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Optically controlled stochastic jumps of individual gold nanorod rotary motors
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Brownian microparticles diffusing in optical potential-energy landscapes constitute a generic test bed for
nonequilibrium statistical thermodynamics and have been used to emulate a wide variety of physical systems,
ranging from Josephson junctions to Carnot engines. Here we demonstrate that it is possible to scale down this
approach to nanometric length scales by constructing a tilted washboard potential for the rotation of plasmonic gold
nanorods. The potential depth and tilt can be precisely adjusted by modulating the light polarization. This allows
for a gradual transition from continuous rotation to discrete stochastic jumps, which are found to follow Kramers
dynamics in excellent agreement with stochastic simulations. The results widen the possibilities for fundamental
experiments in statistical physics and provide insights into how to construct light-driven nanomachines and
multifunctional sensing elements.

DOI: 10.1103/PhysRevB.98.085404

I. INTRODUCTION

Laser tweezing is a powerful noninvasive tool to control
and measure the movement of Brownian colloidal particles
for applications in biology, physics, and chemistry [1–4]. By
tuning the light field distribution in the illuminated region, it is
possible to generate a wide variety of optical potential-energy
landscapes. A thermally driven Brownian particle trapped
in such a landscape represents an ideal model system for
studying a wide range of fundamental phenomena. Examples
to date include studies of chemical reactions [5,6], protein
folding [7], thermodynamic relations [8], information flow [9],
entropy production [10], and Kramers-type dynamics [11].
By modulating optical potentials, it has even been possible
to realize optical Brownian ratchets [12] and single-particle
microscopic Carnot engines [13]. Interested readers can refer to
[14] to find more examples of using optically trapped colloidal
particles to build stochastic heat engines.

The tilted periodic “washboard” potential is a particu-
larly important potential distribution realizable using optical
tweezers technology because it can be used as an archetypal
nonequilibrium model of statistical physics in a variety of
systems, such as the damped pendulum, ring-laser gyro-
scope, Josephson junctions, superionic conduction, phase-
locked loops, and charge-density-wave condensation [15–18].
Despite the comprehensive theoretical discussion of Brownian
dynamics in a tilted washboard-type potential [16,19], it is
still of great interest to achieve convenient and precise shape
control of such optical potentials. Moreover, it is of generic
interest to be able to scale down the physical dimension of
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the probe particle from the micron range to the nanoscale
in order to approach length scales relevant to molecular
interactions and dynamics. In addition, nanoscale Brownian
particles have much shorter characteristic diffusion time than
their micrometer counterparts and thus allow for faster and
more efficient sampling of thermodynamic transitions between
different states.

In this paper, we employ elliptically polarized laser tweezers
to create a tilted washboard rotational potential for trapping
colloidal gold nanorods [20]. The optical anisotropy and
enhanced light-matter interaction of such particles, caused
by plasmon resonances [21,22], result in extremely efficient
optical confinement and rotation performance [22,23]. By
adjusting the depth and tilt of the potential by controlling
polarization ellipticity, we successfully managed to switch the
rotational movement of a nanorod from ultrafast continuous
spinning to discrete stochastic rotational jumps. Using both
experiments and simulations, we further investigated the jump
dynamics at critical trapping polarizations and found that it
quantitatively agrees with that predicted from Kramers theory
[5,6]. The full control of Brownian rotation of plasmonic
nanorods demonstrated here provides an additional freedom
of nanomotor movement manipulation and holds great po-
tential for future investigations of fundamental questions in
nonequilibrium thermodynamics. Our experimental configu-
ration might also be useful for studies of molecular motors,
optical Brownian ratchets, and optical torque wrenches for
high-sensitivity biological experiments [24].

