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We present two complex scalar gauge invariants for perturbations of the Kerr spacetime defined
covariantly in terms of the Killing vectors and the conformal Killing-Yano tensor of the background
together with the linearized curvature and its first derivatives. These invariants are, in particular, sensitive to
variations of the Kerr parameters. Together with the Teukolsky scalars and the linearized Ricci tensor, they
form a minimal set that generates all local gauge invariants. We also present curvature invariants that reduce
to the gauge invariants in the linearized theory.
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Introduction.—The black hole perturbation theory plays
a major role in numerical and analytical investigations of
general relativity. The coordinate freedom or diffeomor-
phism invariance of the Einstein equations implies gauge
freedom for the linearized equations. For many applica-
tions, it is essential to extract the gauge-invariant content of
the theory. The aim of this Letter is to describe all local
gauge invariants for perturbations of the rotating Kerr
black hole.
The dynamics of gravitational perturbations of the

Schwarzschild geometry is governed by the Regge-
Wheeler [1] and Zerilli [2] variables (see [3,4] for a
gauge-invariant formulation) but also by the Bardeen-
Press [5] variables. Gauge invariants of higher than second
differential order have also been used in the literature; see,
e.g., Ref. [6] for third-order quantities and Ref. [7] for a set
of higher-order gauge invariants and their relations on
Schwarzschild. The construction of the Bardeen-Press
invariants has been generalized to the Kerr geometry by
Teukolsky [8], and Wald showed in Ref. [9] that one
complex Teukolsky scalar determines the linearized gravi-
tational field up to unphysical solutions and Kerr parameter
variations. Motivated by the self-force problem, Merlin
et al. [10] recently constructed three more real, third-order
scalar invariants, and in Ref. [11] we found a third-order
gauge-invariant vector field. Here we take a different
perspective by asking: In terms of which variables can
the gauge-invariant content of the theory be described? As
will be demonstrated in Ref. [12], there exist a finite
number of invariants from which all invariants can be
constructed by further differentiation and linear combina-
tion. This opens up the possibility of a systematic inves-
tigation of the field equations and differential relations
satisfied by the gauge-invariant quantities.
Linearized diffeomorphisms generated by a real vector

field νa change the linearized metric hab according to

hab → hab þ 2∇ðaνbÞ: ð1Þ

Depending on the background geometry, certain linear
combinations of derivatives of hab can be constructed to be
independent of νa under the transformation (1). Such
quantities are called local gauge invariants and play a
fundamental role in the black hole perturbation theory.
Also, nonlocal gauge invariants, often formulated in terms
of separated modes or global integrals, can be of interest,
but here we restrict our attention to local quantities.
Stewart and Walker [13] showed that any linearized field

_T around a given background transforms under (1) with the
Lie derivative along νa of its background value T0:

_T → _T þ LνT0: ð2Þ

This, in particular, implies that the linearized Ricci tensor is
gauge invariant on vacuum backgrounds.
Any linear differential operator applied to a gauge invari-

ant is also gauge invariant. Therefore, we say that a set of
gauge invariants is generating if all gauge invariants can be
expressed as a linear combination of differential operators on
elements of this set. For instance, the linearized curvature
tensor is gauge invariant for perturbations of Minkowski
space, and one can show that it forms a generating set.
We would like elements of the generating set to be of as

low differential order as possible and also minimal in the
sense that the removal of any element implies loss of
information about the gauge-invariant content or, equiva-
lently, that the set is no longer generating.Observe, however,
that the elements satisfy differential relations. For example,
the set of components of the linearized curvature tensor on
Minkowski space isminimal generating, but the elements are
related by the differential Bianchi identities.
For perturbations of the Kerr spacetime, the two complex

