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Abstract: Chromatic dispersion (CD) compensation in coherent fiber-optic systems repre-
sents a very significant DSP block in terms of power dissipation. Since spectrally efficient
coherent systems are expected to find a wider deployment in systems shorter than long
haul, it becomes relevant to investigate filter implementation aspects of CD compensation
in the context of systems with low-to-moderate amounts of accumulated dispersion. The
investigation we perform in this paper has an emphasis on implementation aspects such
as power dissipation and area usage, it deals with both time-domain and frequency-domain
CD compensations, and it considers both A/D-conversion quantization and fixed-point filter
design aspects. To enable an accurate analysis on power dissipation and chip area, the eval-
uated filters are implemented in a 28-nm fully depleted silicon-on-insulator (FD-SOI) process
technology. We show that an optimization of the filter response that takes pulse shaping into
account can significantly reduce power dissipation and area usage of time-domain imple-
mentations, making them a viable alternative to frequency-domain implementations.

Index Terms: Optical fiber communication, digital signal processing, application specific
integrated circuits, chromatic dispersion.

1. Introduction
Coherent fiber-optic communication systems have enabled effective receiver-side DSP-based com-
pensation of linear impairments, but the very high throughput requirements result in high power
dissipation in the receiver application-specific integrated circuit (ASIC). Along with dynamic equal-
ization and forward error correction, chromatic dispersion (CD) compensation represents one of
the most power dissipating functions in coherent receiver ASICs [1], [2]. Since traffic in metro
networks is expected to grow significantly [3], an increase in deployment of spectrally-efficient co-
herent systems for relatively short transmission distances is expected [4]. Thus, energy-efficient
CD compensation will not only be important for long-haul systems.

While dynamic equalization also can handle CD compensation, this equalization is in practice
limited by the number of taps in the adaptive filter. Here, it is important to recognize that an
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increasing tap count of an adaptive filter rapidly increases complexity both in filtering and dynamic
coefficient update calculation, which in turn increases DSP power dissipation [5]. In view of the
quadratic scaling with symbol rate, the possible reach of systems with only dynamic equalization
is severely limited by dispersion. Thus, low-complexity CD compensation modules optimized to
specific distances can yield a reduced overall power dissipation in systems with limited accumulated
chromatic dispersion.

Finite impulse response (FIR) filters are often preferred over infinite impulse response (IIR) filters
because of their inherent stability. In addition, since FIR filters are strictly feed-forward, FIR-based
circuits can be implemented to reach arbitrarily high throughput through parallelization and pipelin-
ing. Published FIR filter design methods include direct sampling of the continuous-time inverse of
the CD impulse response [6] and least-squares optimization of the discrete impulse response [7].

With a focus on CD compensation for fiber-optic systems with low-to-moderate levels of accu-
mulated chromatic dispersion, this paper evaluates fixed-point filters and their power dissipation
in terms of parallel real-time time-domain and frequency-domain ASIC circuit implementations.
We will consider three different filter designs: The two mentioned above and the least-squares
constrained-optimization (LS-CO) filter design method that we have proposed [8], [9]. While the
LS-CO method was shown to have an improved fixed-point performance over other filter design
methods, our evaluation [9] was limited to the MATLAB environment and to discussions on algorith-
mic complexity. In contrast, we here consider in detail implementation aspects such as quantization
and finite wordlengths, parallelism for strict throughput requirements, and different filter circuit
structures. In comparison to our previous work [10], we here supply an in-depth comparison of the
implemented time-domain filters, both for fixed and adjustable coefficients, and comparisons to full
overlap-save implementations with identical in-system performance requirements. In addition, the
design flow is migrated to a 28-nm fully-depleted silicon-on-insulator (FD-SOI) process technology
and we describe in detail the considered filter design methods, the implemented filter structures,
the system-level considerations, and the system model.

Section 2 reviews the three different design methods used to construct filter coefficients over a
number of filter taps, whereas Section 3 presents the three different filter implementation struc-
tures used to implement the fixed-point FIR filters. The system assumptions and the evaluation
methodology are described in Section 4. Circuit implementation results in terms of area and power
dissipation are presented in Section 5, which is followed by a discussion and a conclusion.

2. Filter Design Methods
We will here review the following filter design methods: direct sampling, least-squares optimization,
and least-squares constrained optimization (LS-CO). The latter is the design method we have
already proposed [8] and which is elaborated on in our later work [9].

2.1 Preliminaries
In a fiber system, chromatic dispersion (CD) can be ideally compensated by an all-pass static filter
with a frequency response of

H −1
CD

(
e jωT ) = ejM (ωT )2

, M = D λ2L
4πcT 2

, (1)

where D is the dispersion parameter (D = 16 ps/(nm km) in this work), T is the sampling interval,
L is the fiber length, λ is the transmitting laser’s wavelength (λ = 1550 nm in this work), c denotes
the speed of light, and ωT ∈ [−π, π] is the digital frequency.

