
A pluralist approach to the formalisation of mathematics

Downloaded from: https://research.chalmers.se, 2025-06-18 01:12 UTC

Citation for the original published paper (version of record):
Adams, R., Luo, Z. (2011). A pluralist approach to the formalisation of mathematics. Mathematical
Structures in Computer Science, 21(4): 913-942. http://dx.doi.org/10.1017/S0960129511000156

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology. It
covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004. research.chalmers.se is
administrated and maintained by Chalmers Library

(article starts on next page)

See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/220173752

A pluralist approach to the formalisation of

Article in Mathematical Structures in Computer Science · August 2011

DOI: 10.1017/S0960129511000156 · Source: DBLP

CITATIONS

0

READS

62

2 authors:

Some of the authors of this publication are also working on these related projects:

Proof Assistants for Natural Language Semantics View project

Reverse Mathematics in Dependent Type Theory View project

Robin Adams

Chalmers University of Technology

13 PUBLICATIONS 82 CITATIONS

SEE PROFILE

Zhaohui Luo

Royal Holloway, University of London

83 PUBLICATIONS 1,496 CITATIONS

SEE PROFILE

All content following this page was uploaded by Zhaohui Luo on 04 June 2014.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/220173752_A_pluralist_approach_to_the_formalisation_of?enrichId=rgreq-dfd9bbb5ff1c141469f51c40e94be26c-XXX&enrichSource=Y292ZXJQYWdlOzIyMDE3Mzc1MjtBUzoxMDQyMjkyNzIyOTMzNzhAMTQwMTg2MTYwNDIxMg%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/220173752_A_pluralist_approach_to_the_formalisation_of?enrichId=rgreq-dfd9bbb5ff1c141469f51c40e94be26c-XXX&enrichSource=Y292ZXJQYWdlOzIyMDE3Mzc1MjtBUzoxMDQyMjkyNzIyOTMzNzhAMTQwMTg2MTYwNDIxMg%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Proof-Assistants-for-Natural-Language-Semantics?enrichId=rgreq-dfd9bbb5ff1c141469f51c40e94be26c-XXX&enrichSource=Y292ZXJQYWdlOzIyMDE3Mzc1MjtBUzoxMDQyMjkyNzIyOTMzNzhAMTQwMTg2MTYwNDIxMg%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Reverse-Mathematics-in-Dependent-Type-Theory-2?enrichId=rgreq-dfd9bbb5ff1c141469f51c40e94be26c-XXX&enrichSource=Y292ZXJQYWdlOzIyMDE3Mzc1MjtBUzoxMDQyMjkyNzIyOTMzNzhAMTQwMTg2MTYwNDIxMg%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-dfd9bbb5ff1c141469f51c40e94be26c-XXX&enrichSource=Y292ZXJQYWdlOzIyMDE3Mzc1MjtBUzoxMDQyMjkyNzIyOTMzNzhAMTQwMTg2MTYwNDIxMg%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Robin_Adams3?enrichId=rgreq-dfd9bbb5ff1c141469f51c40e94be26c-XXX&enrichSource=Y292ZXJQYWdlOzIyMDE3Mzc1MjtBUzoxMDQyMjkyNzIyOTMzNzhAMTQwMTg2MTYwNDIxMg%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Robin_Adams3?enrichId=rgreq-dfd9bbb5ff1c141469f51c40e94be26c-XXX&enrichSource=Y292ZXJQYWdlOzIyMDE3Mzc1MjtBUzoxMDQyMjkyNzIyOTMzNzhAMTQwMTg2MTYwNDIxMg%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Chalmers_University_of_Technology?enrichId=rgreq-dfd9bbb5ff1c141469f51c40e94be26c-XXX&enrichSource=Y292ZXJQYWdlOzIyMDE3Mzc1MjtBUzoxMDQyMjkyNzIyOTMzNzhAMTQwMTg2MTYwNDIxMg%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Robin_Adams3?enrichId=rgreq-dfd9bbb5ff1c141469f51c40e94be26c-XXX&enrichSource=Y292ZXJQYWdlOzIyMDE3Mzc1MjtBUzoxMDQyMjkyNzIyOTMzNzhAMTQwMTg2MTYwNDIxMg%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Zhaohui_Luo?enrichId=rgreq-dfd9bbb5ff1c141469f51c40e94be26c-XXX&enrichSource=Y292ZXJQYWdlOzIyMDE3Mzc1MjtBUzoxMDQyMjkyNzIyOTMzNzhAMTQwMTg2MTYwNDIxMg%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Zhaohui_Luo?enrichId=rgreq-dfd9bbb5ff1c141469f51c40e94be26c-XXX&enrichSource=Y292ZXJQYWdlOzIyMDE3Mzc1MjtBUzoxMDQyMjkyNzIyOTMzNzhAMTQwMTg2MTYwNDIxMg%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Royal_Holloway_University_of_London?enrichId=rgreq-dfd9bbb5ff1c141469f51c40e94be26c-XXX&enrichSource=Y292ZXJQYWdlOzIyMDE3Mzc1MjtBUzoxMDQyMjkyNzIyOTMzNzhAMTQwMTg2MTYwNDIxMg%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Zhaohui_Luo?enrichId=rgreq-dfd9bbb5ff1c141469f51c40e94be26c-XXX&enrichSource=Y292ZXJQYWdlOzIyMDE3Mzc1MjtBUzoxMDQyMjkyNzIyOTMzNzhAMTQwMTg2MTYwNDIxMg%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Zhaohui_Luo?enrichId=rgreq-dfd9bbb5ff1c141469f51c40e94be26c-XXX&enrichSource=Y292ZXJQYWdlOzIyMDE3Mzc1MjtBUzoxMDQyMjkyNzIyOTMzNzhAMTQwMTg2MTYwNDIxMg%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Under consideration for publication in Math. Struct. in Comp. Science

A Pluralist Approach to the Formalisation of
Mathematics

Robin Adams and Zhaohui Luo

Department of Computer Science
Royal Holloway, University of London
Egham, Surrey TW20 0EX, U.K.

Email: {robin,zhaohui}@cs.rhul.ac.uk

Received 15 December 2010

We present a programme of research for pluralist formalisations — formalisations that

involve proving results in more than one foundation.

A foundation consists of two parts: a logical part that provides a notion of inference, and

a non-logical part that provides the entities to be reasoned about. A logic-enriched type

theory (LTT) is a formal system composed of such two separate parts. We show how

LTTs may be used as the basis for a pluralist formalisation.

We show how different foundations may be formalised as LTTs, and also describe a new

method for proof reuse. If we know that a translation Φ exists between logic-enriched

type theories (LTTs) S and T , and we have formalised a proof of a theorem α in S, we

may wish to make use of the fact that Φ(α) is a theorem of T . We show how this is

sometimes possible by writing a proof script MΦ. For any proof script Mα that proves a

theorem α in S, if we change Mα so it first imports MΦ, then the resulting proof script

will still parse, and will be a proof of Φ(α) in T .

In this paper, we focus on the logical part of an LTT-framework and show how the above

method of proof reuse is done for four cases of Φ: inclusion, the double negation

translation, the A-translation, and the Russell-Prawitz modality. This work has been

carried out using the proof assistant Plastic.

1. Introduction

When formalising a piece of mathematics, we must first choose a foundation — a formal

language in which the mathematical entities can be defined, and theorems and proofs

about these entities can be written. Usually, such a foundation consists of two parts: a

non-logical part for defining the mathematical entities to be reasoned about, and a logical

part that formalises the underlying logical inference (e.g., a system of logic with a set of

axioms and rules of deduction that determines which proofs are valid)

Much mathematical work involves working with more than one foundation: compar-

ing the theorems that are provable in each, defining translations between foundations,

comparing the class of models of each foundation, etc.

For example, work in set theory often involves comparing several different set theories

R. Adams and Z. Luo 2

and the theorems that can be proven in each. Similar work compares the theorems

provable in different fragments of first-order arithmetic (Hájek and Pudlák, 1998). The

large research project known as Reverse Mathematics uses several systems of second-order

arithmetic (Simpson, 1999), and similar work has been done in higher-order arithmetic

(Kohlenbach, 2005).

In this paper, we propose a programme of research for conducting pluralist formalisa-

tions — formalisations of pieces of mathematics that involve more than one foundation.

The prevailing paradigm in the formalisation of mathematics so far has been to choose

one foundation, implement a proof assistant that constructs formal proofs in that foun-

dation, and proceed to build up a large library of formalised results in that foundation.

Some proof assistants offer the choice of a small number of different foundations — for

example, LEGO (Pollack, 1994) implements four, and Coq (Coq, 2004) offers the user

the choice of whether Set should be predicative or impredicative.

There are also proof assistants that implement logical frameworks, such as Isabelle

(Paulson, 1994) and the Edinburgh LF (Harper et al., 1987; Harper et al., 1993) as

implemented in Twelf (Pfenning and Schürmann, 1999). These allow more than one

foundation to be represented, and often provide support for representing and reasoning

about relations and translations between foundations.

If we wish to formalise a large piece of mathematics that involves proving results in

several different foundations, it will be essential that we can reuse proofs carried out in

one foundation within another. We shall therefore investigate the following questions:

What must a logical framework provide in order to be suitable for a pluralist formalisa-

tion? How should we represent the different foundations within this logical framework?

And how can we reuse a proof script written in one foundation when working in another?

Our answer to the second question is that the foundations should be represented as

logic-enriched type theories (LTTs). We shall argue that LTTs possess some advantages

over other systems of logic for the purposes of a pluralist formalisation. Our method of

proof reuse relies on the two systems in question being declared in a fairly similar way.

