtained from a linear model does not account for many non-linear

and noise factors that are inherent in most physical phenomena. As such, a non-

linear optimization routine is normally conducted with the linear estimate as the

first approximation.

4.5 Optimization

Optimization is central to both machine learning and geometric computer vision (as

well as all other problems involving estimation), since this is the primary procedure of

determining the sought parameters. An optimization problem is formulated in a way

that model parameters and constraints are based on prior information or parameter

limits, and the objective constitutes a measure of misfit or prediction error.

Parameters of linear models, described in section 4.4, can be estimated in closed

form. Conversely, problems with non-linear cost functions require suitable algorith-

mic procedures. There is a range of well-developed methods of non-linear optimiza-

tion [42, 43], all following a common formal framework.

Let p ∈ Rn be a vector of unknown parameters, which are of interest to estimate.

p usually characterizes a model Mp(·), but, depending on the problem that uses an

optimization method, can have an arbitrary meaning.

There is a vector function f : Rn → Rm which maps the parameter vector p to an

m-vector of values, representing a problem-specific measure of misfit. For instance, in

model estimation problems, to fit model y = Mp(x) to data set {(xi, yi), i = 1, ...,m},
the corresponding function f will map to a vector of differences between given yi and

outputs of Mp(xi), i.e.:

f(p) =



y1 −Mp(x1)

...

ym −Mp(xm)


 (4.4)

A cost function for least-squares problems is defined as follows1:

CSS(p) =
1

2

m∑

i=1

(fi(p))2 =
1

2
f(p)T f(p) (4.5)

1SS for sum of squares
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The leading 1
2 does not change the outcome of optimization, but simplifies an-

alytical derivations. Other equivalent forms of least-squares cost function is mean

squared error (MSE) and root mean squares (RMS), defined as follows:

CMSE(p) =
1

m

m∑

i=1

(fi(p))2 =
1

m
f(p)T f(p) (4.6)

CRMS(p) =
√
CMSE(p) (4.7)

There exist numerous methods for non-linear optimization. All of them are iter-

ative, i.e., given a cost function C(p), and the initial estimate p0, they produce a

series of vectors p1,p2, ...,, which is intended to converge to the optimum p∗ [43]:

p∗ = arg min
p

C(p) (4.8)

Descent optimization methods are based on computing a gradient of cost function

at each iteration step, i.e. for pi (where i = 0, 1, ...), gradient ∇C ∈ Rn is computed

as follows:

∇C =
[
∂
∂p1

C(pi)
∂
∂p2

C(pi) ... ∂
∂pn

C(pi)
]

(4.9)

4.6 Flexible machine learning models

As was noted in section 4.2, one can strive to train more interpretable models and

use them for inference, or make use of less interpretable, but more flexible models,

mainly targeting the prediction task. Linear models, as well as their non-linear coun-

terparts such as generalized additive models possess higher interoperability. By this

reason they have been widely used for statistical modeling and system identification

involving physical phenomena.

In many machine learning settings, one is primarily interested in prediction rather

than inference, with the sought input/output relationship possessing high degree of

complexity. In those cases, more flexible models are applied. These include neural

networks, tree-based models, support vector machines, and ensemble methods. The

latter, such as bagging and boosting, are based on the idea of training multiple

learning algorithms and taking their weighted votes to achieve greater predictive

performance.

Paper 2 is concerned with solving the binary classification problem given the set

of feature vectors extracted from the star washer images. Here, there is no need to

build interpretable models, and, therefore, a set of flexible classifiers are evaluated.
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A downside of flexible ML algorithms is overfitting — the optimization routine

naturally tweaks the model parameters so that misfit with the training data becomes

minimal, but, as a consequence, a larger number of predictions using unseen data are

made incorrectly, i.e. the trained model fails to generalize to new samples. To tackle

this issue and make the trained models ”smoother”, a common approach is to add a

regularization factor to the cost function. Given the initial cost function C(p), where

p ∈ Rn and p1 corresponding to the bias term, the cost function with regularization

is defined as follows:

C(reg)(p) = C(p) + λ

n∑

i=2

pi (4.10)

where λ is the regularization factor.

Because C(reg)(p) is minimized, the term with regularization (λ
∑n
i=2 pi) sup-

presses the values of {pi, i = 2, ..., n}.

4.7 Probabilistic interpretation

So far, the treatment of estimation and learning methods has been from the linear

algebra and optimization perspectives. These abstractions are algorithm-friendly and

thus favored and well-understood by practitioners. In order to formally reason about

uncertainty in estimation, the probabilistic models are used.

The statistical learning theory [41, 44] considers machine learning problems from

the perspective of classical statistics, one of the core components of which is the

additive noise model. In general, a noise model represents probability of obtaining

a datum y given model parameters p, i.e. Pr(y|p). For a deterministic mapping

x 7→Mp(x), the corresponding additive noise model is:

y = Mp(x) + ε (4.11)

where ε is a random variable representing the additive noise. Typically, noise is

modeled as normally distributed, i.e. ε ∼ Norm(0, σ2). In this case, it is valid to

write as follows:

Pr(y|x,p) = Norm(Mp(x), σ2) (4.12)

Section 4.5 presented cost functions based on sum of squares of the outputs of

a multi-dimensional function. From the statistical point of view, it is of interest to

perform maximum likelihood estimation (MLE), which maximizes the probability
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of the observed data under the estimated model. For a statistical model SMp(·),
parametrized by p ∈ Rn and describing data of dimension d, given a set of m data

points {xi ∈ Rd, i = 1, ...m}, the maximum likelihood estimate of p is defined as

follows:

p̂ML = arg max
p

m∏

i=1

Pr(xi|p) = arg max
p

m∑

i=1

logPr(xi|p) (4.13)

The most straightforward application of MLE is estimation of parameters of prob-

ability distributions. For example, to estimate normal distribution parameters from

data points {xi ∈ R, i = 1, ...m}, the following MLE expression holds:

µ̂, σ̂ = arg max
µ,σ

N∏

i=1

Pr(xi|µ, σ) =

m∑

i=1

(
(xi − µ)2

2σ2
+ log σ) (4.14)

In paper 3, MLE is used to estimate log-normal distribution given sets of duration

data (see Figure 4.2).