To reduce inter-symbol interference over the fiber, the signal bandwidth is routinely reduced by
way of pulse shaping of the transmitted pulse, e.g., by using root-raised-cosine (RRC) shaping.
While the full RRC frequency response can be found in [9], we here reiterate the limited signal
bandwidth: 1−β

G π ≤ |ωT | ≤ 1+β

G π. Here, G denotes samples per symbol (G = 2 in this work),
whereas β is the roll-off factor (β = 0.25 in this work). The in-band frequency range thus becomes
[−0.625π, 0.625π] in this work, and the frequencies outside of this range are consequently out of
band.

Vol. 10, No. 4, August 2018 7202919



IEEE Photonics Journal Filter Implementation for Power-Efficient CD

2.2 Direct Sampling [6]
By taking the inverse Fourier transform of (1), the ideal CD compensation impulse response can
be derived. Savory uses direct sampling (DS) and truncation of the continuous CD compensation
filter impulse response to derive the filter taps [6]:

hDS
n =

√
j

4M π
e−j n2

4M (2a)

− N max − 1
2

≤ n ≤ N max − 1
2

, (2b)

where N max ensures that aliasing does not occur.
For the DS method, however, the possible discrete impulse response length is limited and mis-

behaves for low levels of accumulated dispersion. Using simulations, we can confirm that the DS
design method has a significant power penalty1 when compensating for limited chromatic disper-
sion (<320 km single-mode fiber, given the setup in Section 4.1) [11], so this filter design will not
be part of our evaluation.

2.3 Least-Squares Optimization [7]
Eghbali et al. proposed using least-squares optimization to minimize the deviation between the filter
response and the ideal impulse response [7]. This optimization can be performed either on the full
band of the signal or on a part of the band, utilizing that pulse shaping is employed. The latter band-
limited optimization method, however, requires an adjustment factor to prevent numerical issues in
the filter coefficient calculation [7]. The disadvantage is that this adjustment factor, which has to
be arbitrarily set, turns out to have a significant impact on the out-of-band gain and the fixed-point
performance. Since this work, in contrast to our previous paper [9], is considering an evaluation of
fixed-point hardware, we need to avoid the arbitrary selection of the adjustment factor. Thus, in the
following, we will consider least-squares optimization for only the full-band case and we call this
method LS-FB.

2.4 Least-Squares Constrained Optimization [9]
Assume now a filter is implemented for a limited band. Here the designer has an obvious option
to reduce hardware; use fewer filter taps than for the full band. However, a reduction in filter taps
translates in an increasing out-of-band gain which in turn increases the quantization errors. The key
idea behind our least-squares constrained optimization (LS-CO) [9] was to come up with a method
that allowed us to put a constraint on the out-of-band gain to enable practical filter optimization for
band-limited signals.

We can define the normalized average filter response error within a certain signal band, for which
�1 and �2 are boundary frequencies, to assess how well a band-limited filter’s frequency response
matches the ideal CD compensation filter:

ξs = 1
�2 − �1

∫ �2

�1

∣∣∣H (e jωT ) − H −1
CD(e jωT )

∣∣∣
2

d(ωT ). (3)

Another important frequency response property has to do with the out-of-band frequencies. The
normalized average out-of-band gain of the filter can be defined as

ξo = 1
2π + �1 − �2

·
[∫ �1

−π

∣
∣H (e jωT )

∣
∣2 d(ωT ) +

∫ π

�2

∣
∣H (e jωT )

∣
∣2 d(ωT )

]
. (4)

1Here, power penalty is defined as the increase in signal power to achieve the same bit-error rate (BER) performance as
that of an ideal system.
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Fig. 1. Amplitude response of a quantized LS-CO filter for 100 km of fiber.

The main feature of the LS-CO design method is to make the in-band filter response as similar as
possible to ideal compensation (i.e., minimize ξs), while confining the out-of-band gain (i.e., limit ξo).
This method allows for a trade-off between the in-band error and the error due to the out-of-band
gain when quantizing the coefficients. Fig. 1 shows the amplitude response of a 5-bit quantized
LS-CO filter assuming an input RRC pulse spectrum (β = 0.25). For details on the LS-CO method,
we refer the reader to the complete description [9].

3. FIR Filter Implementation Structures
Since DSP-based coherent fiber optic systems have very high throughput requirements, extensive
parallelization is necessary. The following section first reviews the used filter structures; here, the
assumed 64-way parallelization makes for a good trade-off with the default clock frequency of
875 MHz for the assumed 28-GBd (56-Gsample/s) system requirement. Finally in this section, we
will address fixed-point implementation aspects for the different filter structures.

3.1 Parallel Polyphase FIR
Parallel FIR structures can be implemented by performing polyphase decomposition, exposing the
input-output dependence of each parallel filter lane, to generate a block-processing formulation of
the FIR filter [12]. An L -parallel filter is implemented by decomposing the impulse response into
L sub-filter impulse responses, each containing every L -th component of the CD compensation
impulse response, starting at the corresponding sub-filter index, H 0–H L . The general principle is
shown in Fig. 2, and can be represented in matrix form as [12]

⎡

⎢⎢
⎢⎢⎢
⎣

Y0

Y1

...