II. RESULTS

A. Construction of a rotational tilted washboard potential

An elliptically polarized plane wave with electric field E =
E0[cos(ωt )̂x + cos(ωt + �φ )̂y] can be decomposed into one
linearly polarized and one circularly polarized component, EL

and EC, respectively (Fig. 1(a); a detailed analysis is provided
in the Supplemental Material [25]). Once a gold nanorod is
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FIG. 1. Tilted washboard potential from elliptically polarized
light. (a) An elliptically polarized plane wave can be decomposed into
one linear and one circular polarization component. (b) Schematic of
a gold nanorod in an optical trap. The nanorod is oriented with its long
axis perpendicular to the direction of incidence. (c) Nanorod potential-
energy distribution induced by the linear polarization component of an
elliptically polarized light field. The circular polarization component
tends to continuously rotate the rod with a torque of MC. (d) The
nanorod thus experiences a rotational tilted washboard potential-
energy landscape as a function of orientation angle ϕ. The potential
barrier height in the preferred rotation direction can be calculated to
�U = 0.8kBT for parameters mimicking experimental data (nanorod
with dimensions of 65 × 147 nm2, λLaser = 830 nm, PLaser = 6 mW,
T = 326 K) for the case when the elliptically polarized wave has
�φ = 40◦. The barrier height in the opposite rotation direction is
9.4kBT .

optically trapped [Fig. 1(b)], the linear component provides
a restoring torque ML that tends to align it along the corre-
sponding polarization direction while the circular component
induces a torque MC that tends to spin the particle around the
direction of incidence to overcome the potential barrier formed
by ML [Fig. 1(c)] [26]. Both torques are determined by angular
momentum transfer due to light absorption as well as scattering
[22,27]. The response of the gold nanorod is approximately that
of a dipole with induced moment p = α · E. For an incident
wavelength close to the longitudinal plasmon resonance of the
particle, the polarizability tensor α is dominated by the long
axis component [20], which we denote α. The optical potential
experienced by the nanorod then has a tilted washboard shape
[Fig. 1(d)] according to

U (ϕ) = −
∫ ϕ

0
(−ML + MC)dϕ = −Aϕ + B sin2 ϕ, (1)

where A = 1
2 Re(α)E2

C, B = 1
2 Re(α)E2

L, and ϕ is the angle
between the nanorod long axis and the linear polarization
component EL [Fig. 1(d), inset]. It is easily shown that each
well in U (ϕ) is surrounded by highly asymmetric barriers when
�φ, the phase difference between the x̂ and ŷ field components,
is below 45◦. For example, we find that the plasmonic nanorod

has to overcome a barrier height �U = 0.8kBT to rotate
towards the preferred direction, while the barrier in the opposite
direction is more than an order of magnitude higher for
parameter settings mimicking our experimental conditions.
The probability of rotational jumps in the “wrong” direction is
thus very low. The barrier height �U can be varied by changing
the degree of polarization ellipticity via a change in �φ.

B. Transition from continuous rotation to stochastic jumps
of an individual gold nanorod

We studied the rotational dynamics of gold nanorods op-
tically trapped in two dimensions against a cover glass in an
optical tweezers setup based on an 830-nm laser beam with
tunable polarization ellipticity (see Methods in the Supple-
mental Material [25]). The nanorods had an average size of
(147 ± 10 nm) × (65 ± 5 nm) [Fig. 2(a)] and were prepared
by a seed-mediated growth method [20,27]. The exemplary
dark-field scattering spectrum of an individual trapped nanorod
[Fig. 2(b)] shows one weak surface plasmon resonance at
around 550 nm and a strong mode at around 740 nm over-
lapping the 830-nm trapping laser wavelength. The relative
strengths of the resonance peaks correspond to a polarizability
along the long axis that is more than an order of magnitude
higher than along the short axis at a wavelength of 830 nm, thus
confirming the assumption of an essentially one-dimensional
polarizability tensor. The attractive and plasmon-enhanced
optical gradient force keeps the particle trapped and aligned
in the laser focus xy plane, while the Coulomb repulsion from
the cover glass and the radiation pressure prevent the particle
from escaping the trap along the z axis [27].