Teukolsky scalars (and their derivatives) together with the
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linearized Ricci tensor are well-known gauge invariants. In
this Letter, we add two complex scalar fields, Iξ and Iζ, to
this list of local gauge invariants (collectively, they can be
found in Refs. [10,11]—see remarks 5 and 6—but here
they are identified as a generating set for the first time).
Their construction involves the Killing vectors ξa and ζa;
see Proposition 1 below. The main result of this Letter is the
statement of a minimal generating set of gauge invariants in
Theorem 4.
Finally, we present curvature invariants in the nonlinear

theory that reduce to constants on a Kerr background and to
Iξ and Iζ in the linear theory.
The proof that the set is generating is based on a

universal compatibility complex of the Killing operator
(see [14]) and will be published separately in Ref. [12]. For
examples of the method on Lorentzian manifolds, see,
e.g., [15]. The computations for this Letter were performed
with XACT for Mathematica, in particular, using the
package SPINFRAMES [16].
Geometry of Kerr.—We use abstract index notation and

let gab denote the background Kerr metric with parameters
a and M. Unless otherwise stated, frame-dependent state-
ments are valid in any principal Newman-Penrose tetrad
ðla; na; ma; m̄aÞ on the background. For clarity, some
coordinate expressions are given in Boyer-Lindquist–like
coordinates ðt; r; x ¼ cos θ;ϕÞ.
Let Yab be the anti-self-dual conformal Killing-Yano

tensor of the Kerr spacetime (see [17]), normalized so that

ξc ¼ 2

3
i∇aYca ð3Þ

is the real Killing vector ∂t. Furthermore, let

p≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
YbdYbd

q
¼ r − iax; Ua ≡ −∇a logðpÞ: ð4Þ

We base our construction on the 2-form Yab, which in any
principal tetrad takes the form

Yab ¼ ipðl½anb� −m½am̄b�Þ: ð5Þ

A second, linearly independent Killing vector is given by

ζa≡2YabȲbcξ
c−

1

4
ðp2þ p̄2Þξa ¼ a2ð∂tÞaþað∂ϕÞa; ð6Þ

see [18] for details. For later reference, we note the reality
conditions

Ψ2p3¼ Ψ̄2p̄3 ¼−M; ŪaȲab ¼−UaYab ¼
1

2
iξb ð7Þ

and the differential relation

∇aUb ¼ 2UaUb −
1

2
gabðΨ2 þ 2UcUcÞ − p−2ξaξb

þ 2Ψ̄2p−2YðacȲbÞc: ð8Þ

Metric perturbations.—To avoid complications with the
tetrad gauge freedom, we treat metric perturbations cova-
riantly in the style of Ref. [19] and denote the variation of a
field F by _F. Define the following version of the linearized
Riemann tensor:

_Rabcd ≡ 2gf½d∇c�∇½ahb�f þ
2

3
R½ab�f ½chd�f −

2

3
Rf ½ab�½chd�f;

ð9Þ

which is the mean value of variations with all indices up
and all indices down. The spin-0 and spin-1 parts of the
linearized curvature can be expressed by

6p2ϑΨ2¼ð _Rb
d
cdYa

c− _RabcdYcd− _RacbdYcdÞYab; ð10aÞ

4p2Zab¼−2Ycd _R½ajcdj
fYb�fþ3Ycd _R½a

f jcdjYb�f: ð10bÞ

In any principal tetrad, we get

ϑΨ0 ¼ _Rlmlm; ð11aÞ

ϑΨ1 ¼
1

2
_Rlmln −

1

2
_Rlmmm̄; ð11bÞ

ϑΨ2 ¼
1

6
_Rlnln−

1

3
_Rlnmm̄þ1

3
_Rlmm̄nþ

1

6
_Rmm̄mm̄; ð11cÞ

ϑΨ3 ¼
1

2
_Rlnm̄n −

1

2
_Rmm̄ m̄ n; ð11dÞ

ϑΨ4 ¼ _Rm̄nm̄n; ð11eÞ

Zab ¼ −2ϑΨ3l½amb� þ 2ϑΨ1m̄½anb�: ð11fÞ

Here, ϑΨi are the components of the linearized Weyl spinor
ϑΨABCD introduced in Ref. [19], but the formulas above can
be used as definitions. They are related to linearized
Newman-Penrose Weyl scalars _Ψi but compensated for
their linearized tetrad gauge dependence:

ϑΨ0 ¼ _Ψ0; ϑΨ1 ¼ _Ψ1þ
3

2
Ψ2ðma

_la − la _maÞ; ϑΨ2 ¼ _Ψ2;

ϑΨ4 ¼ _Ψ4; ϑΨ3 ¼ _Ψ3−
3

2
Ψ2ðna _̄ma − m̄a _naÞ: ð12Þ

The set of gauge invariants.—We can now construct
third-order gauge invariants.
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Proposition 1.—Let Va be a real Killing vector field and