YL −1

⎤

⎥⎥
⎥⎥⎥
⎦

=

⎡

⎢⎢
⎢⎢⎢
⎣

H 0 z−L H L −1 · · · z−L H 1

H 1 H 0 · · · z−L H 2

...
...

. . .
...

H L −1 H L −2 · · · H 0

⎤

⎥⎥
⎥⎥⎥
⎦

⎡

⎢⎢
⎢⎢⎢
⎣

X 0

X 1

...

X L −1

⎤

⎥⎥
⎥⎥⎥
⎦

(5)

where multiplication represents filtering operations, X and Y represent each input and output sam-
ple, respectively, in the current block, and z−L represents a delay of L . Note that each column

Vol. 10, No. 4, August 2018 7202919



IEEE Photonics Journal Filter Implementation for Power-Efficient CD

Fig. 2. Polyphase FIR structure where delay registers are denoted D [10].

except the leftmost is a one-step circularly downwards-shifted version of the left-adjacent column,
with circularly-wrapped elements multiplied by z−L .

The filter complexity increases linearly with parallelization as an N -tap filter is decomposed into L
sub-filters containing every L -th tap; each parallel lane requires L filters of length N /L . Polyphase
parallel filters, thus, yield the same computational complexity per output sample as standard serial
input-output FIR filter implementations, while increasing the possible throughput.

The internal wordlengths are similar to standard FIR filters; filter multiplier input widths are the
same as the input and coefficient wordlength for the respective inputs, and the wordlength of the
arithmetic is set to prevent input-signal dependent overflow. The same adder-tree wordlengths are
used for all compensation lengths.

3.2 Fast-FIR
Parallelization of FIR filters allows for exploitation of common sub-expressions to reduce the mul-
tiplicative complexity of the filters through the use of Fast-FIR algorithms [12], which are based
on efficient algorithms for polynomial multiplication applied to the polynomial formulation of FIR
filters. Iterated application of Fast-FIR algorithms can be used to build filter structures with wider
parallelism. Iterated application and delay element unfolding for the implementation of 2N -parallel
filters is illustrated in Fig. 3.

In this work, a 2-parallel Fast-FIR algorithm is applied 6 times to obtain a 64-parallel filter structure.
The basic 2-parallel Fast-FIR algorithm used here can be represented in matrix form as [12]

[
Y0

Y1

]

=
[

1 0 z−2

−1 1 −1

]⎡

⎢
⎣

H 0 0 0

0 H 0 + H 1 0

0 0 H 1

⎤

⎥
⎦

⎡

⎢
⎣

1 0

1 1

0 1

⎤

⎥
⎦

[
X 0

X 1

]

, (6)

which can be written as

Y2 = Q2F2P2X2, (7)

where H i represents the sub-filter impulse response, and multiplication represents filtering opera-
tions. In this case, H 0 and H 1 contains every second component of the impulse response, starting at
the respective index. Each sub-filter response is therefore half the length of the initial filter response.
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Fig. 3. Iterated application of the Fast-FIR algorithm [10].

An iterative application of the filters requires delay unfolding and parallelization, which is per-
formed by replacing each delay element in the matrix as

Y = z−2X →
[

Y0

Y1

]

=
[

0 z−4

1 0

][
X 0

X 1

]

, (8)

and by replacing each 1, −1, and 0 with I2×2, −I2×2, and 02×2, respectively. Applying the unfolding
procedure once to Q2 thus yields

Q2u = unfold(Q2) =

⎡

⎢⎢⎢
⎣

1 0 0 0 0 z−4

0 1 0 0 1 0

−1 0 1 0 −1 0

0 −1 0 1 0 −1

⎤

⎥⎥⎥
⎦

. (9)

The order of the parallel-filter inputs is established by applying bit-reversal permutation [13], i.e.,
the order obtained by reversing the binary representation of each index, to the 2N long input vector.

The pre-processing matrix is generated by taking the Kronecker product [14] of the pre-processing
matrix to itself N − 1 times as

PN =
N −1times

︷ ︸︸ ︷
P2 ⊗ · · · ⊗ P2 ⊗ P2 . (10)

The diagonal filtering matrix is generated as

FN = diag(PNHNp), (11)

where HNp is the sub-filter vector permuted in the same order as the input vector. The N post-
processing matrices are generated by unfolding the previous matrix as

qi = unfold(qi−1), (12)

starting with

q0 =
[

1 0 z−2

−1 1 −1

]

, (13)
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Fig. 4. Block diagram for the overlap-save structure.

and finally parallelizing the matrices as

Qpi = qi

N −i−1 times
︷ ︸︸ ︷
⊗ I3×3 ⊗ I3×3 · · · ⊗ I3×3 . (14)

The resulting N -parallel structure can be written as

YN = QPN−1QPN−2 · · · QPN0
FNPNXN. (15)

Fast-FIR filters reduce multiplicative complexity at the expense of introducing pre- and post-
processing addition trees. Multiplier wordlength is also increased as summation of both coefficients
and inputs is performed, thus increasing the wordlength requirement on both the sample and
coefficient input of the filter multipliers.