We first tracked the rotational dynamics of a trapped
nanorod by analyzing the backscattered laser light I P

sca from
the particle using polarization-selective detection in which
a polarizer oriented perpendicular to the linear polarization
component EL of the trapping beam has been placed in front
of the detector. The nanorod angle variations are thus converted
to fluctuations in I P

sca because of the nanorods’ highly polarized
scattering properties [27]. I P

sca(t ) shows a periodic oscillation
with superimposed fluctuations due to rotational Brownian mo-
tion for the case of an almost circularly polarized trapping field
[�φ = 88◦; Fig. 2(c), black trace]. The corresponding auto-
correlation function C(τ ) of I P

sca(t ) [Fig. 2(d), black trace] can
be analyzed using C(τ ) = I 2

0 + 0.5I 2
1 exp(−τ/τ0) cos(4πf τ )

[27], which yields the nanorod average rotation frequency as
f = 2460 ± 20 Hz and the autocorrelation decay time as τ0 =
103 ± 2 μs. The nanorod ceased to rotate when we switched
the laser polarization to elliptical (�φ = 37◦), as is evident
from the lack of a well-defined periodicity in the measured
I P

sca(t ) and C(τ ) [Figs. 2(f) and 2(g), black traces]. However,
the recorded intensity trace nevertheless exhibits distinct occa-
sional burst. We interpret these features as being due to well-
defined but stochastic thermal jumps in nanorod orientation.

Next, stochastic simulations were performed to gain further
insight into the rotation process. The Brownian dynamics of a
nanorod trapped in the tilted washboard potential U (ϕ) can be
simulated using the equation of motion [16,27]:

J ϕ̈ = −γrϕ̇ − cos ϕ sin ϕRe(α)E2
L + 1

2 Re(α)E2
C + ξ (t ).

(2)
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FIG. 2. Transition from continuous rotation to discrete jumps of gold nanorods. (a) Scanning electron microscopy image of the nanorods
(scale bar is 200 nm). (b) Scattering spectrum of a trapped nanorod. The strong peak at ∼740 nm is caused by the long-axis surface
plasmon resonance of the nanorod. (c)–(h) Measured (black) and simulated (red) rotational dynamics of (c)–(e) the rod undergoing continuous
rotation in the presence of an almost perfectly circularly polarized laser field (�φ = 88◦) and (f)–(h) discrete rotational jumps due to an
elliptically polarized field (�φ = 37◦). (e) and (h) show the nanorod orientation angle ϕ versus time, while (c) and (d) and (f) and (g)
show the corresponding scattering intensity time traces and intensity autocorrelation functions (ACFs), respectively. The data are based on
measurements and simulations of cross-polarized backscattering from the nanorod. The blue stars in (f) and (h) mark individual jumps. (i)
Polarization-dependent rotation of a nanorod. We showed both measured (black) and calculated (red) rotational frequency of a nanorod as the
laser polarization continuously varies from almost circular to linear. The blue curve indicates the barrier height at varying �φ. In the highlighted
area (30◦ < �φ < 45◦), where the potential barrier �U ∈ (0, 4kBT ), we observe the nanorod undergoing a transition from continuous rotation
to discrete jumps. The nanorod stops continuous rotation when �φ decreases to around 40◦, where an effective rotational potential barrier
�U ≈ kBT .

Here J is the nanorod moment of inertia, and the first three
terms on the right-hand side represent, respectively, a viscous
damping torque, characterized by a rotational friction coef-
ficient γr; the restoring torque due to the linear polarization
component EL; and the driving torque due to the circular po-
larization component EC. The last term represents a stationary
Gaussian noise torque with zero mean and autocorrelation
function 〈ξ (t )ξ (0)〉 = 2γrkBTrδ(t ), where Tr is the effective
temperature for rotational Brownian motion [28]. The temporal
variation in nanorod orientation ϕ(t ) obtained from Eq. (2) can,
in turn, be used to calculate I P

sca(t ) and C(τ ) for comparison
with experiments.