IV ¼ p2Wa∇aðp4ϑΨ2Þ −
1

2
Reðp6ϑΨ2∇aWaÞ

− 2iImðp6UaWbZabÞ −
3

2
p6Ψ2UaWbhab; ð13Þ

where the vector field Wa ≡ 2ip−3VbYab is assumed to
satisfy the condition

p̄3Ū½aW̄b� ¼ −p3U½aWb�: ð14Þ
Then IV is a local gauge invariant.
Proof.—A consequence of the Killing equation gives

Ψ2UaVa ¼ 0. For a pure diffeomorphism, we get

ϑΨ2 ¼ 3Ψ2Uaνa; ð15aÞ

Yb
cZac ¼ −

3

2
Ψ2Yb

c∇½aνc� þ
3

2
Ψ2Ya

c∇½bνc�

− 3Ψ2U½aYb�cνc − 3Ψ2UcY½ajcjνb�: ð15bÞ

This gives

p6UaWbZab ¼ −
3

2
p6Ψ2UaWbð∇½aνb� þ 2U½aνb�Þ

− 3ip3Ψ2UaVbYa
c∇½bνc�: ð16Þ

The conditions (7) and (14) then imply

iImðp6UaWbZabÞ

¼ −
3

2
Ψ2UaWbp6ð∇½aνb� þ U½aνb� þ Ū½aνb�Þ: ð17Þ

Together with (15a), we get for a pure diffeomorphism

IV ¼ −3Ψ2UaUbWap6νb −
3

4
Ψ2Uap6νa∇bWb

−
3

4
Ψ̄2Ūap̄6νa∇bW̄b þ 3Ψ2Wap6νb∇ðaUbÞ

þ 3Ψ2UaWbp6ðU½aνb� þ Ū½aνb�Þ: ð18Þ
The relations (7), (8), and (14) imply

Wb∇bUa¼2UaUbWb−UbUbWa−Ψ2ReðWaÞ; ð19aÞ

Ub∇bWa ¼ 2UbUðaWbÞ − Ψ2ReðWaÞ; ð19bÞ

p̄3Ūa∇bW̄b ¼ −4Ψ2ReðWaÞp3 −Uap3∇bWb

þ 4ðUb − ŪbÞp3U½aWb�: ð19cÞ

Together, we get IV ¼ 0 for a pure diffeomorphism. □

Remark 2.—For the case Va ¼ ξa we getWa¼−Uap−1,
and for the case Va ¼ ζa we get

Wap3 ¼ −
1

2
Ūap2p̄2 þ 1

4
Uap2ðp2 þ p̄2Þ: ð20Þ

Both of these vectors satisfy the required condition (14), so
Iξ and Iζ are gauge invariant.
Corollary 3.—A set of local gauge-invariant quantities

for perturbations of the Kerr spacetime is given by

Teukolsky scalars ϑΨ0;ϑΨ4; ð21aÞ

linearizedRicci _Rab ¼ _Racb
c; ð21bÞ

Killing invariants Iξ; Iζ: ð21cÞ

Note that (21a) and (21b) depend on up to second
derivatives of linearized metric, while (21c) depends on
up to third derivatives.
Theorem 4 ([12]).—The set of gauge invariants in

Corollary 3 is minimal and generates all local gauge
invariants for perturbations of the Kerr spacetime with
a ≠ 0.
Arguments for minimality are given below, and for a

proof of the theorem we refer to Ref. [12].
It should be noted that a generating set of gauge

invariants can degenerate if restricted to more special
backgrounds, in the sense that certain components of the
set can be derived from more elementary gauge invariants.
Examples are the second-order Regge-Wheeler variable on
Schwarzschild and the linearized curvature components of
spin 0 and 1 on Minkowski.
Also, the spherical Killing vectors on Schwarzschild

satisfy condition (14) and therefore lead to gauge invari-
ants. On the other hand, the Regge-Wheeler variable
ImϑΨ2 is gauge invariant, and hence certain real or
imaginary parts of Killing invariants can be generated
from it.
Remark 5.—In Ref. [11], we derived a covariant version

of the Teukolsky-Starobinski identities. In these identities,
a real, gauge-invariant vector field ImAc appears naturally.
It can be expressed in terms of the invariants (21); for
example, ImAaVa ¼ − 1