3.3 Overlap Save
FIR filtering can be performed in the frequency domain using the overlap-save (OS) algorithm to
perform linear convolution using circular convolution, which is efficiently implemented using FFT and
IFFT. Each block of input samples is concatenated with the previous block, Fourier transformed,
element-wise multiplied with the transformed zero-padded impulse response, and transformed
back. Samples affected by artifacts due to circular convolution are discarded. The L -parallel OS
implementation can be represented as

⎡

⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎢⎢
⎣

O 0

...

O m−1

Y0

...

YL −1

⎤

⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎥⎥
⎦

= F−1

⎛

⎜⎜⎜
⎜⎜⎜⎜⎜⎜
⎜⎜
⎝

Ĥ � F

⎛

⎜⎜⎜
⎜⎜⎜⎜⎜⎜
⎜⎜
⎝

⎡

⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎢⎢
⎣

z−L X L −m−1

...

z−L X L −1

X 0

...

X L −1

⎤

⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎥⎥
⎦

⎞

⎟⎟⎟
⎟⎟⎟⎟⎟⎟
⎟⎟
⎠

⎞

⎟⎟⎟
⎟⎟⎟⎟⎟⎟
⎟⎟
⎠

(16)

where � denotes element-wise multiplication of the vectors, Ĥ is the frequency response vector, and
O 0–O m−1 are the m discarded samples. The required number of discarded samples and samples
from the previous block are the same as the length of the impulse response, and L + m must be
equal to the FFT and IFFT length. Fixed-point implementation of overlap-save filters entails limited
resolution in both coefficient multiplication and the FFT/IFFT-pair. In the interest of reproducibility,
and as the focus of this paper is on filter implementation, the Spiral tool [15] has been used to gen-
erate the FFT/IFFT-pair. Fig. 4 shows a block diagram of the implemented overlap-save structure.
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The power dissipation for an OS structure is dependent on the required overlap and subject
to implementation considerations, since the block-processing width is set by the FFT length and
overlap factor. Here, we will use a 128-point FFT/IFFT-pair, to build a 50%-overlap 64-parallel
structure, a 25%-overlap 96-parallel structure, and a 12.5%-overlap 112-parallel structure. The 96-
and 112-parallel structures require either a change of parallelism in other sub-systems or block-
width conversion; the latter increases area and power dissipation.

3.4 Fixed-Point Filter Aspects
The BER performance of the time-domain filters will be evaluated using MATLAB implementations
with quantized coefficients and inputs. This yields equivalent results to time-domain hardware de-
scription language (HDL) implementations as, first, no internal rounding is performed and, second,
internal wordlength is set to avoid overflow. The polyphase (Section 3.1) and Fast-FIR (Section 3.2)
filters are bit-equivalent2 and, thus, have identical BER performance. The OS implementation
(Section 3.3), however, is evaluated by simulating the implemented HDL code (Section 4.3), since
internal truncation and twiddle-factor rounding are performed in the generated FFT and IFFT blocks.

3.4.1 Wordlength Requirements: The shortest possible wordlength for fulfilling the power-penalty
requirement of each filter design is determined by sweeping the coefficient wordlength. The power
penalty of the OS implementation is significantly impacted by the resolution in the FFT and IFFT,
which are the most complex and power-dissipating blocks. The resolution requirements for the OS
configuration are therefore determined by finding the minimal-resolution FFT/IFFT-pair that fulfils
the power-penalty requirement.

The filters evaluated are implemented to achieve a power penalty of at most 0.25 dB, including
the A/D conversion quantization penalty (see Section 4.2). In the time-domain implementations, the
LS-FB filter fulfills this requirement using 5- and 6-bit coefficients for PM-QPSK and PM-16-QAM,
respectively, while the LS-CO filter allows for a reduction of one bit in coefficient wordlength. The
wordlength requirements are different for the FFT/IFFT-pair compared to general FIR filtering as
twiddle-factor rounding and internal scaling are required in a fixed-point implementation.