Thus, when choosing a family of systems with which to conduct a pluralist formalisation,

we require one that will allow for a uniform presentation and treatment of a large number

of different foundations. LTTs provide such a uniform framework.

We shall present a logical framework suitable for representing LTTs, discuss several

issues in the construction of LTTs, and present a method for proof reuse between LTTs.

The method of proof reuse that we present is quite general: we shall show with sev-

eral quite varied examples how, given a translation from one foundation S to another

foundation T , we are able to take proof scripts in S and reuse them when working in T .

We work with LTTs in this paper, but our method is also usable with type theories,

systems of first-order logic, etc. It should therefore be useful to people working in many

different areas of the formalisation of mathematics.

It is important to note that the LTT-approach to formalisation involves formalisation

of the non-logical entities as well as that of the underlying logic. Traditionally, the studies

of a logical framework such as Edinburgh LF or the system Twelf have mainly focused

on the formal representations of logical systems and usually pay less attention to the

non-logical parts of a mathematical system. The LTT-approach is different: it takes the

A Pluralist Approach to the Formalisation of Mathematics 3

formalisation of the non-logical entities seriously and this is also a key part of the pluralist

approach to formalisation and proof reuse. We shall discuss this issue, although the focus

of the current paper is mainly on the logical part of the LTT-approach.

There has not been much work on pluralist formalisations in the literature, but there

has been quite a lot of research into the related problem of sharing results produced using

different proof assistants. We discuss this work in Section 6.1.

1.1. Outline

In Section 2, we shall discuss some general issues around the formalisation of mathematics

using more than one foundation. The type-theoretic framework of LTTs is introduced in

Section 3. In Section 4, we shall describe our method for proof reuse in more detail and,

in Section 5, the method is applied to four examples and it is shown how these have been

formalised using the proof assistant Plastic.

2. A Pluralist Approach to the Formalisation of Mathematics

2.1. Mathematics with Different Foundations

When building a foundational system for mathematics, one faces various choices. For

example, two of the decisions that must be made are: whether the logic shall be classical

or intuitionistic; and whether impredicative definitions are allowed, or only predicative.

Each of the four possible combinations of these options has been advocated as a foun-

dation for mathematics at some point in history.

— Impredicative classical mathematics. This is arguably the way in which the vast

majority of practising mathematicians work. Zermelo-Fraenkel Set Theory (ZF) is

one such foundation. The proof checker Mizar (Muzalewski, 1993) has been used to

formalise a very large body of impredicative classical mathematics. The foundation

HOL, as implemented in the proof assistants Isabelle (Nipkow et al., 2002) and HOL-

Light (Harrison, 1996), is another.

— Impredicative constructive mathematics. Impredicative types theories such as

ECC/UTT (Luo, 1994) and CIC (Bertot and Castéran, 2004) are examples of such

foundations. These have been implemented by the proof checkers LEGO (Luo and

Pollack, 1992) and Coq (Coq, 2004). There are also impredicative constructive set

theories, such as Intuitionistic Zermelo-Fraenkel (IZF).

— Predicative classical mathematics. This was the approach taken by Weyl in his

influential monograph of 1918, Das Kontinuum (Weyl, 1918). Stronger predicative

classical systems have been investigated by Feferman (Feferman, 2005) and Schütte

(Schütte, 1965).

— Predicative constructive mathematics. Its foundations are provided, for exam-

ple, by Martin-Löf’s type theory (Nordström et al., 1990; Martin-Löf, 1984), whose

variants are implemented in the proof assistants Agda (Agda, 2008) and NuPRL

(Constable et al., 1986). There are also predicative constructive set theories, such as

Constructive Zermelo-Fraenkel set theory (CZF).

R. Adams and Z. Luo 4

The two choices listed above are by no means the only ones that must be considered

when designing a foundation. We must also consider whether equality should be inten-

sional or extensional; which choice principles should be allowed; etc. A wide variety of

mathematical foundations are in use today.

One foundation may sometimes be an extension of another. For example, ZF is an

extension of IZF; that is, everything provable in IZF is provable in ZF. There can also be

translations between these system, such as the double negation translation (Gödel, 1933)

from the classical system Peano Arithmetic to the intuitionistic Heyting Arithmetic.

When beginning a pluralist formalisation, we must consider how the several different

formalisations involved can be captured by a family of formal systems, in a manner that

is uniform enough for proof reuse to be practicable. As we have argued elsewhere (Adams

and Luo, 2010), logic-enriched type theories are able to capture a remarkably wide range

of foundations very faithfully, in a very uniform manner.

2.2. Proof Reuse in Logic-Enriched Type Theories

In this paper, we shall present a method for proof reuse. Suppose we have two foundations

S and T , and a translation from S to T . When we are working in T , we want to be able

to reuse proof scripts formalising results in S.

Further, we shall be greedy. We do not want to prove a lemma relating S and T , and

then have to apply that lemma many times. We do not want to write a program that

will automatically translate an S-proof script into a T -proof script. We want to be able

to take an S-proof script and reuse it — immediately, without any modification — as a

T -proof script.

There are two particular situations that we wish to consider:

1 We have two foundations S and T , and S is a subsystem of T . If we have shown that

S ` α, then we can immediately make use of the fact that T ` α. When formalising

a piece of mathematics that makes use of this sort of step, we wish to take a proof

script that formalises a proof of α in S, and use this script to provide us with a proof

of α when working in T .

2 More generally, we have two foundations S and T , and a translation Φ:S → T ; that

is, a mapping from the language of S to the language of T such that, if S ` α, then

T ` Φ(α). When formalising a piece of mathematics that makes use of this sort of

step, we wish to take a proof script that formalises a proof of α in S, and use this

script to provide us with a proof of Φ(α) when working in T .

Case 1 is a special case of case 2, where the translation Φ is the inclusion from S to T .

We shall be working in this paper with logic-enriched type theories (LTTs). These

are systems of logic that consist of a type theory, that defines the mathematical ob-

jects we will be dealing with, and a separate logical component, for stating and proving

propositions about those objects.

In case 1 above, we can sometimes arrange it so that LTTS , which represents S, is

a subsystem of the LTTT , which represents T . Suppose we have proof scripts MS and

MT that define LTTS and LTTT , respectively. If a proof script imports MS and proves

A Pluralist Approach to the Formalisation of Mathematics 5

MS

]:K

[c

[c

...

1

2 2]:K

3 3
]:K[c

1

MS

...

M

import

α

line 1

line 2

M T

[d

[d

[d]

]

]3 3

:L

:L

:L

...

1 1

2 2

1:K

2:K

3:K

M T

MΦ

...
...

...

...

import

1

2

3

c =

c =
c =

M

...

Φ(α)

line 1

line 2

import MΦ

Fig. 1. Proof Reuse Between Two LTTs

a theorem α, the proof script will still parse if we change it to import MT instead. This

idea was made use of in (Adams and Luo, 2010), where we proved several results in

the predicative LTTW , and were able to immediately reuse those proof scripts in an

impredicative LTT that extends LTTW .

However, such an approach is quite fragile; it depends on us using the same names for

constants in MS and MT . It is not certain that we can always define LTTS and LTTT in

such a way that LTTS is a subsystem of LTTT . Moreover, this approach cannot handle

the more general case 2 above.

The approach we present in this paper is as follows. Suppose we have a translation Φ

from LTTS to LTTT . Given proof scripts MS and MT that define LTTS and LTTT , we

shall construct a proof script MΦ that imports MT , and then defines every constant that

was declared in MS (see Fig. 1).

A proof script Mα that imports MS will still parse if we change it to import MΦ

instead. Further, we can write MΦ in such a way that, if Mα provides a proof of α under

MS , then it provides a proof of Φ(α) under MΦ.

We shall show in this paper how this can be done when LTTS is a subsystem of LTTT ,

and in three other cases: the double-negation translation from classical to intuitionistic

logic; theA-translation from intuitionistic logic to itself; and the Russell-Prawitz modality

from first-order logic (classical or intuitionistic) to second-order logic.

R. Adams and Z. Luo 6

3. A Type-Theoretic Framework for Pluralist Formalisations

Our approach to pluralist formalisations is based on a uniform framework in which math-

ematics with different foundations can be formalised. For this purpose, the type-theoretic

framework of Logic-enriched Type Theories (LTTs) is particularly appropriate.

Logic-enriched type theories were first studied by Aczel and Gambino to investigate

type-theoretic interpretations of constructive set theory (Aczel and Gambino, 2002; Gam-

bino and Aczel, 2006). An LTT is a formal system consisting of a type-theoretic component

that provides types and terms; and a logical component that provides propositions and

proofs. The intention is that the types and terms describe the collection of mathematical

objects we are concerned with, and the logical component to reason about those objects.

We shall present three logical frameworks in this section: LF, a Church-typed version of

Martin-Löf’s Logical Framework†, and its two extensions LF′, intended for representing

an LTT, and LFLTT intended for representing several LTTs simultaneously.

The type-theoretic framework is a method of specifying LTTs within a logical frame-

work. The LTTs specifiable this way are capable of expressing a wide spectrum of founda-

tions for mathematics in a uniform way. It was first proposed in (Luo, 2006)‡. In (Adams

and Luo, 2007; Adams and Luo, 2010), the authors studied one of the systems in this

framework — a logic-enriched type theory LTTW that gives a modern type-theoretic

version of Weyl’s system for predicative mathematics — and used LTTW to formalise

Weyl’s predicative mathematics (Weyl, 1918) in the proof assistant Plastic.

In this section, we shall review the logical framework LF and its extension LF′. We then

introduce its extension LFLTT, and describe how LFLTT may be used to specify LTTs.

We then present the type-theoretic framework, and give examples of logic-enriched type

theories that can be specified in the framework.