0.5 1.0 1.5 2.0 2.5 3.0
Computational graph overhead, ms
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Figure 4.2: Log-normal PDFs estimated using MLE from paper 3

For model estimation problems characterized by a mapping x 7→ Mp(x) an ad-

ditive noise model (4.11), and a data set of m pairs of independent and dependent

variables {(xi, yi), i = 1, ...,m}, the maximum likelihood estimate is the following:

p̂ML =

m∏

i=1

Pr(yi|xi,p) =

m∑

i=1

logPr(yi|xi,p) (4.15)

In case of normal noise, as in (4.12), the maximum likelihood estimate is equiva-

lent to the least squares estimate.
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4.8 Machine learning model evaluation

An intricate part of machine learning systems development lies in evaluation of dif-

ferent alternatives with respect to a set of performance metrics.

In order to train ML models without introducing data-related bias, the available

data set is subdivided into three subsets (see Figure 4.3): training, validation, and

testing sets, with the proportion of data being roughly 60%, 20%, and 20% respec-

tively. Several alternatives are compared given the training and the validation set.

The training set is used to estimate model parameters, which are in turn benchmarked

with respect to the metrics of interest and the validation set. The performance of a

fully-trained ML model is assessed in an unbiased way using the testing set.

Training set

Validation set

Testing set

X y

Figure 4.3: Training, validation, and testing sets

It is important to distinguish between model parameters and hyperparameters of a

machine learning algorithm. A modelMp(·) as a mathematical object is characterized

by parameter vector p, which is estimated using the training set. However, each

learning algorithm possesses a number of parameters that don’t characterize the

corresponding model, but define the specifics of how the algorithm is executed. They

are dubbed hyperparameters, and are tuned using the validation data set.

A commonly-used hyperparameter is a regularization factor λ (see section 4.6).

If it is too small, the resulting model is risking to overfit data. In the opposite

case, too simple model would introduce additional bias (Figure 4.4a). Similarly

to the regularization factor, the dimensionality d of the model may lead to either

high bias or high variance, and therefore needs to be tuned using the validation set

(Figure 4.4b).
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Figure 4.4: Model tuning to avoid high variance or high bias

With respect to classification problems, one can assess the performance of a par-

ticular classifier using the metrics based on the number of true positives (TP ), false

positives (FP ), true negatives (TN), and false negatives (FN) given the test set.

The widely used metrics of this kinds are precision P , recall R, F-score F :

P =
TP

TP + FP
(4.16)

R =
TP

TP + FN
(4.17)

F =
2PR

P +R
(4.18)

The above metrics are used in paper 2 to evaluate suitability of different super-

vised classifies to the problem of binary classification of star washer orientation. A

summary of the evaluation is provided in Table 4.1.

Table 4.1: Comparison of classifiers from paper 2

Classifier TP TN FP FN P R F

SVC 30 0 30 0 0.500 1.000 0.667
MultinomialNB 27 29 1 3 0.964 0.900 0.931
GaussianNB 29 30 0 1 1.000 0.967 0.983
DecisionTreeClassifier 27 24 6 3 0.818 0.900 0.857
AdaBoostClassifier 29 30 0 1 1.000 0.967 0.983
RandomForestClassifier 27 30 0 3 1.000 0.900 0.947
KNeighborsClassifier 24 29 1 6 0.960 0.800 0.873
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Vision pipelines

Computer vision algorithms that accept one or more images and produce the application-

specific result are naturally modeled as data processing pipelines, i.e. describing

signals/objects that get routed through a network of computational procedures.

The early stage of vision algorithm development is typically ad-hoc, with the focus

on proving feasibility. For the sake of experimentation, limited structure is imposed

on the code behind the prototype solution, so all the logic could, for instance, be

composed as a single function. However, as the complexity of the developed prototype

grows, it can be beneficial to evolve it as a structured entity. Otherwise, the resulting

solution is likely to be difficult to maintain.

This chapter presents the idea of vision pipelines. The general pipeline pattern

of typical vision algorithms is described first, followed by an overview of common

image processing operations, specifically segmentation, connected components com-

putation, edge detection, and feature detection/description. Further, the principles

of computational graphs are presented, and two concrete examples of algorithms from

this thesis, modeled as computational graphs, are discussed.

5.1 Images

From the perspective of applied mathematics, an image is considered a continuous

function on D-dimensional domain Ω, mapping to C-dimensional vectors (represent-

ing values in each channel):

I : (Ω ⊂ RD)→ RC

This continuous representations allows to reason about algorithms independently

49
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of domain discretization, e.g. by applying variational methods. In practice, however,

the domain and range of an image are discretized. For a standard two-dimensional

domain with width w, height h, and an unsigned char per pixel:

Id : Ωwh → {0, 1, ..., 255}C ,where Ωwh = {0, h− 1} × {0, w − 1}

A binary image is obtained as a result of thresholding operator:

Ib : Ωwh → {0, 1}

A label image represents a result of segmentation, mapping various regions Ωi ⊆
Ωwh, i ∈ {0, ..., k − 1} to the respective region indices:

Il : Ωwh → {0, ..., k − 1}

5.2 Vision algorithms as pipelines

Any vision system can be structurally defined as a data processing pipeline. After

image capture and acquisition, an input image is obtained in memory. It then fol-

lows a series of transformations, which leads to the application-specific output. An

example of such vision pipeline is an abstract feature detection algorithm, comprised

of the following steps:

1. Image enhancement (remove noise by smoothing, adjust brightness and contrast

by gray value transformation);

2. Segmentation (thresholding, extraction of connected components, contour de-

tection, edge detection, etc., and the combinations of thereof);

3. Feature detection (fitting of geometric primitives, template matching);

4. Decision making.

As an example, Figure 5.1 shows a sequence of operations that are common to

many vision systems applications. In such general system, an image acquired by the

camera is initially enhanced to simplify the later processing steps. After that, certain

parts of the image are segmented, and the obtained parts are further used to detect

the desired features.