Spiral [15], which is available online [16], is here used to generate fully streaming fixed-point
FFT and IFFT HDL implementations with internal scaling to prevent overflow. Spiral is configured
to generate 128-point radix-4 [13] FFTs/IFFTs, yielding transforms consisting of radix-4 stages
and one radix-2 stage. The data are left-shifted to the most significant bits of the FFT, after which
stepwise internal truncation is performed after each twiddle factor multiplication to reduce the
impact of twiddle-factor rounding and prevent internal overflow in the FFT/IFFT-pair. A 12- and
13-bit wordlength is required in the FFT/IFFT-pair for PM-QPSK and PM-16-QAM, respectively.
Element-wise multiplication with the frequency-domain response is performed, and truncation is
performed to prevent overflow. The truncation factor is tested empirically to utilize the IFFT dynamic
range while reducing the risk of overflow. Overly optimistic scaling would have resulted in overflow
that depends on the temporal spectral density; some data patterns cause peaks in the spectrum,
which can result in burst errors. The power-penalty goal of ≤0.25 dB is met with 5- and 6-bit
frequency-response multipliers when using LS-CO, given the required FFT/IFFT wordlength.

3.4.2 Required Number of Taps: Once the coefficients are fixed, the required number of taps can
be determined by sweeping this parameter to find the lowest number fulfilling the power-penalty
requirement. Table 1 shows the required number of taps given the system parameters listed in
Section 4.1.

The benefit of reducing wordlength and tap count is diminishing in the case of an OS imple-
mentation, since the wordlength in the FFT and IFFT is unaffected by the filter design and since
the number of taps is set by implementation considerations. Therefore, the LS-FB variant of the
OS structure is not implemented as this differs from LS-CO only for the 128 frequency-response
multipliers. It is, however, important to note that the reach for any FFT/IFFT-pair with a fixed number
of points is increased due to the relaxed tap requirement of LS-CO as compared to LS-FB.

2Given an arbitrary input sequence, two bit-equivalent implementations will yield the same output sequence.
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TABLE 1

Required Number of Taps for ≤0.25 dB Power Penalty

Fig. 5. Block diagram of the system model. The receiver consists of ADC, CD compensation (CDC),
and matched filtering (MF). The order in which CD and Noise are applied is arbitrary as CD does not
affect the noise distribution.

4. Evaluation Setup
Implementation of real-time coherent receivers imposes stringent requirements on both power
dissipation and throughput, and fixed-point implementation is thus necessary. The main evaluation
metrics of the implemented filters are BER performance (quantified in terms of power penalty at a
BER of 10−3) together with area usage and power dissipation of the circuits. To make the evaluation
effective and accurate, we have to mix MATLAB and ASIC circuit implementation evaluations:
While the power penalty from A/D conversion (ADC) can be evaluated by performing simulations in
MATLAB (Section 4.2), different electronic design automation software suites for ASICs are required
for circuit implementation and accurate estimation of circuit performance, power dissipation and area
(Section 4.3).

In the ensuing evaluations, we consider CD compensation filter implementations in the context
of the coherent fiber system model in Section 4.1. An overriding constraint that is used for all filter
evaluations is that the resulting power penalty, when evaluated in the system model, is at most
0.25 dB. This constraint is a result of ADC quantization considerations described in Section 4.2.
Finally, the ASIC circuit implementation and verification flow used to obtain power dissipation
estimates is presented in Section 4.3.

4.1 System Model
The fixed-point filter implementations are evaluated using a MATLAB-based coherent fiber-optic
system model that assumes two samples-per-symbol at 28 GBd, polarization-multiplexed quadra-
ture phase-shift keying (PM-QPSK) or polarization-multiplexed 16-quadrature amplitude modulation
(PM-16-QAM), a CD parameter of D = 16 ps/(nm km), at the wavelength λ = 1550 nm, and RRC
pulses with a roll-off factor β = 0.25. The transmitter is assumed to be ideal. The channel is mod-
eled as an additive white Gaussian noise channel with chromatic dispersion. Fig. 5 shows a block
diagram of the simulation setup.
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Fig. 6. Power penalty as a function of η for different ADC resolutions and fiber system lengths, using
PM-QPSK.

4.2 A/D-Conversion Considerations
Since fixed-point aspects are at the core of this work, ADC assumptions become important. ADC
quantization introduces quantizer resolution and signal-dependent noise, which result in a power
penalty. The resulting input signal distribution tends to become Gaussian-like due to the inter-
symbol interference (ISI) caused by the chromatic dispersion. This needs to be taken into account
when selecting the quantization range.

We investigated the impact of ADC quantization by simulating the system in Fig. 5 with chromatic
dispersion, ADC quantization, and ideal penalty-free floating-point CD compensation. This allowed
us to isolate the impact of linear-step quantization on a realistic input signal distribution. An ADC
resolution of 4–6 bits and 5–7 bits was considered for PM-QPSK and PM-16-QAM, respectively.
The signal was represented in signed binary-fraction form; the sign bit as the most significant bit and
the others representing the binary fraction. The input signal was multiplied with a pre-quantization
signal scaling factor, S = 1/(ησ), where σ is the standard deviation of the input distribution of each
ADC and η was set to adjust the quantization range.

Fig. 6 and Fig. 7 show the simulated power penalty as a function of η for different quantizer reso-
lutions, for PM-QPSK and PM-16-QAM, respectively. For PM-16-QAM to attain similar performance
to PM-QPSK, an increase of 1 bit in resolution is required. In summary, 5- and 6-bit ADC reso-
lution is required to fulfill the ≤0.25 dB power penalty constraint for PM-QPSK and PM-16-QAM,
respectively.