81
ImIV for both isometries in the

source-free case. This partly initiated the systematic search
for gauge invariants.
Remark 6.—Merlin et al. found three real gauge invar-

iants [10] in a coordinate-based construction. They are
related to ReIξ, ReIζ, and ImIξ via

I1 ¼ −
2½ReðIζÞ þ r2ReðIξÞ�ðr2 þ a2x2Þ

3Mðr2 − 2Mrþ a2Þ2 ; ð22aÞ

I2 ¼ −
2½ReðIζÞ − a2x2ReðIξÞ�ðr2 þ a2x2Þ

3Ma2ð1 − x2Þ ; ð22bÞ

I3 ¼
ImðIξÞðr2 þ a2x2Þ2

3Maðr2 − 2Mrþ a2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p : ð22cÞ
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Type D variations and independence of gauge
invariants.—We use the Plebanski-Demianski solution
[20] in a vacuum. In coordinates ðt; r; x ¼ cos θ;ϕÞ, define
the Newman-Penrose tetrad

l ¼ ð1 − crxÞffiffiffiffiffiffiffiffiffiffiffi
2ΣΔr

p ½ðr2 þ a2Þ∂t þ Δr∂r þ a∂ϕ�; ð23aÞ

n ¼ ð1 − crxÞffiffiffiffiffiffiffiffiffiffiffi
2ΣΔr

p ½ðr2 þ a2Þ∂t − Δr∂r þ a∂ϕ�; ð23bÞ

m ¼ ð1 − crxÞffiffiffiffiffiffiffiffiffiffiffi
2ΣΔx

p ½iað1 − x2Þ∂t − Δx∂x þ i∂ϕ�; ð23cÞ

Δx ¼ 1þ 2Na−1x − x2 þ 2cMx3 − c2a2x4; ð23dÞ

Δr ¼ a2 − 2Mrþ r2 − 2cNa−1r3 − c2r4; ð23eÞ

Σ ¼ r2 þ a2x2; ð23fÞ

with parameters M, N, a, and c for mass, Newman-Unti-
Tamburino (NUT) charge, angular momentum, and c
metric, respectively. A variation in each of the parameters
leads to specific values of the invariants showing their
functional independence.
For pure mass ( _M) and angular momentum ( _a) pertur-

bations, the invariants take the form

Iξ ¼ _M; Iζ ¼ 2a2 _M − 3Ma _a; ð24aÞ

while perturbing in the direction of the NUT ( _N) yields

Iξ ¼ −i _Nþ 2iM
p̄

_N; ð24bÞ

Iζ ¼ −ia2 _Nþ ax

�
r − 2M −

Mp
p̄

�
_N; ð24cÞ

and perturbing in the c-metric direction (_c) gives

Iξ ¼
6M2rx

p̄
_cþ 3M½iaþ ðM − rÞx� _c; ð24dÞ

Iζ ¼
6M2a2rx3

p̄
_c − 3iMaðp2 − r2x2Þ_c: ð24eÞ

Observe that Iξ and Iζ are real for _M and _a perturbations but
complex for _N and _c perturbations. From the explicit form
above, we conclude that the four real degrees of freedom
of Iξ and Iζ are functionally independent. Furthermore,
there are algebraically special frequency solutions (see,
e.g., [21]), turning on only one of ϑΨ0 and ϑΨ4. Similarly,
metric perturbations turning on specific components of
the linearized Ricci tensor are possible to construct by a

linearized conformal transformation. Hence, we have a
sequence of solutions turning on one invariant after the
other. This motivates why all 18 invariants are needed on
Kerr with a ≠ 0. Even though the gauge invariants are
independent in this way, they will satisfy a set of differ-
ential compatibility equations. These relations will be
stated and used in [12] for the proof of Theorem 4.
One can argue that components of the linearized curva-

ture are the only possible gauge invariants of second order
and that no gauge-invariant curvature component carries
the _M, _a, _N, and _c perturbations. The differential order of Iξ
and Iζ is therefore minimal.
Geroch-Held-Penrose (GHP) form of gauge