Figures 2(c)–2(h) (red traces) show simulation results
for almost circular (�φ = 88◦) and elliptical (�φ = 37◦)
polarization using simulation parameters selected to match
experimental conditions, including a fixed Tr = 320 K esti-
mated [27,28] from the experimental τ0 (see the Supplemental
Material for details [25]). For the circular polarization case, the
simulated ϕ(t ) evolves continuously [Fig. 2(e)], corresponding
to continuous rotation, and the calculated C(τ ) yields f =
2643 ± 7 Hz and τ0 = 100 ± 1 μs, in excellent agreement
with the experimental results. For the elliptical polarization
case, ϕ(t ) instead exhibits a staircase behavior [Fig. 2(h)]
corresponding to discrete and random π jumps in one direction
given by the driving torque, separated by periods of almost
fixed alignment along the linear polarization direction. The re-
sulting intensity trace and autocorrelation function are again in

good agreement with the experimental observations [Figs. 2(f)
and 2(g)]. Thus, the simulations confirm that thermal agitation
occasionally forces the nanorod to jump out of the local minima
of the washboard potential to the next, lower potential well,
resulting in discrete intensity bursts in I P

sca that can be tracked
experimentally.

We further varied the polarization state of the trapping
laser continuously. Both experiments and simulations showed
that the gold nanorod rotation becomes increasingly slow as
the polarization becomes increasingly elliptical. When �φ

decreases to ∼40◦, the oscillating feature in the intensity
autocorrelation function disappears (Fig. 2(i); more details can
be found in the Supplemental Material [25]), suggesting that
a barrier exists and stops the nanorod’s continuous rotation.
However, the nanorod undergoes stochastic rotational jumps
from time to time, and we can still calculate an effective
rotation frequency by counting the number of discrete jumps.
When the polarization becomes even more elliptical, the barrier
in the rotation potential becomes high enough to keep the
rod aligned with the major axis of the polarization ellipse.
The nanorod thus exhibits a “rotation” frequency asymptotic
towards zero. From simulation, we further observed that the
effective rotational diffusion of the nanorod varies as the laser
polarization changes, similar to the reported result of trans-
lational diffusion of a Brownian particle on tilted washboard
potentials [29]. Interested readers can find more discussion in
the Supplemental Material [25].

085404-3



SHAO, ANDRÉN, JONES, JOHANSSON, AND KÄLL PHYSICAL REVIEW B 98, 085404 (2018)

(d)

1
0

50

100

150

0 0.2 0.4 0.6 0.8
Transit time (ms)

N
um

be
r o

f f
lip

s

0

100

200

300

0 5 10 15 20
Flipping steps in 5 ms

P
ro

ba
bi

lit
y

0 5 10 15 20
0

10

20

30

40

Flipping steps in 5 ms

P
ro

ba
bi

lit
y

(c)

0 0.2 0.4 0.6 0.8 1
0

50

100

150

200

Transit time (ms)

N
um

be
r o

f f
lip

s

(a) (b)

200250

experiment simulation

experiment simulation

T

FIG. 3. Stochastic rotational jump dynamics of a gold nanorod.
The gold nanorod was trapped using an elliptically polarized laser
beam with �φ = 37◦ and a power of 6 mW. (a) and (b) Experimen-
tally measured and simulation-calculated probability distributions of
nanorod flips in a fixed time interval of 5 ms and (c) and (d) transit
times of such a jump. The nanorod rotational effective Brownian
temperature Tr was set at 360 K in simulation to achieve good
agreement with experiments. The laser trap forms a tilted washboard
rotation potential with a barrier �U = 1.4kBTr, and near a local
maximum the potential landscape can be modeled with an inverted
harmonic potential [inset in (a)]. The rod was agitated thermally to
overcome this barrier to jump by an angle of π , and each jump process
was recorded by one scattering intensity peak shown in Fig. 2(f). The
numbers of jumps follow Poisson distribution [blue curves in (a) and
(b)]. The full distributions of transit times are well fitted by the formula
derived from Kramers theory [blue curves in (c) and (d)], with the
coefficients of determination R2 = 0.979 and 0.994, respectively.

C. Stochastic jump dynamics of gold nanorods trapped
by elliptical polarization

To test quantitatively the physical attributes of nanorod
stochastic jumps, including their rate and transit time, we
further examined the measured scattering signals and the
simulation results to discern further details. Statistics for both
the experiment and simulation results revealed that the number
of nanorod flips in a certain time interval X follows a Poisson
probability distribution P (X = S) = e−λλS/S! [Figs. 3(a) and
3(b)], with the Poisson mean λ determined by the potential
barrier height relative to kBTr. When the time interval is set
at 5 ms, the fitting-obtained λ are 4.3 ± 0.3 for experiment
and 4.7 ± 0.1 for simulation (laser power 6 mW, �φ = 37◦),
respectively.