4.3 Circuit Implementation Flow
Since this work considers highly complex FIR structures, we created a customized MATLAB-based
tool to generate HDL descriptions from matrix-based filter structure specifications. The tool calcu-
lates the pre- and post-processing matrices, which are translated to a behavioral VHDL description,
connects the sub-filter components, and calculates the corresponding coefficients. The generated
code is structured for further optimization by the synthesis tool. The generator was verified by simu-
lating generated polyphase and Fast-FIR HDL implementations in the system model (Fig. 5), and by
confirming bit-equivalent outputs in pre- and post-synthesis simulation. Pre- and post-processing
trees, sub-filter implementation and wrapper files for synthesis were generated based on the spec-
ified filter structure, parallelization width and coefficients. Pipelining was implemented to reduce
critical-path length and reduce adder-tree switching activity. To obtain power-efficient implementa-
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Fig. 7. Power penalty as a function of η for different ADC resolutions and fiber system lengths, using
PM-16-QAM.

tions, extensive parallelization was necessary. Here, 56 Gsample/s requires a 64-way parallelization
at a clock rate of 875 MHz.

The FFT/IFFT-pair for the OS structure (Section 3.3) was generated using Spiral [15]. The struc-
ture is similar to the CD compensation used in [1], with shorter FFT/IFFT and hard-wired twiddle
factor multipliers being the main differences. Zero-padding of the impulse response was used when
the impulse response was shorter than 64, 32 or 16 for 50%, 25% and 12.5% overlap, respec-
tively. The 64-parallel implementation can run at a default clock rate of 875 MHz, while the 96- and
112-parallel variants only require a clock rate of 583 and 500 MHz, respectively.

The filters were synthesized using Cadence Encounter RTL Compiler [17] and a 28-nm 1.0-V
fully-depleted silicon-on-insulator (FD-SOI) process technology, with standard threshold voltage
cell libraries characterized at slow-slow corner and 125 ◦C, in order to ensure reasonable results
taking manufacturing yield into account. This should be contrasted to our previous work which was
based on a 65-nm design flow [10]. The tool’s retiming feature was used to optimize the pipelining
register distribution in the implementations. No carry-save optimization was used, as the quality
of results of the automatic optimization in RTL Compiler depends on code structure and register
placement. Furthermore, the physical layout estimation feature of RTL Compiler was used to give
more accurate wire-load estimations.

Once the filters were synthesized, the netlists were simulated with an input signal affected by
chromatic dispersion in order to log the switching activity of each circuit net. The switching activity
obtained was back-annotated to the netlist and power estimation was performed using RTL Compiler
for the typical 28-nm cell library (nominal corner and 25 ◦C). Since switching power represents 99%
of the total power, the power dissipation’s dependence on temperature is negligible.

4.4 Polyphase vs Fast-FIR for Different Tap Counts
Implementation of algorithms requires a significant engineering effort. In DSP research, a com-
mon approach to approximate hardware parameters like area and power dissipation, is to evaluate
algorithms from a high-level complexity perspective, often in terms of required number of multi-
plications. (In fact, to the best of our knowledge, no circuit-level evaluation has been published
on highly-parallel FIR filters.) However, complexity-based assessment of algorithms often fail to
properly capture many factors that contribute to overall power dissipation, such as circuit structure,
pipelining, switching activity, and resolution.
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Fig. 8. Power dissipation of the parallel random-coefficient filters.

Fig. 9. Complexity #multiplications of the parallel filter implementations.

Prior to the evaluation of filters deployed in fiber systems of different lengths, we here present
power dissipation for the more general case when parallel polyphase FIR and Fast-FIR filters are
evaluated as function of tap count. Fig. 8 shows the power dissipation (obtained as described in
Section 4.3) of 64-parallel filter implementations with uniform random complex coefficients and
input data. Clearly the Fast-FIR structure scales better with tap count than the polyphase structure
does. While power dissipation and complexity correlate relatively well when comparing two different
implementations of the same structure, Fig. 9 that shows the corresponding complexity metric
based on number of multiplications per filter illustrates that complexity-based comparison of different
structures can be misleading.
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5. Implementation Results
While adjustable filter responses are desirable in communication systems, any kind of system
flexibility brings a significant overhead in terms of ASIC area and power. In a fixed-coefficient
filter, where multiplications with constant numbers are carried out, a gate-level implementation
based on shifts and additions is possible. In comparison to an adjustable-coefficient filter, where
multiplications with variable numbers are required, the fixed-coefficient filter’s circuit complexity is
lower, thus, reducing power dissipation and area usage.

Fixed-coefficient filters offer an important trade-off in the design of a practical system, especially
in coherent fiber optic communication where there are very stringent requirements on throughput
and power dissipation. For example, in an implementation of a cascaded filter, a mix of fixed- and
adjustable-coefficient filter can provide a trade-off between power dissipation and flexibility.