Though the abovementioned sequence can be different, in has the same under-

lying principle. Generally, a vision pipeline proceeds ”from signals with almost no

abstraction, to the highly abstract description needed for image understanding” [45].



Chapter 5. Vision pipelines 51

Image 
enhancement

Original 
image

Image 
segmentation

Enhanced 
image

Feature detection

1 or more 
regions or 
contours

Features or/and other measurements

External systemsProcess/scene

Image 
acquisition

Figure 5.1: Common steps of a vision pipeline

Based on this idea, vision algorithm are often subdivided into two groups, depending

on whether they are considered lower or higher level [45, 46].

The following sections provide an overview on the common image processing

operations, specifically those used in this thesis.

5.3 Image segmentation

Image segmentation is concerned with identifying parts of the image that correspond

to various aspects of the scene. A typical application aims at decomposing pixels

belonging to background and foreground. In more complex situations one is interested

in segmenting regions belonging to different objects. In some cases one is interested

in partitioning image domain Ω into regions Ωi:

Ω =

n⋃

i=1

Ωi (5.1)

Other times, the additional boundary Γ, which separates the regions, is recovered:

Ω = (

n⋃

i=1

Ωi) ∪ Γ (5.2)

The simplest form of segmentation is thresholding – binarization of an image

based on the given graylevel threshold value. This approach is the most compu-

tationally efficient, and works well for scenes with clear separation of background

and foreground, specifically in highly-controlled machine vision setups. In this PhD

project thresholding was used in situations where a dark object (star washer) was

imaged against a bright background (paper 2), and for analysis of images of a custom

calibration object on a white background (paper 5).

A downside of thresholding is in its reliance on a fixed graylevel value, which

makes it not robust to scene appearance changes. To tackle this, several methods for



52 Chapter 5. Vision pipelines

automatic choice of threshold exits. The Otsu’s method [47], for example, chooses

the optimal threshold value by maximizing inter-class variance between the classes

of white and black pixels. This methods was used in paper 2 as a part of the star

washer segmentation pipeline (see also section 5.8.1 further in this chapter).

Thresholding performs a binary decision based solely on the local graylevel of a

pixel. More elaborate segmentation methods take into account spatial context, which

is more consistent with physics of image formation: if a particular pixel belongs to

an object of interest, it is likely that its neighbors do as well. Such methods include

the following:

• Clustering, maximum likelihood estimation of mixture models with the expec-

tation maximization algorithms [48, 49];

• Region-based methods (based on building larger regions from smaller ones);

• Edge-based methods (label regions with the edges as boundaries);

• Variational methods (based on variational calculus; minimize cost functions

dependent on an image) [50].

5.4 Connected components

In a undirected graph G, a connected component C constitutes a subgraph of G in

which any two vertices are connected by a path in C, and no vertex in C is connected

to any other vertex in G \ C.

A binary image can be thought of as a graph, with pixels as vertices, where there

exists a connection between two vertices, if the corresponding pixels has intensity of

1 and are connected to each other. As such, computation of connected components

given a binary image results in a label image and, optionally, a set of descriptive

parameters for each component i ∈ {0, ..., k − 1}, such as the component’s center,

top left corner of the bounding box, bounding box width/height etc.

Computation of connected components in a binary image was a central operation

for segmentation of star washers in paper 2 and determining the region with the

calibration object in paper 5. The latter use case is described in more details further

in this chapter (section 5.8.2).

5.5 Edge detection

Edge detection is an image processing operation aimed at identifying groups of pixels

where gray level across vertical and/or horizontal direction changes sharply. At the
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heart of edge detection algorithms lies maximization of image intensity gradients.

Edge detection results in a binary image, where pixels with intensity 1 are labeled

as belonging to edges.

Canny edge detector [51], which is the most widely used algorithm, in addition

tracks edges by hysteresis and suppresses candidate pixels with weak connection to

other edge pixels.

An edge image can be used to fit geometric primitives such as lines, circles,

ellipses, and arbitrary-shape objects. A widely-used technique is the voting-based

Hough transform [52].

5.6 Image features

A feature is a central notion in the majority of computer vision algorithms. Generally,

it can be defined as a characteristic quantity extracted from an image [53]. There

exists a number of types of features, differing by their dimensionality, sophistication

of feature extraction algorithms, and the forthcoming applications. A feature is

typically characterized by its location on the image plane, its quantitative description,

or both.

One of the most trivial are region-based features. For a given region, one can com-

pute area, center of gravity, moments (allowing to recover measures of the equivalent

ellipse), convexity, parameters of smallest enclosing rectangle and smallest enclos-

ing circle, contour length [53]. The same sets of features can be extracted from the

subpixel-precise contour information.

Given a region and its original gray values, one can extract gray value features

such as mean gray value withing the region, variance of gray values, α-quantile (used

for robust contrast normalization), and gray value moments. The gray value may

in some cases encode the degree of belonging to the region, allowing to make fuzzy

decision and perform subpixel-precise measurements [53].

As mentioned before, another class of features are geometric primitives that are

fit from an edge image.

The abovementioned features are largely used for gaging purposes. This is specif-

ically useful for many machine vision applications, when quantifiable dimensional-

ity information is of interest. However, in modern computer vision, particularly in

multi-view imaging, features are primarily used for matching interest points in dif-

ferent views. The most basic in this respect are corners – points in image where two

edges intersect. Corners are typical in images of man-made structures. They are also

reliable to detect in calibration objects based on the chessboard pattern.
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In the recent year, a range of robust feature extraction algorithms has been devel-

oped, all targeting the problem of reliable matching of interest points, and achieving

invariance (full or partial) of scaling, orientation, affine distortion, and illumination.

These algorithms include SIFT, SURF, HoG, GLOH, LESH, and ORB. The latter

[54] is used in paper 3 for feature detection, description, and matching between two

views in a stereo vision system.

