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Selective assembly is a means of obtaining higher quality
product assemblies by using relatively low-quality compo-
nents. Components are selected and classified according to
their dimensions and then assembled. Past research has of-
ten focused on components that have normal dimensional
distributions to try to find assemblies with minimal varia-
tion and surplus parts. This paper presents a multistage ap-
proach to selective assembly for all distributions of compo-
nents and with no surplus, thus offering less variation com-
pared to similar approaches. The problem is divided into
different stages and a genetic algorithm is used to find the
best combination of groups of parts in each stage. This ap-
proach is applied to two available cases from the literature.
The results show improvement of up to 20 percent in varia-
tion compared to past approaches.

1 Introduction

To survive on the market, products need to be of high
quality and relatively low on cost. Most products involve
some assemblies and subassemblies which are, in turn, de-
pendent on the quality of the mating parts. Thus if product
quality is to be improved, higher quality mating parts must
be manufactured. This usually means tighter tolerances; a
method of quality improvement that can make the production
process more expensive. Selective assembly makes higher
quality assemblies possible whilst using (relatively speaking)
lower quality parts. Parts of equivalent dimensions are se-
lected from each component being assembled (in this paper
the word *components’ refers to the elements of an assembly
and ’parts’ refers to produced parts of that element for mass
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production). However, there are some problems inherent in
this technique; a major issue is mismatched or surplus parts
if the number of parts in some groups does not fit into their
mating group.

Bearing and engine industries have been using this tech-
nique since before 1950 to get the power of making tight fits
between parts. However, increased competitiveness in man-
ufacturing industry and increased availability of inspection
data, in line with trends such as Industry 4.0, open up for
a broader use of selective assembly. Mass-production can
be replaced with mass-customization and an adoption of the
production processes to incoming material is suggested by
Soderberg et al [1], where a digital twin is used for geometry
assurance. Selective assembly supports this vision.

1.1 Selective assembly

The first step of selective assembly is to divide manufac-
tured parts into groups, based on their measured dimensions.
This is because, in large scale, it is not practical to do the
matching for every part. The next step is to find the best
matching groups so that the variation of the target dimension
for all produced assemblies is minimum.

Suppose a product which involves two components (A
and B) will be assembled. If the target for the number of
products is 1000, obviously 1000 individual parts from each
component should be manufactured. After production of
these individual parts, dimensions of the parts that affect the
target dimension of the assembly will be measured. Then,
the individual parts will be divided into some groups (for
example 6 groups) based on their dimensions. This group-
ing, shown in Figure 1, is done based on the assumption that
dimensions of produced parts follow the normal distribution.
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Fig. 1: Grouping of parts based on their dimensions

Then each group of Component A should have a match group
in Component B. But, the problem is that the number of parts
in those groups are not necessarily equal. Therefore, if, for
instance, the first group of Component A is selected to be as-
sembled with the third group of Component B, they may not
have the same number of parts. Therefore, some parts of one
group cannot be used for assembly. These parts are called
surplus parts and this problem is called mismatching.

Research into the area of selective assembly began by
Mansor [2], who presented a specific procedure for selective
assembly to reduce surplus parts for shaft and hole prob-
lems. The procedure divided the problem into three cat-
egories based on the design, process and workshop toler-
ances of each part and developed a solution for each cate-
gory. Desmond [3] presented a case study and investigated
selective assembly for this problem. They introduced a pa-
rameter called the Grading Factor (GF); the improved as-
sembly is quantified, with a lower GF signifying a higher
quality assembly. This factor is then obtained for different
numbers of selective groups. The borders of groups are de-
fined to obtain minimum GF. Pugh [4] presented a method
of selective assembly for components of different variance
in normal distribution by calculating the limits for compo-
nents with major variance so that those produced at extremes
of the distribution would be discarded during assembly. A
new method of grouping was presented by Fang et al [5] to
minimise the surplus parts (mismatching). This paper deals
solely with shaft and hole problems. Although the number
of surplus parts decreased with this method, some surplus
parts remained. Another article by Fang [6] developed a new
quantitative criterion for predicting the matchability of parts
in selective assembly. An algorithm was then produced, to
calculate manufacturing parameters and achieve the desired
matchability. Chan and Linn [7] presented a new grouping
method for shaft and hole problems based on equal proba-
bilities of groups. Cumulative normal distribution was used
for making groups with equal probabilities. Mease et al [8]
developed a new method of binning based on minimising the
absolute and square-loss functions. This method has a sig-
nificantly lower loss compared to heuristic methods, such as
equal-width and equal-area binning.