3.1. The Logical Framework LF

A logical framework, such as Martin-Löf’s logical framework (Nordström et al., 1990)

and its Church-typed version LF (Luo, 1994), is a dependent type system, together with

a method for representing other formal systems within that type system.

Here, we introduce LF briefly and fix our notations. The full details of LF, including

its rules, can be found in Chapter 9 of (Luo, 1994).

3.1.1. Basic Constructions The system LF deals with kinds, and objects. The kinds are:

— Type — the kind of types;

— El(A) — the kind of objects of type A; and

† The framework LF should not be confused with the Edinburgh Logical Framework (Harper et al.,
1987; Harper et al., 1993), which is also called LF. (It is unfortunate that the same name is used for
both.) One of the main differences between LF and the Edinburgh LF is that the former system is

intended to be used to specify type theories, and hence allows computation rules to be declared.
‡ LF has a variant called PAL+ (Luo, 2003), where applications are fully applied or saturated. In (Luo,

2006), we adopted the notations of PAL+; but this is inessential and we shall use LF and the associated
notations in this paper.

A Pluralist Approach to the Formalisation of Mathematics 7

The formation rule for N

N : Type

The introduction rules for N (constructors)

0 : N

succ : (N)N

The elimination rule over types for N

ENT : (C : (N)Type)

(c : C(0)) (f : (n:N)(x:C(n))C(succ(n)))

(z : N) C(z)

The computation rules for N

ENT (C, c, f, 0) = c : C(0)

ENT (C, c, f, succ(n)) = f(n, ENT (C, c, f, n)) : C(succ(n))

Fig. 2. The type of natural numbers.

— (x:K)K ′ — the kind of dependent functional operations f which can be applied

to any object k of kind K to form the application fk of kind [k/x]K ′.

We often omit El and write El(A) simply as A. We write K → K ′ for (x:K)K ′ when x

does not occur free in K ′.

When writing objects in the form of application, we shall sometimes write f(a1, ..., an)

for fa1...an, and often use the infix-form of binary operators: for instance, we write A×B
and P ∧Q for ×(A,B) and ∧(P,Q), respectively.

Two objects are definitionally equal in LF if they are βη-convertible.

The system LF is intended for specifying type theories that deal with types and terms.

The intention is that:

— the types are represented by the objects of kind Type;

— the terms of type A are represented by the objects of kind El(A);

— the objects of kind (x:K)K ′ represent meta-functions on the type theory’s syntax.

3.1.2. Specification of Type Theories A type theory is specified in LF by declaring con-

stants, each with a kind; and computation rules. These declarations have the effect of

extending LF with additional rules (see (Luo, 1994) for the details).

Typically, a type in a type theory comes with its rules of formation, introduction,

elimination and computation. We represent this type in LF by declaring constants cor-

responding to the formation, introduction and elimination rules; and declaring equality

rules corresponding to the computation rules.

For example, the type N of natural numbers can be specified as in Figure 2 where, for

R. Adams and Z. Luo 8

instance, the following introduction rule

Γ ` n : N

Γ ` succ(n) : N

is specified by means of the declaration of the constant succ.

By this method, LF can specify type theories that contain inductive and co-inductive

types, predicative and impredicative universes, inductive-recursive types, and others.

3.2. Logic-enriched Type Theories

The system LF is a suitable language for specifying type theories which deal with just

types and terms. There is a single kind Type of all the types in the type theory.

If we wish to use a system to state and prove mathematical theorems, we must have

some way of introducing logical propositions. In a type theory, one may do this by

identifying propositions with types (e.g., in Martin-Löf’s type theory, every proposition

is a type and vice versa) or by taking propositions as types, but not vice versa (e.g., in

ECC/UTT (Luo, 1994), every proposition is a type, but not every type is a proposition).

However, if one takes the view that logical propositions and data types should be

completely separate, then one will wish to work in a different kind of system; and LF

will not be adequate for specifying this different kind of system.

Logic-enriched type theories (LTTs) (Gambino and Aczel, 2006) are formal systems

where there is a complete separation between (logical) propositions and (data) types.

The syntax of an LTT consists of four categories of expression: types, terms, propositions,

and proofs (or derivations).

An LTT thus naturally falls into two components, or ‘worlds’: the type-theoretic com-

ponent, and the logical component. This allows for a lot of flexibility in the design of

an LTT, as we can change one component without affecting the other (e.g. we can add

excluded middle to the logical component, without changing the type-theoretic compo-

nent). This makes LTTs suitable for capturing many different mathematical foundations.

The two components do, however, interact. The logical world may depend on the

type-theoretic world: for example, given an inductive type such as N or List(A), we may

choose to introduce a rule of deduction allowing propositions to be proved by induction.

In order to specify an LTT adequately, an extension of LF is called for. This extended

logical framework is obtained by extending LF by adding a new kind Prop, that stands

for the world of logical propositions, and a new kind constructor Prf :

Γ valid

Γ ` Prop kind

Γ ` P : Prop

Γ ` Prf(P) kind

This extended framework was first proposed in (Luo, 2006) and further studied in (Adams

and Luo, 2010) and, in the latter paper, we have called it LF ′.

The intention is that:

— the types are represented by the objects of kind Type;

— the terms of type A are represented by the objects of kind El (A);

— the propositions are represented by the objects of kind Prop;

A Pluralist Approach to the Formalisation of Mathematics 9

Conjunction

∧ : (Prop)(Prop)Prop

∧I : (P : Prop)(Q : Prop) (Prf(P))(Prf(Q))Prf(P ∧Q)

∧E1 : (P : Prop)(Q : Prop) (Prf(P ∧Q))Prf(P)

∧E2 : (P : Prop)(Q : Prop) (Prf(P ∧Q))Prf(Q)

Universal quantifier

∀ : (A : Type)(P : (A)Prop)Prop

∀I : (A : Type)(P : (A)Prop) ((x:A)Prf(P (x))) Prf(∀(A,P))

∀E : (A : Type)(P : (A)Prop) (Prf(∀(A,P))) (a : A)Prf(P (a))

Negation

¬ : (Prop)Prop

DN : (P : Prop) (Prf(¬¬P))Prf(P)

...

Fig. 3. Logical operators and direct proofs in the classical FOL.

— the proofs of a proposition P are represented by the objects of kind Prf(P).

An LTT is specified in LF ′ by declaring constants and computation rules. Each dec-

laration has the effect of extending LF ′ with new rules; see (Adams and Luo, 2010).

3.2.1. Logics. The logic in an LTT is specified by declaring constants for the logical

operators and the associated rules.

For example, say we wish an LTT’s logical component to consist of classical first-order

logic in their logical part. This can be introduced by declaring the constants that stand

for the logical operators, and constants that stand for the associated inference rules. The

logical operators ∧, ∀ and ¬ and some of their associated rules of inference are specified

in Figure 3. Other logical operators can be introduced in a similar way.

3.2.2. Remarks

1 The quantifier ∀ declared here can only be used to quantify over a type; that is, for

a formula ∀(A,P), or ∀x:A,P (x) in the usual notation, A must be a type.

In particular, since Prop is not a type (it is a kind), one cannot form a proposition

by quantifying over Prop. Higher-order logical quantification such as ∀X:Prop.X, as

found in impredicative type theories such as System F (Girard, 1986) and the Calculus

of Constructions (Coquand and Huet, 1988), is not possible with this constant.

Similarly, since propositions are not types (Prf(P) is a kind, not a type), one cannot

quantify over the proofs of a proposition, either.

When designing an LTT, we can thus choose whether to allow first- or higher-order

R. Adams and Z. Luo 10

quantification. Contrast this situation with a type theory such as ECC or UTT (Luo,

1994), where it would not be possible to restrict quantification to the datatypes, since

Prop is a type and every proposition is a type.

2 An LTT is specified in the framework, not just by specifying a collection of constants,

but also by specifying computation rules. Computation rules are needed in the type-

theoretic component for specifying inductive data types, universes, etc. Computation

rules in the logical component are also sometimes needed; they were used, for example,

in (Adams and Luo, 2010) in the specification of typed sets.

The ability to specify computation rules is the most important difference between the

Martin-Löf family of logical frameworks, including LF and LF ′, and the Edinburgh

LF (Harper et al., 1993).

3 If we have introduced a universe that contains the empty type and the type of natural

numbers, we can then prove, internally in the type-theoretic framework, that Peano’s

fourth axiom for natural numbers holds (i.e., the proposition ∀x:N.(s[x] 6=N 0) holds).

This is similar to Martin-Löf’s type theory, where without the presence of a type

universe, one cannot prove Peano’s fourth axiom internally (Smith, 1988).

3.3. The Type-Theoretic Framework

The type-theoretic framework is a method for specifying LTTs using a type system such as

LF′. It was introduced in (Luo, 2006). The LTTs specifiable in the type-theoretic frame-

work are all defined and specified in a uniform way, but should be capable of expressing a

wide range of different mathematical foundations. The type-theoretic framework is thus

especially suitable as the basis for a pluralist formalisation.

One specifies an LTT within the type-theoretic framework by:

1 Declaring a number of inductive types and inductive families of types.

Besides N , other examples of inductive types include those of lists, vectors, trees,

ordinals, dependent functions and dependent pairs. In general, inductive types can be

generated by inductive schemata as studied in, for example, (Dybjer, 1991; Coquard

and Paulin-Mohring, 1990; Luo, 1994).

2 Declaring a number of type universes: types that whose objects are (names of) types.

For example, a universe U of ‘small types’ can be introduced as

U : Type and T : (U)Type;

An inductive type may have a name in U : e.g. we may have nat as a name of N :

nat : U and T (nat) = N : Type.