invariants.—In a principal tetrad, the Killing invariants
take the GHP [22] form

Iξ ¼ −pðρ0Þþ ρÞ0 − τ0ð − τð0Þðp4ϑΨ2Þ −
1

2
Ψ2p5ϑΨ2

−
1

2
Ψ̄2p̄5ϑΨ2 þ

3

2
Ψ2p5ðhnnρ2 þ 2hlnρρ0 þ hllρ02

− 2hnm̄ρτ − 2hlm̄ρ0τ þ hm̄ m̄τ
2 − 2hnmρτ0

− 2hlmρ0τ0 þ 2hmm̄ττ
0 þ hmmτ

02Þ ð25Þ

and, with pþ ¼ pþ p̄; p− ¼ p − p̄,

Iζ¼
1

4
p½p2

−ðρ0ÞþρÞ0Þ−p2þðτ0ðþτð0Þ�ðp4ϑΨ2Þ

þ1

4
Refp5ϑΨ2½Ψ2pþp−−2Ψ̄2p̄2−4pðp−ρρ

0−pþττ0Þ�g
þ2iIm½p6p̄ðϑΨ3ρτþϑΨ1ρ

0τ0Þ�

−
3

8
Ψ2p5½p2

−ðhnnρ2þ2hlnρρ0 þhllρ02Þ
−2pþp−ðhnm̄ρτþhlm̄ρ0τþhnmρτ0 þhlmρ0τ0Þ
þp2þðhm̄m̄τ

2þ2hmm̄ττ
0 þhmmτ

02Þ�: ð26Þ

Curvature invariants.—The scalars Iξ and Iζ can be
derived from linearizations of tensors built from the
curvature and its derivatives in the full theory. On a general
vacuum spacetime with anti-self-dual Weyl curvature
Cabcd ¼ 1

2
Cabcd þ 1

2
i�Cabcd, define the curvature invariants

Î ¼ 1

24
CabcdCabcd; I ¼ Î1=6: ð27Þ

Furthermore, define the complex curvature invariant

M ¼ −I−4ð∇aIÞð∇aIÞ þ I þ Ī : ð28Þ

On a Kerr spacetime in a principal tetrad, we find Î ¼ Ψ2
2,

and M turns out to be the real constant MKerr ¼ M−2=3.
Because of (2), it follows that the variation of (28) around
Kerr is gauge invariant, and a lengthy calculation shows
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_M ¼ −
2

3
M−5=3Iξ: ð29Þ

Similarly define the real scalar curvature invariant

A¼ −1
jI j4

�
∇a

I
Ī

��
∇a Ī

I

�
−2Im

�
1

I2

�
Imð2I −MÞ: ð30Þ

In the background, it reduces to AKerr ¼ 4a2M−4=3. The
variation of A around a Kerr background shows

_A ¼ −
8

3
M−7=3ReIζ: ð31Þ

To express ImIζ, define the real, symmetric, trace-free two
tensor

Tac ¼ Im½I8Ī5C̄ðabcÞdð∇bIÞð∇dĪÞ�; ð32Þ

which equals Eq. (18) in Ref. [23] up to a constant. On a
general type D spacetime, it has the nontrivial factor
ρ̄τ þ ρτ̄0, which is zero in the Kerr case. Variation around
Kerr and contraction into ξa lead to

_Tacξ
aξc ¼ Ψ5

2p
4

p̄11
ðξcζcImIξ − ξcξcImIζÞ: ð33Þ

Conclusions.—In this Letter, we introduced two complex
scalar gauge invariants for perturbations of Kerr spacetime.
Together with the Teukolsky scalars and the Ricci tensor,
they form a minimal generating set of 18 real scalar
invariants. A similar construction on a Schwarzschild
background leads to a set of 19 real scalar invariants,
and for Minkowski space it is known to consist of the 20
real scalar components of the linearized curvature tensor;
see, e.g., [15]. Whether there is a relation between the
minimal number of generators for gauge invariants and the
number of parameters of the background, also in other
spacetimes, is yet unclear.
We would also like to point out that the invariants as

defined in (13) directly depend on the background iso-
metries. The alternative definition in terms of curvature
invariants does not make explicit use of this structure and
may be interesting for tracking type D parameter variations
in numerical evolution as well as for higher-order self-force
problems. It would also be interesting to analyze the set of
gauge invariants from the perspective of the black hole
stability problem. Assuming that the Teukolsky scalars are
under control, relations to the other invariants can be
analyzed without gauge fixing and yield additional flexi-
bility for the integration of the remaining field equations
after gauge fixing.
The geometric background and the full proof of

Theorem 4 will be given in Ref. [12].
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