1.2 Optimisation algorithms in selective assembly
A genetic algorithm (GA) is used extensively to find the
optimum combination of groups in selective assembly. GA

is designed based on a class of evolutionary algorithms using
techniques inspired by Darwinian evolutionary theory, such
as inheritance, mutation, natural selection and crossover. In
GA, a population of candidate solutions is created randomly
and evolves toward better solutions in each iteration. Each
candidate solution is called a chromosome or phenotype.
These chromosomes can be represented in strings of binary,
integer or real numbers. Ponnambalm [9] presented a method
of coding for selective assembly using GA. Their objective
was to minimise the deviation of assemblies by selecting the
optimum combination of groups in an assembly. In their uti-
lized coding procedure, a chromosome is divided into sub-
strings equal to the number of components. Each substring
has a number of genes equal to the number of groups in each
component. Therefore, the length of a chromosome is equal
to the number of components multiplied by the number of
groups and each gene represents a group. Consider, for ex-
ample, the assembly has 3 components, and individual parts
of each component are divided into 6 groups. Then, in a ran-
dom chromosome like this: 256143 134526 561243, the first
six numbers are component A substring, the second six genes
represent the group numbers in component B and the last six
integers show the group numbers in component C.. Trans-
lation of this chromosome into combinations of groups will
be (A2 B1 C5), (A5 B3 C6), (A6 B4 C1), (A1 B5 C2), (A4
B2 C4) and (A3 B6 C3). To create the first generation, three
random permutations of 1-6 are generated for each chromo-
some. Crossover only occurs within substrings.

Kumar et al [10] used GA to find the optimum com-
bination of groups and thus minimise surplus parts. After
finding the best combination, surplus parts are sorted in as-
cending order and divided into three groups. GA is then used
again to assemble the parts. Asha et al [11] used optimisa-
tion of clearance variation to solve piston and cylinder prob-
lems. This assembly has four clearances and so the prob-
lem is one of multi-objective optimisation. For this reason, a
non-dominated sorting genetic algorithm (NSGA) was used
to find the optimum solutions. Kanan et al [12] carried out
selective assembly in three stages. Each stage uses a pair
of groups comprising a minimum number of parts. These
groups are then removed in the next stage of optimisation
and the optimum combination of the remaining groups is
again obtained using GA. However, this is based on the as-
sumption of normal distribution of parts. Kumar et al [13]
used selective assembly in a three-stage strategy to optimise
group combinations using a particle-swarm algorithm.

In another paper [14], these authors presented a new
method of optimising parts with skewed normal distribution
using GA; the result was zero surplus parts. As already men-
tioned, the common method is to consider the length of chro-
mosome as the product of the number of components and
the number of groups. However, in their methodology, the
length of each chromosome was given as N x (2n — 1) genes
(where n = number of groups and N = number of compo-
nents). Hence, the length of each substring is 2n — 1 instead
of n. Therefore, each group number could be repeated in a
substring more than once. Each combination of group num-
bers results in an assembly set. However, number of assem-



blies that can be produced by that combination is equal as the
number of parts in the group that contains minimum number
of parts. Therefore, the remaining parts in other groups are
surplus. The algorithm repeats these group numbers in the
remaining genes so that those remaining parts could be used
and finally after the last gene of a chromosome all parts in all
groups are consumed. The main problem of this methodol-
ogy is that most of genes are forced to take specific group
numbers instead of letting GA to find optimum combina-
tions. Using this strategy, Wang et al [15], optimised the
group combinations for three components. There was no as-
sumption on dimensional distribution of parts in their case
study.