Additional information can be obtained through studying
the duration of each individual stochastic jump, as the average
value and the variability in transit times reflect kinetics and the
fundamentally statistical nature of the stochastic jump process.
The transit time τT is much shorter than the first-passage time
defined as how long it takes for the nanorod to rotate by
π . This is very different from the case when the nanorod
undergoes continuous rotation (more details can be found
in the Supplemental Material [25]). τT was found to vary

widely, from less than 80 to over 600 μs [Figs. 3(c) and
3(d)], with average values 〈τT〉 = 158 ± 114 μs (experiment)
and 117 ± 47 μs (simulation). Additionally, both experimental
and simulation results revealed that the broadly distributed
τT has a peak at around 120 μs and a long exponential tail
[Figs. 3(c) and 3(d)]. This behavior is similar to that expected
for transit across harmonic barriers in the high-barrier limit
(�U � kBT ) in the Kramers regime [5,6,30]. Specifically, in
our case, the potential landscape near a local maximum can
be modeled with an inverted harmonic potential with a “spring
constant” κb, V (ϕ) ≈ Vmax − κb(ϕ − ϕmax)2/2 [schematic in
Fig. 3(a), inset]. When the transition region is from (ϕmax − ϕ0)
to (ϕmax + ϕ0), the barrier height �U = κbϕ

2
0/2, and the transit

time τT has a distribution P (τT). For the one-dimensional
diffusion model determined by J ϕ̈ = −γrϕ̇ − V ′(ϕ) + ξ (t ),
P (τT) is predicted to have the form [30,31]

P (τT) = ωK
√

�U/(kBT )

1 − erf[
√

�U/(kBT )]

× exp[−�U coth(ωKτT/2)/(kBT )]

sinh(ωKτT/2)
√

2π sinh(ωKτT)
. (3)

The distribution in Eq. (3) decays exponentially for large τT

as P (τT) ≈ 2ωK[�U/(kBT )]exp(−ωKτT). The parameter ωK

sets the timescale for decay away from states near the top of
the barrier, ωK = κb/γr.

In both experiment and simulation, P (τT) are well fitted
by Eq. (3) [Figs. 3(c) and 3(d)]. The barrier heights �U

returned by the fit are (1.10 ± 0.30)kBT (experiment) and
(1.36 ± 0.08)kBT (simulation), both in good agreement with
the value calculated from the laser polarization according to
Eq. (1): �U = 1.4kBTr. The values of fitting-obtained ωK

are 1.13 ± 0.17 × 104 s−1 (experiment) and 1.02 ± 0.03 ×
104 s−1 (simulation). Given that the rotational diffusion con-
stant Dr is determined by Dr = kBT/γr, we can write ωK as
well as the average transit time in terms of this quantity through

ωK = κb/γr = Drκb/(kBT ), (4a)

〈τT〉 = ln[2eγ �U/(kBT )]/ωK, (4b)

where γ is Euler’s constant [30]. Given that κb can be
determined by fitting the energy landscape to be κb = (3.4 ±
0.1)kBT/rad2 at �φ = 37◦, we can calculate the rotational
diffusion coefficient Dr from ωK and 〈τT〉 according to Eqs. (4).
For the simulation result, Dr calculated from ωK is 3.0 ±
0.1 × 103 s−1, close to Dr = 4.0 ± 1.6 × 103 s−1 calculated
from 〈τT〉. In experiment, Dr is calculated from ωK and 〈τT〉
to be 3.3 ± 0.5 × 103 and 3.0 ± 2.2 × 103 s−1, respectively,
which are also in good agreement with each other. The values
of Dr calculated from measured ωK and 〈τT〉 are close to
the result directly calculated by modeling the nanorod as a
prolate ellipsoid in water (Dr = 4.6 × 103 s−1), validating the
Kramers description of the nanorod rotational jump transition.