Notice that such a universe is predicative, in the sense that it only contains types that

do not involve U itself. The general way of introducing predicative type universes can

be found in (Martin-Löf, 1984). Impredicative universes, such as that of propositions

in UTT (Luo, 1994, p.175), can also be specified in the type-theoretic framework.

3 Declaring a number of logical connectives and their associated rules of deduction.

We may introduce some or all of the propositional connectives, first- or higher-order

A Pluralist Approach to the Formalisation of Mathematics 11

quantifiers, and other logical connectives (such as equality). The rules of deduction

may be those of classical logic, constructive logic, minimal logic, etc.

4 Declaring one or more propositional universes (Adams and Luo, 2010).

5 Declaring the induction rules for each inductive data type.

An LTT may contain some data types and usually they are inductively defined, exactly

the way as inductive types are specified in LF (see Section 3.1). For each inductive

type in the LTT, there is an associated induction rule for proving properties of the

objects of that type.

For example, an LTT may contain the type N of natural numbers as specified in

Figure 2 in Section 3.1. Associated with N , there is an associated induction rule

given by the following constant ENP with associated rule

Γ ` P : (N)Prop Γ ` c : P (0) Γ ` f : (x:N)(P (x))P (succ(x)) Γ ` n : N

Γ ` ENP (P, c, f, n) : P (n)

Note that, when read as a rule of proof, the above is just the rule of induction over

natural numbers.

Therefore, associated with each inductive type, there are two elimination operators:

ET and EP (for N , they are ENT and ENP). Note that the elimination operator over

types, ET , has associated computation rules (e.g., the computation rules for ENT in

Figure 2), while the elimination operator over propositions, EP , does not.§

We may introduce rules for induction over the whole of Prop as above, or over just

one propositional universe.

The induction rules connect the world of logical propositions (formally represented

by Prop) and that of the data types (formally represented by Type). Quantifications

over types allow one to form propositions to express logical properties of data and

the induction rules to prove those properties.

6 Introducing types of typed sets.

For each type A, we can introduce a type Set(A) of all sets of objects of type A.

This type’s canonical objects have the form {x:A | φ}, where φ is a proposition. This

allows us to introduce sets in an impredicative way (if φ may range over the whole

of Prop), as in ordinary mathematics, or a predicative way (if φ ranges only over a

small universe of propositions, as in predicative mathematics; see, e.g., (Feferman,

2005)). (For further and formal details, see (Luo, 2006; Adams and Luo, 2010)).

Such a notion of typed set, together with the possibility of representing the classical

first-order logic, allows us to formalise classical predicative mathematics in the type-

theoretic framework (Weyl, 1918; Adams and Luo, 2010) as well as impredicative

mathematics (cf., the discussion on mathematical pluralism in Section 2).

3.3.1. Remarks

§ For the elimination operators over propositions, it is optional whether they have associated compu-
tation rules, similar to those for the elimination operators over types. Including or excluding these

computation rules will not affect the type-theoretic component (since types and terms may not depend
on proofs) or which propositions are provable.

R. Adams and Z. Luo 12

1 Separation of propositions and types The type-theoretic framework has an im-

portant salient feature: there is a clear separation between logical propositions and

data types. In Martin-Löf’s type theory, for example, types and propositions are iden-

tified. The second author has argued, for instance in the development of ECC/UTT

(Luo, 1994), that it is unnatural to identify logical propositions with data types and

there should be a clear distinction between the two. This is part of the philosophy

behind the development of the type theories ECC and UTT, where data types are

not propositions, although logical propositions are types.

Logic-enriched type theories have gone one step further (as compared with ECC/UTT)

— there is a complete separation between propositions and types. Logical proposi-

tions or their totality Prop are not regarded as types. This has led to a more flexible

treatment of logics.
2 Consistency and Adequacy. The consistency of an LTT formulated following the

above suggestions can be shown either by a direct proof (Goguen, 1994) or by an

indirect mapping between the LTT concerned to a known consistent type system. For

example, in (Luo, 2006), we map an LTT called LTT1 (classical FOL plus inductive

types) to MLTTe, an extension of Martin-Löf’s type theory with the excluded middle.

We show that LTT1 is consistent relative to MLTTe.

Such a relative consistency proof raises an interesting question: if Martin-Löf’s type

theory extended with excluded middle is consistent, why use an LTT at all? Why

not just use MLTTe? One reason is that the meaning theory of type theory relies

on the property of canonicity : that every object reduces to a canonical object. This

makes it possible for us to provide a meaning theory in which an inductive type is

understood as consisting of its canonical objects (for example, the type of natural

numbers consists of zero and its successors).

The LTTs in the type-theoretic framework possess the property of canonicity, thanks

to the clear distinction between logical propositions and data types. The system

MLTTe does not; in MLTTe, every inductive type contains infinitely many non-

canonical objects. The type-theoretic framework hence provides an adequate treat-

ment of classical reasoning on the one hand, and a clean meaning-theoretic under-

standing of inductive types on the other.

3.4. Working with More than One LTT

We are concerned in this paper with formalisations that involve more than one LTT. We

must therefore extend the logical framework yet again.

If we wish to declare two LTTs simultaneously, called LTT1 and LTT2, say, then we

shall need the logical framework to possess the following kinds, besides the dependent

product kinds of the form (x:K)K ′:

Type1, El1 (k) , Prop1, Prf1(k), Type2, El2 (k) , Prop2, Prf2(k)

with the following rules of deduction:

Γ valid

Γ ` Type1kind

Γ ` A:Type1

Γ ` El1 (A) kind

Γ valid

Γ ` Prop1kind

Γ ` P :Prop1

Γ ` Prf1(P)kind

A Pluralist Approach to the Formalisation of Mathematics 13

Γ valid

Γ ` Type2kind

Γ ` A:Type2

Γ ` El2 (A) kind

Γ valid

Γ ` Prop2kind

Γ ` P :Prop2

Γ ` Prf2(P)kind

In the framework augmented with these kinds:

— the objects of kind Typei represent the types of LTTi;

— the objects of kind Eli (A) represent the terms of LTTi;

— the objects of kind Propi represent the propositions of LTTi;

— the objects of kind Prfi(A) represent the proofs of LTTi

The constants and computation rules in the declaration of LTT1 will therefore involve

only the kinds Type1, El1 (A), Prop1 and Prf1(A), and the product kinds built up from

these. When we are working in LTT1, we use only these kinds. Likewise, when declaring

or working in LTT2, we use only the kinds Type2, El2 (A), Prop2, Prf2(A), and the

product kinds built from these.

3.4.1. Logical Framework LFLTT We wish to give the user the ability to declare arbitrar-

ily many pairs (K,C) consisting of a top-kind K and a kind constructor C.

The effect of declaring the pair (K,C) is to extend the logical framework with the

following rules of deduction:

Γ valid

Γ ` Kkind

Γ ` k:K

Γ ` C(k)kind

Γ ` k = k′:K

Γ ` C(k) = C(k′)

In the above example, we would declare the pairs

(Type1, El1), (Type2, El2), (Prop1, P rf1), (Prop2, P rf2).

We note that there is no longer a need to have the kinds Type, El (A), Prop and

Prf(P) as part of the primitive syntax. We therefore remove them. The user can rein-

troduce them if needed by declaring the topkind pairs (Type,El) and (Prop,Prf).

We call this new framework LFLTT. In summary: LFLTT is the framework LF, with

the kinds Type and El(k) removed, and with the ability to declare pairs (K,C) added.

3.5. Implementation

The proof assistant Plastic was first implement by Callaghan as an implementation of LF

(Callaghan and Luo, 2001). It was extended to an implementation of LF ′, and used in

the work to formalise Weyl’s predicative mathematics using the type-theoretic framework

(Adams and Luo, 2007; Adams and Luo, 2010).

Plastic allows the user to declare constants with commands such as c:K by [c:K]; to

define constants with commands such as [c= · · · :K]; and to construct objects using tactics

such as Intros and Refine. The user may also declare computation rules of a certain

form. Plastic automatically generates the constants and computation rules for inductive

types, but logical connectives, induction rules, universes and computation rules in the

logical component must be entered by hand.

For the work described in this paper, the first author is extending Plastic further to an

R. Adams and Z. Luo 14

implementation of LFLTT. The user may now declare a top-kind and constructor (K,C)

by entering the command Topkind K C;

We shall describe the Plastic implementations of several LTTs in Section 5 and how

they are used in studying pluralist formalisations and proof reuse.

4. Our Approach to Pluralist Formalisations

Our approach to pluralist formalisations is based on the concept of a translation:

Definition 4.1 (Translation). A translation Φ from an LTT S to an LTT T is a

mapping from the expressions of S to the expressions of T such that:

— if A is a type of S, then Φ(A) is a type of T ;

— if M is a term of type A in S, then Φ(M) is a term of type Φ(A) in T ;

— if P is a proposition of S, then Φ(P) is a proposition of T ;

— if H is a proof of P in S, then Φ(H) is a proof of Φ(P) in T .

Suppose we have a translation Φ from S to T . If α is a theorem of S, then Φ(α) is a

theorem of T . We wish to find a way to take a formalisation of a proof of α in S, and

use that proof script — without any modification — as a proof of Φ(α) in T .

Our approach is as follows(see Fig. 1). Let MS and MT be two proof scripts that

declare the constants and rules of deduction of S and T respectively. Let Mα be a proof

script that imports MS , and proves the theorem α.

We construct a proof script Mφ that imports MT , and then defines every symbol that

was declared as a constant in MS . If MS contains a constant declaration c:K, then MT

must define c to be an object of kind K. If MS declares the computation rule M B N ,

then we must ensure that M and N are convertible under the definitions in MT .