Another strategy used by Raj et al [16] is to find the best
combination of all parts instead of dividing them into some
groups. This method should result in less variation of assem-
blies, however, the length of chromosomes is related to the
number of parts. Hence, when the number of parts of each
component increases, the algorithm may not converge at all.
In another research, Xu [17] have done selective assembly
with an application for hard disk drives. In their research
they have utilized two strategies to reduce the variation and
the surplus parts, the “discarding theorem”, which defines
the threshold condition for discarding the most inferior parts,
and the ”bining theorem”, which defines how to match the
remaining parts. The presented strategy is limited to assem-
blies with only two components and components with a nor-
mal distribution of parts.

1.3 Scope of the paper

This paper presents a new methodology for optimising
group combinations and selective assembly, which will re-
sult in zero surplus parts. Dimensional distribution of the
mating parts is not restricted to exact normal distribution.
Based on the literature, only one method has this capabil-
ity (as presented by Kumar et all [14] and Wang et al [15]).
However, since that methodology finds the optimum combi-
nations of groups in just one stage, it forces some genes to
take group numbers that have surplus parts in each new chro-
mosome. Therefore, some combinations are selected without
optimization process. The method presented in this paper
uses different stages of optimization which makes it possi-
ble to achieve lower variation across all assemblies. When
comparing the results of previous papers with those from the
algorithm developed in this paper, a considerable improve-
ment of up to 20 percent in variation of the final assemblies
is evident.

This paper consists of seven sections. Section 2 outlines
the problem and presents two sample cases used to evaluate
the results. Section 3 describes the methodology of the algo-
rithm used. Section 4, entitled Genetic algorithm, discusses
the coding procedure and genetic operators in detail. Section
5 applies the algorithm to the sample cases and presents the
results. Finally, there is a discussion of the results in section
6 and a summary in section 7.

Table 1: Number of parts in each group of Sample case 1

Number of parts in groups

Component
1 2 3 4 5 6
12 67 260 370 256 35
B 5 111 448 331 98 7

2 Problem outline and sample cases

To be able to compare the results from this paper with
those from [14] and [15], the same assemblies as given in
their papers will be examined here. The utilized sample in
[14] is a shaft and hole example and the case in [15] is an
assembly of three gears. The two cases are described below.

2.1 Sample case 1

The first sample case is a shaft and hole assembly pre-
sented by Kumar et al [14]. The tolerances of each compo-
nent are given in Figure 2.

Hole (B)
Shaft (A)

NN —
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N

AB=18pum

AA=12pm

Fig. 2: Sample case 1 [14]

The diameter of shaft is 35f8:8?(2) and 35*8:8(1]8 for the
hole. Therefore, considering interchangeable assembly of
shafts and holes, the maximum clearance range will be 30
um and the objective is to reduce this clearance range. In this
case, the goal is to assemble 1000 shaft and holes. The exact
dimension of each part is created considering 0.2 skewness
in normal distribution dimensions of the mating parts. They
have also considered six equal groups for selective assembly.
Considering the tolerances of each part, the range of dimen-
sions in each group for the shaft is 2 ym and for the hole 3
um. All parts are distributed among groups based on their
dimensions. Number of parts for each component in each
group is shown in Table 1.
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Fig. 3: Linear assembly of sample case 2

2.2 Sample case 2

This case is a gearbox assembly that is utilized by [15]
and it is a linear assembly consisting of three components.
The tolerance range of each component and their part distri-
butions all differ. This assembly is shown in Figure 3. In
this case, when carrying out an interchangeable assembly,
maximum and minimum tolerance limits are obtained from
Equations 1 and 2.

Tnax = Al gy + A20x + A3jax (1)

Tmin = Almin + Azmm + A3min (2)

If the lower tolerance limit of each component is consid-
ered to be zero and the upper limit is 12, 15 and 18 um for
Al, A2 and A3 respectively, then:

Tnax =12+ 15+ 18 =45um

Tinin = 0

The dimensions of the components are IOfgjg(])%,

14f8:8(1)g for components A, B and C respectively based on

the work of Wang et al [15]. Therefore, the dimension of the
assembly will be 36J_r8:838 when an interchangeable assem-
bly is used. Thus, the variation range of the assemblies will
be 0.045 mm and the problem is that this range of variation
is too high. The goal is to decrease this variation as much
as possible, using selective assembly. Parts of each compo-
nent are divided into six groups based on their dimensions
(measured from produced parts). Considering the tolerance
of each component and number of groups, the width of each
group is 2 um, 2.5 um and 3 um for components A, B and
C respectively. The number of parts in each group and the
total number of assemblies are shown in Table 3 and Table 2,
respectively.