5.7 Computational graphs

As motivated in Section 5.2, vision algorithms are conveniently modeled in a form

of directed graphs. This section provides a short description of the computational

graph abstraction from paper 3, used to directly specify executable vision pipelines.

A computational graph constitutes a network of functions and data tokens, and is

formally defined as a bipartite directed acyclic graph G:

G = (F, T,E)

where F is a set of functions, T is a set of tokens (representing data objects), and

E is a set of directed edges between functions and tokens and vice-versa.

Tokens in T are subdivided into payload tokens and hyperparameter tokens. The

latter are frozen on graph construction, and represent values that parametrize the

algorithm. The former represent input data, as well as intermediate and final results.

An abstract example of a computational graph is shown on Figure 5.2. Rectangle

vertices represent functions F = {f1, f2, f3}, white circular vertices represent payload

tokens, and gray circular vertices — hyperparameter tokens.

f1 f2t1 t4

t5

f3t6 t8

t7t3t2

Figure 5.2: An example computational graph

Topological sort of G results in an order of vertices (functions and tokens) so

that all the directed edges point from a vertex earlier in the order to a vertex later

in the order. This is a standard approach to task scheduling, as it establishes an

order in which all the precedence constraints would be satisfied. For the example in
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Figure 5.2, the topological order for functions constitutes f1 → f2 → f3. Invoking

the functions in this order automatically executes the computational graph.

5.8 Concrete computational graphs

5.8.1 Star washer segmentation and polar transformation

In paper 2, an algorithm for star washer image processing is presented, in which

the target object, imaged from the top-down perspective, is segmented, and further

transformed to the polar coordinate system. The center of the latter should coincide

with the center of the star washer. The result of the algorithm is further used for

classification and inspection tasks. An improved version of the algorithm, formulated

as an EPypes computational graph, is presented in Figure 5.3.

The original image is supplied to the Otsu’s method to determine the optimal

threshold value. The latter is used to perform thresholding, resulting in two binary

images, corresponding to the object and the background respectively. The object

thresholding (im t object) is supplied to the connected component analysis routine,

which returns a label image and connected components statistics, packaged as a Pan-

das dataframe (ccomp df object). The latter is filtered using two hyperparameters

describing the limiting sizes of the acceptable connected component. Because only

one star washer is imaged, the result of filtering contains a reduced dataframe of size

one. The location and bounding box dimension of this region of interest are used to

crop sub-images from the original image (image) and the binary image of the back-

ground thresholding (im t bg). Sub-image of the latter is used for another connected

component computation, with the goal of segmenting the background circle, appear-

ing because of the hole in a star washer. The circle is filtered out (select bg circle)

based on its relative size comparing to the rest of the sub-image. Finally, the polar

transformation of the sub-image of the original image is performed based on the cen-

ter coordinate computed earlier. The transformation is parametrized by the angle

granularity (n angles), profile length (plen), and the length of ignored part of the

profile (ignored len).

Visualization in Figure 5.4 demonstrates intermediate and final results of the star

washer segmentation routine, referenced with respect to the computational graph

nodes.
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5.8.2 Sharpness measurement

Another example of a computational graph is the algorithm for sharpness measure-

ment on the custom calibration object, used in conjunction with a robot control

program in paper 5.

The original image is supplied in the grayscale format. First, it undergoes thresh-

olding operation to highlight the light regions on the image (including the white

background of the calibration object). The thresholded binary image is eroded to

remove the influence of the black lines in well-focused images. Further, connected

components are identified. The goal is to segment the connected component belong-

ing to the calibration object. To do that, a filter based on width-to-height ratio range

and minimal region area is applied. The selected region of interest is cropped from

the original image, and is used as an input to the Sobel operator in the x direction.

From the middle of resulting gradient image (in terms of y axis), a horizontal line

profile is extracted. As a measure of sharpness, the standard deviation of this profile

is used: the more the original image is in focus, the greater variability between dark

and bright pixels in the calibration region.

Figure 5.6 demonstrates the intermediate results (sobelx im and profile sx)

of the sharpness measurement routine for images with different positioning of the

calibration object.
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Figure 5.3: Star washer image analysis computational graph



58 Chapter 5. Vision pipelines
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Figure 5.4: Visualization of tokens from the star washer computational graph
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Figure 5.5: Computational graph for sharpness measurement
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Figure 5.6: Visualization of sharpness measurement intermediate results for images
with different positioning of the calibration object
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Image acquisition

Image capture and image acquisition are two integral processes that happen before an

image becomes available for the processing algorithm. Image capture happens when

light rays come through the lenses and get detected by the image sensor as a spa-

tially distributed electrical signal. Image acquisition is concerned with transferring

the digitized image into the computer memory, normally over some communication

medium.

In industrial environments, cameras based on the GigE Vision acquisition stan-

dard are widely used. This standard is specifically suitable for engineering distributed

vision systems, as it allows to connect computing equipment to multiple cameras us-

ing the available Ethernet equipment. The GigE Vision standard is widely supported

by commercial vision software. In addition, camera vendors provide low-level soft-

ware development kits that allow building custom vision solutions.

Using commercial vision software to realize the image acquisition function is in

many cases too inflexible. At the same time, the approach of using SDKs requires

building custom adapters to the application-level code. From the software engineer-

ing perspective, it is of interest to possess a service-oriented solution for the image

acquisition function.

This chapters introduces the general principles of the image acquisition function,

with the focus on the used in this PhD project GigE Vision standard. Furthermore,

an overview of service-oriented architecture is presented, followed by a glimpse into

the way the flexible image acquisition service (FxIS) has been developed.

61
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6.1 Technical details of image acquisition

Industrial cameras can be subdivided into two classes: asynchronous reset cameras,

which perform capture only when synchronized with an external event, and free-

running cameras, which continuously capture images at a constant rate. The latter

are more commonly used, and have two acquisition modes that can be realized.