Furthermore, the rates and transit times of the nanorod
stochastic jumps are highly dependent on the temperature
and viscosity of the local nanoenvironment. If we artificially
increase Tr in simulation, the calculated Poisson distribu-
tion means λ and the average transit time 〈τT〉 exhibit a
rapid increase and decrease [Figs. 4(a) and 4(b)], respec-
tively. λ, indicating the transition rate, follows an exponential
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FIG. 4. Temperature- and medium-viscosity-dependent nanorod
stochastic jump dynamics. (a) Rotational effective Brownian tem-
perature Tr-dependent average number of flips in a time interval of
5 ms and (b) transit time calculated from simulation (red dots). The
blue curve in (a) and the red curve in (b) are fitting results, with
the coefficients of determination R2 = 0.975 and 0.998. (c) Medium
viscosity η-dependent average number of flips and (d) transit time
calculated from simulation (red dots). The blue curve in (c) and the
red curve in (d) are exponential and linear fitting results, with the
coefficients of determination R2 = 0.999 and 0.968.

(Boltzmann) dependence on the energy barrier height �U

[Fig. 4(a)]. 〈τT〉 decreases exponentially with Tr [Fig. 4(b)].
λ and 〈τT〉 are also very sensitive to the medium viscosity η.
As η increases, λ decreases exponentially, and 〈τT〉 increases
linearly [Figs. 4(c) and 4(d)], according to our simulation
results. The sensitive temperature and viscosity dependence
of the nanorod stochastic jump dynamics implies that the gold
nanorod manipulated by elliptical polarization can work as a
sensing element to probe the local temperature and viscosity
in solution.

III. DISCUSSION

We have shown the construction of tilted washboard ro-
tational potentials for optically trapped Brownian plasmonic
gold nanorod motors by rather simple means, utilizing ellip-
tical polarizations. The gold nanorods were modulated from
continuous rotation to discrete jumps by simply adjusting
the polarization state of the trapping laser. In addition, we

studied individual stochastic jump processes of the nanorod
at critical laser polarization, finding that the jump dynamics is
in good agreement with that predicted by Kramers theory. Our
measurement results can be directly used to help understand
mechanisms in molecular motors [32] and rotating dipoles in
external fields [33].

The plasmonic nanorod trapped by elliptical polarization
is a simple optical analogy to many other physical systems.
It provides a powerful tool for investigating fundamental
questions where the problem of Brownian motion in tilted
periodic potentials arises [15–18]. The colloidal nanoparticle
trapped in solution works in an overdamped regime; one can
extend this to an underdamped regime by trapping plasmonic
nanoparticles in air or in vacuum [11,34]. The plasmonic
nanorod optically trapped with elliptical polarization thus
generates a universal model system for the nonequilibrium
thermodynamics problem of Brownian diffusion over periodic
barriers. The small size (∼100 nm) and short characteristic
timescale (∼100 μs) of the Brownian nanorod allow for fast
statistical investigations. Experimental parameters can be con-
trolled and varied in situ easily in an optical way, significantly
reducing the complexity, incompatibility, and inadaptability of
other physical systems conventionally employed. As we have
shown, a very simple and well-known theoretical model can
be utilized to capture the system dynamics [16,19]. This, in
turn, means that it is also straightforward and robust to extract
parameters by model fitting. As a result, we believe that our
study facilitates the use of Brownian plasmonic nanoparticles
as new probes to study fundamental issues with broad interest,
such as giant acceleration of particle diffusion [29], connection
between statistical physics and information theory [9,35], and
hydrodynamic synchronization [36].

In addition, we have realized the full rotational control of the
light-driven gold nanorod motors. The elliptical-polarization-
trapped gold nanorod can also work as a ratchet that harvests
overdamped Brownian noise and rectifies the Brownian motion
at thermal nonequilibrium [12]. Moreover, by combining the
structure Brownian dynamics analysis, which can probe the
local viscosity and temperature, and the plasmonic molecular
analysis techniques such as refractometric sensing [37] and
surface-enhanced Raman scattering [38], the optical-potential-
controlled gold nanorod further becomes a multifunctional
sensing platform to probe different characteristics of the local
nanoenvironment [39,40].
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