+0.015
1275 500 and

3 Methodology
The methodology developed in this paper for imple-
menting selective assembly is illustrated using mathematical

Table 2: Input variables for the problem [15]

Variable Input
Total number of parts for each component 1000
Number of components 3
Number of groups 6
Tolerance of component A 12 um
Tolerance of component B 15 um
Tolerance of component C 18 um

Table 3: Number of parts in each group

Number of parts in groups

Component
1 2 3 4 5 6
9 50 175 375 256 135
B 10 111 438 321 108 12
12 67 220 390 236 75

formulations. These formulas are applied to the second sam-
ple case to make them more clear. However, the procedure is
general and can be applied to all kinds of selective assembly
problems. The proposed methodology is also applied to the
first case and the results from this are presented in the next
section. The flowchart of the presented methodology is also
illustrated at Figure 4.

The methodology is based on several stages of combi-
natorial optimisation. Firstly, the optimum combination of
all groups of all components is calculated so that the varia-
tion of assemblies is at a minimum. Considering the sam-
ple case 2, the optimum combination is calculated as this:
132456 364152 624513, which results in a reduction of the
dimensional variation to the range of 0.0095 - 0.0275. This
optimum combination is calculated using GA, described in
Section 4. Following Figure 4, the start of the algorithm is
shown by Begin block. In this Figure, i represents the num-
ber of each stage and since in the first stage there is not a
problem for finding the best combination, this stage does not
need the first 5 steps of the algorithm. The number of assem-
blies that could be produced at this stage (using this combi-
nation of groups) can be calculated using Equation 3:

NA; = ng X m; 3

Here NA, represents the number of assemblies that could be
produced by the optimum combination which is calculated
in stage i; ng shows the number of groups and m; is the num-
ber of parts in the group with the minimum number of parts
among all groups of all components which can be obtained



Table 4: Number of parts in each group after first stage

Number of parts in groups
Component

1 2 3 4 5 6

0 41 166 366 247 126
1 102 429 312 99 3
3 58 211 381 227 66
using Equation 4:
m; = min(A%, B}, C}) 4)

The variables are:

Al; the number of parts from component A that fall in the j*
group of this component in stage i, j = 1,2,3,...6

Bfl the number of parts from component B that fall in the ¢
group of this component in stage i, ¢ = 1,2,3,...6

C! the number of parts from component C that fall in the "
group of this component in stage i, r = 1,2,3,...6
Therefore, considering the case sample, number of assem-
blies that could be produced by the optimum combination of
stage 1 is:

my = min(A},B},C}) = A} =9

NA| =6x9=54

It means that the calculated combination of groups in stage 1
can be applied to make 54 assemblies. The number of parts
used for making these assemblies must be subtracted from
all groups of all components. Therefore, the new number of
parts in different groups are calculated from Equations 5, 6
and 7 for component A, B and C respectively. This step is
shown by step 7 at the presented flowchart at Figure 4.

Al = AL —m, Q)
B, =B, —m; (6)
Ci=Cl—m; (7

Using Equations 5, 6 and 7 new numbers of parts in different
groups for the case sample are calculated and shown in Table
4. After that, there are no parts in group 1 of component A.
The stage 1 on of selective assembly is then finished.

To be able to continue finding the best combinations, we
need to load the empty groups with parts from other groups.
Obviously, if parts from other groups are supposed to load
a group, they must be from groups of the same component.
The groups with maximum number of parts are considered
for this and they are shown by MA, MB, and MC for compo-
nent A, B and C, respectively. These values can be calculated

from Equation 8, 9 and 10 (steps 1 and 2 of stage 2 at Figure
4).

MA; = max(Af']») (8)
MB; = max(Bf{) 9
MC; = max(C") (10)

Each empty group in stage i will be loaded as m;. Thus, m;
multiplied by the number of empty groups for each compo-
nent must be subtracted from M; of that component. This is
shown in Equation 11, 12 and 13 for components A, B and
C, respectively (step 3 of stage 2 at Figure 4).