Depending on the design of the image acquisition module, the caller may issue a

trigger event and process the acquired image sequentially (the synchronous mode),

or perform triggering and processing concurrently (the asynchronous mode) [53].

The latter case is more effective, since it allows to process each individual image the

camera is able to capture, and involves several threads of execution.

A camera is constrained by its maximal framerate r, measured in frames per

second (fps). The same performance can be expressed with the inversely proportional

inter-arrival time τia = r−1. For example, Prosilica GC1350 cameras, used in paper

4, offer r = 20 fps, which result in τia = 50 ms.

Once the image is acquired, it is laid-down contiguously (row-by-row) in the com-

puter memory as an array of unsigned char. An image sensor having the dimension

of w × h and c color channels (for monochrome and Bayer images, c = 1), produces

the array of size hwc.

6.2 GigE Vision

There exist several camera communication standards used as a backbone of the image

acquisition function:

1. Camera Link

2. CoaXPress

3. IEEE1394

4. USB 3 Vision

5. GigE Vision

GigE Vision is based on the widely-used Gigabit Ethernet physical/link layer net-

working protocol. It provides a number of advantages over other standard, such as

the ability to design distributed network topologies (as opposed to point-to-point),

scalability in terms of adding more cameras into the systems, ability to work on stan-

dard hardware and software, and bandwidth suitable for real time video streaming

[55].
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The GigE Vision standard is based on UDP, hence allowing for higher speed of

image transmission as compared to TCP. On top of it, two application-specific proto-

cols are defined, GigE Vision Control Protocol (GVCP) and GigE Vision Streaming

Protocol (GVSP). These protocols increase transmission reliability as compared to

the raw UDP. Additional research has been done in improvement of packet loss during

UDP-based communication in GigE Vision systems [56].

Gigabit Ethernet

IP

UDP

GVCP GVSP

Network layer

Internet layer

Transport layer

Application layer

Figure 6.1: GigE Vision protocol stack

This PhD project utilized a number of Allied Vision GigE Vision cameras (see

Section 2.4). These cameras are supplied with the vendor’s SDK, dubbed Vimba,

that allows to develop applications with image acquisition capabilities in C, C++,

and for the .NET platform.

6.3 Service-oriented architecture

Service-oriented architecture (SOA) is a software architecture design pattern based

on discrete, normally distributed, software modules that provide application func-

tionality as service to other applications.

Service-oriented computing is important theme of research and development in

information systems and software engineering when it comes to realization of dis-

tributed systems. Examples of protocols and paradigms realizing SOA are the fol-

lowing:

• SOAP: XML-based protocol for strictly typed machine-to-machine communi-

cation over HTTP.

• REST: an architectural style for web-services based directly on HTTP protocol,

allowing to create, retrieve, update and delete resources.

• Publish/subscribe architecture: asynchronous messaging approach based on a

message queue used by subscribers and publishers of messages.
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• Microservices: architectural style of partitioning a single application into a

collection of loosely-coupled services.

The above approaches have somewhat different technical, semantic and behavioral

characteristics. Nevertheless, they share the common principle of decomposition of

computational units and provision of services on demand. In the field of industrial

automation, SOA manifested itself in such forms as OPC-UA, DPWS, the Tweeting

Factory [57], and services and topics in the Robot Operating System (ROS).

6.4 FxIS

This section describes the principles and the main components the Flexible Image

Acquisition Service (FxIS) presented in paper 4.

The principle structure of an FxIS application is shown on Figure 6.2. The

highest-level component is a Service. It is responsible for handling requests to the

imaging system from various clients and holding the control over the image acquisition

process. Per each camera connection, there exists a Streaming object, running in a

separate thread, and an ImageStream concurrent data structure.

Streaming1 Streaming2

Vimba	driver

Frame
observer

Frame
observer

Service

𝑡∗
Image
and	metadata

R R
WW

ImageStream1 ImageStream2

Figure 6.2: FxIS application components

ImageStream constitutes a form of a circular buffer with frames annotated by

their arrival timestamps, providing the functionality of image storage and search-

based retrieval. This data structure can be safely accessed by multiple threads. While

the camera driver writes (W) to the camera’s ImageStream, the Service component

may request (R) images from the stream with the current timestamp t∗.
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The programming model in Vimba C++ driver is based on the Observer design

pattern. A concrete frame observer class, enclosed in an instance of Streaming, is

associated with the given camera, and the driver invokes the FrameReceived method

once a new frame is acquired. In the free-running mode it happens every τia.

The dynamic workflow of an FxIS application is shown on Figure 6.3. When

started, a Service spawns a number of threads (each per one camera interface) based

on the corresponding Streaming objects. When instantiated, the latter establish

connections with the respective cameras, initiate image capture, and start acquisition

of each frame. When the work time of an FxIS service is finished (e.g. because of

the user’s request), all the threads are signaled for completion via instances of the

BlockingWait and EventObject concurrent data structures {bwi, eoi}.

bw1

bw2

Initialization Image	requests R

R

W

W

Service

Streaming1

Streaming2

Cam.	driver	(2)

Cam.	driver	(1)

eo2

eo1

ImageStream1

ImageStream2

Shutdown

Figure 6.3: Threads and concurrent data structures’ interaction in an FxIS applica-
tion

An instance of BlockingWait, let’s denote it as bw, is shared by two threads.

Thread 1 calls bw.wait(), which lead to blocking until thread 2 calls bw.notify().

An instance eo of EventObject is also used for synchronization between two threads,

but with a different interaction pattern. The producer thread calls eo.hasOccured()

when a particular event has occurred (in the FxIS work flow example, the service

stop requested). The consumer of eo, in turn, repeatedly checks for event, e.g. in

context of infinite loop:

while (true) {

// ... Primary logic of the loop

if (ready.hasOccured()) {

break;

}
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}

The concurrent access in ImageStream is secured by the internal mutex-based

implementation. When ImageStream::getImage is invoked, the thread blocks and

wait until the next frame arrives from the camera driver. This ensures that, if

(t(next image)− t∗) < τia/2, the next image will not be missed. After the thread is un-

blocked, the nearest timestamp search is performed, and a copy of the corresponding

cv::Mat image is returned to the caller.