If both these conditions are met, then we know that the proof script Mα will parse if

we import Mφ instead of MS . Let us give the name Mφ(α) to the proof script with this

small change made (see Fig. 1).

Example 4.2. Let LTT1 be an LTT whose logical component consists of classical propo-

sitional logic with negation not and implication imp. Let LTT2 be an LTT whole logical

component consists of classical propositional logic with negation neg and disjunction or

(see Fig. 4). We shall write ∼ φ for not φ, φ ⊃ ψ for imp φ ψ, ¬φ for neg φ, and φ ∨ ψ
for or φ ψ.

It is known that implication can be defined in terms of disjunction and negation in

classical logic. This fact can be used to define a translation from LTT1 to LTT2:

[[∼ φ]] ≡ ¬ [[φ]] [[φ ⊃ ψ]] ≡ ¬ [[φ]] ∨ [[ψ]]

Let M1 and M2 be two proof scripts that consist of the constant declarations given in

Fig. 4 for LTT1 and LTT2 respectively. We now wish to write a proof script MΦ that

imports M2, and then defines every constant that was declared in M1.

The proof script Mφ begins as follows:

A Pluralist Approach to the Formalisation of Mathematics 15

LTT1 LTT2

Topkind Prop1 Prf1 Topkind Prop2 Prf2

not : Prop1 → Prop1 neg : Prop2 → Prop2

notI : (p, q:Prop1) negI : (p, q:Prop2)

(Prf1(p)→ Prf1(q))→ (Prf2(p)→ Prf2(q))→
(Prf1(p)→ Prf1(∼ q))→ (Prf2(p)→ Prf2(¬q))→
Prf1(∼ p) Prf2(¬q)

DNE : (p:Prop1)Prf1(∼∼ p)→ Prf1(p) DNNE : (p:Prop2)Prf2(¬¬p)→ Prf2(p)

imp : Prop1 → Prop1 → Prop1 or : Prop2 → Prop2 → Prop2

impI : (p, q:Prop1)(Prf1(p)→ Prf1(q))→ orIl : (p, q:Prop2)Prf2(p)→ Prf2(p ∨ q)
Prf1(p ⊃ q) orIr : (p, q:Prop2)Prf2(q)→ Prf2(p ∨ q)

impE : (p, q:Prop1)Prf1(p ⊃ q)→ orE : (p, q, r:Prop2)

Prf1(p)→ Prf1(q) (Prf2(p)→ Prf2(r))→
(Prf2(q)→ Prf2(r))→
Prf2(p ∨ q)→ Prf2(r)

Fig. 4. The logical components of LTT1 and LTT2

import M2;

[Prop1 = Prop2];

[Prf1 = Prf2];

[not = neg];

[notI = negI];

[DNE = DNNE];

We must now define imp. The definition is guided by (1) above:

[imp = [p, q:Prop1] ∼ p ∨ q];

We must now define objects impI and impE that have kinds

impI : (p, q:Prop1)(Prf1(p)→ Prf1(q))→ Prf1(p ⊃ q)
impE : (p, q:Prop1)Prf1(p ⊃ q)→ Prf1(p)→ Prf1(q)

i.e. impI : (p, q:Prop2)(Prf2(p)→ Prf2(q))→ Prf2(∼ p ∨ q)
impE : (p, q:Prop2)Prf2(∼ p ∨ q)→ Prf2(p)→ Prf2(q)

It is straightforward to construct these objects using a proof assistant like Plastic.

Now, suppose we have formalised a proof of the proposition α in LTT2. That is, suppose

we have a proof script that imports M2, and then constructs an object of kind Prf2(α).

If we change the script so it imports MΦ instead, then we know that the script shall still

parse; and the script shall now be a proof of [[α]] in LTT2.

For example, suppose that a script imports M2 that constructs an object of kind

R. Adams and Z. Luo 16

(p:Prop2)Prf2(p ⊃ p). We change the script to import MΦ instead. Under the definitions

in MΦ, we have

(p:Prop2)Prf2(p ⊃ p) = (p:Prop1)Prf1(∼ p ∨ p)

and so the script now constructs an object of kind (p:Prop1)Prf1(∼ p∨p). This is exactly

as required, since [[φ ⊃ φ]] ≡∼ [[φ]] ∨ [[φ]].

4.1. Remarks

1 Note that the construction of the module MΦ can be seen in one sense as a formali-

sation of the metatheorem that [[]] is sound, i.e. maps theorems to theorems.

2 Note that a translation between two LTTs may involve changing the logical world

(as in the examples in Sections 5.2–5.4 below), the datatype world (e.g. the inclusion

from LTTW to LTTI considered in (Adams and Luo, 2010)) or both.

5. Case Studies in Formalisation

We now describe several case studies in the use of this method of proof reuse that we

have carried out using the proof assistant Plastic. The source code for these examples is

available at http://www.cs.rhul.ac.uk/~robin/pluralism

5.1. Classical and Intuitionistic LTTs

For these examples, we shall assume that we have two LTTs: a classical LTT, LTTclass,

and an intuitionistic LTT, LTTint. We assume that these two LTTs have the same type-

theoretic component. The logical component of LTTclass is first-order classical logic with

the connectives eqC, notC, andC, orC, impC, allC and exC. The logical component of

LTTint is first-order intuitionistic logic with the connectives eqI, notI, andI, orI, impI,

allI and exI.

We write M =C N for eqC A M N , ¬Cφ for notC φ, φ∧C ψ for andC φ ψ, φ∨C ψ for

orC φ ψ, φ ⊃C ψ for impC φ ψ, ∀Cx:A.φ for allC A [x:A]φ, and ∃Cx:A.φ for exC A [x:A]φ.

Similarly, we write M =I N for eqI A M N , etc.

We have two proof scripts: MC that declares the constants and computation rules of

LTTclass, and MI that declares the constants and computation rules of LTTint. Some of

the declarations are given in Fig. 5. Note that, apart from the different names for the

constants, the only difference between the two scripts is the inclusion of ¬C¬CE in MC .

We shall omit the subscripts C and I when no confusion may result.

5.2. Inclusion

If an LTT L1 is a subsystem of the LTT L2, then we can easily reuse proof scripts from

L1 as proof scripts in L2. The mapping Φ here is the inclusion mapping.

For example, LTTint is a subsystem of LTTclass. We can easily write a module MItoC

A Pluralist Approach to the Formalisation of Mathematics 17

MC MI

Topkind TypeC ElC Topkind TypeI ElI

Topkind PropC PrfC Topkind PropI PrfI

eqC : (A:TypeC)A→ A→ PropC eqI : (A:TypeI)A→ A→ PropI
eqCI : (A:TypeC)(a:A)PrfC(a =C a) eqII : (A:TypeI)(a:A)PrfC(a =I a)

eqCE : (A:TypeC)(P :A→ PropC) eqIE : (A:TypeI)(P :A→ PropI)

(a, b:A) (a, b:A)

PrfC(a =C b)→ PrfC(Pa)→ PrfI(a =I b)→ PrfI(Pa)→
PrfC(Pb) PrfI(Pb)

notC : PropC → PropC notI : PropI → PropI
notCI : (p, q:PropC) notII : (p, q:PropI)

(PrfC(p)→ PrfC(q))→ (PrfI(p)→ PrfI(q))→
(PrfC(p)→ PrfC(¬Cq))→ (PrfI(p)→ PrfI(¬Iq))→
PrfC(¬Cp) PrfI(¬Iq)

notnotCE : (p:PropC)PrfC(¬C¬Cp)→
PrfC(p)

orC : PropC → PropC → PropC orI : PropI → PropI → PropI
orCIl : (p, q:PropC)PrfC(p)→ orIIl : (p, q:PropI)PrfI(p)→

PrfC(p ∨C q) PrfI(p ∨C q)
orCIr : (p, q:PropC)PrfC(q)→ orIIr : (p, q:PropI)PrfI(q)→

PrfC(p ∨C q) PrfI(p ∨I q)
orCE : (p, q, r:PropC) orIE : (p, q, r:PropI)

(PrfC(p)→ PrfC(r))→ (PrfI(p)→ PrfI(r))→
(PrfC(q)→ PrfC(r))→ (PrfI(q)→ PrfI(r))→
PrfC(p ∨C q)→ PrfC(r) PrfI(p ∨I q)→ PrfI(r)

Fig. 5. The partial scripts that declare LTTclass and LTTint

that describes the inclusion mapping (Fig. 6). Any code that parses under MC will also

parse under MItoC .

This form of proof reuse was used in the formalisation of Weyl’s predicative foundation

of mathematics (Adams and Luo, 2010). That formalisation involved two LTTs: the

predicative LTTW and an impredicative extension. We defined the real numbers in LTTW,

proved in LTTW the theorem that every set of rationals bounded above has a (real) least

upper bound, and then reused that proof to prove in the impredicative LTT that every

set of reals bounded above has a least upper bound.

R. Adams and Z. Luo 18

import MC

[TypeI = TypeC];

[ElI = ElC];

[PropI = PropC];

[PrfI = PrfC];

[notI = notC];

[notII = notCI];

[orI = orC];
...

Fig. 6. The Module MItoC

5.3. The Double Negation Translation

The double negation translation, or Gödel-Gentzen negative translation (Gödel, 1933) is

a mapping from classical logic to intuitionistic logic.

The mapping is defined thus:

α¬¬ ≡ ¬¬α (α atomic)

(¬φ)
¬¬ ≡ ¬φ¬¬

(φ ∧ ψ)
¬¬ ≡ φ¬¬ ∧ ψ¬¬

(φ ∨ ψ)
¬¬ ≡ ¬(¬φ¬¬ ∧ ¬ψ¬¬)

(φ→ ψ)
¬¬ ≡ φ¬¬ → ψ¬¬

(∀xφ)
¬¬ ≡ ∀xφ¬¬

(∃xφ)
¬¬ ≡ ¬∀x¬φ¬¬

To prove the soundness of the double negation translation, the most important step is

the following lemma, which is proved by induction on φ:

Lemma 5.1. For any formula φ, the formula φ¬¬ is stable; that is, ¬¬φ¬¬ ⊃ φ¬¬ is

provable in intuitionistic logic.