MA,‘ = MA,' — pim; (1 1)
MB; = MB; — q;m; (12)
MC; = MC; — rim; (13)

Where:

pi represents the number of groups which contain no parts
from component A in stage i.

g; represents the number of groups which contain no parts
from component B in stage i.

r; represents the number of groups which contain no parts
from component C in stage i.

For the sample case in stage 2, only component A has a group
containing no parts. Hence, p = 1, g = 0 and r, = 0. Using
Equation 4, m; is:

my = min(A?,BZ,Crz) =Bl=1

From Equation 8, MA; can be calculated:

MAy = max(A3) = A} = 366

Then, using Equation 11 the new amount of MA; is obtained:
A2 = A2 — pymy =366 —1 =365

Afterwards, all empty groups will load as much as the
amount of m;:(step 4 of stage 2 at Figure 4).

Al=mp=1

The new number of parts in the different groups are shown
in Table 5. The numbers for the group that has been loaded,
and the group doing the loading, are shown in bold.

Now, the next optimum combination of groups can be
calculated using an optimization algorithm. But, instead of
group number 1 from component A, group number 4 must
be considered for optimization (step 5 of stage 2 at Figure
4). In other words, there is no gene with number 1 in the first
substring of chromosomes anymore. Instead, there are two



Table 5: Number of parts in each group after loading the first
Zero group

Number of parts in groups

Component

1 2 3 4 5 6

1 41 166 365 247 126
B 1 102 429 312 99 3

3 58 211 381 227 66

genes with number 4 in that substring. The optimum combi-
nation of this stage is calculated as: 465423 641325 125463
(step 6 of stage 2 at Figure 4). The number of assemblies that
can be assembled using this combination are calculated from
Equation 3:

NA;=6x1=6

By subtracting the amount of m; from all groups (step 7 at
Figure 4) stage 2 is finished now, and the next stage can be
done using the same procedure.

This procedure continues to the point when at least the
result of one of Equations 11, 12 or 13 is equal or less than
zero. The best combination of the remaining parts is then
calculated to obtain the minimum dimensional variation.

4 Genetic algorithm

The optimum combination of groups at each stage can
be obtained using different optimisation algorithms. A ge-
netic algorithm (GA) is designed based on a class of evolu-
tionary optimisation algorithms that use techniques inspired
by Darwinian evolutionary theory: inheritance, mutation,
natural selection and crossover. GA is used in this paper
to obtain the optimum combination of groups in each stage
of the proposed methodology. The coding procedure is the
same as in previous papers utilising GA, which is explained
in Section 1. Details of the utilized algorithm are discussed
in this section.

4.1 Selection

The fitnesses of chromosomes are calculated based on
an exponential scaling factor. This function is shown in
Equation 14.

fitness(i) = el ~K/1(0) (14)

where:

k=0.05

The objective function (fit (7)) is the dimensional variation of
assemblies in chromosome i. This function can be obtained
using Equation 15.

fit (i) = max(T},

)—min(T),); n=1,23,...6

n

15)

Step 1 of stage ¢

Find the number of parts in the group that
contains minimum number of parts
throughout groups (m;)

Step 2 of stage i *

Find the groups with maximum number of
parts for each component( MA4;, MB;, ...)

Step 3 of stage i ‘

Subtract the number of parts that empty
groups need to be loaded by (m; for each),
from the group with maximum number of
parts for each component (new M A;, MB;...)

Is there any
subtraction that
does not result in
a positive integer

Terminate the
algorithm

Step 4 of stage ¢

Load the empty groups as m;

Step 5 of stage ¢ v

Remove the group numbers of empty groups
and put the group numbers of the loading
groups instead

Step 6 of stage ¢ l

Find the best combination of groups using GA

Step 7 of stage i +

Reduce m; from all groups (new A]L BJ‘ o)

i=i+1

Fig. 4: Flow chart of the presented methodology

Since the tolerance ranges for each group of components A,
B and C are 2, 2.5 and 3 respectively, the maximum and min-
imum tolerance limits of each combination can be calculated
from Equations 16 and 17.