Chapter 7

Control and programming of

industrial robots

An industrial robot constitutes a reprogrammable multi-functional manipulator, able

to perform a variety of tasks through variable programmed motion. Robots are

widely applied in automated manufacturing, and are supplied as end-products with

carefully engineered hardware and software components. A robot controller operate

under a vendor-specific real-time operating system, which provide the proprietary

programming language to realize the operational logic. It is a standard practice to

program all the logic to be run by the robot controller. This is an efficient approach,

although it makes the resulting robot logic more rigid and difficult to integrate into

a system with distributed components.

Paper 5 proposes an alternative approach, where the robot controller provides a

TCP/IP server with a collection of robot skills, and the dedicated control module

communicates commands to the robot server and participates in a publish-subscribe

communication with other distributed components. The control module is built using

the pyadept library, which utilizes Python AsyncIO coroutines. The computational

abstractions in pyadept allow for composing communication-heavy control logic in

an event-driven way.

This chapter starts by presenting the robot geometry formalisms and basic mo-

tion commands available in most robot controllers. Since the practical work in this

thesis is done with an Adept Viper s850 robot, the underlying Adept V+ platform is

briefly presented. The remainder of the chapter covers the principles of event-driven

thinking, cooperative multitasking with coroutines, and robotic middleware.
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7.1 Industrial robot geometry

A robot manipulator is composed of links connected by joints. All possible configura-

tions of the joints qi comprise the configuration space C of the robot (qi can correspond

to joint angle for a revolute joint or joint offset for a prismatic joint). Thus, for a stan-

dard 6-axis manipulator, the configuration vector is defined as (q1, q2, ..., q6)T ∈ C,
where C ⊂ R6.

A central notion in both robotics and computer vision is a pose, an object de-

scribing position and orientation of one Cartesian coordinate frame in relation to the

other. Thus, a pose AξB , describing position and orientation of coordinate frame

{B} in terms of coordinate frame {A} is defined as a tuple:

AξB = (ARB ,
A tB) (7.1)

where ARB and AtB represent rotation and translation respectively.

In R3 translation can be defined by a vector t ∈ R3, while rotation has several

alternative forms of representation: a 3 × 3 special orthogonal matrix (R ∈ SO(3)), a

quaternion, or a three-angle representation [58]. It is common to combine a rotation

matrix R a translation vector t into a single homogeneous transformation matrix

T ∈ SE(3):

T =

[
R t

01×3 1

]
=




tx

rx ry rz ty

tz

0 0 0 1




(7.2)

Combined, a pose has 6 degrees of freedom: 3 for rotation and 3 for translation.

In case of using SE(3), they constitute (rx, ry, rz, tx, ty, tz).

In robotic applications one considers a chain of poses with the first one being in

terms of the base coordinate frame {B}, and the last one being the pose of the end

effector coordinate frame {E} in terms of the coordinate frame of the last joint {6}:

Bξ1 → 1ξ2 → 2ξ3 → 3ξ4 → 4ξ5 → 5ξ6 → 6ξE (7.3)

Because the essence of a robot’s operation is motion of its end-effector, achieved

by combined motion of joints, one defines a task space T as a set of all possible poses

of the end effector with respect to the robot’s base coordinate frame, i.e. BξE ∈ T .

Figure 7.1 shows the two coordinate frames of interest on an Adept Viper s850

industrial robot.
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Figure 7.1: Base and end effector coordinate frames in Adept Viper s850

7.2 Robot commands

In sensor-based robotics, especially with custom-built robots in the research environ-

ment, it is common to directly control individual robot joints. In this setting, the

robot’s configuration space C is manipulated in a closed loop by using feedback from

computational nodes processing the sensor data (e.g. using visual servoing).

With industrial robots it is more common to issue commands with respect to the

task space T , which are internally handled by the robot controller, i.e. the latter

solves the inverse kinematics problem.

Point-to-point motion from BξP1
to BξP2

is started when the robot is in BξP1
, and

can be specified with either BξP2
or P1ξP2

(for relative movement). Linear motion

from BξP1
to BξP2

is specified similarly to point-to-point, but the robot controller

ensures straight line trajectory of the motion. Motion relative to the end effector

coordinate frame is applied for fine-grained end-effector control. Another important

command is breaking. If two subsequent motion commands MCi and MCi+1 are not

separated by breaking, the combined movement will be interpolated.

In the work underlying paper 5, the described robot commands are defined as

skills in the robot controller and invoked by sending messages over a TCP/IP con-

nection. For more details regarding the communication protocol used for commands

invocation, refer to paper 5.
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7.3 Adept V+ platform

An Adept robot controller runs V+, a real-time multi-tasking operating system. It

controls robot motion, input/output, task management, and other necessary oper-

ations. The Adept Viper s850 robot, used in the work underlying this thesis, is

controlled by Adept SmartController CX running V+. I/O interfaces of this robot

controller include digital signals, DeviceNet, Ethernet, and RS-232.

V+ is also the name of a programming language for the Adept platform. V+

codebase is comprised of subroutines called programs that are gathered in modules.

An individual program can be associated with an operating system task, which in turn

can be run concurrently with other tasks. To program an Adept robot controller, one

requires a client programming environment (such as Adept ACE, Adept DeskTop),

that runs on a Windows-based programming station.

Paper 5 describes a two component architecture for flexible control of an Adept

robot, comprised of a server running on Adept SmartController CX and a Python-

based master control node deployed to a Raspberry Pi.

7.4 Event-driven systems

One distinguishes between time-driven and event-driven systems. In the former case,

everything is modeled with respect to a clock with given frequency. For example, a

continuous signal is sampled at a constant time interval. Such systems are a subject

of study in classical control and constitute a natural choice for modeling physical

processes, when the state of the system changes continuously in time. Conversely,

event-driven paradigm presumes that a system is characterized by a discrete state

space, and events can occur at any time instant. An event in this case constitutes

any instantaneous occurrence that causes transition from one system state to another

[17].