It is then quite straightforward to prove that, if φ is provable in classical logic, then

φ¬¬ is provable in intuitionistic logic, by induction on the derivation of φ. We wish to

write a proof script MDN that imports MI and then defines every constant that was

declared in MC .

5.3.1. First Attempt For our first attempt, we simply define

[TypeC = TypeI];

[ElC = ElI];

[PropC = PropI];

[PrfC = PrfI];

A Pluralist Approach to the Formalisation of Mathematics 19

and then define eqC, notC, etc. as follows:

[eqC = [A:TypeC] [a, b:A] ¬I¬I(a =I b)];

[notC = notI];

[orC = [p, q:PropC] ¬I(¬Ip ∧I ¬Iq)];
...

This module ‘maps’ formulas of LTTclass to their double-negation translation, in the

following sense: an expression that denotes an proposition φ in LTTclass will expand,

under these definitions, to an expression that denotes φ¬¬ in LTTint. For example, the

expression P ∨C ¬CP expands under the above definitions to ¬I(¬IP ∧I ¬I¬IP).

However, this script will not work, as the kind of orCE is then (omitting the PrfIs):

(P,Q,R:PropI)(P → R)→ (Q→ R)→ ¬(¬P ∧ ¬Q)→ R

and this kind is uninhabited in LTTint.

This is because the corresponding rule of deduction

¬(¬φ ∧ ¬ψ)

[φ]
···
χ

[ψ]
···
χ

χ

is not admissible in intuitionistic logic.

Looking at the proof of soundness, we see that we somehow need to use the fact that

φ¬¬ is always stable (Lemma 5.1). This gives us the idea for our second and successful

attempt:

5.3.2. Second Attempt We must map PropC , not to the kind of all propositions, but to

the kind of all stable propositions. Ideally, we would like to write

PropC = Σp:PropI .PrfI(¬I¬Ip ⊃I p) .

However, LFLTT does not at present have these Σ-kinds.

One option would be to extend LFLTT with Σ-kinds, or some similar feature. This is

an option that the authors intend to explore in the future.

As an alternative, we instead declare in MDN the kind PropC , the constructor PrfC ,

and the following introduction, elimination and computation rules:

[PropCI:(p:PropI)PrfI(¬I¬Ip ⊃I p)→ PropC];

[PI1:PropC → PropI];

[PI2:(p:PropC)PrfI(¬I¬I(PI1 p) ⊃I PI1 p)];

[PI1(PropCI p f) = p];

[PrfCI:(p:PropC)PrfI(PI1 p)→ PrfC(p)];

[PrfCE:(p:PropC)PrfC(p)→ PrfI(PI1 p)];

The constructor PrfC is defined as follows:

[PrfC = [p:PropC] PrfI(PI1 p)];

R. Adams and Z. Luo 20

We can now proceed to define the constants of MC . The connective ∨C , for example,

must now be defined as a binary function on this ‘Sigma-kind’:

orC : PropC → PropC → PropC

(p, f) ∨C (q, g) ≡ (¬I(¬Ip ∧I ¬Iq), h)

where h is a proof that ¬I(¬Ip ∧I ¬Iq) is stable.

Written out in full, we have

orC = [p, q:PropC] PropCI (¬I(¬I(PI1 p) ∧I ¬I(PI1 q)) · · ·

where · · · elides a proof of

¬¬¬(¬(PI1 p) ∧ ¬(PI1 q)) ⊃ ¬(¬(PI1 p) ∧ ¬(PI1 q)) .

The kind of orCE expands under the above definitions to

(P,Q,R:PropC)(PrfI(P1)→ PrfI(R1))→ (PrfI(Q1)→ PrfI(R1))→
PrfI(¬I(¬IP1 ∧I ¬IQ1))→ PrfI(R1)

which is inhabited. The inhabitant we construct makes use of R2:PrfI(¬I¬IR1 ⊃I R1).

It is possible to define every constant in MC in this fashion. Any module that imports

MC will parse if it is changed to import MDN instead. We have:

— If an expression denotes a proposition φ under MC , then under MDN it denotes a

pair consisting of φ¬¬ and a proof that φ¬¬ is stable.

— If an expression denotes a proof P of φ under MC (i.e. P :PrfC(φ)), then under MDN

it denotes a proof of φ¬¬.

5.3.3. Application As an application of this work, we can show that, if LTTint is consis-

tent, then LTTclass is consistent. Suppose we had a proof script that imports MC , and

then constructs an object of type PrfC(⊥C). Then the same proof script could import

MDN instead, in which case it would construct an object of type PrfI(⊥I).

5.4. The A-translation

The A-translation (Friedman, 1978) is a mapping from intuitionistic logic to intuitionistic

logic. We fix a formula A, and then define the formula φA for every formula φ as follows:

PA ≡ P ∨A (P atomic)

(¬φ)A ≡ φA ⊃ A
(φ ∗ ψ)A ≡ φA ∗ ψA (∗ ≡ ∧,∨,⊃)

(Qxφ)A ≡ QxφA (Q ≡ ∀,∃)

This translation is sound: if φ is a theorem of an intuitionistic theory T , then so is φA

(Friedman, 1978). The important lemma in the proof of this theorem is:

Lemma 5.2. For any formula φ, we have ` A→ φA.

A Pluralist Approach to the Formalisation of Mathematics 21

We can make use of the A-translation for proof reuse as follows. We write two copies

of a script that defines LTTint, say MI and M ′
I :

MI M ′
I

Topkind PropI PrfI Topkind Prop′
I Prf′I

eqI : (A:TypeI)A→ A→ PropI eqI′ : (A:Type′
I)A→ A→ Prop′

I

notI : PropI → PropI notI′ : Prop′
I → Prop′

I

andI : PropI → PropI → PropI andI′ : Prop′
I → Prop′

I → Prop′
I

...
...

We construct our module MA that defines the A-translation as follows. We assume that

MI has been imported and an object A:PropI defined. We now define every constant

declared in M ′
I . The constant Prop′

I is defined to be the kind of all propositions φ:PropI
such that A ⊃ φ. Again, we would like to write:

Prop′
I = Σp:PropI .PrfI(A ⊃I p)

Prf′I(φ, f) = PrfI(φ)

a =′
I b = (a =I b ∨I A, · · ·)

¬′I(φ, f) = (φ ⊃I A, · · ·)
(φ, f) ∨′I (ψ, g) = (φ ∨I ψ, · · ·)

...

But as LFLTT does not have Σ-kinds, we instead declare the kind Prop′
I , the con-

structor Prf′I , and the following constants:

Prop′
II : (p:PropI)PrfI(A ⊃I p)→ Prop′

I

PI1 : Prop′
II → PropI

PI2 : (p:Prop′
I)PrfI(A ⊃I PI1 p)

PrfI2Prf′I : (p:PropI)(f :PrfI(A ⊃I p))Prf′I(Prop′
II p f)→ PrfI(p)

Prf′I2PrfI : (p:PropI)(f :PrfI(A ⊃I p))PrfI(p)→ Prf′I(Prop′
II p f)

a =′
I b = Prop′

II(a =I b ∨I A)(· · ·)
¬′Ip = Prop′

II(PI1 p ⊃I A)(· · ·)
p ∨′I q = Prop′

II(PI1 p ∨I PI1 q)(· · ·)

and the computation rule PI1(Prop′
II p f) = p:PropI .

Now any proof script beginning import M ′
I ; will also parse if we replace this line with

import MI ;

[A = · · · : PropI];

import MA;

As an application of the A-translation, we can show that Markov’s law is admissible

for quantifier-free formulas:

R. Adams and Z. Luo 22

Theorem 5.3. Let T be an intuitionistic theory. If T ` ¬¬∃xφ, where φ is quantifier-free

(possibly with free variables other than x), then T ` ∃xφ.

Proof. Let A ≡ ∃xφ. If T ` ¬¬∃xφ then, by the soundness of the A-translation,

T ` (∃xφA → A)→ A.

Now, it is easy to show that φA ` φ ∨ A and φ ∨ A ` φA for φ quantifier-free. Thus,

we have T ` (∃x(φ ∨ A) → A) → A . We have ∃xφ → A and ∃xA → A, hence

T ` ∃x(φ ∨A)→ A, and so T ` A; i.e. T ` ∃xφ.

We can make use of this result as follows: given any proof of ¬′I¬′I∃xφ under M ′
I , we

can obtain a proof of ∃xφ under MI .

Suppose we have a proof script Mα that imports M ′
I and proves ¬¬∃xφ:

import M ′
I

...

[P′ = · · · :Prop′
I];

Claim H:PrfI′(¬′I¬′I∃′Ix:T.P′x);

Proof
...

Qed

Then we can produce a proof script that imports MI and proves ∃xφ:

import MI ;
...

[P = · · · :PropI];

[A = ∃Ix:T.Px];

import Mα;

Claim K:PrfI(∃Ix:T.Px);

Proof
...

Qed

In this script, the line defining P (line 3) is the result of replacing ∧I′ with ∧I , ∨I′
with ∨I , etc. in line 6.

The proof K makes use of H, which is now a proof of ((∃Ix:T.(Px∨I A)) ⊃I A) ⊃I A.