T =2(Ny)+2.5(Ng)+3(Ng); n=1,2,3,...6 (16)



in =2(Njy —1)+2.5(Ng—1)+3(Ng— 1) 17)

Where, N7 is the group number of component j in the n'h
combination.
Consider a chromosome with 465423 641325 125463 com-
binations as an example. Using Equation 16 and 17, the
maximum and minimum tolerance limits are calculated as
follows.
Tl =2(ND)+2.5(NL)+3(NL)=2(4)+2.5(6)+3(1) =26
Tl, =2(Ny — 1)+ 25Ny — 1)+ 3N — 1) = 2(3) +
2.5(5)+0=18.5
Doing this procedure for n =2,3,4,5 and 6, six T,y and six
Tynin are obtained as follows:
T2,.=28, T3 =275 Tt =275 T =27andTS, =
27.5
72,=20.5, T3, =20, T} =20, 7>, =19.5and TS, =20
Using Equation 15, the fitness of this chromosome is calcu-
lated.
fit(i) =28 —-18.5=9.5

Roulette wheel selection, see [18], is used to select chro-
mosomes based on their fitness. In this kind of selection,
fitness is used to associate a probability with each chromo-
some. If the fitness of chromosome i is considered as fi, the
probability of its selection is calculated using Equation 18.

pi= J
Ej(\g':l)f/

(18)

where N is the total number of individuals in a popula-
tion.

4.2 Crossover operation

There are some different methods of doing crossover in
GA for sequence optimisations. However, there is a main
difference between this problem and those sequence optimi-
sation problems. In this problem, after the first stage, the
sequence of numbers is not complete. Some numbers are
removed from the complete sequence and some other num-
bers are repeated instead of them. Because of that, it is not
possible to apply those existing crossover operations that are
based on a pair of parents on this problem. Therefore, the
crossover operation is carried out for just one parent (instead
of two) and only between substrings. If a chromosome is se-
lected for the crossover operation, the child will be produced
by creating a random integer less than the substrings’ length.
The first substring is then split from the gene whose order
is same as that of the random number. These two substring
sections then swap their order. This procedure is repeated
in other substrings as well. For example, consider a chro-
mosome selected for crossover as 256143 134526 561243.
Since the length of each substring is six, the random num-
ber will be 1-5. If that number is 3, the first substring after
crossover will be 143256.

4.3 Mutation

The common mutation operation in this kind of optimi-
sation is to change the location of the gene selected for mu-
tation with its next gene. This procedure is used in this pa-
per. For instance, for chromosome 256143 134526 561243,
if only the second gene is selected for mutation, the chro-
mosome after mutation will be 265143 134526 561243. The
genes whose location has changed are shown in bold.

4.4 Convergence criteria

The convergence criterion considered here is that if the
best chromosome in the whole population does not change
after a specific number of iterations, then the algorithm stops.
This number has been calculated by trial and error as 150
iterations.

5 Results

GA inputs such as crossover and mutation rates are con-
sidered as 0.6 and 0.05 respectively based on previous re-
search [14], and a population size of 50 is considered for the
optimization. Results of the optimisation for each sample
case are presented in this section.

5.1 Sample case 1

Based on the presented methodology, stages of selective
assembly continue up to creating at least one zero or minus
number form Equations 11, 12 or 13 (the new amount of
parts in the groups with maximum number of parts). This
stopping criterion occurs in stage number 7 for the sample
cases 1. There are 334 assemblies left after 7 stages of op-
timisation that are assembled in another stage. The details
of each stage of optimisation for this sample case are given
in Table 6. The second column of the table shows the group
numbers that each chromosome can take for the optimiza-
tion. The first row of these numbers are group numbers of
shafts and the second row represents the group numbers of
holes. These numbers are two complete sequences of one to
six for the first stage. But for other stages, some numbers
are removed from the complete sequences and some other
numbers are repeated instead. For instance, in the second
stage, there is not group number one for the holes, and there
are two group number three instead. The third column repre-
sents the number of parts in each group of each component
after empty groups are loaded (Step 6 at Figure 4). The next
column depicts the optimal combination of groups in that
stage. Number of assemblies that can be produced with that
optimal combination is presented in the fifth column of this
table. This number is calculated using Equation 3. The last
column also indicates the minimum and maximum tolerance
limit of assemblies that are produced by the optimal combi-
nation of that stage. The minimum and maximum tolerance
limits among all stages (that are used to calculate the final
variation of assemblies) are shown in bold.