The behavior of industrial automation systems is to a large extent event-driven.

It manifests itself in both the nature of the applications and in the inherent properties

of digital communication systems.

In control engineering practice that deals with time-driven systems, an event is

defined as a change in a boolean signal or, given a more complicated time-sampled

signal, an event is said to have occurred when a signal spike occurs, e.g. based on a

defined threshold.

On the operating system level, an I/O event is associated with a particular re-

source becoming ready, e.g. data has arrived from the network and is ready for

non-blocking access. In distributed systems, events can be handled as messages com-
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municated in a publish-subscribe environment. For example, Hinze et al. [59] define

an event as a message with a timestamp that can signalize either a change of a system

state or a notification from an observation.

A lifecycle of an event in the context of computational systems consists in many

cases of the following stages (adapted from [60]):

1. Event occurs at time instant t. In most cases t cannot be measured directly.

2. Event is captured at time instant tcapture. Since tcapture is typically the first

time instant that can be directly measured, the goal is that (tcapture − t)→ 0.

3. Event is queued at time instant tq. This implies that a data object describing

the event (or the corresponding serialized byte string) is put onto a queue or

written to a socket.

4. Event is polled at time instant tpoll. Queuing and polling can happed either

on one computational node with several threads or processes, or two endpoints

that communicate over the network.

5. Event is processed at time instant tprocess.

In paper 5, the event-driven design is applied in pyadept using Python AsyncIO

coroutines. The latter are briefly presented in the subsequent section.

7.5 Coroutines and AsyncIO

A coroutine constitute a software abstraction that generalizes a subroutine by extend-

ing it with the capabilities of suspending and resuming at specified code locations.

A set of coroutines, each representing a particular application-specific task, are

managed by en event loop to realize cooperative multitasking. This entails that each

coroutine object performs a part of its computation, suspends and yields control to

the event loop or other coroutine object. Such programming style gives the most

evident advantage when dealing with I/O events.

Coroutines in Python are realized with the AsyncIO framework, which is a part of

the standard library since Python 3.4. In addition to the core coroutine functionality,

AsyncIO provides a set of non-blocking I/O abstractions. In pyadept, described in

paper 5, TCP/IP communication is realized using StreamReader and StreamWriter

objects.



72 Chapter 7. Control and programming of industrial robots

7.6 Robotic middleware

Messaging middleware allows to decouple the communicating components by intro-

ducing message queuing, built-in address resolution (e.g. via handling logical ad-

dresses such as topic names), and usage of a common data serialization format [61].

An important feature of middleware is the provision of the publish/subscribe and

other messaging patterns, which allows to design a distributed system in event-driven

fashion.

The defining components of a particular middleware solution are the communi-

cation protocol (transport-level TCP and UDP, wire-level AMQP, ZeroMQ/ZMTP,

MQTT), the communication styles (request/reply, publish/subscribe), and the data

serialization method (typically realized with an interface definition language like Pro-

tobuf or Apache Thrift). Many middleware solutions are based on a central broker,

e.g. ActiveMQ and RabbitMQ. ZeroMQ is an example of broker-less middleware, in

which the message queuing logic runs locally within each communicating component

[62].

Robot Operating System (ROS) is the most widely used middleware that is specif-

ically designed for building distributed robotic systems. It supports request/reply re-

mote procedure calls via services, and publish/subscribe communication via topics.

Messages in ROS are serialized with the built-in serialization mechanism. A ROS

system requires a central master server, responsible for name resolution. On the

transport layer, both TCP and UDP are supported via standard sockets. In addition

to the communication capabilities, ROS provides a pool of maintained community-

developed algorithms.

In its current form, ROS is tightly coupled with Ubuntu as the runtime plat-

form. ROS2 is an ongoing project aimed at adapting the ROS functionality to cross-

platform environments (including for small embedded platforms), as well supporting

real-time control capabilities [63]. ROS2 utilizes Data Distribution Service (DDS)

middleware for communication.

Another example of robotic middleware is YARP [64]. For efficient inter-process

communication with minimum latency, the ach Linux kernel module has been devel-

oped [65, 66].

When it comes to middleware, pyadept relies on ZeroMQ for realization of

publish-subscribe communication. The goal of paper 5 is not to introduce a new

robotic middleware, but rather to validate general principles in the a flexible way

with lightweight tools.
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Discussion and further work

This chapter outlooks the conducted work described in this thesis, and relates it to

the research questions formulated in chapter 1. Based on this discussion, the planned

prospects for the further work are outlined.

8.1 Answering the research questions

The following three research questions have been previously formulated:

RQ1 How to better couple the automated systems’ perception and action with the

means of computational abstractions and architectural solutions?

RQ2 How can the image acquisition function be exposed in a service-oriented man-

ner?

RQ3 How to achieve greater composability of communication-heavy robot logic by

utilizing discrete event nature of distributed robotic systems?

Paper 1 is not directly related to any research question. However, it sets an

industrial background to the work done as part of this PhD project. The work done

while preparing the paper involved a great deal of interaction with employees at the

KA plant in Raufoss, as well as studying the production systems at the mentioned

facility. It also centered the focus of practical undertakings of the PhD project on

the task of star washer inspection.

The task of star washer inspection was not fully addressed in this PhD project,

mainly due to rather high requirements for equipment availability. Nevertheless,

focusing on star washers resulted in a range of contributions. Most importantly,
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paper 2 presented the envisioned principles of the prospective robot-based inspection

cell, introduced a custom algorithm for processing images of star washers imaged

from the top-down perspective, and tackled the problem of orientation classification

for robotic picking using machine learning methods. To gather image data for the

top-down inspection, an industrial camera with a 35 mm focal length lens was used.

This setup allows close-range imaging, but is very sensitive with respect to the pose

of the object relative to the focus plane. The hassle of manual alighting the camera

and the object motivated the need for automatic focus plane calibration of the robot

arm. This task was applied as a use case in paper 5.