5.4.1. Remark It is unsatisfactory to have to work in two copies of LTTint, and to have

separate definitions of P and P ′. We would like to be able to take a script that proves

¬¬∃xPx in LTTint, and produce a script that proves ∃xPx in LTTint. This requires a

more sophisticated module mechanism than the one that currently exists in Plastic.

A Pluralist Approach to the Formalisation of Mathematics 23

5.5. The Russell-Prawitz Modality

The following mapping from a first-order language to a second-order language, first in-

troduced in (Russell, 1903), was given the name of the Russell-Prawitz modality by Aczel

(Aczel, 2001).

[[P]] ≡ P (P atomic)

[[¬φ]] ≡ ∀p. [[φ]] ⊃ p
[[φ ∧ ψ]] ≡ ∀p. [[φ]] ⊃ [[ψ]] ⊃ p
[[φ ∨ ψ]] ≡ ∀p.([[φ]] ⊃ p) ⊃ ([[ψ]] ⊃ p) ⊃ p
[[φ ⊃ ψ]] ≡ [[φ]] ⊃ [[ψ]]

[[∀xφ]] ≡ ∀x [[φ]]

[[∃xφ]] ≡ ∀p.(∀x [[φ]] ⊃ p) ⊃ p

This mapping can easily be turned into a mapping between two LTTs, which can be

handled by our method.

Let LTT1 be a first-order LTT with connectives not1, and1, or1, imp1, all1, ex1. Let

LTT2 be a second-order LTT with connective imp2, a first-order quantifier all2:(A:Type2)(A→
Prop2)→ Prop2, and a second-order quantifier All2:(Prop2 → Prop2)→ Prop2.

We write φ ⊃2 ψ for imp2 φ ψ, ∀2x:A.φ for all2 A [x:A]φ, and ∀2p:Prop2.φ for

All2 [p:Prop2]φ.

Let M1 and M2 be two proof scripts that declare these two LTTs.

We can write a module MRP which imports M2, and then defines every constant

declared in M1:

Type1 = Type2

Prop1 = Prop2

Prf1 = Prf2

not1 = [p:Prop1]∀q:Prop2.p ⊃2 q

and1 = [p, q:Prop1]∀r:Prop2.p ⊃2 q ⊃2 r

or1 = [p, q:Prop1]∀r:Prop2.(p ⊃2 r) ⊃2 (q ⊃2 r) ⊃2 r

imp1 = imp2

all1 = all2

ex1 = [A:Type1][P :A→ Prop1]∀2p:Prop2.(∀2x:A.Px ⊃2 p) ⊃2 p

Thus, our method of proof reuse can be applied to the Russell-Prawitz modality.

5.6. Other Applications

Our formalisation examples discussed in this paper have all concentrated on translations

that redefine the logical connectives, while leaving the world of data types unchanged.

As we mentioned above (cf., the remark at the end of Section 4), the LTT-approach to

R. Adams and Z. Luo 24

reuse also allows the possibility of changing the world of data types in formalisations. An

example of such is to reuse the results in the formalisation of predicative mathematics

in the formalisation of impredicative mathematics; this is studied in (Adams and Luo,

2010).

There could be further applications. Here are some possibilities.

1 Translations that redefine the type constructors.

For example, there is a translation from System T to System F described in (Girard

et al., 1990):

[[Bool]] = ΠX.X → X → X

[[Nat]] = ΠX.X → (X → X)→ X

[[A→ B]] = [[A]]→ [[B]]

[[A×B]] = ΠX.([[A]]→ [[B]]→ X)→ X

Our method of proof reuse can be applied in this case. The module declaring System

T will declare constants Bool:Type, Nat:Type, → :Type → Type → Type and

×:Type→ Type→ Type. The module MΦ will redefine these constants.

2 If we have two first-order systems S and T , and every axiom of S is a theorem of T ,

then every theorem of S is a theorem of T .

Our method of proof reuse can be applied in this case. For each axiom α of S, the

module MS will contain a constant declaration cα:Prf(α). The corresponding line in

MΦ will be a proof of α in T .

Our method does not appear able to handle interpretations between first-order the-

ories, however. An interpretation (in the sense of (Shoenfield, 1967)) between S and

T maps (e.g.) a unary function symbol f of S to a formula φ[x, y] of T such that

T ` ∀x∃!yφ[x, y].

This does not fit into the pattern of the translations above, and there is no obvious

way to adapt our method to this situation without changing the theories themselves

(e.g. by adding a unique choice operator).

6. Conclusion

We have demonstrated an original method for proof reuse when conducting formalisations

that make use of more than one LTT. For some translations Φ between an LTT S and

an LTT T , it is possible to write a module MΦ such that, if a proof script imports MS

and proves α, then changing the script to import MΦ will give a proof of Φ(α) in T .

Our case studies reported in this paper are all about the logical components. As we

have pointed out in various places in the paper that it is possible to consider translations

that change the part of data types (e.g., changing from predicative mathematics to im-

predicative mathematics). We expect further development in this respect: further cases

should be studied to investigate how such non-logical changes can be used in practice.

This method should be quite general, and applicable to work in type theories and other

systems of logic. However, if one wishes to formalise a large piece of mathematics that

involves proving results in several different foundations, then LTTs would seem to be

A Pluralist Approach to the Formalisation of Mathematics 25

particularly suitable, as they allow for a uniform presentation and treatment of a wide

range of different foundations.

For our future work, we wish to formalise one such piece of mathematics, using Plastic

and this method of proof reuse.

6.1. Related Work

There has been considerable work on proof reuse in recent years. For the most part,

this work has concentrated on the problem of allowing users of different proof assistants

to share one another’s work. This is a different problem to the one we consider in this

paper: how to formalise a piece of mathematics that involves several different foundations.

Nevertheless, the two lines of research should be able to benefit from one another.

6.1.1. Logosphere The large project Logosphere, started by Schürmann, Pfenning, Kohlhase

and Owre, aims to build a large library of formalised proofs that users of many different

proof assistants can all contribute to and make use of. It does this by representing the

many different many different systems and the translations between them in the Edin-

burgh LF. In particular, Howe’s translation from HOL to NuPRL (Howe, 1996; Howe,

1998) has been formalised and verified to be correct using the proof assistant Twelf

(Schürmann and Stehr, 2006).

The representation of HOL in ELF consists of a type tp:type to represent the types

of HOL, together with a function tm:tp→ type to represent the terms of each type. The

representation of Nuprl consists of a type n− tm:type to represent the terms of Nuprl.

The translation Φ is then represented by two functions

transtp:tp→ n− tm→ type transtm:tm A→ n− tm→ type

with transtp A B being inhabited iff Φ(A) = B. Twelf is able to verify that transtp

and transtm are total functions that satisfy the desired properties.

Their approach thus intended to be used to translate between two systems implemented

in two different proof checkers, using a logical framework implemented in a third. Our

approach is intended to be used by someone using just one proof checker, that implements

a logical framework.

The most important difference is that they represent the translation as a pair of objects

in the logical framework, and formally verifying its correctness. We do not represent the

translation as an object; rather, it is effected by replacing a set of declarations with a set

of definitions.

It remains to be seen how the two approaches compare in practice. However, we an-

ticipate that our approach should be more convenient for a pluralist formalisation, as

there is less overhead for the user. The translations are invisible to the user. Given a

translation Φ:S → T , when the user is working in T , there is no need for them to invoke

Φ in order to make use of the results proved in S. A change in the proof scripts produced

in S will produce an immediate change in the theorems that are visible to the user and

available for use in T .

R. Adams and Z. Luo 26

6.1.2. Little Theories The proof assistant IMPS is designed to use the little theories

methodology (Farmer, 2000), whereby a number of different theories and translations

between them are specified using a version of higher-order logic called LUTINS (Farmer

et al., 1990). A translation from one theory T1 to another T2 is specified by a mapping

from the constants of T1 to the expressions of T2 satisfying certain conditions, such that

the translation of every axiom of T1 is a theorem of T2.

The LTTs we have been dealing with in this paper have a richer type structure than the

theories that can be specified in LUTINS. Our LTTs include dependent types, inductive

types and computation rules. Apart from this difference, the class of translations that

can be handled by the two methods is remarkably similar.

However, IMPS required support for translations to be built into the implementation.

We have shown in this paper that, when working with a logical framework, a lightweight

mechanism for supporting these translations is automatically available for free.

The work that has been done in IMPS shows how useful it can be to work with a

variety of theories and translations in the course of a formalisation. We hope that the

programme of research proposed in this paper will prove that this remains true when we

are working in LTTs, too.

6.1.3. Other Methods of Proof Reuse The method of proof reuse between different sys-

tems of logic presented in this paper is, to the best of the authors’ knowledge, original.

Previous work on proof reuse in dependent type theories has concentrated on proof

reuse within a single type theory, in the following two specific classes of situations:

1 Given an isomorphism between types A and B, to automatically generate proofs

about B from proofs about A (Beckert and Klebanov, 2004).

2 Given an inductive type A, and an inductive type B formed by extending A with

new constructors, to reuse proofs about A to interactively generate proofs about B

(Boite, 2004).

3 The project LATIN (Iancu and Rabe, 2010) has similar aims to Logosphere.

4 Garillot and Gonthier’s method of mathematical components (François Garillot et al.,

2009) is a disciplined way of systematically organising the development of large for-

malisations involving many algebraic structures, in such a way that (e.g.) results

about groups can be applied to rings. This is not the same problem as the one consid-

ered in this paper, which involves translations between systems that involve changing

both the type structure and the logic. Nevertheless, there are superficial similarities,

and it remains to be seen if the two methods have anything to offer each other.

6.2. Future Work

Plastic at present has a very primitive module mechanism, which nevertheless was suffi-

cient for the work in this paper. However, the method we have presented relies on editing

proof scripts, changing the files which they import, which is very inconvenient in practice.