The summation of assemblies up to stage 7 is 666. After
stage 7, there are 110, 79 and 145 parts left from groups 1, 2
and 3 of the shaft respectively. In addition, 176 and 158 parts



Table 6: Details of each stage of optimisation for the sample case 1

Stage Group numbers in each ~ Number of parts in each group ~ Optimum combina- Number of Minimum and maxi-
number  gene considered for op-  before optimisation tion Assemblies ~ mum tolerance limits of
timisation the optimum combina-
tion
123456 12 67 260 370 256 35 245136 542631 30 20
1 123456 5 111 448 331 98 7 10
123456 7 62 255 365 251 30 162534 625343 12 20
2 323456 2 106 441 326 93 2 12
123456 5 60 253 363 249 28 423165 343523 30 19
3 323453 5 104 429 324 91 5 10
423456 23 55 248 335 244 23 463425 324353 138 19
4 323453 23 99 378 319 86 23 12
423454 32 32 225 248 221 32 432544 345233 192 19
5 323453 32 76 291 296 63 32 11
443454 31 31 193 123 189 31 443544 445234 186 21
6 423454 31 44 259 202 31 31 11
333453 13 13 123 92 158 13 335343 432333 78 18
7 323433 13 13 189 171 13 13 10
003450 0 0 110 79 145 0 5344 3434 333 20
8 003400 0 0 176 158 0 O 12

from groups 3 and 4 of the holes are also left. These parts
can be assembled so that A5 and B3 make 145 assemblies,
A3 and B4 make 110 assemblies, and A4 with the remaining
parts of B3 and B4 make the 79 remaining assemblies. The
maximum and minimum tolerance limits of these two assem-
bly sets will be 20 and 12 respectively, based on Equations
16 and 17. This is shown as stage 8§ in Table 6.

Considering the total number of assemblies in all stages,
1000 assemblies are produced, therefore, no surplus part is
remains. The dimensional variation will be the difference
between the maximum and minimum tolerance limits of all
stages. The maximum tolerance limit will be produced in
stages 6 and equals 21. The minimum tolerance limit will be
produced from stage 1, 3, and 7, and is 10. Therefore, the
maximum dimensional variation is 11. Using the previous
method, the dimensional variation is 13 [14]. Hence, an im-
provement of 15 percent in the maximum variation is gained
by using this method, compared with the previous method
for the sample case 1.

5.2 Sample case 2

The stopping criterion occurs in stage number 12 for the
second sample case. After 12 stages of optimisation the to-
tal number of assemblies left is 40. These are assembled at
another stage. The total number of stages is thus 13. Ta-
ble 7 shows the details of each stage of optimisation for this
case. This table is structured same as Table 6. However,
since the assembly in this sample case consists of three com-
ponents, there are three rows in the second and third col-
umn for each stage. The first, second and third row of these
columns represent components A, B, and C respectively. The
optimum combination of groups that are shown in the fourth

column is also consist of three substrings. The first, second
and third section represent components A, B, and C in the
optimal combination, respectively. Number of assemblies in
each stage is shown in the fifth column. Summation of these
numbers for all stages is 1000. Therefore, all parts are used
for the assemblies and there is no surplus part.

After stage 12, the remaining parts are 15 parts from
group 3 and 25 parts from group 5 (component A), 25 parts
from group 3 and 15 parts from group 4 (component B) and
40 parts from group 4 (component C). These remaining parts
can then be assembled so that 25 parts of A5, B3 and C4
make 25 assemblies and 15 parts of A3, B4, and C4 make 15
assemblies. The maximum and minimum tolerance limits of
these two assembly sets will be 29.5 and 20.5 respectively,
based on Equations 16 and 17. The maximum tolerance
limit will be produced in stages 9 and 10 and equals 32.5.
The minimum tolerance limit will be produced from stage
1 and is 18. Therefore, the maximum dimensional variation
is 14.5. Using the previous method, [15] have obtained the
dimensional variation of 17.5 . Hence, an improvement of
20 percent in the maximum variation is gained by using this
method for the sample case 2.