RQ1 has targeted development of systems with discrete event behavioral seman-

tics and perceptual capabilities based on machine vision. The first steps in this

direction were made in [5] (not included as a part of this thesis) by formulation of

the Discrete Event Data Flow formalism, aimed at combining dynamic data flow

graphs with discrete event semantics (as used in publish-subscribe systems). During

the paper’s presentation at the conference and discussions with fellow researchers in

industrial automation and computer vision, it became evident that overly formalized

approach of DEDF is too cumbersome, especially in the prototyping phase.

Nevertheless, the idea of reactive pipelines have further evolved in the implementa-

tion-oriented direction and led to development of the EPypes framework, presented

in paper 3. Many of the motivations leading to design solutions in EPypes had

arisen during practical activities in the laboratory, as well as while developing vision

algorithms and analyzing data. EPypes was thus designed to accommodate both

flexibility in system development and well-defined structure.

It was shown in paper 1 that the current status of automated manufacturing sys-

tems and the associated machine vision solutions in the case company is highly rigid

due to high-speed/high-volume production requirements. However, the company’s

interests regarding continuous monitoring of the vision systems’ operation and auto-

matic adjustments of operating parameters constitutes the capability that should be

tackled with a much improved industrial-grade version of EPypes.

RQ2 was motivated by the difficulties with using Ethernet-based industrial cam-

eras in a service-oriented context. Similarly to EPypes, there was a need for a more

flexible tool with well-understood internal behavior. Due to the availability of Allied

Vision cameras, it was decided to apply the vendor’s own low-level camera SDK,

dubbed Vimba, for development of the envisioned flexible image acquisition service.

The latter was presented in paper 4.

To complete implementation of all the parts of the planned distributed system

for robot-vision interaction (see Figure 2.3), the components responsible for robot

control had to be developed. This was a great platform for working on RQ3 and
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investigating the possibilities for composable design of communication-heavy robot

logic. The results in this direction were presented in paper 5.

8.2 Lessons learned and further work

One of the most tedious aspects of the practical laboratory work has been software

deployment to the distributed computational nodes, as well as debugging in the dis-

tributed setting. The VLAN-based network configuration (paper 5), where different

nodes were part of different subnets, made the deployment even more challenging.

To focus on the important things and not on deployment tools development, the

”vanilla” Unix tools like rsync and scp were mainly used. In the future, better

deployment strategies have to be devised. They may be based on Linux container

technologies and DevOps tools, used traditionally in cloud computing settings.

The difficulties with deployment led to better understanding of the issue of com-

plexity in management distributed control systems. This complexity is what hinders

novel control solutions from industrial adoption, and what needs to be addressed to

facilitate the progress of Industry 4.0 and the related initiatives.

One of the takeaways from working on this PhD project is that focusing on im-

plementing concrete applications is more fruitful than premature theorizing. It also

became clear why Python had become so widespread in the robotics research com-

munity. A substantial benefit is the ability to quickly validate the ideas and rapidly

iterate towards a workable solution. In addition to making the Python ecosystem

the bedrock of most of the software projects (see section 2.4), an important decision

has been to use lightweight communication machinery (ZeroMQ, Protobuf, and raw

TCP) instead of sticking with ROS. This allowed to be flexible across different plat-

forms (Ubuntu, Raspbian, macOS, Windows) and greatly improved the development

pace. At the same time, it is wise to strive for integration of the developed projects

into the pool of open source code that is widely used by the research community.

In the robotics context, ROS is the most popular platform. As the architecture

and functionality of the projects presented in this thesis had become more stable,

the strategy of integration into ROS became clear. As described in paper 5, the

currently in-progress ROS2 initiative is a suitable ecosystem to target.

In the future work, it can be of interest to switch the focus away from flexibility-

orientation. It is natural for vision application to strive for efficiency. It is also well-

known that flexibility and efficiency are often competing factors, which is the reason

why the manufacturing industry traditionally adopts simpler and more reliable (but

less flexible) systems. For the application context described in this thesis, it can be
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interesting to integrate the developed tools with technologies such as FPGAs, PLCs,

and fieldbus networks.

In its current state, EPypes targets very specific class of vision algorithms, which

are the ones operating on a single image or several related images. What is left out is

the analysis of real-time video streams, which requires maintaining a chain of frame-

to-frame measurements, tackle the issues with outliers, and perform probabilistic

estimations. This area should definitely be tackled, with new abstractions based on

both EPypes and FxIS.

In the presented work, database systems did not play a key role, although the

long-term vision in paper 1 included considerations regarding databases. The future

work should put this vision into action by practical validation of use cases where

systems based on EPypes, PyAdept, and FxIS would bring additional value when

combined with databases.

FxIS has a large room for improvements. In its current form, it supports requests

for a single image per camera, and works only with Allied Vision cameras via the

Vimba SDK. The plans for new features include integration with other camera plat-

forms, such as Basler Pylon and raspicam, implementation of additional modes of

image request (e.g. several images per camera), and optimization of internal opera-

tion.

The tools developed in this project can greatly accelerate various research tasks

involving combination of robots and cameras. As noted in section 2.6, the initially en-

visioned scope of this thesis included geometric computer vision tasks. Even though

the early research undertakings had to be put on hold, they can now continue at a

faster pace. Other obvious research direction is further work on star washer inspec-

tion. For this to be fruitful, several hardware addition have to be made to the robot

laboratory, including lighting and gripping equipment.

EPypes, as well as its conceptual predecessor DEDF [5], were conceived with

specific application area in mind, which constituted vision-guided industrial robot

setups with distributed computational nodes. The initial focus was largely on a

well-defined structure. However, while developing EPypes, another important value

proposition was uncovered, which is assistance in early stage algorithm development.

This aspect was greatly highlighted in paper 3 and validated throughout development

of algorithms that became a part of this thesis. In the future it is of interest to apply

EPypes for machine learning problems and other data science tasks.
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