In this work, both adjustable- and fixed-coefficient filters are implemented and evaluated. This is
in contrast to our previous contribution [10] where only the latter types were considered. As far as
design flow (Section 4.3), we employ a method where we first synthesize the filters with full complex
multipliers for each tap to yield adjustable coefficients. The resulting netlist is then incrementally
resynthesized with boundary constant propagation to let RTL Compiler reduce the multipliers to
shift-and-add trees in order to yield fixed-coefficient filters with the same overall structure as the
adjustable filters.

All implemented filters use single-tap sub-filters, and can thus support a tap number of up to the
chosen parallelization factor (64 taps in this work). The longest LS-FB filter (73 taps for PM-16-QAM)
has thus been excluded from the evaluation.

It should be noted that the area and power dissipation ratios between adjustable- and fixed-
coefficient filters depend on the system timing constraint. Since they use multipliers with higher
circuit complexity, stricter timing constraints affect adjustable-coefficient filter circuits more than
their fixed-coefficient counterparts.

5.1 Adjustable-Coefficient Filters
The LS-CO filter gives a significant power dissipation reduction in comparison to the LS-FB filter
due to a reduction in both the required wordlength and the number of required taps. The Fast-FIR
filter scales significantly better with tap count compared to the polyphase filter, but the pre- and
post-processing trees along with increased internal wordlength requirements give a high overhead
for short fiber lengths.

The resulting power dissipation per polarization channel is shown in Fig. 10 and Fig. 11, for PM-
QPSK and PM-16-QAM, respectively, with the corresponding number of taps shown in Table 1. The
reduction in power dissipation for implementing an LS-CO filter is more significant for the polyphase
implementation as compared to Fast-FIR; the crossover point between the implementations is
shifted significantly towards longer transmission distances.

The power dissipation of the OS implementation is dominated by the FFT and IFFT; the FFT/IFFT-
pair dissipates over 85% of the total power. The maximum number of taps is limited by the FFT length
and overlap factor, and the LS-CO filter does not give a significant power-dissipation reduction in
the case of a frequency-domain implementation if it is not possible to change the overlap. The reach
for a given FFT length is increased as the required number of taps is reduced, allowing for use of
an FFT with fewer points or lower overlap for the same reach.

Fig. 12 and Fig. 13 show the total area of the cells needed to implement the adjustable-coefficient
QPSK and 16-QAM filters, respectively. The time-domain implementations give a significant area
reduction in comparison to the frequency-domain implementations, since the same FFT/IFFT pair
is required in all FD implementations with overlap and clock rate changed. Both Fast-FIR and
polyphase implementations give a significant reduction in area usage compared to the overlap-
save implementation.

As shown in Fig. 12 and Fig. 13, the area for the filters with 64-parallel 50% overlap and 96-
parallel 25% overlap are very similar since the same FFT/IFFT-pair is used in both cases (minor
variations are likely caused by the heuristic synthesis algorithms). The power dissipation of the
OS implementation is however significantly reduced as the clock rate used for the 96- and the
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Fig. 10. Power dissipation of adjustable-coefficient PM-QPSK filters.

Fig. 11. Power dissipation of adjustable-coefficient PM-16-QAM filters.

112-parallel implementation is 2/3 and 4/7, respectively, of the 64-parallel implementation. Overall,
LS-CO significantly reduces the area needed to implement time-domain filters; a time-domain filter
for compensation of 50 km of dispersive propagation requires less than 50% area for PM-QPSK
and approximately 50% area for PM-16-QAM in comparison to a frequency-domain implementation,
thus making it viable to include fine-tuned filters for low-power operation in coherent systems with
a limited amount of chromatic dispersion.

5.2 Fixed-Coefficient Filters
Fig. 14 and Fig. 15 show the power dissipation of the fixed-coefficient implementations. Compar-
ing the filters to the case of adjustable coefficients, time-domain implementations give a further
reduction in power dissipation compared to the fixed-coefficient frequency-domain implementa-
tions, since a higher proportion of multipliers are reduced to shift-and-add units. Compared to
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Fig. 12. Area usage of adjustable-coefficient PM-QPSK filters.

Fig. 13. Area usage of adjustable-coefficient PM-16-QAM filters.

Fast-FIR, the polyphase implementations give an additional improvement for the short transmission
distances, since the pre- and post-processing trees in the Fast-FIR filters are not changed.

Fig. 16 and Fig. 17 show the total area of the cells needed to implement the fixed-coefficient QPSK
and 16-QAM filters, respectively. The Fast-FIR filters occupy less area than polyphase filters for the
longer distances; for shorter distances, the area needs are similar. In comparison to the adjustable-
coefficient case, the polyphase filters are slightly more area efficient than Fast-FIR. A significant
reduction in area usage is possible, in comparison to the frequency-domain implementation, since
the change in overlap factor in the frequency-domain case only allows for a reduction in power
dissipation due to a reduced clock rate. The time-domain implementations allow for both area
reduction and power-dissipation reduction when reducing the number of taps.
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Fig. 14. Power dissipation of fixed-coefficient PM-QPSK filters.