6 Discussion

Selective assembly in previous research has generally
dealt with components which have normal dimensional dis-
tribution of parts. In practice, however, the produced parts
might not always follow the normal distribution. The method
presented here makes no assumptions regarding the normal
distribution of parts and it results in zero surplus parts. The
application of this approach using other optimisation algo-
rithms could be assessed in future research. In addition, ap-



Table 7: Details of each stage of optimisation for sample case 2

Stage Group numbers in each ~ Number of parts in each group  Optimum combination Number  Minimum and

number gene considered for op-  before optimisation of as- maximum tol-
timisation sem- erance  limits

blies of the optimum
combination

123456 9 50 175 375 256 135 132456 364152 624513 54 27.5

1 123456 10 111 438 321 108 12 18
123456 12 67 220 390 236 75
423456 1 41 166 365 247 126 465423 641325 125463 6 28

2 123456 1 102 429 312 99 3 18.5
123456 3 58 211 381 227 66
423456 2 40 165 362 246 125 256443 235643 641235 12 29.5

3 323456 2 101 426 311 98 2 19.5
123456 2 57 210 380 226 65
423456 38 38 163 322 244 123 623544 334523 364254 228 29.5

4 323453 38 99 348 309 96 38 20
423456 38 55 208 340 224 65
443456 17 17 125 250 206 85 462435 333245 436542 102 29.5

5 323453 17 61 276 271 58 17 20
423456 17 17 170 285 186 25
443456 8 8 108 217 189 68 546443 435332 624513 48 30.5

6 323453 8 44 243 254 41 8 20
443456 8 8 153 252 169 8
443456 33 33 100 143 181 60 446354 432335 454643 198 31.5

7 423454 33 36 235 180 33 33 21.5
443454 33 33 145 145 161 33
553456 3 3 67 110 142 27 344456 534442 454434 18 30.5

8 323433 3 3 193 147 3 3 21.5
553455 3 3 112 112 119 3
553456 24 24 64 107 91 24 535645 332343 555345 144 32.5

9 333433 24 24 94 144 24 24 21
553455 24 24 109 109 44 24
443454 20 20 40 23 67 20 536455 433333 354555 120 32.5

10 443444 20 20 70 40 20 20 21
333453 20 20 25 85 20 20
553455 3 3 20 3 38 3 445443 444443 333435 18 30

11 333433 3 3 38 20 3 3 19.5
443444 3 3 5 53 3 3
553555 2 2 17 2 27 2 435555 343333 443444 12 29.5

12 333433 2 2 27 17 2 2 19
443444 2 2 2 42 2 2
003050 0O 0 15 0 25 O 53 34 44 40 29.5

13 003400 0 0 25 15 0 O 20.5
000400 0 0 O 40 0 O

plying this method for problems that have more than one di-
mension that variation of it should be minimum can be inves-
tigated in future. A MATLAB code has been developed for
this algorithm. The simulation time for all stages using the
methodology presented here is 155 seconds, using a Core i7
CPU and 16 MB of RAM for the sample case 2 and 65 sec-
onds for the sample case 1. This figure may improve if other
optimisation algorithms or improved genetic operations are
used. The other area of discussion is the method of group-

ing. The method of grouping used here is one of the equal
distances for each group. An equal probability of parts dis-
tribution for grouping could be investigated. In term of the
number of groups, the higher the number of groups, the lower
the variation in results obtained [4]. However, this increases
production costs as well as calculation time.



7 Summary

This paper presented a new approach to selective as-
sembly of components with an arbitrary distribution of part
dimensions and it results in zero surplus parts. Based on
this approach, selective assembly is carried out in different
stages. Each stage consumed a group of parts, taken from the
group with the most parts of the same component. Combina-
torial optimization of group numbers in each stage was done
using genetic algorithm. Comparison of the results of the
new method with the one presented by [14] and [15] showed
15 and 20 percent improvement in maximum variations for
the first and second cases, respectively, and no surplus parts.
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