A more sophisticated module system that allows for parameterised modules would

make this form of proof reuse much more convenient. For our future work, we would like

to implement such a module mechanism in Plastic.

A Pluralist Approach to the Formalisation of Mathematics 27

We would also like to establish a better theoretical basis for this type of work. We would

like to establish some criteria for when a translation can be represented by a module by

our method. We would like to study the theory of modules, module interfaces and module

functors described above. The result will likely be very similar to the theory of institutions

(Goguen and Burstall, 1984); there are many superficial similarities. Institutions are not

exactly what we need, however, as institutions are a model-theoretic notion, whereas we

require a syntactic notion.

7. Acknowledgements

We would like to thank the anonymous referees for their very helpful and detailed com-

ments, and particularly for making us aware of related work in the area of proof reuse.

References

Aczel, P. (2001). The Russell-Prawitz modality. Mathematical Structures in Computer Science,

11(4):541–554.

Aczel, P. and Gambino, N. (2002). Collection principles in dependent type theory. In Luo, Z.,

McKinna, J., and Pollack, R., editors, Types for Proofs and Programs, volume 2277 of LNCS,

pages 1–23. Springer.

Adams, R. and Luo, Z. (2007). Weyl’s predicative classical mathematics as a logic-enriched type

theory. In Altenkirch, T. and McBride, C., editors, Types for Proofs and Programs, volume

4502 of LNCS, pages 1–17. Springer.

Adams, R. and Luo, Z. (2010). Weyl’s predicative classical mathematics as a logic-enriched type

theory. ACM Trans. on Computational Logic, 11(2):1–29.

Agda (2008). The Agda proof assistant. Available from the web page:

http://appserv.cs.chalmers.se/users/ulfn/wiki/agda.php.

Beckert, B. and Klebanov, V. (2004). Proof reuse for deductive program verification. In SEFM

’04 Proceedings of the Software Engineering and Formal Methods, Second International Con-

ference, pages 77–86. Published by the IEEE Computer Society.

Bertot, Y. and Castéran, P. (2004). Interactive theorem proving and program development:

Coq’Art: the calculus of inductive constructions. Springer-Verlag New York Inc.

Boite, O. (2004). Proof reuse with extended inductive types. In Slind, K., Bunker, A., and

Gopalakrishnan, G., editors, Theorem Proving in Higher Order Logics, volume 3223 of LNCS,

pages 50–65. Springer.

Callaghan, P. C. and Luo, Z. (2001). An implementation of typed LF with coercive subtyping

and universes. J. of Automated Reasoning, 27(1):3–27.

Constable, R. et al. (1986). Implementing Mathematics with the NuPRL Proof Development

System. Pretice-Hall.

Coq (2004). The Coq Proof Assistant Reference Manual (Version 8.0), INRIA. The Coq De-

velopment Team.

Coquand, T. and Huet, G. (1988). The calculus of constructions. Information and Computation,

76(2-3):95–120.

Coquard, T. and Paulin-Mohring, C. (1990). Inductively defined types. In Martin-Löf, P. and

Mints, G., editors, COLOG-88: International Conference in Computer Logic, volume 417 of

LNCS, pages 50–66. Springer-Verlag.

R. Adams and Z. Luo 28

Dybjer, P. (1991). Inductive sets and families in Martin-Löf’s type theory and their set-theoretic

semantics. In Huet, G. and Plotkin, G., editors, Logical Frameworks, pages 280–306. Cam-

bridge University Press.

Farmer, W., Guttman, J., and Thayer, F. (1990). IMPS : An interactive mathematical proof

system. In Stickel, M., editor, 10th International Conference on Automated Deduction, volume

449 of LNCS, pages 653–654. Springer.

Farmer, W. M. (2000). An infrastructure for intertheory reasoning. In McAllester, D., editor,

Automated Deduction — CADE-17, volume 1831 of LNCS, pages 115–131.

Feferman, S. (2005). Predicativity. In Shapiro, S., editor, The Oxford Handbook of Philosophy

of Mathematics and Logic. Oxford Univ Press.

François Garillot, Georges Gonthier, Assia Mahboubi, and Laurence Rideau (2009). Packaging

Mathematical Structures. In Tobias Nipkow and Christian Urban, editors, Theorem Proving

in Higher Order Logics, volume 5674 of Lecture Notes in Computer Science, Munich Alle-

magne. Springer.

Friedman, H. (1978). Classically and intuitionistically provable functions. In Higher Set Theory,

pages 21–28.

Gambino, N. and Aczel, P. (2006). The generalised type-theoretic interpretation of constructive

set theory. J. of Symbolic Logic, 71(1):67–103.

Girard, J.-Y. (1986). The system F of variable types, fifteen years later. Theoretical Computer

Science, 45(2):159–192.

Girard, J.-Y., Lafont, Y., and Taylor, P. (1990). Proofs and Types. Cambridge University Press.

Gödel, K. (1933). On intuitionistic arithmetic and number theory. Collected Works, pages

287–295.

Goguen, H. (1994). A Typed Operational Semantics for Type Theory. PhD thesis, University of

Edinburgh.

Goguen, J. and Burstall, R. (1984). Introducing institutions. Logics of Programs, pages 221–256.

Hájek, P. and Pudlák, P. (1998). Metamathematics of First-Order Arithmetic, volume 3 of

Perspectives in Mathematical Logic. Springer.

Harper, R., Honsell, F., and Plotkin, G. (1987). A framework for defining logics. Proc. 2nd Ann.

Symp. on Logic in Computer Science. IEEE.

Harper, R., Honsell, F., and Plotkin, G. (1993). A framework for defining logics. Journal of the

Association for Computing Machinery, 40(1):143–184.

Harrison, J. (1996). HOL Light: A tutorial introduction. In Formal Methods in Computer-Aided

Design, pages 265–269. Springer.

Howe, D. J. (1996). Importing mathematics from HOL into Nuprl. In von Wright, J., Grundy,

J., and Harrison, J., editors, Theorem Proving in Higher Order Logics, 9th International

Conference, TPHOLs’96, Turku, Finland, August 26–30, 1996, Proceedings, volume 1125 of

LNCS, pages 267–282. Springer-Verlag.

Howe, D. J. (1998). Toward sharing libraries of mathematics between theorem provers. In

Frontiers of Combining Systems, FroCoS’98, ILLC, University of Amsterdam, October 2–4,

1998, Proceedings. Kluwer Academic Publishers.

Iancu, M. and Rabe, F. (2010). Formalizing foundations of mathematics. Mathematical Struc-

tures in Computer Science.

Kohlenbach, U. (2005). Higher order reverse mathematics. In Simpson, S., editor, Reverse

mathematics 2001, volume 21 of Lecture Notes in Logic, pages 281–295. Assoc. Symbol. Logic

and A. K. Peters.

Luo, Z. (1994). Computation and Reasoning: A Type Theory for Computer Science. Oxford

University Press.

A Pluralist Approach to the Formalisation of Mathematics 29

Luo, Z. (2003). PAL+: a lambda-free logical framework. Journal of Functional Programming,

13(2):317–338.

Luo, Z. (2006). A type-theoretic framework for formal reasoning with different logical founda-

tions. In Okada, M. and Satoh, I., editors, Proc of the 11th Annual Asian Computing Science

Conference, volume 4435 of LNCS. Tokyo.

Luo, Z. and Pollack, R. (1992). LEGO Proof Development System: User’s Manual. LFCS Report

ECS-LFCS-92-211, Department of Computer Science, University of Edinburgh.

Martin-Löf, P. (1984). Intuitionistic Type Theory. Bibliopolis.

Muzalewski, M. (1993). An Outline of PC Mizar. Fondation Philippe le Hodey, Brussels.

Nipkow, T., Paulson, L. C., and Wenzel, M. (2002). Isabelle/HOL: a proof assistant for higher-

order logic. LNCS Tutorial 2283.

Nordström, B., Petersson, K., and Smith, J. (1990). Programming in Martin-Löf’s Type Theory:

An Introduction. Oxford University Press.

Paulson, L. C. (1994). Isabelle: a generic theorem prover. Lecture Notes in Computer Science,

828.

Pfenning, F. and Schürmann, C. (1999). Twelf — a meta-logical framework for deductive

systems. In Ganzinger, H., editor, Automated Deduction — CADE-16, volume 1632 of LNCS,

pages 202–206. Springer.

Pollack, R. (1994). The Theory of LEGO: A Proof Checker for the Extended Calculus of Con-

structions. PhD thesis, Edinburgh University.

Russell, B. (1903). The Principles of Mathematics. Routledge.

Schürmann, C. and Stehr, M.-O. (2006). An executable formalization of the HOL/Nuprl con-

nection in the metalogical framework Twelf. In Hermann, M. and Voronkov, A., editors,

Proceedings of Logic for Programming, Artificial Intelligence and Reasoning (LPAR), volume

4246 of Lecture Notes in Artificial Intelligence, pages 150–166. Springer-Verlag.

Schütte, K. (1965). Predicative well-orderings. Studies in Logic and the Foundations of Mathe-

matics, 40:280–303.

Shoenfield, J. (1967). Mathematical logic. Addison-Wesley Reading, Mass.

Simpson, S. G. (1999). Subsystems of Second-Order Arithmetic. Springer-Verlag.

Smith, J. (1988). The independence of Peano’s fourth axiom from Martin-Löf’s type theory

without universes. Journal of Symbolic Logic, 53(3).

Weyl, H. ((English translation of Das Kontinuum, 1918)). The Continuum: a critical examina-

tion of the foundation of analysis. Dover Publ. 1994.

View publication statsView publication stats

https://www.researchgate.net/publication/220173752