Fig. 15. Power dissipation of fixed-coefficient PM-16-QAM filters.

6. Discussion
Although a time-domain implementation of CD compensation for short transmission links can give
power dissipation advantages over their frequency-domain counterparts, the greatest gain is in
terms of area. An overall area reduction is possible for PM-QPSK links in all cases up to the consid-
ered maximum transmission distance of 150 km, in comparison to the reference frequency-domain
implementation. While it is possible to reduce power dissipation for the considered transmission
distances, this reduction is more pronounced for PM-QPSK than for PM-16-QAM, since the latter
requires larger wordlengths. Large reductions in area usage are possible in all but the longest of
the considered PM-16-QAM transmission distances, for the adjustable-coefficient filter.

Time-domain implementations allow fine tuning of the filter to the actual transmission distance.
Consider, for example, fiber non-linearity mitigation: A recent DSP implementation technique (TD-
DBP) for digital back propagation is based on a distributed, time-domain approach [18]. In TD-
DBP, a large number of shorter CD compensation steps are cascaded, making each filter section
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Fig. 16. Area usage of fixed-coefficient PM-QPSK filters.

Fig. 17. Area usage of fixed-coefficient PM-16-QAM filters.

handle a limited amount of dispersion. Since the TD-DBP technique employs many filter sections,
it becomes essential to carefully optimize each section. Here, LS-CO time-domain filters can give a
large reduction in area usage compared to the frequency-domain implementation for the distances
of interest. In addition, the power dissipation can be reduced but as suggested by our results, this
will depend on the choice of dispersive step distance. As an example, using LS-CO time-domain
dispersive steps of 33.5 km and 50 km for PM-QPSK leads to a power reduction of 38% and 24%,
respectively (as illustrated in Fig. 18), compared to frequency-domain implementation of the steps.
The area usage reduction for the same cases are 58% and 51%, respectively. Since the circuits
that handle compensation of linear impairments dominate the circuits for non-linear mitigation, the
power reduction in each step of the cascaded filter will translate into a significant system-wide
power reduction.

Our evaluations consistently show that the LS-CO filter design method makes time-domain im-
plementations competitive in terms of power dissipation to those in the frequency domain. Across
all evaluations, LS-FB filters perform significantly worse than LS-CO and this is due to their need
for longer wordlengths and longer impulse responses, showing the effectiveness of taking the
pulse-shaped spectrum into account when designing CD filters. The receiver in this work operates

Vol. 10, No. 4, August 2018 7202919



IEEE Photonics Journal Filter Implementation for Power-Efficient CD

Fig. 18. Power dissipation reduction in the case of adjustable coefficients and PM-QPSK, also shown
in Fig. 10.

Fig. 19. Normalized power dissipation and corresponding power penalty for different coefficient resolu-
tion configurations. The dashed, vertical line shows the approximate A/D-converter penalty.

at 2 samples per symbol, and a reduction in oversampling ratio will give a lower impulse-response
reduction in comparison to full-band optimizations. However, a reduced sampling rate also reduces
the impulse-response length in all cases, which is advantageous for time-domain implementa-
tions. All in all, time-domain filters designed with the pulse shape in mind give significant circuit
implementation improvements for low-to-moderate accumulated dispersion.

6.1 Power Dissipation and BER Performance
Time-domain implementations for compensation of 100-km fibers were synthesized with 3–5-bit
and 4–6-bit coefficients for PM-QPSK and PM-16-QAM, respectively, to investigate the power-
performance trade-off. Fig. 19 shows the power penalty and normalized power dissipation for the
different wordlength configurations. The power dissipation was normalized to the power dissipation
of 4- and 5-bit coefficient filters for PM-QPSK and PM-16-QAM, respectively. As shown in Fig. 19,
4-bit and 6-bit coefficients provide a good trade-off between power dissipation and power penalty.
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Furthermore, the figures show that polyphase filters are more sensitive to coefficient wordlength
than Fast-FIR filters, which can be attributed to an increase in internal wordlength requirements
and the large pre- and post-processing trees.

7. Conclusion
We have shown that time-domain filter implementations optimized for the pulse shape (LS-CO
filters [8], [9]) reduce the area usage and power dissipation of CD compensation for coherent sys-
tems with dispersion corresponding to up to 70 km, compared to a frequency-domain overlap-save
implementation. Furthermore, Fast-FIR filters can extend the viable distance for time-domain CD
compensation. We have also shown that optimizing the filter with the spectrum of the pulse-shaped
signal provides large benefits for time-domain implementations; the LS-CO filter is less sensi-
tive to coefficient quantization, achieving similar BER performance with one bit shorter coefficient
wordlength and fewer taps, which leads to a significant power dissipation reduction.
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